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Collaboration overview

The actors of the collaboration

• Mediamobile Vtrafic
Mediamobile ensures the production and broadcasting of reliable and
pertinent real-time traffic information. Founded in 1996, Mediamobile
originated from a partnership between TDF Group (European leader
in media content broadcast) and the automotive manufacturer
Renault in the framework of a European Program for Research and
Development of Intelligent Transportation.

• Institut de Mathématiques de Toulouse
The Toulouse Mathematics Institute, CNRS Research Laboratory,
federates the mathematics community of the Toulouse area. One of
the biggest mathematical team in France (around 400 people)
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Collaboration overview

People involved in the collaboration

Six years collaboration leading to three patents. Actual people involved

• Mediamobile Vtrafic

• Philippe Goudal head of the prediction department
• Guillaume Allain Engineer has been Engineer/CIFRE Ph. D Student of

the project
• Jean-Noël Kien Engineer/CIFRE Ph. D Student

• Institut de Mathématiques de Toulouse

• Fabrice Gamboa Professor
• Jean-Michel Loubes Professor
• Elie Maza AssistantProfessor
• Thibault Espinasse AssistantProfessor
• Jean-Noël Kien Engineer/CIFRE Ph. D Student
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Industrial context

Mediamobile’s task

• Gathering raw traffic information

• Processing and agregating

• Broadcasting (radio, www, mobile device...)

⇒ Fancy new services : forecasting and dynamic routine

Industrial constraints :

• coverage
{

each road of the network
from real time to long run

• quality/accuracy
{

controlled speed prediction error
controlled jam prediction error

• user friendly


automatable
adaptative
easy to update
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Industrial context

Road traffic data-Road network

What is a road network ?

• Graph composed of a set of pair (edges,vectices)

• Complexity of the graph→ Functional Road Classes (FRC)

• FRC→ road type classification (arterial, collector, local road...)

FRC Number of edges
∑
L[km]

0 46 175 22 580
1 232 572 42 793
2 462 907 75 453
3 998 808 175 790

{0,1,2,3} 1 740 462 316 616

Tab: Number of edges by FRC
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Industrial context

• Network coverage depends on the FRC

Fig: Network coverage by all FRC {0,1,2,3} from 03/01/2009 to 05/31/2009
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Industrial context

Speed data

What is a speed data ?
Loop sensor

• speed calculated from flow and density (conservation law)

Pros
• More accurate

• 3min constant frequency

Cons
• Located only in main

roads

• Thresholded at national
speed limits
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Industrial context

Speed data
GPS sensor : Floating Car Data

• positions are mapped on a graph→ building speeds

Pros
• Can potentially cover all

the graph

• Raw source of data

Cons
• Less accurate→ GPS

and map-matching error

• More variable→ outlier
emergence

• Random frequency→
user feedback
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Road traffic models : examples Sparse model to forecast

Local road trafficking forecasting with `1

Our Goal
• Appoach the road traffic dynamic with local statistical models

V(sq, tp+h) = F(Q(s, t), ρ(s, t)...)→ Vq,p+h = gq,p,h({Vi,k; i ∈ G,k ∈ T }︸ ︷︷ ︸
X

)

Problems
• High dimension of X

• All Vi,k not influent

Solution
• Regularization

• Selection

J-M. Loubes (IMT Toulouse) Statistical tools for road traffic prediction INRIA-12th of June 13 / 61



Road traffic models : examples Sparse model to forecast

Modelizing traffic dynamic with significative effects only

Vq,p+h = gq,p,h(Vi,k)→ Vq,p+h =
∑

i∈G,k∈T
βi,k.Vi,k

where
β̂i,k = K((i,k), (q,p+ h))︸ ︷︷ ︸

Kernel

Kernel selection : fit road traffic dynamic
• learning a sparse set of influence parameters

β̂ = argmin
β

‖Vq,p+h −
∑

i∈G,k∈T
βi,k.Vi,k‖2 + λ

∑
|βi,k|
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Road traffic models : examples Sparse model to forecast

Conclusion
• Short run local model

• Forecast and complete missing data

• Time and spatial road traffic dynamic used

• Exists block version to privilegiate certain axis
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Road traffic models : examples Sparse model to forecast

Improve accuracy of short/long run predictions with
weather data

Partnership between Mediamobile and Meteo-France

Rupture model

V(x, t1) = V(x, t0) + C(.)× 1M(x,t1) 6=M(x,t0) with t1 − t0 < τsta

• τsta : timespan for a stationary traffic flow

C(.) correction term can depend on :

