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Abstract We present a nonlinear model of the dynamics of a cell population divided
into proliferative and quiescent compartments. The proliferative phase represents the
complete cell cycle (G1–S–G2–M) of a population committed to divide at its end.
The model is structured by the time spent by a cell in the proliferative phase, and by
the amount of Cyclin D/(CDK4 or 6) complexes. Cells can transit from one compart-
ment to the other, following transition rules which differ according to the tissue state:
healthy or tumoral. The asymptotic behaviour of solutions of the nonlinear model is
analysed in two cases, exhibiting tissue homeostasis or tumour exponential growth.
The model is simulated and its analytic predictions are confirmed numerically.
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1 Introduction

Living tissues, subject to renewal, are constituted of two different categories of cells:
proliferating cells (p) and quiescent cells (q). Proliferating cells grow and divide,
giving “birth” at the end of the cell cycle to new cells, or else transit to the quiescent
compartment (often referred to as the G0 phase), whereas quiescent cells do not grow
nor divide but either transit to the proliferative compartment or else stay in G0 and
eventually differentiate according to the tissue type.
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In a tumour cell population the number of proliferating cells increases continuously
as long as it is malignant and active, whereas in a normal (healthy) cell population, the
size of the proliferative compartment remains bounded since the total number of cells,
proliferating and quiescent, remains constant (at least in the mean, e.g. by averaging
over 24 h) so as to maintain tissue homeostasis.

During the first phase (often referred to as G1) of the proliferation cell cycle, until
the restriction point (R) in late G1 has been reached, proliferating cells may enter
the quiescent G0 phase and stop proliferation. Indeed, experiments by Zetterberg and
Larsson [12,44] showed that the restriction point (R) divides the G1 phase into two
parts: before R, cells may enter the quiescent phase, but once it has been passed,
they are committed to proceed through the other phases (S,G2,M, which will not be
considered here as such) until cell division.

The switching of cells between quiescence and proliferation depends on extracellu-
lar environmental conditions such as growth and antigrowth factors, and is regulated
differently in normal and tumour cells, due to differences in the expression of the
involved genes.

The model we present in this paper belongs to the category of physiologically struc-
tured population dynamics (see [3,23,25,35,43] for a general approach). It relies on
Partial Differential Equations structured both in age and cyclin content for cell pop-
ulations. Cell population models with proliferative and quiescent compartments have
been investigated by several authors (e.g., Arino, Gyllenberg, Rossa, Sanchez, Webb)
who studied their asynchronous exponential growth property [4,17,18,34]. Our goal
here is to design a generic cell population model applicable to both cancer and normal
tissue growth.

Unlimited tumour growth, by opposition to healthy tissue homeostasis, can be seen
in particular as a deregulation of transitions between proliferative and quiescent com-
partments. Furthermore, recent measurements [19] indicate that cyclins are the most
determinant control molecules for phase transitions.

For these reasons, and since we are interested in studying in parallel the behaviour
of healthy and tumour cell populations, we structure our cell population model in age
and cyclin content, a process which we describe step by step in Sects. 2 and 3. In
Sect. 4, we analyse the theoretical properties of the model, which we illustrate by
numerical simulations in Sect. 5. Finally, some comments and future prospects are
briefly developed in Sect. 6.

2 Molecular mechanisms involved in the G1 phase

A variety of proteins are produced during the proliferative cell cycle. The progression
of a cell through the cycle is controlled by complexes composed of two proteins: a
cyclin (structural protein) and a cyclin dependent kinase (or CDK), an enzyme which is
needed for the cyclin to activate. Each phase of the cell cycle has specific Cyclin/CDK
complexes. In particular, Cyclin D/(CDK4 or 6) and Cyclin E/CDK2 activate during
the G1 phase. Cyclin D is the first cyclin which is synthesized at the beginning of the
cell cycle. The level of Cyclin D is controlled by the extracellular environment.

Thus, Cyclin D synthesis is induced by specific growth factors (GFs) [6], and its level
decays when cells are deprived of GFs. GFs bind to specific receptors on the external
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cytoplasmic membrane, stimulating an intracellular signalling pathway (Ras/Raf/Map
kinase) by means of which Cyclin D is eventually synthesized (see [2,5,37], for more
details). Experiments reported in [20,39,45] show the important role of Cyclin D as
a regulator of the transition between G1 and G0. They show that a reduced exit from
G1 to G0 occurs when Cyclin D is overexpressed, whereas non-overexpressing cells
remain in G0. Progression through the restriction point (R) is essentially related to
Cyclin D level in as much as when there is a sufficient amount of Cyclin D, cells
pass the restriction point and are committed to proceed through the rest of the cell
cycle.

The passage through the restriction point is also dependent on the cyclin dependent
kinase inhibitor p27(Kip1) concentrations, since it has been shown [21] that the intra-
cellular levels of p27(Kip1) are strongly and negatively correlated to the probability
for a cell to pass through the restriction point.

