Advanced Susceptibility Propagation

Muneki Yasuda

(collaborator: Kazuyuki Tanaka)

Graduate School of Information Sciences, Tohoku University , Japan.

> Introduction

> Susceptibility Propagation
> Advanced Susceptibility Propagation
> Conclusion
> Appendix

INTRODUCTION

- Calculating mean values and covariances in Markov random fields (MRFs) is generally NP-hard problem.
- Belief propagations (BPs) are one of the most well-known approximate methods on MRFs.
- Combining BPs with linear response methods leads to susceptibility propagations (SusPs) that can give approximate values of covariances with a high degree of accuracy.
(K. Tanaka, 2003; M. Welling \& Y. W. The, 2004; M. Mézard \& T. Mora, 2009)

Aim of This Presentation

> Susceptibility propagations are techniques to compute approximate covariances on Markov random fields using belief propagations and linear response methods.
$>$ In this presentation, I develop a scheme of susceptibility propagations using concepts of a variance matching technique.

Susceptibility Propagation

On a given undirected graph $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$,
we define a graphical model (an Ising model) expressed by

$$
\begin{aligned}
& P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})=\frac{1}{Z(\boldsymbol{h}, \boldsymbol{J})} \exp \left(\sum_{i \in V} h_{i} S_{i}+\sum_{(i, j) \in E} J_{i j} S_{i} S_{j}\right) \cdot \boldsymbol{S} \in\{+1,-1\}^{n} \\
& \text { Free Energy } \quad F(\boldsymbol{h}, \boldsymbol{J}):=-\ln Z(\boldsymbol{h}, \boldsymbol{J})
\end{aligned}
$$

The derivatives of the free energy give statistical quantities of the MRF:

$$
\begin{aligned}
& \frac{\partial F(\boldsymbol{h}, \boldsymbol{J})}{\partial h_{i}}=-\sum_{S} S_{i} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J}) \quad \text { means } \\
& \frac{\partial^{2} F(\boldsymbol{h}, \boldsymbol{J})}{\partial h_{i} \partial h_{j}}=-\sum_{S} S_{i} S_{j} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})+\left(\sum_{S} S_{i} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})\right)\left(\sum_{S} S_{j} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})\right)
\end{aligned}
$$

Belief Propagation (1)

I introduce a Belief propagation by a Bethe free energy.

Bethe Free Energy

$$
\partial(i): \text { set of nodes connecting to node } i .
$$

$$
\begin{aligned}
F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J}) & :=-\sum_{i \in V} h_{i} m_{i}-\sum_{(i, j) \in E} J_{i j} \xi_{i j}+\sum_{i \in V}(1-|\partial(i)|) \sum_{\sigma_{i}= \pm 1} \frac{1+m_{i} \sigma_{i}}{2} \ln \frac{1+m_{i} \sigma_{i}}{2} \\
& +\sum_{(i, j) \in E} \sum_{\sigma_{i}, \sigma_{j}= \pm 1} \frac{1+m_{i} \sigma_{i}+m_{j} \sigma_{j}+\xi_{i j} \sigma_{i} \sigma_{j}}{4} \ln \frac{1+m_{i} \sigma_{i}+m_{j} \sigma_{j}+\xi_{i j} \sigma_{i} \sigma_{j}}{4}
\end{aligned}
$$

where

$$
\xi_{i j}:=\operatorname{coth}\left(2 J_{i j}\right)\left(1-\sqrt{1-\left(1-m_{i}^{2}-m_{j}^{2}\right) \tanh \left(2 J_{i j}\right)-2 m_{i} m_{j} \tanh \left(2 J_{i j}\right)}\right)
$$

Bethe Approximation

The true free energy is approximated by minimizing the Bethe free energy w.r.t. m.

$$
F(\boldsymbol{h}, \boldsymbol{J}) \approx \min _{\boldsymbol{m}} F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J})
$$

Belief Propagation (2)

The minimum condition of the Bethe free energy is equivalent to a message-passing rule (equations of effective fields) of BP.
Message-Passing Rule

$$
M_{i \rightarrow j}=\tanh ^{-1}\left(\tanh \left(J_{i j}\right) \tanh \left(h_{i}+\sum_{k \in \partial(i)\{j\}} M_{k \rightarrow i}\right)\right)
$$

Using the messages satisfying the message-passing rule, we obtain \boldsymbol{m} that minimize the Bethe free energy as follows:

$$
\hat{m}_{i}=\tanh \left(h_{i}+\sum_{j \in \partial(i)} M_{j \rightarrow i}\right) \quad \text { where } \quad \hat{\boldsymbol{m}}:=\arg \min _{\boldsymbol{m}} F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J})
$$

