Statistical Models for Road Traffic Forecasting

J-M. Loubes

Collaboration with: Guillaume Allain, Thibault Espinasse, Fabrice Gamboa, Jean-Noël Kien

INRIA-12th of June

Overview

- 1 Collaboration overview
- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models
- 5 Speed Models with Gaussian Field on a Graph

6 Applications

Overview

1 Collaboration overview

- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models
- 5 Speed Models with Gaussian Field on a Graph

6 Applications

The actors of the collaboration

• Mediamobile Vtrafic

Mediamobile ensures the production and broadcasting of reliable and pertinent real-time traffic information. Founded in 1996, Mediamobile originated from a partnership between TDF Group (European leader in media content broadcast) and the automotive manufacturer Renault in the framework of a European Program for Research and Development of Intelligent Transportation.

 Institut de Mathématiques de Toulouse
 The Toulouse Mathématics Institute, CNRS Research Laboratory, federates the mathematics community of the Toulouse area. One of the biggest mathematical team in France (around 400 people)

People involved in the collaboration

Six years collaboration leading to three patents. Actual people involved

Mediamobile Vtrafic

- Philippe Goudal head of the prediction department
- Guillaume Allain Engineer has been Engineer/CIFRE Ph. D Student of the project
- Jean-Noël Kien Engineer/CIFRE Ph. D Student
- Institut de Mathématiques de Toulouse
 - Fabrice Gamboa Professor
 - Jean-Michel Loubes Professor
 - Elie Maza AssistantProfessor
 - Thibault Espinasse AssistantProfessor
 - Jean-Noël Kien Engineer/CIFRE Ph. D Student

Overview

- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models
- 5 Speed Models with Gaussian Field on a Graph
- 6 Applications

Mediamobile's task

- Gathering raw traffic information
- Processing and agregating
- Broadcasting (radio, www, mobile device...)
- \Rightarrow Fancy new services : forecasting and dynamic routine

Road traffic data-Road network

What is a road network?

- Graph composed of a set of pair (edges, vectices)
- **Complexity** of the graph \rightarrow *Functional Road Classes (FRC)*
- **FRC** \rightarrow road type classification (arterial, collector, local road...)

FRC	Number of edges	$\sum L[km]$
0	46 175	22 580
1	232 572	42 793
2	462 907	75 453
3	998 808	175 790
{0,1,2,3}	1 740 462	316 616

Tab: Number of edges by FRC

Network coverage depends on the FRC

Fig: Network coverage by all FRC {0,1,2,3} from 03/01/2009 to 05/31/2009

J-M. Loubes (IMT Toulouse)

Statistical tools for road traffic prediction

Speed data

What is a speed data? Loop sensor

speed calculated from flow and density (conservation law)

Pros

- More accurate
- 3min constant frequency

Cons

- Located only in main roads
- Thresholded at national speed limits

Speed data

GPS sensor : Floating Car Data

• positions are mapped on a graph \rightarrow building speeds

Pros

- Can potentially cover all the graph
- Raw source of data

Cons

- Less accurate \rightarrow GPS and map-matching error
- More variable → outlier emergence
- Random frequency \rightarrow user feedback

Overview

1 Collaboration overview

2 Industrial context

3 Road traffic models : examples

- Sparse model to forecast
- Punctual model of road traffic
 - Calendar influence
 - Model by classification
 - How to use the observed speed of the day ?
 - Aggregation : statistical learning

4 Shape Invariant Models

5 Speed Models with Gaussian Field on a Graph

Local road trafficking forecasting with ℓ^1

Our Goal

Appoach the road traffic dynamic with local statistical models

$$V(s_q, t_{p+h}) = F(Q(s, t), \rho(s, t)...) \rightarrow V_{q,p+h} = g_{q,p,h}(\underbrace{\{V_{i,k}; i \in G, k \in T\}}_X)$$

Problems

- High dimension of X
- All V_{i,k} not influent

Solution

- Regularization
- Selection

Modelizing traffic dynamic with significative effects only

$$V_{q,p+h} = g_{q,p,h}(V_{i,k}) \rightarrow V_{q,p+h} = \sum_{i \in G, k \in T} \beta_{i,k}.V_{i,k}$$

where

$$\widehat{\beta_{i,k}} = \underbrace{K((i,k), (q, p+h))}_{Kernel}$$

Kernel selection : fit road traffic dynamic

learning a sparse set of influence parameters

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\text{arg\,min}} \left(\| \boldsymbol{V}_{\boldsymbol{q},\boldsymbol{p}+\boldsymbol{h}} - \sum_{i \in \boldsymbol{G}, k \in \boldsymbol{T}} \boldsymbol{\beta}_{i,k}.\boldsymbol{V}_{i,k} \|^2 + \lambda \sum |\boldsymbol{\beta}_{i,k}| \right)$$

Conclusion

- Short run local model
- Forecast and complete missing data
- Time and spatial road traffic dynamic used
- Exists block version to privilegiate certain axis

Improve accuracy of short/long run predictions with weather data

Partnership between Mediamobile and Meteo-France

Rupture model

 $V(x, t_1) = V(x, t_0) + C(.) \times \mathbb{1}_{M(x, t_1) \neq M(x, t_0)}$ with $t_1 - t_0 < \tau_{sta}$