Moreover, Cyclin D makes complexes with either CDK4 or CDK6 kinases and
these complexes are able to phosphorylate other proteins which are important for cell
progression in the G1 phase through the restriction point and further for the rest of the
cell division cycle: DNA replication, mitosis and cell division [38,39]. It is also known
(see e.g. [31] and articles cited therein) that an important role of the Cyclin D/ (CDK4
or 6) complexes is to bind to p27 and thus fight its inhibitory activity in the passage
of cells through the restriction point. This mechanism naturally relates, in a compet-
ing manner, Cyclin D/(CDK4 or 6) to p27(Kip1) concentrations, so that the balance
between Cyclin D/(CDK4 or 6) and p27(Kip1) concentrations may be seen as a reliable
marker of the cells that have passed this restriction point.

In this paper, we are interested in the molecular interactions that are related to the
activity of the Cyclin D/(CDK4 or 6) complexes in fast renewing cell populations (not
in individual cells as such). In the same way, the molecular concentrations we use
must be understood only as averaged concentrations in the subpopulations considered
(quiescent or proliferating), without regard of between cell variability or molecular
density distribution within these subpopulations.

Several authors [29,30,32,41] have described and simulated, under specific assump-
tions, part of the complex molecular reactions involved. Here, we give a simple model
to describe the activity of a lumped variable representing the activity of
Cyclin D/(CDK4 or 6) induced by growth factors, which is known to balance the
p27(Kip1) CDK inhibitor. This switch-like dynamics models the irreversible passage
through the restriction point, and it has been also represented in a comparable way
by other authors who used models with more variables ([29,41] and other references
therein). In fact, it may be shown (material not presented here) that the complex molec-
ular dynamics of Cyclin D/(CDK 4 OR6) linking to p27, as modelled e.g. in [29], may
be seen to yield a variable such as [T otal Cyclin D]/[Unbounded K ip1], repre-
senting a balance between active Cyclin D and p27, that shows a time dynamics very
close to that of the lumped variable x we will describe now. It must be stressed that we
use it only as a variable leading the passage of a cell population through the restriction
point, which is essential in modelling the exchanges between proliferative and quies-
cent phases. It is also clear that we would have to be more specific in the design of
another Cyclin D model if we wanted to include these G0 to G1 exchanges in a detailed
model of the cell cycle with phases G1, S,G2 and M , as presented elsewhere [11].
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For its present use in this simplified cell population model of the exchanges between a
proliferative and a quiescent compartments, described by a reduced set of equations,
we consider it as physiologically plausible enough and sufficient for our needs.

Let x be the amount of complexes Cyclin D/(CDK4 or 6) (or the ratio of concen-
trations [Cyclin D/(CDK4 or 6)]/[Free p27], if one is to take the inhibitory role of p27
into account) in the cell populations considered, and w another aggregated variable
representing the amount of the various molecules (Ras/Raf/. . .MAPK) involved in the
production of active Cyclin D. We assume that the stimulation of active Cyclin D
production by the aforementioned complex signalling pathways (Ras/Raf/MAPK),
that are triggered upstream by growth factors, involves a limited positive feedback
from Cyclin D itself, in as much as these growth factors (w) are supposed to impinge
directly, but in a saturable manner as stated earlier, our lumped variable x , which may
be seen to represent more Cyclin D itself.

We consider x andw as regulating variables in a simple nonlinear system of ordinary
differential equations (ODEs) with respect to age a in the G1 phase. We assume in
this system an infinite reservoir, with constant production rate, of w, only dependent
on upstream growth factors, and no (or negligible) consumption by x (Cyclin D),
i.e., no feedback from x , and participation, in a limited way, of Cyclin D itself in its
synthesis, which is triggered by variable w. Clearly, a simple bilinear equation (e.g.
ẋ = awx − bx, ẇ = c − dw) to represent this positive feedback of Cyclin D by a law
of mass action in its production is not relevant and must be excluded, since solution x
would burst exponentially, as shown by straightforward computation. We thus hypoth-
esize Michaelis–Menten-like dynamics of the lumped variable x for the contribution
of Cyclin D in its synthesis triggered by the aggregated variable w, replacing awx by
awx
1+x in the first equation. A simple ODE model with these features can thus be written
as follows:

{
dx
da = c1

x
1+xw − c2x, x(0) = x0 > 0,

dw
da = c3 − c4w, w(0) = w0 > 0.

(1)

The saturable influence of x in its production is the only nonlinear part in this system
and it is this term which yields its switch-like dynamics: S-shaped monotone conver-
gence from low initial values to a plateau. The coefficient c2 is the linear degradation
rate of Cyclin D, c3 is the constant production rate of the lumped variablew, and c4 is
a coefficient describing its linear degradation rate. All coefficients ci (1 ≤ i ≤ 4) are
strictly positive. Substituting the solution of the second equation of (1), we can reduce
(1) to one equation in x :

dx

da
= c1

x

1 + x

(
c3

c4
+ e−c4a

(
w0 − c3

c4

))
− c2x, x(0) = x0. (2)

This holds only for the G1 phase since we assume that cyclin amount x and age a
remain constant in G0 phase. A natural quantity arises in the qualitative analysis of
(2), the x -nullcline:
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X (a) = c1

c2

(
c3

c4
+ e−c4a

(
w0 − c3

c4

))
− 1.