The quantities \boldsymbol{m} given by these relations are approximations of the mean values:

$$
\sum_{S} S_{i} P(S \mid \boldsymbol{h}, \boldsymbol{J})=-\frac{\partial F(\boldsymbol{h}, \boldsymbol{J})}{\partial h_{i}} \approx-\frac{\partial}{\partial h_{i}}\left(\min _{\boldsymbol{m}} F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J})\right)=\hat{m}_{i}
$$

Susceptibility Propagation (1)

I define the covariant matrix by

$$
\chi_{i j}:=\sum_{S} S_{i} S_{j} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})-\left(\sum_{S} S_{i} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})\right)\left(\sum_{S} S_{j} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})\right) .
$$

These quantities are sometime called susceptibilities.

Linear Response Relation

We approximate the susceptibilities using the Bethe free energy:

$$
\chi_{i j}=-\frac{\partial^{2} F(\boldsymbol{h}, \boldsymbol{J})}{\partial h_{i} \partial h_{j}} \approx-\frac{\partial^{2}}{\partial h_{i} \partial h_{j}}\left(\min _{\boldsymbol{m}} F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J})\right)=\frac{\partial \hat{m}_{i}}{\partial h_{j}} .
$$

The SusP is a message-passing algorithm to compute $\quad \hat{\chi}_{i j}:=\partial \hat{m}_{i} / \partial h_{j}$.

Susceptibility Propagation (2)

Message-Passing Rule of SusP

After the BP, we compute the following message-passing:

$$
\begin{aligned}
\hat{\chi}_{i j} & =\left(1-\hat{m}_{i}^{2}\right)\left(\delta_{i j}+\sum_{k \in \partial(i)} \eta_{k \rightarrow j, i}\right), \\
\eta_{i \rightarrow j, k} & =\frac{\sinh \left(2 J_{i j}\right)\left(\delta_{i k}+\sum_{l \in \partial(i) \backslash\{j\}} \eta_{l \rightarrow i, k}\right)}{\cosh \left(2 J_{i j}\right)+\cosh \left(2 h_{i}+2 \sum_{l \in \partial(i) \backslash\{j\}} M_{l \rightarrow i}\right)},
\end{aligned}
$$

where $\eta_{i \rightarrow j, k}:=\partial M_{i \rightarrow j} / \partial h_{k}$.
Above equations are closed w.r.t. the approximate susceptibilities $\hat{\chi}_{i j}$.
The computational complexity of the SusP is $O(|V||E|)$.

Susceptibility Propagation (3)

Summary of SusP

$$
\begin{aligned}
& M_{i \rightarrow j}=\tanh ^{-1}\left(\tanh \left(J_{i j}\right) \tanh \left(h_{i}+\sum_{k \in \partial(i)\{j\}} M_{k \rightarrow i}\right)\right) \\
& \text { local }
\end{aligned}
$$

magnetization
susceptibility $\approx\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle \quad\left\{\begin{array}{l}\eta_{i \rightarrow j, k}:=\partial M_{i \rightarrow j} / \partial h_{k}\end{array}\right.$

SusP

$$
\left\{\begin{array}{c}
\hat{\chi}_{i j}:=\partial \hat{m}_{i} / \partial h_{j} \\
\eta_{i \rightarrow j, k}:=\partial M_{i \rightarrow j} / \partial h_{k}
\end{array}\right.
$$

$$
\hat{\chi}_{i j}=\left(1-\hat{m}_{i}^{2}\right)\left(\delta_{i j}+\sum_{k \in \partial(i)} \eta_{k \rightarrow j, i}\right)
$$

$$
\eta_{i \rightarrow j, k}=\frac{\sinh \left(2 J_{i j}\right)\left(\delta_{i j}+\sum_{l \in \partial(i) \backslash\{j\}} \eta_{l \rightarrow i, k}\right)}{\cosh \left(2 J_{i j}\right)+\cosh \left(2 h_{i}+2 \sum_{l \epsilon \partial(i)\{j\}} M_{l \rightarrow i}\right)}
$$

Advanced Susceptibility Propagation

Extended Bethe Free Energy

$$
\tilde{F}_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J}, \boldsymbol{\Lambda}):=F_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J})+\frac{1}{2} \sum_{i \in V} \Lambda_{i} m_{i}^{2}
$$

If $\Lambda_{i}>0$, this additive term corresponds to the L_{2} regularization.