 τ_{sta}: timespan for a stationary traffic flow

- C(.) correction term can depend on :
 - edge x : road specifications, geographical areas
 - nature and intensity of the weather evolution
 - traffic state at t_0 : $V(x, t_0)$

Model selection based on C(.) structure Linear thresholded biais model

If $V(x, t_0) \ge \alpha$,

Or else.

$$V(x,t_1) = V(x,t_0)$$

Advantages

- takes traffic state into consideration
- thresholded model yields interpretable model

Drawback

edge by edge model

J-M. Loubes (IMT Toulouse)

Network generalization

Repartition of (α, β) parameters

Results

- β can be generalized
- Repartition of α depends on the FRC

Results with 10 000 random edges FRC 0

Weather condition	α	β	# obs
	(% of FreeFlowSpeed)		
Low rain	93%	0,95	7236
Medium and Strong rain	90%	0.95	3316
Freezing rain	NA	NA	0
Rain and Snow	94%	0.97	1011
Snow	83%	0.96	2621
Hail	NA	NA	0
Drizzle	89%	0.90	615

For instance, let the free flow speed equals 100 km/h : a car travels at 130 km/h on a freeway and strong rain appears. Since 130 > 90%.100, car speed **decreases** to 130 - 95%.(130 - 90) =92 km/h.

Model the relationship between speeds and calendar

How it is used :

- $D \neq$ day of the prediction
- the speed curve is not observed \rightarrow

$$\forall \texttt{p,h} \ X = C$$

« Inboard configuration » \Rightarrow low **complexity**

mathematical model : linear model with k fixed

$$\begin{array}{c} (t_k, x) = \beta_0 + \begin{array}{c} \beta_1 \mathbb{1}_{\{c=\text{Monday}\}} + \beta_2 \dots \\ \beta_8 \mathbb{1}_{\{c=\text{January}\}} + \beta_{19} \dots \\ \beta_{20} \mathbb{1}_{\{c=\text{Hollidays}\}} + \dots \end{array} \end{array} \right\} \quad \text{one oder effects} \\ \\ + \begin{array}{c} \beta_{1,8} \mathbb{1}_{\{c=\text{Monday} \cap \text{January}\}} + \dots \\ + \begin{array}{c} \beta_{1,20} \mathbb{1}_{\{c=\text{Monday} \cap \text{Holli}\}} + \dots \\ \dots \end{array} \right\} \quad \begin{array}{c} \text{Second order effects} \\ 2 \end{array}$$

Drawbacks :

- → Functionnal aspects are lost
- \rightarrow (N + 1) × K effects

Model by classification

Functional mixture model

• speed curve V is represented as a finite number of patterns :

$$\begin{split} f_1, \dots, f_i, \dots, f_m \; \; \text{avec} \; f_i \in \mathbb{R}^K \\ V = \sum_{i=1}^m \mathbb{1}_{E=i} \; f_i + \varepsilon_i \; \; \text{et} \; \; f^\star = f_E \end{split}$$

 $\begin{array}{l} E \in \{1, \ldots, m\} \, i.i.d. \, \text{hidden R.V.} \\ \varepsilon_i \in \mathbb{R}^K \, , \, \varepsilon_i \sim \mathcal{N}(0, \Sigma_i \in \mathcal{M}_{K,K}) \end{array} \right\} \ \mathbb{E}[V|E=i] = f_i \, , \, \text{Var}[V|E=i] = \Sigma_i \end{array}$

• Classification of E then prediction of V by f* :

The classification model

 $X = \{\text{Day of the week, Hollidays}\} \text{ and } m = 4$

Model the information contained in the speed of the day

Frame :

- \rightarrow Prediction in the day D
- $\rightarrow~$ Spedds V^p are known

 $p \text{ fixed, } X = (V^p, C)$

- X Time series
- How many patterns ?
 - h big et p small :
 ⇒ m small
 - $\label{eq:hamiltonian} \begin{array}{l} \rightarrow \ \ h \ \text{small} \ \text{and} \ p \ \text{big}: \\ \qquad \Rightarrow m \ \textbf{big} \end{array}$

Overcoming non stationarity

Restriction of the forecast profile :

- STA : $g(V^p) = V_p$
- KMC10 : $X = V^p$, m = 10 et $\tau = 1h$
- KML4 : m = 4 et $\tau = \infty$
- CAL4 : X = C, m = 4

Avantages :

- High stability
- Small processing time

Prediction of the travel time

Example for a travel with h = 1 (forecast at one hour)

	Mean of de the relative error [%]						
	REF	STA	C10	L4	CAL4	BP	
BPI	32.3	21.2	14.2	15 3	17.5	14 4	
(14km)	02.0	21.2	14.2	10.0	17.5	17.7	
BPE	/1 8	24.6	176	18.0	21.6	17 1	
(21km)	41.0	24.0	17.0	10.5	21.0		
A86ES	20.4	147	15 /	13.2	12.6	10.1	
(22km)		14.7	15.4	10.2	12.0	10.1	
N118W	25.4	16.7	9.6	98	1/1 3	9	
(26km)	23.4	10.7	3.0	3.0	14.5	5	
A4W	21.3	17.5	12.8	13	15	11.8	
(35km)	21.5	17.5	12.0	13	13	11.0	

Overview

1 Collaboration overview

- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models An artificial data example
- 5 Speed Models with Gaussian Field on a Graph