We assume that w0 ≤ c3
c4

and c1c3 > c2c4 which is a way to express that the lumped
variable w is increasing from its initial to its asymptotic value, and that in the early
G1 phase the overall synthesis of the chemicals involved in the progression of the G1
phase overcomes their degradation. Therefore, a fundamental property of Eq. (2) is
that the cyclin concentration x is limited by:

xmax = c1c3

c2c4
− 1 > 0. (3)

We keep this simple model for our next purpose which is to describe a population
of cells, in proliferative or quiescent state.

3 Physiologically structured model

In the cell population model we will now present, we consider only two phases: a
quiescent one (physiologically G0) and a proliferative one (physiologically G1–S–
G2–M). The cell populations we study are firstly structured by the time spent inside
the proliferative phase. This phase represents the complete cell division cycle since
cell birth, and time in the phase will hereafter be referred to as a, for physiological
age in the cycle. As proposed in [7,42], we also structure the model by the amount of
(active, not bound to p27) cyclin D/(CDK4 or 6) complexes, denoted by variable x .
Indeed, as mentioned earlier, this biological quantity is the most important determinant
of progression up to the restriction point R in the late G1 phase.

Let p (t, a, x)and q (t, a, x) be respectively the densities of proliferating and qui-
escent cells with age a and content x in Cyclin D/(CDK4 or 6) complexes at time t.
We also consider a “total weighted population”, i.e., an effective population density,
N defined by

N (t) =
+∞∫
0

+∞∫
0

(
ϕ∗(a, x)p (t, a, x)+ ψ∗(a, x)q (t, a, x)

)
da dx . (4)

Here the weights ϕ∗ and ψ∗ represent environmental factors such as growth and anti-
growth factors acting on the populations of proliferating and quiescent cells, respec-
tively. N is the density of the fraction of the total population consisting in the cells
that are sensitive to these factors and are thus qualified to influence, for example by
a mechanism related to density inhibition, the G0/G1 transition. This excludes for
instance apoptotic or pre-apoptotic cells.

Exits from the quiescent compartment are due either to apoptosis (physiological
cell death) at a nonnegative rate d or to transition to the proliferative phase according
to a “recruitment” or “getting in the cycle” function G, which is assumed to depend on
the total weighted population N . We also assume that cells may leave the proliferative
compartment for the quiescent one according to a “demobilisation” or “leak” function
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L (a, x). These functions L and G, which represent the core mechanism of exchange
from proliferation to quiescence and vice-versa, respectively, in our model, will be
described in Sect. 3.2. Quiescent cells are assumed to be halted in their individual
physiological evolution, in the sense that once a cell becomes quiescent, its age and
cyclin content are fixed at their last values as belonging to a proliferative cell. In this
way, quiescent cells do not age and do not change their cyclin content.

The model, the coefficients of which, unless otherwise specified, will always be
strictly postive, may be written as

⎧⎪⎪⎨
⎪⎪⎩

∂
∂t p (t, a, x)+ ∂

∂a (�0 p (t, a, x))+ ∂
∂x (�1 (a, x) p (t, a, x))

= − (L (a, x)+ F(a, x)+ d1) p (t, a, x)+ G (N (t)) q (t, a, x) ,
∂
∂t q (t, a, x) = L (a, x) p (t, a, x)− (G (N (t))+ d2) q (t, a, x) .

(5)

The parameter �0 denotes the evolution speed of physiological age a with respect
to time t , which is assumed to be constant in this model; if for example �0 = 0.5, it
means that physiological age a evolves twice as slowly as real time t . Similarly, the
function �1 represents the evolution speed of Cyclin D/(CDK4 or 6) with respect to
time, i.e., �0 times the speed dx

da of x with respect to physiological age a, which is
given by Eq. (2), with w1 = w0 − c3

c4
< 0 :

dx

da
= �1 (a, x)

�0
= c1

x

1 + x

(
c3

c4
+ e−c4aw1

)
− c2x .

The parameters d1, d2 are apoptosis rates for proliferating and quiescent cells respec-
tively, and F(a, x) is the fraction of cells which leave the proliferative population to
divide according to a process which will be described later.

To complete the description of the model (5), we specify initial conditions:

p (0, a, x) = pi (a, x), a ≥ 0, x ≥ 0, (6)

and
q (0, a, x) = qi (a, x), a ≥ 0, x ≥ 0, (7)

where pi and qi are nonnegative functions.
In the following section, we describe a condition for entering the proliferative

phase (physiologically in G1) at age a = 0, but note that no such condition is needed
at x = 0 , since cyclin level x = 0 is never reached in the process described by (2)
because �1 vanishes at x = 0 .