Extended BP

The additive term changes the message-passing rule in the BP as

$$
\begin{aligned}
& \tilde{M}_{i \rightarrow j}=\tanh ^{-1}\left(\tanh \left(J_{i j}\right) \tanh \left(h_{i}-\Lambda_{i} \tilde{m}_{i}+\sum_{k \in \partial(i) \backslash\{j\}} \tilde{M}_{k \rightarrow i}\right)\right), \\
& \tilde{m}_{i}=\tanh \left(h_{i}-\Lambda_{i} \tilde{m}_{i}+\sum_{j \in \partial(i)} \tilde{M}_{j \rightarrow i}\right) \quad \text { where } \tilde{\boldsymbol{m}}:=\arg \min _{\boldsymbol{m}} \tilde{F}_{\mathrm{B}}(\boldsymbol{m}, \boldsymbol{h}, \boldsymbol{J}, \boldsymbol{\Lambda}) .
\end{aligned}
$$

For a given Λ, these equations are closed.

Advanced Susceptibility Propagation (2)

Extended SusP

The additive term changes the message-passing rule in the SusP as

$$
\begin{aligned}
\tilde{\chi}_{i j} & =\frac{1-\tilde{m}_{i}^{2}}{1+\Lambda_{i}\left(1-\tilde{m}_{i}^{2}\right)}\left(\delta_{i j}+\sum_{k \in \hat{\partial}(i)} \tilde{\eta}_{k \rightarrow j, i}\right), \\
\tilde{\eta}_{i \rightarrow j, k} & =\frac{\sinh \left(2 J_{i j}\right)\left(\delta_{i k}-\Lambda_{i} \tilde{\chi}_{i k}+\sum_{l \in \partial(i) \backslash\{j\}} \tilde{\eta}_{l \rightarrow i, k}\right)}{\cosh \left(2 J_{i j}\right)+\cosh \left(2 h_{i}-2 \Lambda_{i} \tilde{m}_{i}+2 \sum_{l \in \partial(i)\langle\{j\}} \tilde{M}_{l \rightarrow i}\right)},
\end{aligned}
$$

where $\hat{\chi}_{i j}:=\partial \tilde{m}_{i} / \partial h_{j}$ and $\tilde{\eta}_{i \rightarrow j, k}:=\partial \tilde{M}_{i \rightarrow j} / \partial h_{k}$.
For a given $\boldsymbol{\Lambda}$, above message-passing rules are closed.

> The computational complexity of the extended SusP is the same as the original SusP.

Advanced Susceptibility Propagation (3)

Variance Matching
On binary MRFs, the relations

$$
\chi_{i i}+\left(\sum_{S} S_{i} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})\right)^{2}=\sum_{S} S_{i}^{2} P(\boldsymbol{S} \mid \boldsymbol{h}, \boldsymbol{J})=1
$$

are always hold.
However, the SusP no longer keeps the consistencies due to approximation. (M. Yasuda \& K. Tanaka, 2007)

We determine values of Λ so as to satisfy the relations that are trivially hold on binary MRFs, say, match true variances and variances obtained through the SusP.

Variance Matching !

This requirement corresponds to the conditions : $\tilde{\chi}_{i i}+\tilde{m}_{i}^{2}=1$.
This conditions hold by setting

$$
\Lambda_{i}=\frac{1}{1-\tilde{m}_{i}^{2}} \sum_{j \in \partial(i)} \tilde{\eta}_{j \rightarrow i, i}
$$

Algorithm of Advanced Susceptibility Propagation

$$
\begin{array}{ll}
\tilde{M}_{i \rightarrow j} \leftarrow \tanh ^{-1}\left(\tanh \left(J_{i j}\right) \tanh \left(h_{i}-\Lambda_{i} \tilde{m}_{i}+\sum_{k \in \theta(i)(i) j\}} \tilde{M}_{k \rightarrow i}\right)\right) \\
\tilde{m}_{i} \leftarrow \tanh \left(h_{i}-\Lambda_{i} \tilde{m}_{i}+\sum_{j \in \sigma(i)} \tilde{M}_{j \rightarrow i}\right) & \text { Extended BP }
\end{array}
$$