6 Applications

Shift on traffic jams

Shift on traffic jams

$$Y_{ij}=f_j^*(x_i)+\epsilon_{ij} \quad i=1.\ldots n_j, \ j=1\ldots J.$$

• ϵ is as before a Gaussian white noise with variance σ^2 • $\exists f^* : \mathbb{R} \to \mathbb{R}$ with

 $f_j^*(\cdot) = a_j^* f^*(\cdot - \theta_j^*) + \upsilon_j^* \quad (\theta_j^*, a_j^*, \upsilon_j^*) \in \mathbb{R}^3, \; \forall j = 1 \dots J.$

$$Y_{ij} = f_j^*(x_i) + \epsilon_{ij} \quad i = 1...n_j, \ j = 1...J.$$

ε is as before a Gaussian white noise with variance σ²
 ∃f* : ℝ → ℝ with

 $f_j^*(\cdot) = a_j^* f^*(\cdot - \theta_j^*) + \upsilon_j^* \quad (\theta_j^*, a_j^*, \upsilon_j^*) \in \mathbb{R}^3, \ \forall j = 1 \dots J.$

$$Y_{ij}=f_j^*(x_i)+\epsilon_{ij} \quad i=1\ldots n_j, \ j=1\ldots J.$$

• ϵ is as before a Gaussian white noise with variance σ^2 • $\exists f^* : \mathbb{R} \to \mathbb{R}$ with

 $f_j^*(\cdot) = a_j^*f^*(\cdot - \theta_j^*) + \upsilon_j^* \quad (\theta_j^*, a_j^*, \upsilon_j^*) \!\in\! \mathbb{R}^3, \; \forall j = 1 \ldots J.$

$$Y_{ij} = f_j^*(x_i) + \epsilon_{ij} \quad i = 1...n_j, \ j = 1...J.$$

ε is as before a Gaussian white noise with variance σ²
∃f*: ℝ → ℝ with

$$f_j^*(\cdot) = a_j^* f^*(\cdot - \theta_j^*) + \upsilon_j^* \quad (\theta_j^*, a_j^*, \upsilon_j^*) \in \mathbb{R}^3, \; \forall j = 1 \dots J.$$

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.

• Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).

- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.
Some references on SIM

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.

Some references on SIM

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M.. (2010) Rigid deformations on compact Lie Groups.

Some references on SIM

- Lawton, W.M., Sylvestre, E.A. and Maggio, M.G. (1972) Introduce SIM and an estimation method (SEMOR).
- Kneip, A. and Gasser, T.(1988) consistency of the SEMOR method.
- Hardle, W. and Marron, J.S.(1990) build an asymptotic normal estimator using a kernel estimator for f*.
- Gamboa, F., Loubes, J.M. and Maza, E. (2004) build an easy computable asymptotically normal estimator for translations based on DFT.
- Vimond, M. (2005-2007) Efficient estimation in SIM and more general models using DFT and profile likelihood. Ph D Thesis
- Bigot, J., Loubes, J.M. and Vimond, M. (2010) Rigid deformations on compact Lie Groups.

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

• f* is an unknown T-periodic function

- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^{J}
- The design is uniform : $x_i = 2i\pi/T$, i = 1, ... N
- (ε_{ij}) is a Gaussian white noise with variance σ^2

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

f* is an unknown T-periodic function

- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^3
- The design is uniform : $x_i = 2i\pi/T$, i = 1, ... N
- (ε_{ij}) is a Gaussian white noise with variance σ^2

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

• f* is an unknown T-periodic function

- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^J
- The design is uniform : $x_i = 2i\pi/T$, i = 1, ... N
- (ε_{ij}) is a Gaussian white noise with variance σ^2

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

- f* is an unknown T-periodic function
- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^J
- The design is uniform : $x_i=2i\pi/T,\,i=1,\ldots N$

(ε_{ii}) is a Gaussian white noise with variance σ²

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

- f* is an unknown T-periodic function
- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^J
- The design is uniform : $x_i=2i\pi/T,\,i=1,\ldots N$
- (ϵ_{ij}) is a Gaussian white noise with variance σ^2

Recall the model

$$Y_{i,j} = f^*(x_i - \theta_j^*) + \epsilon_{ij}, i = 1, ..., N, j = 1, ..., J.$$
(1)

• f* is an unknown T-periodic function

- $(\theta_i^*)_{j=1...J}$ is an unknown parameter of \mathbb{R}^J
- The design is uniform : $x_i=2i\pi/T,\,i=1,\ldots N$
- (ε_{ij}) is a Gaussian white noise with variance σ^2

 $\begin{array}{l} \mbox{Set} \ \alpha_j^* = \frac{2\pi}{T} \theta_j^*. \\ \mbox{Replacing} \end{array}$

 $\alpha^* + c\mathbf{1} + 2k\pi$ ($c \in \mathbb{R}, k \in \mathbb{Z}^J$)

• f^* by $f^*(\cdot - c)$

the observation equation remains invariant Identifiability constraints

- Parameter set A is compact
- $\alpha^* \in A$
- If $\alpha \in A$ and $\alpha =$ (2) holds then $\alpha = \alpha^*$

Examples

$$\begin{split} &A_1 = \{ \alpha \in [-\pi, \pi[^J \colon \alpha_1 = 0\} \\ &A_2 = \{ \alpha \in [-\pi, \pi[^J \colon \sum \alpha_j = 0 \text{ and } \alpha_1 \in [0, 2\pi/J] \} \end{split}$$