3.1 Unequal division

The distribution of the cellular material between daughter cells is assumed to be
unequal. Due to variability in cyclin content between the two daughter cells when
division occurs (see [22,40] for a relation with aging), some cells may inherit a larger
amount of certain proteins such as cyclins, whereas others start the cycle with a smaller
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amount of the same proteins. We consider that the distribution of the amount of cyclin
D/(CDK4 or 6) between the two daughter cells is given by a conditional density
f (a, x, y) such that the probability for a daughter cell, born from a mother cell with
content y in Cyclin D/(CDK4 or 6) with x1 ≤ y ≤ x2 , to have itself content x in
Cyclin D is

∫ x2
x1

f (a, y, x) dy∫ +∞
0 f (a, y, x) dy

.

We also consider that all newborn cells are at birth in the proliferative compartment.
Then we have the following condition at the boundary a = 0,

p (t, 0, x) = 2

�0

+∞∫
0

+∞∫
0

f (a, x, y) p (t, a, y) da dy. (8)

The following conditions follow from the earlier interpretation:

(1) The amount of cyclin in a daughter cell is smaller than that of its mother cell at
the time of division:

f (a, x, y) = 0 if x > y.

(2) The amount y of cyclin of the mother cell is exactly conserved and shared by
the two daughters

f (a, x, y) = f (a, y − x, y)

and

+∞∫
0

f (a, x, y)dx = F (a, y) ,

where F(a, y) is the fraction of cells which at age a and cyclin content y leave the
proliferative phase to undergo cell division. These cells disappear and are replaced by
two daughter cells which immediately restart in the proliferative phase for their own
part.

We choose for F a standard Hill function:

F (a, y) = k1 yγ1

kγ1
2 + yγ1

1l[A∗,+∞[(a),

where 1lJ is the indicator function of interval J (i.e., 1lJ (x) = 1 if x ∈ J , else 0), k1
is the maximum effect of Cyclin D on cell division, k2 is the cyclin content yielding
its half-maximum effect, γ1 is the Hill coefficient tuning the steepness of the switch
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at y = k2 between 0 and k1 for the effect, and A∗ is the minimal cell cycle duration;
we also consider that cyclin repartition is uniform after division:

f (a, x, y) = F (a, y)

y
1l[0,y](x).

3.2 Transition control between proliferation and quiescence

Lynch et al. [24] have studied the effect of a transcription factor that inhibits the prolif-
eration of human colon cancer cells by reducing Cyclin D gene expression and hence
inducing an accumulation of cells in G0. Deprivation of growth factors (GFs) in the
early G1 phase also leads to a low Cyclin D level in cells, when Cyclin D/CDK4 is
the only Cyclin/CDK complex present, and the low level of Cyclin D is such that cells
exit G1 to enter the G0 phase.

We firstly assume that transition from proliferation to quiescence depends on age
and cyclin content of the cell. At the beginning of the cell cycle, the cell remains in
the proliferative phase but from a certain age on, if its content in Cyclin D/(CDK4 or
6) is not high enough, the cell passes to the quiescent phase.

We set the “demobilisation” function from proliferation to quiescence as:

L (a, x) = A1
Aγ2

2

Aγ2
2 + xγ2

1l[ Ā,+∞[(a).

In this setting, if the Hill exponent γ2 is high enough (e.g. between 5 and 10), A2 is
the “switching” cyclin content value x beyond which the “leak” function L becomes
close to zero, preventing escape to quiescence. At this point, the cell population is irre-
versibly committed to proceed into the proliferative phase until division. The value
A2 may thus be interpreted as the Cyclin D/(CDK4 or 6) level determining the restric-
tion point, in the sense of Zetterberg and Larsson [44]. The steep switch in function
L represents the fact that transition from G1 to G0 is preceded by a rapid increase
in physiological cyclin-dependent kinase inhibitors (CDKIs), such as p15, p21, and
especially p27, significantly reducing the activities of the G1 CDKs [36].

Secondly, as regards the reverse transition from quiescence to proliferation (the
“recruitment” function), it may be assumed to depend on the total population of cells
(see e.g. [15]). In the present model we assume, as stated above, that the recruitment
depends on those cells (subpopulation N of the total population) that are “qualified”
to be sensitive to growth or anti-growth factors. Two cases are studied here, since we
assume healthy tissues and tumours to behave differently with respect to the transition
from G0 to G1:

(1) For a healthy tissue, the fraction of the quiescent cells that re-enter the prolif-
erative phase decreases when the total population grows; in this case we define the
recruitment function G as a monotone Hill function of N decreasing to zero, repre-
senting density inhibition:

G (N ) = α1θ
n

θn + N n
, (9)
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where the parameters α1, θ and n have the same meaning as k1, k2 and γ1 for function
F(a, x), see, except that the switch is from α1 to zero instead of zero to k1.

(2) For a tumour, the fraction of the quiescent cells that enter the proliferative
phase is also decreasing with the total population, but asymptotically tends towards a
non-zero value when the population is very large, representing a population density
inhibition less complete than in healthy tissues. So, in the tumoral case, we take G as
follows:

G (N ) = α1θ
n + α2 N n

θn + N n
with 0 < α2 < α1 to ensure decay. (10)

We then analyse the qualitative behaviour of the model, which enables us to distinguish
a healthy tissue from a tumour by the asymptotic behaviour of their cell densities.