Extended SusP

$$
\Lambda_{i} \leftarrow \frac{1}{1-\tilde{m}_{i}^{2}} \sum_{j \in(i)} \tilde{\eta}_{j \rightarrow i, i} . \text { Variance Matching }
$$

$$
\begin{aligned}
& \tilde{\chi}_{i j} \leftarrow \frac{1-\tilde{m}_{i}^{2}}{1+\Lambda_{i}\left(1-\tilde{m}_{i}^{2}\right)}\left(\delta_{i j}+\sum_{k \in \theta_{i j}} \tilde{\eta}_{k \rightarrow j, i}\right) \\
& \tilde{\eta}_{i \rightarrow j, k} \leftarrow \frac{\sinh \left(2 J_{i j}\right)\left(\delta_{i j}-\Lambda_{i} \tilde{z}_{i k}+\sum_{(\epsilon \theta(i)\rangle(j, j} \tilde{\eta}_{l \rightarrow i, k}\right)}{\cosh \left(2 J_{i j}\right)+\cosh \left(2 h_{i}-2 \Lambda_{i} \tilde{m}_{i}+2 \sum_{(\epsilon \sigma(i)\rangle(i, j)} \tilde{M}_{t \rightarrow i}\right)}
\end{aligned}
$$

Overview of Advanced Susceptibility Propagation

Advanced Susceptibility Propagation (A-SusP)

Susceptibility Propagation

Belief Propagation

Variance Matching

The SusP and the A-SusP have the same computational cost.
The variance matching technique introduced here is known as the diagonal trick method in learning in inverse Ising problems.
(H. J. Kappen \& F. B. Rodríguez, 1998; T. Tanaka, 1998; M. Yasuda \& K. Tanaka, 2009)

If one employs the naïve mean-field free energy instead of the Bethe free energy, the present framework gives the adaptive TAP equation (M. Opper \& O. Winther, 2001).

The A-SusP is interpreted as an extension of the adaptive TAP approach.

Numerical Experiment (1)

Consider systems on the 4×4 square grid.
The parameters h_{i} and $J_{i j}$ are independently drawn from distributions $N\left(0,0.1^{2}\right)$ and $N\left(0, J^{2}\right)$, respectively . $N(\mathrm{a}, b)$: Gaussian with mean a and variance b.

$$
\mathrm{Er}_{1}:=\frac{1}{|V|} \sum_{i \in V}\left|\left\langle S_{i}\right\rangle_{\text {exact }}-\left\langle S_{i}\right\rangle_{\text {approx }}\right|
$$

$\mathrm{Er}_{2}:=\frac{2}{|V|(|V|-1)} \sum_{i<j}\left|\left\langle S_{i} S_{j}\right\rangle_{\text {exact }}-\left\langle S_{i} S_{j}\right\rangle_{\text {approx }}\right|$

Numerical Experiment (2)

Next, consider systems on the fully-connected graph with 16 vertices.
The parameters h_{i} and $J_{i j}$ are independently drawn from distributions $N\left(0,0.1^{2}\right)$ and $N\left(0, J^{2} / n\right)$, respectively .

$$
\mathrm{Er}_{1}:=\frac{1}{|V|} \sum_{i \in V}\left|\left\langle S_{i}\right\rangle_{\text {exact }}-\left\langle S_{i}\right\rangle_{\text {approx }}\right| \quad \quad \mathrm{Er}_{2}:=\frac{2}{|V|(|V|-1)} \sum_{i<j}\left|\left\langle S_{i} S_{j}\right\rangle_{\text {exact }}-\left\langle S_{i} S_{j}\right\rangle_{\text {approx }}\right|
$$

CONCLUSION

We have proposed the improved SusP algorithm.
The new SusP has the same computational cost as the conventional SusP.
Since the A-SusP has a feedback scheme to the BP, it improves not only covariances but means.

Thank you for your kindly attentions !

Advanced Susceptibility Propagation

Susceptibility Propagation
 Sparse

Adaptive TAP

Dense

The proposed method is strong for both dense and sparse systems !

What are Λ ?

$>$ The parameters $\boldsymbol{\Lambda}$ force $\left\langle S_{i}^{2}\right\rangle=\chi_{i i}-m_{i}^{2}$,
obtained through susceptibility propagations, to be one.
$>$ The condition for $\boldsymbol{\Lambda}$ can be also interpreted as a Hessian matching.

Introduction of Gibbs Free Energy (GFE)

$$
\begin{aligned}
H(\boldsymbol{S}) & :=-\sum_{i \in V} h_{i} S_{i}-\sum_{(i, j) \in E} J_{i j} S_{i} S_{j}, \quad \boldsymbol{S} \in\{+1,-1\}^{n} \\
G(\boldsymbol{m}) & :=\underset{\lambda \lambda, \gamma\}}{\operatorname{extr}} \min _{Q}\left\{\sum_{S} H(\boldsymbol{S}) Q(\boldsymbol{S})+\sum_{S} Q(\boldsymbol{S}) \ln Q(\boldsymbol{S})-\gamma\left(\sum_{S} Q(\boldsymbol{S})-1\right)\right. \\
& \left.-\sum_{i \in V} \lambda_{i}\left(\sum_{S} S_{i} Q(\boldsymbol{S})-m_{i}\right)\right\} \\
& =-\sum_{i \in V} h_{i} m_{i}+\max _{\lambda}\left\{\sum_{i \in V} \lambda_{i} m_{i}+F(\lambda, \boldsymbol{J})\right\} .
\end{aligned}
$$