• edge x : road specifications, geographical areas

• nature and intensity of the weather evolution

• traffic state at t0 : V(x, t0)
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Road traffic models : examples Sparse model to forecast

Model selection based on C(.) structure
Linear thresholded biais model

If V(x, t0) > α,

V(x, t1) = V(x, t0) − β︸︷︷︸
correction term

.(V(x, t0) − α︸︷︷︸
break parameter

)

Or else,
V(x, t1) = V(x, t0)

Advantages
• takes traffic state into consideration

• thresholded model yields interpretable model

Drawback
• edge by edge model
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Road traffic models : examples Sparse model to forecast

Network generalization
Repartition of (α,β) parameters

Results
• β can be generalized

• Repartition of α depends on the FRC

J-M. Loubes (IMT Toulouse) Statistical tools for road traffic prediction INRIA-12th of June 18 / 61



Road traffic models : examples Sparse model to forecast

Results with 10 000 random edges FRC 0

Weather condition α β # obs
(% of FreeFlowSpeed)

Low rain 93% 0,95 7236
Medium and Strong rain 90% 0.95 3316
Freezing rain NA NA 0
Rain and Snow 94% 0.97 1011
Snow 83% 0.96 2621
Hail NA NA 0
Drizzle 89% 0.90 615

For instance, let the free flow speed equals 100 km/h : a car travels at 130
km/h on a freeway and strong rain appears.
Since 130 > 90%.100, car speed decreases to 130 − 95%.(130 − 90) =
92 km/h.
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Road traffic models : examples Punctual model of road traffic

Model the relationship between speeds and calendar

How it is used :

→ D 6= day of the prediction
→ the speed curve is not observed

}
∀p,h X = C

→ « Inboard configuration »⇒ low complexity

mathematical model : linear model with k fixed

g(tk,x) = β0 +

β11{c=Monday} +β2 . . .
β81{c=January} +β19 . . .
β201{c=Hollidays} + . . .

 one oder effects

+

β1,81{c=Monday∩January} + . . .
β1,201{c=Monday∩Holli} + . . .
. . .

 Second order effects
2

Drawbacks :

→ Functionnal aspects are lost
→ (N+ 1)× K effects
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Road traffic models : examples Punctual model of road traffic

Model by classification

• Functional mixture model
• speed curve V is represented as a finite number of patterns :

f1, . . . , fi, . . . , fm avec fi ∈ RK

V =

m∑
i=1

1E=i fi + εi et f? = fE

E ∈ {1, . . . ,m} i.i.d. hidden R.V.
εi ∈ RK , εi ∼ N(0,Σi ∈MK,K)

}
E[V |E = i] = fi , Var[V |E = i] = Σi

• Classification of E then prediction of V by f? :

X
regression //

classification !!

V̂ ∈ RK

Ê

::

J-M. Loubes (IMT Toulouse) Statistical tools for road traffic prediction INRIA-12th of June 21 / 61



Road traffic models : examples Punctual model of road traffic

The classification model
X = {Day of the week,Hollidays} and m = 4
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Road traffic models : examples Punctual model of road traffic

Model the information contained in the speed of the day

Frame :

→ Prediction in the day D
→ Spedds Vp are known

}
p fixed, X = (Vp,C)

X Time series
• How many patterns ?

• h big et p small :
⇒m small

→ h small and p big :
⇒m big
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Road traffic models : examples Punctual model of road traffic

Overcoming non stationarity

Restriction of the forecast profile :
• STA : g(Vp) = Vp
• KMC10 : X = Vp, m = 10 et
τ = 1h

• KML4 : m = 4 et τ =∞
• CAL4 : X = C, m = 4

Avantages :

• High stability

• Small processing time
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Road traffic models : examples Punctual model of road traffic

Prediction of the travel time
Example for a travel with h = 1 (forecast at one hour)

Mean of de the relative error [%]

REF STA C10 L4 CAL4 BP
BPI

(14km)
32.3 21.2 14.2 15.3 17.5 14.4

BPE
(21km)

41.8 24.6 17.6 18.9 21.6 17.1

A86ES
(22km)

20.4 14.7 15.4 13.2 12.6 10.1

N118W
(26km)

25.4 16.7 9.6 9.8 14.3 9

A4W
(35km)

21.3 17.5 12.8 13 15 11.8
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Shape Invariant Models
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Shape Invariant Models

Shift on traffic jams
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Shape Invariant Models

A more general model : Shape invariant model (SIM)

Yij = f
∗
j (xi) + εij i = 1. . .nj, j = 1. . .J.