 $\begin{array}{l} \text{Set} \ \alpha_{j}^{*} = \frac{2\pi}{T} \theta_{j}^{*}.\\ \textbf{Replacing} \end{array}$

α* by

$$\alpha^* + c\mathbf{1} + 2k\pi$$
 ($c \in \mathbb{R}$, $k \in \mathbb{Z}^J$)

• f^* by $f^*(\cdot - c)$

the observation equation remains invariant

Identifiability constraints

- Parameter set A is compact
- $\alpha^* \in A$
- If $\alpha \in A$ and $\alpha =$ (2) holds then $\alpha = \alpha^*$

Examples

$$\begin{split} &A_1 = \{ \alpha \in [-\pi, \pi[^J \colon \alpha_1 = 0] \\ &A_2 = \{ \alpha \in [-\pi, \pi[^J \colon \sum \alpha_j = 0 \text{ and } \alpha_1 \in [0, 2\pi/J] \} \end{split}$$

 $\begin{array}{l} \text{Set} \ \alpha_{j}^{*} = \frac{2\pi}{T} \theta_{j}^{*}.\\ \textbf{Replacing} \end{array}$

α* by

$$\alpha^* + c\mathbf{1} + 2k\pi$$
 ($c \in \mathbb{R}$, $k \in \mathbb{Z}^J$)

• f^* by $f^*(\cdot - c)$

the observation equation remains invariant Identifiability constraints

- Parameter set A is compact
- $\alpha^* \in A$
- If $\alpha \in A$ and $\alpha =$ (2) holds then $\alpha = \alpha^*$

Examples

$$\begin{split} &A_1 = \{ \alpha \in [-\pi, \pi[^J \colon \alpha_1 = 0\} \\ &A_2 = \{ \alpha \in [-\pi, \pi[^J \colon \sum \alpha_j = 0 \text{ and } \alpha_1 \in [0, 2\pi/J] \} \end{split}$$

(2)

 $\begin{array}{l} \text{Set} \ \alpha_{j}^{*} = \frac{2\pi}{T} \theta_{j}^{*}.\\ \textbf{Replacing} \end{array}$

α* by

$$\alpha^* + c\mathbf{1} + 2k\pi$$
 ($c \in \mathbb{R}$, $k \in \mathbb{Z}^J$)

• f^* by $f^*(\cdot - c)$

the observation equation remains invariant Identifiability constraints

- Parameter set A is compact
- $\alpha^* \in A$
- If $\alpha \in A$ and $\alpha =$ (2) holds then $\alpha = \alpha^*$

Examples

$$\begin{split} &A_1 = \{ \alpha \in [-\pi, \pi[^J \colon \alpha_1 = 0 \} \\ &A_2 = \{ \alpha \in [-\pi, \pi[^J \colon \sum \alpha_j = 0 \text{ and } \alpha_1 \in [0, 2\pi/J] \} \end{split}$$

(2)

Estimation procedure

Main simple idea For any $c \in \mathbb{R}$ the shift operator T_c defined on T-periodic functions

$$\mathsf{T}_{\mathbf{c}}(\mathsf{f}) = \mathsf{f}(\cdot - \mathbf{c})$$

has common eigenvectors

$$T_{c}[\exp(2i\pi/T\cdot)] = \exp(-2i\pi c/T)\exp(2i\pi/T\cdot)$$

More generally on a general group (here the torus), Fourier transform diagonalizes any translation operators acting on functions on the group (forward to extensions) **Rewrite the regression model using the eigenvectors**

Estimation procedure

Main simple idea For any $c \in \mathbb{R}$ the shift operator T_c defined on T-periodic functions

$$\mathsf{T}_{\mathbf{c}}(\mathsf{f}) = \mathsf{f}(\cdot - \mathbf{c})$$

has common eigenvectors

$$T_{c}[\exp(2i\pi/T\cdot)] = \exp(-2i\pi c/T)\exp(2i\pi/T\cdot)$$

More generally on a general group (here the torus), Fourier transform diagonalizes any translation operators acting on functions on the group (forward to extensions) **Rewrite the regression model using the eigenvectors**

Estimation procedure

Main simple idea For any $c \in \mathbb{R}$ the shift operator T_c defined on T-periodic functions

$$\mathsf{T}_{\mathbf{c}}(\mathsf{f}) = \mathsf{f}(\cdot - \mathbf{c})$$

has common eigenvectors

$$T_{c}[\exp(2i\pi/T\cdot)] = \exp(-2i\pi c/T)\exp(2i\pi/T\cdot)$$

More generally on a general group (here the torus), Fourier transform diagonalizes any translation operators acting on functions on the group (forward to extensions) Rewrite the regression model using the eigenvectors

Estimation procedure

Main simple idea For any $c \in \mathbb{R}$ the shift operator T_c defined on T-periodic functions

$$\mathsf{T}_{\mathbf{c}}(\mathsf{f}) = \mathsf{f}(\cdot - \mathbf{c})$$

has common eigenvectors

$$T_{c}[\exp(2i\pi/T\cdot)] = \exp(-2i\pi c/T)\exp(2i\pi/T\cdot)$$

More generally on a general group (here the torus), Fourier transform diagonalizes any translation operators acting on functions on the group (forward to extensions) **Rewrite the regression model using the eigenvectors**