Properties of Gibbs Free Energy

> minimum of the GFE is equal to the free energy,
$>$ values of \boldsymbol{m} that minimize the GFE are equal to exact magnetizations of the original Ising model:

$$
-\ln Z(\boldsymbol{h}, \boldsymbol{J})=\min _{\boldsymbol{m}} G(\boldsymbol{m}),\langle\boldsymbol{S}\rangle=\underset{\boldsymbol{m}}{\arg \min } G(\boldsymbol{m}) .
$$

Approximate Gibbs Free Energy

By using an approximation, for example the Bethe approximation, we can approximate the exact GFE:

$$
G(\boldsymbol{m}) \approx G_{\text {app }}(\boldsymbol{m})
$$

And, let us extend the approximate GFE as

$$
\hat{G}_{\text {app }}(\boldsymbol{m}, \Lambda) \approx G_{\text {app }}(\boldsymbol{m})+\frac{1}{2} \sum_{i \in V} \Lambda_{i} m_{i}^{2}
$$

Hessian Matrices of Gibbs Free Energies

Let us define Hessian matrices of the exact GFE and the approximate GFE as

$$
[\boldsymbol{G}(\boldsymbol{m})]_{i j}:=\frac{\partial^{2} G(\boldsymbol{m})}{\partial m_{i} \partial m_{j}}, \quad\left[\hat{\boldsymbol{G}}_{\mathrm{app}}(\boldsymbol{m}, \boldsymbol{\Lambda})\right]_{i j}:=\frac{\partial^{2} \hat{G}_{\mathrm{app}}(\boldsymbol{m}, \boldsymbol{\Lambda})}{\partial m_{i} \partial m_{j}}
$$

We want to find optimal values of $\boldsymbol{\Lambda}$ which make the Hessian matrix of approximate GFE the best approximation of that of exact GFE:

$$
\min _{\Lambda}\left(\text { distance between } \boldsymbol{G}(\boldsymbol{m}) \text { and } \hat{\boldsymbol{G}}_{\text {app }}(\boldsymbol{m}, \boldsymbol{\Lambda})\right)
$$

A Measure of Similarity of Matrices

Given two (positive definite and symmetric) matrices, \boldsymbol{A} and \boldsymbol{B}, let us measure a similarity between these matrices, using a Kullback-Leibler divergence (KLD), as

$$
D(\boldsymbol{A} \| \boldsymbol{B}):=\int N_{0}(\boldsymbol{x} \mid \boldsymbol{A}) \ln \frac{N_{0}(\boldsymbol{x} \mid \boldsymbol{A})}{N_{0}(\boldsymbol{x} \mid \boldsymbol{B})} \mathrm{d} \boldsymbol{x}
$$

where $N_{0}(\boldsymbol{x} \mid \boldsymbol{A})$ is a multivariate Gaussian

$$
N_{0}(\boldsymbol{x} \mid \boldsymbol{A}):=\sqrt{\frac{\operatorname{det} \boldsymbol{A}}{(2 \pi)^{n}}} \exp \left(-\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}\right)
$$

Properties of the KLD

$$
D(\boldsymbol{A} \| \boldsymbol{B}) \geq 0, \quad D(\boldsymbol{A} \| \boldsymbol{B})=0 \quad \text { iff } \quad \boldsymbol{A}=\boldsymbol{B} .
$$

Let us regard values of $\boldsymbol{\Lambda}$, which minimize the KLD between the Hessian matrices, give the best approximation of the Hessian matrix of exact GFE:

$$
\begin{aligned}
& \min _{\Lambda}\left(\text { distance between } \boldsymbol{G}(\boldsymbol{m}) \text { and } \hat{\boldsymbol{G}}_{\text {app }}(\boldsymbol{m}, \boldsymbol{\Lambda})\right) \\
& \approx \min _{\Lambda} D\left(\boldsymbol{G}(\boldsymbol{m}) \| \hat{\boldsymbol{G}}_{\text {app }}(\boldsymbol{m}, \Lambda)\right)
\end{aligned}
$$

The minimum condition of above KLD is equivalent to the condition for $\boldsymbol{\Delta}$ in the proposed framework.