• ε is as before a Gaussian white noise with variance σ2

• ∃f∗ : R→ R with

f∗j (·) = a∗j f∗(·− θ∗j ) + υ∗j (θ∗j ,a∗j ,υ∗j )∈R3, ∀j = 1 . . . J.
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Shape Invariant Models

Some references on SIM

• Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM
and an estimation method (SEMOR).

• Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.

• Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator
using a kernel estimator for f∗.

• Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy
computable asymptotically normal estimator for translations based on DFT.

• Vimond, M. (2005-2007) Efficient estimation in SIM and more general
models using DFT and profile likelihood. Ph D Thesis

• Bigot, J. , Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on
compact Lie Groups.
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Shape Invariant Models

Model

Recall the model

Yi,j = f
∗(xi − θ

∗
j ) + εij, i = 1, . . . ,N, j = 1, . . . , J. (1)

• f∗ is an unknown T -periodic function

• (θ∗j )j=1...J is an unknown parameter of RJ

• The design is uniform : xi = 2iπ/T , i = 1, . . .N

• (εij) is a Gaussian white noise with variance σ2

The model is not well posed. Identifiability problem
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Shape Invariant Models

Identifiability

Set α∗j =
2π
T θ
∗
j .

Replacing
• α∗ by

α∗ + c1+ 2kπ (c ∈ R,k ∈ ZJ) (2)

• f∗ by f∗(·− c)
the observation equation remains invariant
Identifiability constraints
• Parameter set A is compact

• α∗ ∈ A
• If α ∈ A and α =(2) holds then α = α∗

Examples
A1 = {α ∈ [−π,π[J: α1 = 0}
A2 = {α ∈ [−π,π[J:

∑
αj = 0 and α1 ∈ [0, 2π/J]}
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Shape Invariant Models

Estimation procedure

Main simple idea
For any c ∈ R the shift operator Tc defined on T -periodic functions

Tc(f) = f(·− c)

has common eigenvectors

Tc[exp(2iπ/T ·)] = exp(−2iπc/T) exp(2iπ/T ·)

More generally on a general group (here the torus), Fourier transform
diagonalizes any translation operators acting on functions on the group
(forward to extensions)
Rewrite the regression model using the eigenvectors
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Shape Invariant Models

Rewriting the model in terms of the Fourier transform

Taking the DFT and neglecting the (deterministic) error between the DFT
and the Fourier transform. The model may be rewritten as (N is odd)

djl = e
−ilα∗j cl(f

∗) +wjl, l = −(N− 1)/2, . . . , (N− 1)/2, j = 1, . . . , J

• cl(f∗) is the Fourier coefficient of f∗

• (wjl) is a complex Gaussian white noise with variance σ2/N
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Shape Invariant Models

Building a M-function

• Re phased Fourier coefficients

c̃jl(α) = e
ilαjdjl (α ∈ A)

• Mean of Re phased Fourier coefficients

ĉl(α) =
1

J

J∑
j=1

c̃jl(α)

c̃jl(α
∗) = cl(f

∗) + eilα
∗
jwjl and ĉl(α∗) = cl(f∗) + 1/J

∑J
j=1 e

ilα∗jwjl
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Shape Invariant Models

The M-function

Idea : The deviation c̃jl(α) − ĉl(α) should be small for α = α∗

Mn(α) :=
1

J

J∑
j=1

(N−1)/2∑
−(N−1)/2

δ2l |c̃jl(α) − ĉl(α)|
2

• (δl) is l2 sequence of weights discussed later
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Shape Invariant Models

An artificial data example
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Speed Models with Gaussian Field on a Graph

Overview

1 Collaboration overview

2 Industrial context

3 Road traffic models : examples

4 Shape Invariant Models

5 Speed Models with Gaussian Field on a Graph
General frame
Maximum likelihood

6 Applications
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Speed Models with Gaussian Field on a Graph

Graph of roads network
Modeling : Random process (X

(n)
i )n∈Z,i∈G
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Speed Models with Gaussian Field on a Graph

Graph of roads network
Modeling : Random process (X

(n)
i )n∈Z,i∈G

• Indexed by (discrete) time Z and the graph G of the road
traffic network

• Gaussian

• Centered

• “Stationary“

• Extension of classical tools from time series to graphs

Objective : Yield a parametric model (Kθ)θ∈Θ for covariance
operators of X
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Speed Models with Gaussian Field on a Graph

Gaussian Process on Graph : Origin of the Problem

Trafic : Predict the speed of the vehicles with missing values

For now : Spatial dependency is not exploited

Aims
• Give a model that uses spatial dependency

• Estimate the spatial correlation

• Spatial filtering
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Speed Models with Gaussian Field on a Graph

Graph

Model : Speed process (Xi)i∈G indexed by the vertices G of a graph G.