Rewriting the model in terms of the Fourier transform

Taking the DFT and neglecting the (deterministic) error between the DFT and the Fourier transform. The model may be rewritten as (N is odd)

$$d_{jl} = e^{-il\alpha_j^*}c_l(f^*) + w_{jl}, l = -(N-1)/2, \dots, (N-1)/2, j = 1, \dots, J$$

• c_l(f^{*}) is the Fourier coefficient of f^{*}

• (w_{il}) is a complex Gaussian white noise with variance σ^2/N

Rewriting the model in terms of the Fourier transform

Taking the DFT and neglecting the (deterministic) error between the DFT and the Fourier transform. The model may be rewritten as (N is odd)

$$d_{jl} = e^{-il\alpha_j^*}c_l(f^*) + w_{jl}, l = -(N-1)/2, \dots, (N-1)/2, j = 1, \dots, J$$

- $c_1(f^*)$ is the Fourier coefficient of f^*
- (w_{il}) is a complex Gaussian white noise with variance σ^2/N

Re phased Fourier coefficients

$$\tilde{c}_{jl}(\alpha) = e^{il\alpha_j}d_{jl} \ (\alpha \in A)$$

• Mean of Re phased Fourier coefficients

$$\hat{c}_1(\alpha) = \frac{1}{J} \sum_{j=1}^J \tilde{c}_{j1}(\alpha)$$

 $\tilde{c}_{jl}(\alpha^*) = c_l(f^*) + e^{il\alpha_j^*}w_{jl}$ and $\hat{c}_l(\alpha^*) = c_l(f^*) + 1/J\sum_{j=1}^J e^{il\alpha_j^*}w_{jl}$

Re phased Fourier coefficients

$$\tilde{c}_{jl}(\alpha) = e^{il\alpha_j}d_{jl} \ (\alpha \in A)$$

Mean of Re phased Fourier coefficients

$$\hat{c}_{l}(\alpha) = \frac{1}{J} \sum_{j=1}^{J} \tilde{c}_{jl}(\alpha)$$

 $\tilde{c}_{jl}(\alpha^*) = c_l(f^*) + e^{il\alpha_j^*}w_{jl}$ and $\hat{c}_l(\alpha^*) = c_l(f^*) + 1/J\sum_{j=1}^J e^{il\alpha_j^*}w_{jl}$

Re phased Fourier coefficients

$$\tilde{c}_{jl}(\alpha) = e^{il\alpha_j}d_{jl} \ (\alpha \in A)$$

Mean of Re phased Fourier coefficients

$$\hat{c}_{l}(\alpha) = \frac{1}{J} \sum_{j=1}^{J} \tilde{c}_{jl}(\alpha)$$

 $\tilde{c}_{jl}(\alpha^*) = c_l(f^*) + e^{il\alpha_j^*}w_{jl}$ and $\hat{c}_l(\alpha^*) = c_l(f^*) + 1/J\sum_{j=1}^J e^{il\alpha_j^*}w_{jl}$

Re phased Fourier coefficients

$$\tilde{c}_{jl}(\alpha) = e^{il\alpha_j}d_{jl} \ (\alpha \in A)$$

Mean of Re phased Fourier coefficients

$$\hat{c}_{l}(\alpha) = \frac{1}{J} \sum_{j=1}^{J} \tilde{c}_{jl}(\alpha)$$

$$\tilde{c}_{jl}(\alpha^*) = c_l(f^*) + e^{il\alpha_j^*} w_{jl} \text{ and } \hat{c}_l(\alpha^*) = c_l(f^*) + 1/J \sum_{j=1}^J e^{il\alpha_j^*} w_{jl}$$

The M-function

Idea : The deviation $\tilde{c}_{j\,l}(\alpha) - \hat{c}_l(\alpha)$ should be small for $\alpha = \alpha^*$

$$M_{n}(\alpha) := \frac{1}{J} \sum_{j=1}^{J} \sum_{-(N-1)/2}^{(N-1)/2} \delta_{l}^{2} |\tilde{c}_{jl}(\alpha) - \hat{c}_{l}(\alpha)|^{2}$$

• (δ_1) is l^2 sequence of weights discussed later

The M-function

Idea : The deviation $\tilde{c}_{j\,l}(\alpha) - \hat{c}_l(\alpha)$ should be small for $\alpha = \alpha^*$

$$M_{n}(\alpha) := \frac{1}{J} \sum_{j=1}^{J} \sum_{-(N-1)/2}^{(N-1)/2} \delta_{l}^{2} |\tilde{c}_{jl}(\alpha) - \hat{c}_{l}(\alpha)|^{2}$$

- (δ_1) is l^2 sequence of weights discussed later

An artificial data example

Overview

- 1 Collaboration overview
- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models
- 5 Speed Models with Gaussian Field on a Graph
 - General frame
 - Maximum likelihood

6 Applications

$\label{eq:graph} \begin{array}{c} \mbox{Graph of roads network} \\ \mbox{Modeling}: \mbox{Random process} \ (X^{(n)}_i)_{n \in \mathbb{Z}, i \in G} \end{array}$

J-M. Loubes (IMT Toulouse)