4 Analysis and qualitative behaviour

We now perform the analysis of the model developed above. We use the method of
Generalised Relative Entropy (GRE), which was recently introduced by Michel et al.
[26–28]. It allows us to deal with the model in its full generality. The GRE method is
based on the study of eigenproblems for linearised systems and relies on the Krein–
Rutman theorem for compact positive operators (see [13]). The use of other methods
is possible, for instance methods based on the theory of abstract semigroups with
structural conditions as described below or, in special cases, reduction to differential
equations with delay (see [1] for instance).

4.1 Linear problem

The linear problem associated with (5) assumes that the transition rate from the qui-
escent to the proliferative state is a constant G̃, such that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂p
∂t + ∂(�0 p)

∂a + ∂(�1(a,x)p)
∂x

= − (L (a, x)+ F(a, x)+ d1) p (t, a, x)+ G̃q (t, a, x) ,

∂q
∂t = L (a, x) p (t, a, x)− (G̃ + d2)q (t, a, x) ,

p (t, 0, x) = 2
�0

∫ +∞
0

∫ +∞
0 f (a, x, y) p(t, a, y)da dy.

(11)

Gyllenberg and Webb, studying a similar linear problem by methods relying on the
theory of continuous semigroups, proved the existence and uniqueness of a positive
solution for the system, and also proved that it has the property of asynchronous
exponential growth [17] (note that this results in fact from variants of the Krein–
Rutman theorem [13]). It means the following: the growth rate associated with (11)-the
so-called Malthus parameter- i.e., the first eigenvalue of the problem, also referred to
as the Perron eigenvalue in the finite-dimensional case, is defined as the only λ yielding
a nonnegative steady state (P, Q) solution of:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λP + ∂(�0 P)

∂a + ∂(�1(a,x)P)
∂x = − (L (a, x)+ F(a, x)+ d1) P + G̃ Q,

(λ+ G̃ + d2)Q = L (a, x) P,

P(0, x) = 2
�0

∫ +∞
0

∫ +∞
0 f (a, x, y) P (a, y) da dy.

(12)

Of course this system can be reduced to a single equation on P , and λ depends con-
tinuously upon G̃. For an age-structured model it can be solved by the method of
characteristics.

At this stage, it is also useful to introduce the adjoint system, following the theory
developed in [26]. The adjoint problem reads:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λϕ − �0

∂ϕ
∂a − �1 (a, x) ∂ϕ

∂x − 2
∫ +∞

0 ϕ (0, y) f (a, y, x) dy

= − (L (a, x)+ F(a, x)+ d1) ϕ + L (a, x) ψ,

(λ+ G̃ + d2)ψ = G̃ϕ,

(13)

with ϕ ≥ 0, ψ ≥ 0, and normalisation by the condition:

+∞∫
0

+∞∫
0

(
ϕ(a, x)P (a, x)+ ψ(a, x)Q (a, x)

)
da dx = 1.

These equations imply that solutions of (11) satisfy:

+∞∫
0

+∞∫
0

(
ϕ(a, x)p (t, a, x)+ ψ(a, x)q (t, a, x)

)
da dx

= eλt

+∞∫
0

+∞∫
0

(
ϕ(a, x)pi (a, x)+ ψ(a, x)qi (a, x)

)
da dx , (14)

a condition that clearly expresses exponential growth with rate λ.
In the following, we explain why these growth rates can allow us to qualitatively

distinguish between healthy and tumoral tissues. This will be done according to the
behaviour of the first eigenvalue λ for the system linearised at the extreme values of the
recruitment function G, G(0) = α1 and G∞ = α2. We then present the main features
of the nonlinear problem using a method introduced in [10] enforcing conditions on
the linearised problem.

4.2 Healthy tissue: non-extinction (a priori bound from below)

Coming back to the nonlinear problem, we first state conditions enforcing non-extinc-
tion. For this purpose, we need to investigate the linearised problem around N (t) = 0
and its first eigenvalue.
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We assume that the coefficients are such that the following qualitative properties hold
true:

(H1) For G̃ = G(0) = α1 , the first eigenvalue, denoted here as λ0, of system (12)
and its adjoint (13), is positive (λ0 > 0).

(H2) For the corresponding solutions to (12) and (13) obtained for G̃ = G(0) ,
(p0, q0) and (ϕ0, ψ0), there exists a constant C0, such as ϕ∗ ≤ C0ϕ0 and
ψ∗ ≤ C0ψ0 (ϕ∗, ψ∗ as defined in (4)).

These assumptions express that even if there are very few cells in the healthy tissue,
the population can be regenerated spontaneously. Note that if we a priori assume the
existence of a maximum possible age, then the positivity of ϕ0 and ψ0 implies that
(H2) is automatically satisfied for any pair of bounded functions (ϕ∗, ψ∗) .

