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Introduction

Real valued variables model

Pairwise Markov random field of real valued variables
The joint pdf writes as a product (Hammersley-Clifford’s theorem):

P(X) =
∏
(ij)

ϕij (Xi ,Xj )

X1 X2 X3

X4 X5

Observations
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Introduction

Predicting a random variable?

Optimal prediction θ̂`(X )

Defined w.r.t a loss function `, e.g.

θ̂`(X ) = argmin
z

E[`(X , z)]

Ex:
θ̂L2 (X ) = argmin

z
E[(X − z)2] = E[X ],

θ̂L1 (X ) = argmin
z

E[|X − z|] = q0.5
X ,

θ̂ML(X ) = argmin
z
−PX (z).

V. MARTIN (INRIA) Interdisciplinary Workshop on Inference June 12, 2012 4 / 30



Introduction

Setting

A model estimation problem

From historical data {Xk}k∈{1..M}, model estimation i.e. P(X) =
∏

(ij)
ϕij (Xi ,Xj ).

An inference problem

Given some (sparse) observations O compute the predictions θ̂`(Xi |O).

Strongly related problems
Estimation and inference are done in approximate ways.

Both approximations should be related...

V. MARTIN (INRIA) Interdisciplinary Workshop on Inference June 12, 2012 5 / 30



Introduction

Setting

A model estimation problem

From historical data {Xk}k∈{1..M}, model estimation i.e. P(X) =
∏

(ij)
ϕij (Xi ,Xj ).

An inference problem

Given some (sparse) observations O compute the predictions θ̂`(Xi |O).

Strongly related problems
Estimation and inference are done in approximate ways.

Both approximations should be related...

V. MARTIN (INRIA) Interdisciplinary Workshop on Inference June 12, 2012 5 / 30



Introduction

Setting

A model estimation problem

From historical data {Xk}k∈{1..M}, model estimation i.e. P(X) =
∏

(ij)
ϕij (Xi ,Xj ).

An inference problem

Given some (sparse) observations O compute the predictions θ̂`(Xi |O).

Strongly related problems
Estimation and inference are done in approximate ways.

Both approximations should be related...

V. MARTIN (INRIA) Interdisciplinary Workshop on Inference June 12, 2012 5 / 30



Introduction

Our approximation

Real valued MRF

X1 X2

X2

X3

X4 X5

σ2σ1 σ3

σ4 σ5

Binary MRF

We observe X2 = x .

We compute

P(σ2 = 1|X2 = x)= Λ2(x)

σ2

P(σ1) P(σ3)

P(σ4) P(σ5)

σ1 σ3

σ4 σ5

Prediction
X̂1= Γ1(P(σ1))
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Introduction

Summary...

Global scheme

Xi = xi ∈ R Λi−→ P(σi = 1|Xi = xi)y inference

Xj = xj ∈ R
Γj←− P(σj = 1) ∈ [0, 1]

Let us put aside the inference (for now).

First, how to choose Λ?
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Ising model definition Encoding function

Choice of Λ

The choice of Λ is equivalent to the definition of σ

Λ(x)
def
= P(σ = 1|X = x)

P(σ = 1) =
∫
x

Λ(x)dFX (x) = E[Λ(X )], with FX (x) = P(X ≤ x)

Constraints over Λ
Increasing function (from 0 to 1), càdlàg.

Selection criteria
Mutual information.

Entropy.
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Ising model definition Encoding function

Stochastic meaning of Λ

Λ is the cumulative distribution function of some random variable.
Càdlàg, increasing from 0 to 1.

⇒ ∃Y | Λ(x) = P(Y ≤ x) = FY (x).

σ
def
= 11{Y≤X}.

Example
Λ = FX ⇒ (X |σ = 1) ∼ max(X1,X2), (X |σ = 0) ∼ min(X1,X2).
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Càdlàg, increasing from 0 to 1.

⇒ ∃Y | Λ(x) = P(Y ≤ x) = FY (x).