$\label{eq:graph} \begin{array}{c} Graph \ of \ roads \ network \\ \underline{\mbox{Modeling}}: \mbox{Random process} \ (X^{(n)}_i)_{n \in \mathbb{Z}, i \in G} \end{array}$

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

$\label{eq:Graph of roads network} \underbrace{\text{Modeling}}_{i}: \text{Random process}\; (X_i^{(n)})_{n \in \mathbb{Z}, i \in G}$

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

$\begin{array}{l} Graph \ of \ roads \ network \\ \hline Modeling: Random \ process \ (X_i^{(n)})_{n\in\mathbb{Z},i\in G} \end{array}$

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

$\begin{array}{l} Graph \ of \ roads \ network \\ \hline Modeling: Random \ process \ (X_i^{(n)})_{n\in\mathbb{Z},i\in G} \end{array}$

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

$\begin{array}{c} Graph \ of \ roads \ network \\ \hline Modeling: Random \ process \ (X_i^{(n)})_{n\in \mathbb{Z}, i\in G} \end{array}$

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

- Indexed by (discrete) time $\mathbb Z$ and the $\mbox{graph}\ G$ of the road traffic network
- Gaussian
- Centered
- "Stationary"
- Extension of classical tools from time series to graphs

Objective : Yield a parametric model $(\mathcal{K}_\theta)_{\theta\in\Theta}$ for covariance operators of X

Gaussian Process on Graph : Origin of the Problem

Trafic : Predict the speed of the vehicles with missing values

For now : Spatial dependency is not exploited

Aims

- Give a model that uses spatial dependency
- Estimate the spatial correlation
- Spatial filtering

Gaussian Process on Graph : Origin of the Problem

Trafic : Predict the speed of the vehicles with missing values

For now : Spatial dependency is not exploited

Aims

- Give a model that uses spatial dependency
- Estimate the spatial correlation
- Spatial filtering
Gaussian Process on Graph : Origin of the Problem

Trafic : Predict the speed of the vehicles with missing values

For now : Spatial dependency is not exploited

Aims

- Give a model that uses spatial dependency
- Estimate the spatial correlation
- Spatial filtering

$\underline{\text{Model}}: \text{Speed process } (X_i)_{i \in G} \text{ indexed by the vertices } G \text{ of a graph } G.$

Definition (Unoriented weigthed graph)

 $\mathbf{G}=(\mathbf{G},\mathbf{W})$:

- G set of vertices (infinite countable)
- $W \in [-1, 1]^{G \times G}$ Weigthed adjacency operator (symmetric)

```
Neighbors : i \sim j if W_{ij} \neq 0
Degree of a vertex : D_i = \sharp\{j, i \sim j\}.
H_0
```

- $D := \sup_{i \in G} D_i < +\infty$, G has bounded degree
- $\forall i \in G, \sum_{j \in G} |W_{ij}| \leq 1$ even renormalize

$\underline{\text{Model}}: \text{Speed process } (X_i)_{i \in G} \text{ indexed by the vertices } G \text{ of a graph } G.$

Definition (Unoriented weigthed graph)

 $\mathbf{G}=(\mathbf{G},W)$:

- G set of vertices (infinite countable)
- $W \in [-1, 1]^{G \times G}$ Weigthed adjacency operator (symmetric)

Neighbors : $i \sim j$ if $W_{ij} \neq 0$

Degree of a vertex : $D_i = #\{j, i \sim j\}$.

H₀

- $D := \sup_{i \in G} D_i < +\infty$, G has bounded degree
- $\forall i \in G, \sum_{j \in G} |W_{ij}| \leqslant 1$ even renormalize

$\underline{\text{Model}}: \text{Speed process } (X_i)_{i \in G} \text{ indexed by the vertices } G \text{ of a graph } G.$

Definition (Unoriented weigthed graph)

 $\mathbf{G}=(\mathbf{G},W)$:

- G set of vertices (infinite countable)
- $W \in [-1, 1]^{G \times G}$ Weigthed adjacency operator (symmetric)

Neighbors : $i \sim j$ if $W_{ij} \neq 0$ Degree of a vertex : $D_i = \sharp\{j, i \sim j\}$.

• $D := \sup_{i \in G} D_i < +\infty$, **G** has bounded degree • $\forall i \in G, \sum_{j \in G} |W_{ij}| \leq 1$ even renormalize

$\underline{\text{Model}}: \text{Speed process } (X_i)_{i \in G} \text{ indexed by the vertices } G \text{ of a graph } G.$

Definition (Unoriented weigthed graph)

 $\mathbf{G}=(\mathbf{G},\mathbf{W})$:

- G set of vertices (infinite countable)
- $W \in [-1, 1]^{G \times G}$ Weigthed adjacency operator (symmetric)

Neighbors : $i \sim j$ if $W_{ij} \neq 0$ Degree of a vertex : $D_i = \sharp \{j, i \sim j\}$. H_0

- $D := \sup_{i \in G} D_i < +\infty$, G has bounded degree
- $\forall i \in G$, $\sum_{j \in G} \left| W_{ij} \right| \leqslant 1$ even renormalize

Remark :

- Our work robust to renormalization
- For \mathbb{Z} , for instance : $W_{ij}^{(\mathbb{Z})} = \frac{1}{2} \mathbf{1}_{|i-j|=1}$