Lemma 1 Under hypotheses (H1) and (H2) there exists a number m0 such that:

+∞∫
0

+∞∫
0

(
ϕ0(a, x)p(t, a, x)+ ψ0(a, x)q(t, a, x)

)
da dx ≥ m0 > 0 ∀t ≥ 0.

Proof of Lemma 1 Indeed, setting:

S0(t) =
+∞∫
0

+∞∫
0

(
ϕ0(a, x)p(t, a, x)+ ψ0(a, x)q(t, a, x)

)
da dx,

and using (5) and (13), we have, by the same duality principle used for deriving (14):

d S0

dt
(t) = λ0S0(t)− λ0 + d2

G(0)
(G(0)− G(N (t)))

+∞∫
0

+∞∫
0

ψ0(a, x)q(t, a, x)da dx ,

whence, because p ≥ 0 :
d S0

dt
(t) ≥

(
λ0 + d2

G(0)
G(N (t))− d2

)
S0(t).

Therefore, firstly:

S0(t) ≥ S0(0) exp

⎧⎨
⎩

t∫
0

(
λ0 + d2

G(0)
G(N (u))− d2

)
du

⎫⎬
⎭ > 0.

Now, if the minimum of S0 (t) is attained at t = 0 , then S0(t) ≥ S0(0) > 0 ; otherwise
it is attained at some point t0 (possibly at infinity), where d S0

dt (t0) = 0 , which yields:

G(N (t0))
λ0 + d2

G(0)
− d2 ≤ 0,
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or equivalently:

G(N (t0)) ≤ d2

λ0 + d2
G(0).

Since G is continuous and decreasing to 0, there exists a number N0 > 0 such that:

G(N0) = d2

λ0 + d2
G(0).

Thus G(N (t0)) ≤ G(N0) , which implies that N (t0) ≥ N0 > 0 and by (H2), for all
t ≥ 0, S0(t) ≥ S0(t0) ≥ N0

C0
. Therefore we have proved the result with

m0 = min

(
N0

C0
, S0(0)

)
.

4.3 Healthy tissue: limited growth (a priori bound from above)

We also need conditions enforcing tissue homeostasis, meaning that the total cell pop-
ulation density is limited in its growth: for this purpose we assume that for some λlim
with −d2 < λlim < 0 (recall that d2 is the apoptosis rate in the quiescent phase), there
exist a real number Nlim > 0 and nonnegative functions (ϕlim, ψlim) satisfying:

(H3) For G̃ = G(Nlim) = α1θ
n

θn+N n
lim
, the first eigenvalue, denoted here as λlim, of

system (12) and its adjoint(13), is negative (λlim < 0).
(H4) For the corresponding solutions to (12) and (13) obtained for G̃ = G(Nlim) ,

(plim, qlim) and (ϕlim, ψlim), there exists a constant Clim, such that ϕ∗ ≥ Climϕlim
and ψ∗ ≥ Climψlim .

These assumptions express that a large excess of cells is regulated negatively and thus
the population remains bounded.

Lemma 2 Under hypotheses (H3) and (H4) there is a number mlim such that:

+∞∫
0

+∞∫
0

(ϕlim(a, x)p(t, a, x)+ ψlim(a, x)q(t, a, x))da dx ≤ mlim, ∀t ≥ 0.

Proof of Lemma 2 Indeed as in the proof of Lemma 1, we define

Slim(t) =
+∞∫
0

+∞∫
0

(ϕlim(a, x)p(t, a, x)+ ψlim(a, x)q(t, a, x))da dx .
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Then,

d Slim

dt
(t) = λlim Slim(t)− (G(Nlim)− G(N (t)))

λlim + d2

G(Nlim)

×
+∞∫
0

+∞∫
0

ψlim(a, x)q(t, a, x)da dx

≤ λlim Slim(t)− (G(Nlim)− G(Clim Slim(t)))
λlim + d2

G(Nlim)

×
+∞∫
0

+∞∫
0

ψlim(a, x)q(t, a, x)da dx,

because, due to assumption (H4):

N (t) ≥ Clim Slim(t).

Therefore, following the arguments,

Slim(t) ≤ max

(
Slim(0),

Nlim

Clim

)
:= mlim.

4.4 Tumoral tissue: unlimited growth

Following Sect. 3.2, in the tumoral case, the recruitment function from quiescence to
proliferation is given by the function (10):

G (N ) = α1θ
n + α2 N n

θn + N n
.

Here, we expect that the population will show unlimited growth, and a condition
leading to this property is:

(H5) For G̃ = G(∞) = α2 , the first eigenvalue, denoted here as λ1, of system (12)
and its adjoint (13), is strictly positive (λ1 > 0 ).

(H6) For the corresponding solutions to (12) and (13) obtained for G̃ = G(∞),

(p1, q1), (ϕ1, ψ1), there exists a constant C1, such that ϕ∗ ≥ C1ϕ1 and ψ∗ ≥
C1ψ1.