Definition (Unoriented weigthed graph)
G = (G,W) :

• G set of vertices (infinite countable)

• W ∈ [−1, 1]G×G Weigthed adjacency operator (symmetric)

Neighbors : i ∼ j if Wij 6= 0
Degree of a vertex : Di = ] {j, i ∼ j}.
H0

• D := supi∈GDi < +∞, G has bounded degree

• ∀i ∈ G,
∑
j∈G

∣∣Wij∣∣ 6 1 even renormalize
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Speed Models with Gaussian Field on a Graph

Problem

Remark :
• Our work robust to renormalization

• For Z, for instance : W(Z)
ij = 1

211|i−j|=1

W acts on l2(G) :

∀u ∈ l2(G),∀i ∈ G, (Wu)i :=
∑
j∈G

Wijuj

Under H0

W bounded as operator of BG := l2(G)→ l2(G) :

‖W‖2,op 6 1

H ′0 : The entries of W belongs to a finite set
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Speed Models with Gaussian Field on a Graph

General approach

Observation : Correlations are independent of the position and the
orientation
Aim : Propose a stationary and isotropic model for covariances
(Xi)i∈G Gaussian, zero-mean, with covariance K ∈ RG×G :
⇒ Characterized by K

Aim : Extension of time series
⇒ Construction MA with adjacency operator
+ isotropic modification of the graph
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Speed Models with Gaussian Field on a Graph

General approach

Observation : Correlations are independent of the position and the
orientation
Aim : Propose a stationary and isotropic model for covariances
(Xi)i∈G Gaussian, zero-mean, with covariance K ∈ RG×G :
⇒ Characterized by K

Aim : Extension of time series
⇒ Construction MA with adjacency operator
+ isotropic modification of the graph
For Z : (εn)n∈Z white noise

Xn =
∑
k∈N

akεn−k
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Speed Models with Gaussian Field on a Graph

General approach

Observation : Correlations are independent of the position and the
orientation
Aim : Propose a stationary and isotropic model for covariances
(Xi)i∈G Gaussian, zero-mean, with covariance K ∈ RG×G :
⇒ Characterized by K

Aim : Extension of time series
⇒ Construction MA with adjacency operator
+ isotropic modification of the graph

Aim : Maximum Likelihood Estimation
⇒ Generalize Whittle’s approximation
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Speed Models with Gaussian Field on a Graph
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Speed Models with Gaussian Field on a Graph

A few bibliography

Spectral representation of stationary processes :

• Zd : X. Guyon

• Homogeneous tree : J-P. Arnaud

• Distance-transitive graphs : H. Heyer

Maximum Likelihood

• Z : here R. Azencott et D. Dacunha-Castelle

• Zd : X. Guyon, R. Dahlhaus
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Speed Models with Gaussian Field on a Graph

Example G = Z
X Gaussian centered process with covariance K is stationary if

∃(rk)k∈N,Kij = r|i−j|

Spectral density

If r ∈ l1,∃f,Kij = 1
2π

∫
[0,2π] f(t) cos ((j− i)t) dt := (T(f))ij

Let g, f(t) = g(cos(t)), As

∀i, j,k ∈ Z,

((
W(Z)

)k)
ij

=
1

2π

∫
[0,2π]

cos(t)k cos ((j− i)t) dt,

Operator representation

We have K = g(W(Z))
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Speed Models with Gaussian Field on a Graph

Example G = Z

We can also write

∀i, j,k ∈ Z,

((
W(Z)

)k)
ij

=

∫
[−1,1]

λk
T|j−i|(λ)√

1 − λ2
dλ

where Tk is the k-th Tchebychev’s polynomial

∀i, j ∈ Z, (K)ij =

∫
[−1,1]

g(λ)
T|j−i|(λ)√

1 − λ2
dλ

• g polynomial of degree q : MAq
• 1
g polynomial of degree p : ARp · · ·

Aim : Generalize this kind of representation
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Speed Models with Gaussian Field on a Graph

Identity resolution

Spectral decomposition

∃E,M,W =

∫
M

λdE(λ)

Definition (Identity resolution)
M Sigma-algebra E : M→ BG such that ∀ω,ω ′ ∈M,

1) E(ω) self-adjoint operator.