W acts on $l^2(G)$:

$$\forall u \in l^2(G), \forall i \in G, (Wu)_i := \sum_{j \in G} W_{ij}u_j$$

Under H₀

W bounded as operator of $B_G:=l^2(G)\to l^2(G)$:

 $\|W\|_{2,\mathrm{op}}\leqslant 1$

 H'_0 : The entries of W belongs to a finite set

Remark :

- Our work robust to renormalization
- For \mathbb{Z} , for instance : $W_{ij}^{(\mathbb{Z})} = \frac{1}{2} \mathbf{1}_{|i-j|=1}$

W acts on $l^2(G)$:

$$\forall u \in l^2(G), \forall i \in G, (Wu)_i := \sum_{j \in G} W_{ij}u_j$$

Under H₀

W bounded as operator of $B_G := l^2(G) \rightarrow l^2(G)$:

 $\|W\|_{2,\mathrm{op}}\leqslant 1$

 H'_0 : The entries of W belongs to a finite set

Remark :

- Our work robust to renormalization
- For \mathbb{Z} , for instance : $W_{ij}^{(\mathbb{Z})} = \frac{1}{2} \mathbf{1}_{|i-j|=1}$

W acts on $l^2(G)$:

$$\forall u \in l^2(G), \forall i \in G, (Wu)_i := \sum_{j \in G} W_{ij}u_j$$

Under H₀

W bounded as operator of $B_G:=l^2(G)\to l^2(G)$:

$$\|W\|_{2,\mathrm{op}} \leqslant 1$$

 H_0' : The entries of W belongs to a finite set

Remark :

- Our work robust to renormalization
- For \mathbb{Z} , for instance : $W_{ij}^{(\mathbb{Z})} = \frac{1}{2} \mathbf{1}_{|i-j|=1}$

W acts on $l^2(G)$:

$$\forall u \in l^2(G), \forall i \in G, (Wu)_i := \sum_{j \in G} W_{ij}u_j$$

Under H₀

W bounded as operator of $B_G:=l^2(G)\to l^2(G)$:

$$\|W\|_{2,\mathrm{op}} \leqslant 1$$

 H'_0 : The entries of W belongs to a finite set

Observation : Correlations are independent of the position and the orientation

Aim : Propose a *stationary* and *isotropic* model for covariances $(X_i)_{i \in G}$ Gaussian, zero-mean, with covariance $K \in \mathbb{R}^{G \times G}$: \Rightarrow Characterized by K

Aim : Extension of time series \Rightarrow Construction MA with adjacency operator + *isotropic* modification of the graph

Observation : Correlations are independent of the position and the orientation

Aim : Propose a stationary and isotropic model for covariances

 $(X_i)_{i \in G}$ Gaussian, zero-mean, with covariance $K \in \mathbb{R}^{G \times G}$: \Rightarrow Characterized by K

Aim : Extension of time series ⇒ Construction MA with adjacency operator + *isotropic* modification of the graph

Observation : Correlations are independent of the position and the orientation

Aim : Propose a *stationary* and *isotropic* model for covariances $(X_i)_{i \in G}$ Gaussian, zero-mean, with covariance $K \in \mathbb{R}^{G \times G}$: \Rightarrow Characterized by K

Aim : Extension of time series \Rightarrow Construction MA with adjacency operator + *isotropic* modification of the graph

Observation : Correlations are independent of the position and the orientation

Aim : Propose a *stationary* and *isotropic* model for covariances $(X_i)_{i \in G}$ Gaussian, zero-mean, with covariance $K \in \mathbb{R}^{G \times G}$: \Rightarrow Characterized by K

 $\begin{array}{l} \text{Aim}: \text{Extension of time series} \\ \Rightarrow \text{Construction } MA \text{ with adjacency operator} \\ + \textit{isotropic} \text{ modification of the graph} \\ \text{For } \mathbb{Z}: (\varepsilon_n)_{n \in \mathbb{Z}} \text{ white noise} \end{array}$

$$X_n = \sum_{k \in \mathbb{N}} a_k \varepsilon_{n-k}$$

Observation : Correlations are independent of the position and the orientation

Aim : Propose a *stationary* and *isotropic* model for covariances $(X_i)_{i \in G}$ Gaussian, zero-mean, with covariance $K \in \mathbb{R}^{G \times G}$: \Rightarrow Characterized by K

Aim : Extension of time series \Rightarrow Construction MA with adjacency operator + *isotropic* modification of the graph

Aim : Maximum Likelihood Estimation ⇒ Generalize Whittle's approximation

A few bibliography

Spectral representation of stationary processes :

- \mathbb{Z}^d : X. Guyon
- Homogeneous tree : J-P. Arnaud
- Distance-transitive graphs : H. Heyer

Maximum Likelihood

- Z : <u>here</u> R. Azencott et D. Dacunha-Castelle
- \mathbb{Z}^d : X. Guyon, R. Dahlhaus

A few bibliography

Spectral representation of stationary processes :

- \mathbb{Z}^d : X. Guyon
- Homogeneous tree : J-P. Arnaud
- Distance-transitive graphs : H. Heyer

Maximum Likelihood

- \mathbb{Z} : <u>here</u> R. Azencott et D. Dacunha-Castelle
- \mathbb{Z}^d : X. Guyon, R. Dahlhaus