Lemma 3 Under hypotheses (H5) and (H6), we have

N (t) −→
t→+∞ +∞,

and +∞∫
0

+∞∫
0

(
ϕ1(a, x)p(t, a, x)+ ψ1(a, x)q(t, a, x)

)
da dx −→

t→+∞ +∞.
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Proof of Lemma 3 Indeed, we define:

S1(t) =
+∞∫
0

+∞∫
0

(ϕ1(a, x)p(t, a, x)+ ψ1(a, x)q(t, a, x))da dx .

We have, since G is decreasing,

d S1

dt
(t) = λ1S1(t)− (G(∞)− G(N (t)))

λ1 + d2

G(∞)

+∞∫
0

+∞∫
0

ψ1(a, x)q(t, a, x)da dx

≥ λ1S1(t).

This implies that S1(t) has exponential growth. Finally, due to (H6) we have
N (t) ≥ C1S1(t) . We conclude that N (t) tends to infinity and Lemma 3 is proved.

Note that we can also consider the case λ1 = 0 in (H5). In this case, S1(t) would
have unlimited, but not exponential growth, and we would be closer to experimental
observations of tumour growth [9,14]. Such polynomial-like growth behaviour may
actually be obtained in the model by incorporating specific exchange functions L and
G between G0 and G1 actually yielding λ1 = 0, as shown elsewhere [8].

4.5 Steady state for healthy tissue

Numerical experiments show that in the case of healthy tissues, the cell population
goes to a steady state that represents tissue homeostasis. This can be analysed in the
present model, since a steady state (p∗, q∗) for (5) satisfies the following system of
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(�0 p∗)
∂a + ∂(�1(a,x)p∗)

∂x

= − (L (a, x)+ F(a, x)+ d1) p∗ (a, x)+ G (N∗) q∗ (a, x) ,

L (a, x) p∗ (a, x)− (G (N∗)+ d2) q∗ (a, x) = 0,

p∗ (0, x) = 2
�0

∫ +∞
0

∫ +∞
0 f (a, x, y)p∗ (a, y) da dy,

with

N∗ =
+∞∫
0

+∞∫
0

(
ϕ∗(a, x)p∗(a, x)+ ψ∗(a, x)q∗(a, x)

)
da dx . (15)
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Substituting q∗, we obtain the equation:

⎧⎪⎨
⎪⎩
∂(�0 p∗)
∂a + ∂(�1(a,x)p∗)

∂x = −r(a, x, N∗)p∗ (a, x) ,

p∗ (0, x) = 2

�0

∫ +∞
0

∫ +∞
0 f (a, x, y)p∗ (a, y) da dy,

(16)

with

r(a, x, N∗) = d2

G (N∗)+ d2
L (a, x)+ F(a, x)+ d1.

Proposition 4.1 With the assumptions (H1), (H2), (H3) and (H4), the system (15),
(16) has a unique positive solution (p∗, q∗).

Proof of Proposition 4.1 Equation (16) is an eigenproblem as is Eq. (12); therefore,
given a steady state population number N∗, we can find λ(N∗) solution of (12). We
know by (H1), (H2) that λ(0) > 0 and by (H3) and (H4) that λ(Nlim) < 0 . Because
λ(N∗) is continuous, and decreasing since r is increasing with N∗, there is a unique
value of N∗ such that λ(N∗) = 0 . It remains to normalise the eigenvectors properly
to obtain (15).

Remark 1 From (H5) and (H6) we deduce that, for tumour growth, (5) has no steady
state.

5 Numerical simulations

Some of the model parameters are known for specific cells in other settings for func-
tions used in a similar context. For stem cells, the parameters are well documented in
the literature on the subject (see e.g. [15]), and we chose parameter values according to
these sources, knowing that actually identifying these values on other cell lines would
be necessary for experimental validation of the model. Parameter values come from
[41] for c1, c2, c4, and from [15] for d1, d2, α1, n, θ . The factors determining transition
from proliferation to quiescence have been proved to be directly related to Cyclin D
[6,20,24,45], but the exact rates are not known. In the same way, parameters A1, A2,
k1, k2, γ1, γ2,w0, �0, α2, A∗, A are not known, but the choices made have been deter-
mined either by fixing arbitrary values -as likely as possible, e.g. A∗ = 24 h, A = 15 h
or by giving a range of values within which our numerical simulations exhibit a behav-
iour illustrating the theoretical properties of the model demonstrated under assump-
tions (H1)–(H6) (Table 1).

In our numerical simulations, we have used ϕ∗ = ψ∗ ≡ 1 , which means that
all cells are eligible for recruitment control (by cell density inhibition, growth or
antigrowth factors) in phase G1.