σ
def
= 11{Y≤X}.

Example
Λ = FX ⇒ (X |σ = 1) ∼ max(X1,X2), (X |σ = 0) ∼ min(X1,X2).

V. MARTIN (INRIA) Interdisciplinary Workshop on Inference June 12, 2012 9 / 30



Ising model definition Encoding function

Choice of Λ: a mutual information criterion

Maximal mutual information between σ and X , ΛMI

argmaxΛ I (σ,X ) = 11{x≥q0.5
X }

.

Proof.

I (X , σ) = H(P(σ = 1))−
∫
x

H(Λ(x))dFX (x),

avec H(x) = −x log x − (1− x) log(1− x). Right term is 0 pour Λ(x) ∈ {0, 1}, Left term

maximized for P(σ = 1) = 0.5.

σ|X is deterministic & Λ is not invertible.
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Ising model definition Encoding function

Choice of Λ: a Max-entropy principle

Maximal (relative) entropy of U =Λ(X ), ΛS

argmaxΛ S(Λ) = FX (x) (Cdf of X ).

Proof.
The entropy is maximized for an uniform variable on [0, 1]. The cumulative distribution function

maps X to a U [0, 1].

σ|X is a random variable.
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Ising model definition Decoding function

Decoding Function

Global scheme

Xi = xi ∈ R Λi−→ P(σi = 1|Xi = xi)y inference

Xj = xj ∈ R
Γj←− P(σj = 1) ∈ [0, 1]
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Ising model definition Decoding function

Choosing Γ

If Λ is invertible,
We can pick Γ = Λ−1.

Λ−1(b) is the only X -value such as P(σ = 1|X = x) = b.

General case, ΓP

Deconditioning w.r.t σ yields a distribution F̂ :

F̂ (x) = bF 1(x) + (1− b)F 0(x).

with F s(x) = P(X ≤ x |σ = s).
We can compute a given statistic of F̂ (mean, median, ...).

It doesn’t matter if Λ is invertible or not.
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Ising model definition Decoding function

Prediction without observation

General case

In all cases F̂ = FX .
ΓP (P(σ = 1)) is always the optimal predictor θ̂`(X ).

Invertible Cdf case

P(σ = 1) = 1
2

.

F−1
X (P(σ = 1)) = q0.5

X ⇒ optimal only for the L1 loss function.
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Ising model definition Ising model estimation

Ising Model Estimation

X1 X2 X3

X4 X5

σ2σ1 σ3

σ4 σ5

Ising Model
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Ising model definition Ising model estimation

Estimation of P(σi , σj)

Binary pairwise distribution
Marginal distributions fixed by the choice of Λ

P(σi = 1) =

∫
x

Λi (x)dFx (x).

The correlation parameter remains to be fixed: P(σiσj = 1).

Two methods
Moment matching: E[Λ1(X1)Λ2(X2)] = 〈Λ1(X1)Λ2(X2)〉:

cov(σ1, σ2) = ĉov(Λ1(X1),Λ2(X2))
∏

i∈{1,2}

var(σi )

var(Λi (Xi ))
.

Maximum Likelihood (using EM algorithm).
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Inference

Inference

Global scheme

Xi = xi ∈ R Λi−→ P(σi = 1|Xi = xi)y inference

Xj = xj ∈ R
Γj←− P(σj = 1) ∈ [0, 1]
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Inference Approximation

Setting

We want to approximate the marginals
From a product form.

P(σ) =
∏
(ij)

ϕij (σi , σj )
∏
i

γi (σi )

(Loopy) Belief Propagation (BP)

Message-Passing algorithm.
Yields the exact marginals when the graph is a tree.
Minimization of a “distance” to the true marginals.
No general result about convergence...
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Inference Loopy Belief Propagation

Algorithm definition

Update rules
Message sent from a node i to a node j

mi→j (σj ) ∝
∑

σi∈{0,1}

ϕij (σi , σj )γi (σi )
∏

k∈∂i\j

mk→i (σi ).

