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 Calculating mean values and covariances in Markov random fields (MRFs) 

is generally NP-hard problem. 

 

 Belief propagations (BPs) are one of the most well-known approximate 

methods on MRFs. 

 

 Combining BPs with linear response methods leads to susceptibility 

propagations (SusPs)  that  can give approximate values of covariances 

with a high degree of accuracy.  
       (K. Tanaka, 2003; M. Welling & Y. W. The, 2004; M. Mézard & T. Mora, 2009) 
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Aim of This Presentation 

 Susceptibility propagations are techniques to compute approximate 

    covariances on Markov random fields using belief propagations  

    and linear response methods. 

 

 

 

 In this presentation, I develop a scheme of susceptibility 

    propagations using concepts of a variance matching  technique. 
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On a given undirected graph G( V, E ),  

 

we define a graphical model (an Ising model) expressed by   
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The derivatives of the free energy give statistical quantities of the MRF: 

means 

covariances 
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I introduce a Belief propagation by a Bethe free energy. 
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where 

        2 2: coth 2 1 1 1 tanh 2 2 tanh 2 .ij ij i j ij i j ijJ m m J m m J      

∂(i) : set of nodes connecting to node i.   

   B, min , ,F F
m

h J m h J

The true free energy is approximated by minimizing the Bethe free energy 

w.r.t. m.  

Belief Propagation (1) 

Bethe Free Energy 

Bethe Approximation 
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Belief Propagation (2) 

The minimum condition of the Bethe free energy is equivalent to  

a message-passing rule (equations of effective fields) of BP. 
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Using the messages satisfying the message-passing rule,  

we obtain m that minimize the Bethe free energy as follows: 
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The quantities m given by these relations are approximations of the mean values: 
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I define the covariant matrix by 

These quantities are sometime called susceptibilities. 
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We approximate the susceptibilities using the Bethe free energy: 

The SusP is a message-passing algorithm to compute  ˆ ˆ: .ij i jm h   

Linear Response Relation 

Susceptibility Propagation (1) 
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After the BP, we compute the following message-passing:   
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Above equations are closed w.r.t. the approximate susceptibilities 

The computational complexity of the SusP is   .O V E

( with synchronous updating rule ) 

Susceptibility Propagation (2) 

Message-Passing Rule of SusP 

ˆ .ij
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Susceptibility Propagation (3) 
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If Λi > 0 , this additive term corresponds to the L2 regularization.   

The additive term changes the message-passing rule in the BP as  
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For a given Λ, these equations are closed. 
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Extended Bethe Free Energy 

Extended BP 



12 

The additive term changes the message-passing rule in the SusP as  
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For a given Λ, above message-passing rules are closed. 

Extended SusP 

How to determine suitable values of Λ ?  

The computational complexity of the extended SusP  

is the same as the original SusP.  

Advanced Susceptibility Propagation (2) 
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On binary MRFs,  the relations 
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are always hold. 

However, the SusP no longer keeps the consistencies due to approximation. 
(M. Yasuda & K. Tanaka, 2007) 

We determine values of Λ so as to satisfy the relations that are trivially 

hold on binary MRFs, say, match true variances and variances obtained 

through the SusP.  

This requirement corresponds to the conditions :   
2 1.ii im  
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Variance Matching ! 

Variance Matching 

Advanced Susceptibility Propagation (3) 
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Extended BP 

Extended  SusP 

Variance  Matching 

Algorithm of Advanced Susceptibility Propagation  
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Advanced Susceptibility 

Propagation (A-SusP) 

Susceptibility Propagation 

Belief Propagation Variance Matching 

The SusP and the A-SusP have the same computational cost. 

 

The variance matching technique introduced here is known as the diagonal trick 

method in learning in inverse Ising problems.  
(H. J. Kappen & F. B. Rodríguez, 1998; T. Tanaka, 1998; M. Yasuda & K. Tanaka, 2009) 

If one employs the naïve mean-field free energy instead of the Bethe free energy,  

the present framework gives the adaptive TAP equation (M. Opper & O. Winther, 2001). 

The A-SusP is interpreted as an extension of the adaptive TAP approach. 

Overview of Advanced Susceptibility Propagation  



Consider systems on the 4 × 4 square grid.  

The parameters hi and Jij are independently drawn from 

distributions N ( 0, 0.12 ) and N ( 0, J 2 ), respectively . 

N ( a, b ) : Gaussian with mean a and variance b.  

1 exact approx
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Numerical Experiment (1) 
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Next, consider systems on the fully-connected graph with 16 vertices.  

The parameters hi and Jij are independently drawn from 

distributions N ( 0, 0.12 ) and N ( 0, J 2 / n ), respectively . 

1 exact approx

1
Er : i i

i V

S S
V 
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CONCLUSION 
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We have proposed the improved SusP algorithm. 

 

The new SusP has the same computational cost as the conventional SusP. 

 

Since the A-SusP has a feedback scheme to the BP,  

it improves not only covariances but means. 

SusP 

Belief Propagation 

A-SusP 

Belief Propagation Linear Response 

Linear Response 

Feedback  

INPUT 

INPUT 

OUTPUT 

OUTPUT 
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Susceptibility 

Propagation 

Adaptive 

TAP 

Advanced Susceptibility  

Propagation 

Dense Sparse 

The proposed method is strong for both dense and sparse systems ! 

Thank you for your kindly attentions ! 
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 The parameters Λ force                      ,  

 

    obtained through susceptibility propagations, to be one. 

 

 The condition for Λ can be also interpreted as a Hessian matching.       

2 2
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Introduction of Gibbs Free Energy (GFE) 
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     ln , min ,  arg min .Z G G  
m m

h J m S m

Properties of Gibbs Free Energy 

 minimum of the GFE is equal to the free energy, 

 

 values of m that minimize the GFE  

    are equal to exact magnetizations of the original Ising model: 

Approximate Gibbs Free Energy 

By using an approximation, for example the Bethe approximation,  

we can approximate the exact GFE: 

   app .G Gm m

And, let us extend the approximate GFE as 
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Hessian Matrices of Gibbs Free Energies 
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Let us define Hessian matrices of the exact GFE and the approximate 

GFE as 

We want to find optimal values of Λ which make the Hessian matrix of 

approximate GFE the best approximation of that of exact GFE:  

    app
ˆmin distance between  and ,G m G m
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( || ) 0,   ( || ) 0   iff    .D D  A B A B A B

A Measure of Similarity of Matrices 

Given two (positive definite and symmetric) matrices, A and B, let us measure a 

similarity between these matrices, using a Kullback-Leibler divergence  (KLD), as  
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Properties of the KLD 
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Let us regard values of Λ, which minimize the KLD between the Hessian 

matrices, give the best approximation of the Hessian matrix of exact GFE:  

The minimum condition of above KLD is equivalent to the condition for 

Λ in the proposed framework. 