For healthy tissues, Fig. 1 shows the trend towards a steady state as stated in
Proposition 4.1 and Fig. 2 shows the distribution of cells according to their age and
Cyclin D/(CDK4 or 6) concentrations in the quiescent and proliferative phases.
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Table 1 Parameters and values
used in simulations

Parameters Values Parameters Values

c1 0.04 γ1 5 – 10

c2 0.03 A∗ 24 h

c3 0.3 A1 0.8 – 1

c4 0.01 A2 25

w0 1 γ2 5 – 10

�0 0.5 A 15 h

d1 0.07 day−1 α1 0.8 day−1

d2 0.07 day−1 θ 0.095 × 106

k1 1 n 1

k2 20 α2 0.7 day−1

Fig. 1 Time evolution of total population for a healthy tissue. Left total quiescent cells∫ +∞
0

∫ +∞
0 q(t, a, x)dadx ; right total proliferating cells

∫ +∞
0

∫ +∞
0 p(t, a, x)da dx

Fig. 2 Isovalues of the total cell population for a healthy tissue at steady state
(

p∗, q∗)
: variable x (cyclin

content) is in abscissae, variable a (age in the proliferative phase) in ordinates, and level lines indicate
constant p∗ or q∗ values. Left quiescent cells q∗(a, x); right proliferating cells p∗(a, x)

We have verified that assumptions (H1) and (H3) hold true. The so-called power
algorithm [16] allowed us to obtain numerically the first eigenvalue for system (12).
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Fig. 3 Time evolution of total population for a tumoral tissue. Left total quiescent cells∫ +∞
0

∫ +∞
0 q(t, a, x)dadx ; right total proliferating cells

∫ +∞
0

∫ +∞
0 p(t, a, x)dadx

For G̃ = α1 = 0.8 , we have obtained λ0 = 0.026 , which is compatible with (H1);
we have also numerically determined Nlim = 5.6 × 106 , and obtained λlim = −0.12
for G̃ = G(Nlim) = α1θ

n

θn+N n
lim

, which is compatible with (H3) since the cell population

has limited growth.
For a tumoral tissue, Fig. 3 shows that the population has unlimited exponential

growth in both the quiescent and proliferative phases.

6 Discussion and conclusion

We have considered a nonlinear model to describe a cell population structured by its
age and its amount of cyclin with two compartments: proliferating and quiescent cells.
We have structured our cell population model by the amount of Cyclin D/(CDK4 or 6)
since it is the cyclin/CDK complex, or rather the balance between Cyclin D/(CDK4
or 6) and p27(Kip1) concentrations, which is the most determinant factor for the pro-
gression in the cell cycle through the restriction point, and it is also important for
the transition from proliferation to quiescence, since there is only one proliferating
phase in the model, i.e., other cyclins (E , A, B) have not been considered. We have
also assumed that the transition from quiescence to proliferation depends on the total
(“qualified”) cell population: this nonlinear feedback has been introduced on purpose
to allow for a possible cell population steady state which is the norm in fast renewing
healthy tissues. Our cell population model can thus be applied to both cancer and
normal tissue growth.

The analysis we have carried out, assuming reasonable hypotheses on the parame-
ters, exhibits a steady state for a healthy tissue and, on the contrary, unlimited growth
for tumoral tissue. In addition, the numerical simulations confirm these results, as
illustrated by Figs. 1, 2 and 3.

Throughout our analysis, we have particularly studied the role of transitions between
quiescence and proliferation, focusing on the intracellular amount of Cyclin D, to
connect the physiological behaviour of individual cells with the asymptotic behaviour
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of the corresponding cell populations with respect to their growth dynamics, for both
healthy and tumoral tissues.

In this paper, we did not take space into account, a choice which was unlikely
to yield, for the solutions of the equations, the Fisher-KPP-like long-term behaviour
which has been observed by various authors for the growth of solid spheroid tumours
[9,14], i.e., R(t) 	 kt for the tumour radius as a function of time. But note that these
observations deal with tumours that have in common to be described at a late stage,
when space limitations are essential to tumour growth kinetic mechanisms. In this
respect, the present model, in the tumoral case, may be suitable only for the phenom-
enological representation of the initial exponential step of solid tumour growth, or
of tumours of the hematopoietic system. Other models [33] take both space and cell
cycle control into account, and adding space as a structuring variable (i.e., designing
in the future a model structured in age, cyclin content and space) is an open option.

We can hope that a better understanding of the cell cycle and its control can be
used practically in cancer therapy. Drugs used in cancer chemotherapies affect only
proliferating cells, often in a specific phase of the cell cycle and are often specific
to particular proteins of the cell cycle. In the future, we will add to this model the
representation of the effects on the cell cycle of drugs such as antagonists of EGFRs
(epidermal growth factor receptors). These receptors, on stimulation by growth fac-
tors, act on the G1 phase, inducing quiescent cells to enter the proliferating phase and
these drugs, which are more and more widely used in clinics, inhibit this recruitment.
We will also separate the proliferating phase (i.e., the complete cell division cycle)
into specific phases (G1/S–G2/M) onto which specific drugs act, e.g. 5 Fluorouracil
on S phase.

Such modelling principles will allow us to represent separately the cytotoxic effects
of alkylating agents, such as e.g. platinum compounds, non-phase-specific, of anti-
metabolites, S phase-specific, as well as the cytostatic effects of EGFR antagonistic
drugs on transitions between quiescent and proliferative states. Taking into account
the effects of such different drugs is indeed a necessity in order to actually help cli-
nicians, since modern treatments in oncology use combinations of drugs in standard
therapeutic protocols.
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