After convergence is reached, we compute

bi (σi ) ∝ γi (σi )
∏
j∈∂i

mj→i (σi )

bij (σi , σj ) ∝ ϕij (σi , σj )
bi (σi )bj (σj )

mi→j (σi )mj→i (σj )

which are compatible
∑

σj
bij (σi , σj ) = bi (σi )
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Inference Loopy Belief Propagation

How to take our observations into account?

Our observations of Xi gives us the distribution of σi .
Fixing σi value is natural with BP but not fixing its distribution.

Variational point of view of BP
{Stable BP fixed points} ⊂ {Local minima of KLBethe(b||P)}

min
b

∑
σ

b(σ) log
b(σ)

P(σ)

subject to

b(σ) =
∏
(ij)

bij (σi , σj )

bi (σi )bj (σj )

∏
i

bi (σi ),
∑
σj

bij (σi , σj ) = bi (σi ),
∑
σj

bj (σj ) = 1,

and assuming
∑

σ\σi ,σj

b(σ) = bij (σi , σj ) (Bethe approximation).

BP update rules are obtained from the stationary points of the corresponding Lagrangian.
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Inference Mirror Belief Propagation

Variational definition of our BP variant

New “soft” constraints: Mirror BP
For each observation, Xi = xi we add a constraint

bi (σi = 1) = Λ(xi )
def
= b∗i (1), bi (σi = 0) = 1− Λ(xi )

def
= b∗i (0)

Modified version of Belief Propagation:
mi→j (σj ) is the same as usual if σi is not subject to soft constraints.
else:

mi→j (σj ) ∝
∑
σi

ϕij (σi , σj )
b∗i (σi )

mj→i (σi )
=

∑
σi

b∗i (σi )

bBP
i (σi )

ϕij (σi , σj )γi (σi )
∏

k∈∂j\i

mk→i (σi )

The information doesn’t cross node i anymore, as if σi is fixed.

bMirror
ij (σi , σj ) =

b∗i (σi )

bBP
i (σi )

bBP
ij (σi , σj ) similar to Jeffrey’s rule.
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Inference Mirror Belief Propagation

Stability of Mirror BP

Fixing the belief of a node has the effect of graph cutting at this node.

σ1

σ1

σ2 σ3

σ4 σ5

σ2 σ2

σ5

σ5

σ5

Weak (theoretical) result
If the resulting graph is formed by disconnected trees containing no more than two observed

leaves, Mirror-BP converges to a unique fixed point.
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Numerical Experiments Experiment settings

A decimation experiment

What do we do?

Reveal the variables in a random order.
Predict the non observed variables.
Compute the mean L1 prediction error.

Simulated data

Variables Xi ∼ β(a, b) over a tree.

pdf(β(a, b)) ∝ xa−1(1− x)b−111[0,1](x).
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Numerical Experiments Results

Binary limit on a binary tree.
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Numerical Experiments Results

Non-symmetric variables on 4-ary tree.
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Numerical Experiments Results

Away from binary variables on a binary tree.
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Numerical Experiments Results

Unimodal variables on a binary tree.
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Thank you for your attention!



Numerical Experiments Results
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Numerical Experiments Results

Max-entropy principle (again)

Optimal prediction without observation
New constraint in the entropy maximization.
P(σ = 1) =

∫
x

Λ(x)dFX (x) = Λ(θ̂(X )).

Distortion of the cdf.Λ
θ̂(X )
S (x) =

1

α
log (αF (x) + 1) ,∀x ≤ θ̂(X )

Λ
θ̂(X )
S (x) = 1 +

1

α
log (α(F (x)− 1) + 1) , ∀x > θ̂(X ),

with F (θ̂(X )) =
1+eα(α−1)
α(eα−1)

. When θ̂(X )→ q0.5
X , α→ 0 and then Λ

θ̂(X )
S (x)→ FX (x).
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