2) E() = 0,E(Ω) = I

3) E(ω ∩ω ′) = E(ω)E(ω ′)

4) Si ω ∩ω ′ = , then E(ω ∪ω ′) = E(ω) + E(ω ′)

∀i, j ∈ G, ∀ω ∈M,µij(ω) = Eij(ω)
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Speed Models with Gaussian Field on a Graph

Extension to a graph

Definition
(Xi)i∈G Gaussian field with covariance K.

If K =

∫
Sp(W)

g(λ)dE(λ),

• g polynomial : MA(W)
q

• 1
g polynomial : AR(W)

p · · ·

Remarks :
• Conditions about g

• Equivalence with Z
• K = g(W), with normal convergence of the series

• Dependency on W
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Speed Models with Gaussian Field on a Graph

Problem :

• Θ ⊂ R compact

• (fθ)θ∈Θ parametric family of densities associated to K(fθ) = fθ(W)

• Asymptotic on (Gn)n∈N sequence of finite nested subgraphs
Example G = Z : Gn = [1,n].

• θ0 ∈ Θ̊, X ∼ N (0,K(fθ0))

• We observe the restriction Xn of X to Gn, cov : Kn(fθ)

• mn = ]Gn

Aim : Estimate θ0 by maximum likelihood :

Ln(θ) := −
1

2

(
mn log(2π) + log det (Kn(fθ)) + X

T
n (Kn(fθ))

−1 Xn

)
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The concrete problem
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Applications

Applications

Fig: Graphe G
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Applications

Fig: Empirical spectral measure
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Applications

Applications

Fig: Empirical distribution of estimation error
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Applications

Spectrum of the road network
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Applications

Real datas
Aim : Predict missing values on FRC 0 in Toulouse
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Applications

Real datas
Aim : Predict missing values on FRC 0 in Toulouse
Protocol :

• 10% of datas hidden to test the quality of the prediction

• Model : AR1
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Applications

A solution ?
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Applications

Let’s compare
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Applications

An alternative : prediction
Observations of the process on a growing sequence of subgraphs of G,
with missing values.
Let (O,M) be a partition of G. The set O will denote the asymptotic for
observed values index set, and B the "blind" missing values index set
(finite).
Let (GN)N∈N be a growing sequence of induced subgraphs of G. From
now on, we assume that N is large enough to ensure B ⊂ GN. The
observation index set will be denoted ON := O ∩GN . We consider the
restriction XON := (Xi)i∈ON , and assume from now on, that we dispose of
a consistent estimation procedure f̂N for f, such that there exists (rN)
such that

• E
[∥∥∥f̂N − f

∥∥∥2∞
] 1

2

6 rN.

• E
[∥∥∥f̂N − f

∥∥∥4∞
] 1

4

6 rN.
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Applications

Linear Prediction : Kriging

Recall that the best linear predictor of ZB (this is also the best predictor in
the Gaussian case) can be written

Z̄B = P[XON ](f)ZB := aTBMON(f) (ON(f))
−1 XON .

Then, remark that we asymptotically observe XO and introduce the best
linear prediction of ZB knowing XO :

Z̃B := P[XO](f)ZB := aTBMO(f) (O(f))
−1 XO.

The blind problem can be formulated as following :

• Estimation step : Estimate P[XON ](f) by P̂[XON ](f) := P[XON ](f̂)

• Prediction step : Build ẐB := P[XON ](f̂)ZB
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Applications

Extension to graph of Kriging method

Under the assumption that There exists m,M > 0 such that

∀t ∈ Sp(A),m 6 f(t) 6M.

Risk :

RK,N = sup
ZB∈[XB]var(ZB)=1

E
[(
ZB − ẐB

)2] 1
2

.

RN = sup
ZB∈[XB]var(ZB)=1

E
[(
Z̃B − Z̄B

)2] 1
2

+ sup
ZB∈[XB]var(ZB)=1

E
[(
Z̄B − ẐB

)2] 1
2

.

Result :

RN 6

√
M(m+M)

m2
rN +

1

m2

(
M

5
2

m
+M

3
2

) ∑
k>dG(B,(G\GN))

∣∣∣∣(1

f
)k

∣∣∣∣ .

J-M. Loubes (IMT Toulouse) Statistical tools for road traffic prediction INRIA-12th of June 61 / 61



Applications

Thank you for your Attention
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