X Gaussian centered process with covariance K is stationary if

 $\exists (r_k)_{k\in\mathbb{N}}, K_{\mathfrak{i}\mathfrak{j}}=r_{|\mathfrak{i}-\mathfrak{j}|}$

Spectral density

If $r \in l^1$, $\exists f, K_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cos \left((j-i)t \right) dt := (T(f))_{ij}$

Let g, f(t) = g(cos(t)), As

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} \cos(t)^k \cos\left((j-i)t \right) dt,$$

Operator representation

We have $\mathsf{K} = \mathsf{g}(W^{(\mathbb{Z})})$

J-M. Loubes (IMT Toulouse)

Statistical tools for road traffic prediction

X Gaussian centered process with covariance K is stationary if

 $\exists (r_k)_{k\in\mathbb{N}}, K_{\mathfrak{i}\mathfrak{j}}=r_{|\mathfrak{i}-\mathfrak{j}|}$

Spectral density

If $r \in l^1$, $\exists f$, $K_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cos\left((j-i)t\right) dt := (T(f))_{ij}$

Let g, f(t) = g(cos(t)), As

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} \cos(t)^k \cos\left((j-i)t \right) dt,$$

Operator representation

We have $\mathsf{K} = \mathsf{g}(W^{(\mathbb{Z})})$

J-M. Loubes (IMT Toulouse)

Statistical tools for road traffic prediction

X Gaussian centered process with covariance K is stationary if

 $\exists (r_k)_{k \in \mathbb{N}}, K_{ij} = r_{|i-j|}$

Spectral density

If
$$r \in l^1$$
, $\exists f$, $K_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cos \left((j-i)t \right) dt := (T(f))_{ij}$

Let g,f(t)=g(cos(t)), As

$$\forall \mathfrak{i}, \mathfrak{j}, \mathsf{k} \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^{\mathsf{k}} \right)_{\mathfrak{i}\mathfrak{j}} = \frac{1}{2\pi} \int_{[0,2\pi]} \cos(\mathfrak{t})^{\mathsf{k}} \cos\left((\mathfrak{j}-\mathfrak{i})\mathfrak{t} \right) \mathsf{d}\mathfrak{t},$$

Operator representation

We have $\mathsf{K} = \mathsf{g}(W^{(\mathbb{Z})})$

J-M. Loubes (IMT Toulouse)

X Gaussian centered process with covariance K is stationary if

 $\exists (r_k)_{k\in\mathbb{N}}, K_{\mathfrak{i}\mathfrak{j}}=r_{|\mathfrak{i}-\mathfrak{j}|}$

Spectral density

If
$$r \in l^1$$
, $\exists f$, $K_{ij} = \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cos \left((j-i)t \right) dt := (T(f))_{ij}$

Let g,f(t)=g(cos(t)), As

$$\forall \mathfrak{i}, \mathfrak{j}, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{\mathfrak{i}\mathfrak{j}} = \frac{1}{2\pi} \int_{[0,2\pi]} \cos(\mathfrak{t})^k \cos\left((\mathfrak{j}-\mathfrak{i})\mathfrak{t} \right) d\mathfrak{t},$$

Operator representation

We have $K = g(W^{(\mathbb{Z})})$

J-M. Loubes (IMT Toulouse)

We can also write

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \int_{[-1,1]} \lambda^k \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

where $T_{\rm k}$ is the k-th Tchebychev's polynomial

$$\forall i,j \in \mathbb{Z}, \left(K\right)_{ij} = \int_{\left[-1,1\right]} g(\lambda) \frac{T_{\left|j-i\right|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

- g polynomial of degree q : MAq
- $\frac{1}{q}$ polynomial of degree p : AR_p · · ·

We can also write

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \int_{[-1,1]} \lambda^k \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

where T_k is the $k\mbox{-th}$ Tchebychev's polynomial

$$\forall i,j \in \mathbb{Z}, (K)_{ij} = \int_{[-1,1]} g(\lambda) \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

- g polynomial of degree q : MAq
- $\frac{1}{q}$ polynomial of degree p : AR_p · · ·

We can also write

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \int_{[-1,1]} \lambda^k \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

where T_k is the k-th Tchebychev's polynomial

$$\forall i,j \in \mathbb{Z}, {(K)}_{ij} = \int_{[-1,1]} g(\lambda) \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

- g polynomial of degree q : MA_c
- $\frac{1}{q}$ polynomial of degree p : AR_p · · ·

We can also write

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \int_{[-1,1]} \lambda^k \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

where T_k is the k-th Tchebychev's polynomial

$$\forall i,j \in \mathbb{Z}, \left(K\right)_{ij} = \int_{\left[-1,1\right]} g(\lambda) \frac{T_{\left|j-i\right|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

- g polynomial of degree q : MAq
- $\frac{1}{q}$ polynomial of degree p : AR_p · · ·

We can also write

$$\forall i, j, k \in \mathbb{Z}, \left(\left(W^{(\mathbb{Z})} \right)^k \right)_{ij} = \int_{[-1,1]} \lambda^k \frac{T_{|j-i|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

where T_k is the k-th Tchebychev's polynomial

$$\forall i,j \in \mathbb{Z}, \left(K\right)_{ij} = \int_{\left[-1,1\right]} g(\lambda) \frac{T_{\left|j-i\right|}(\lambda)}{\sqrt{1-\lambda^2}} d\lambda$$

- g polynomial of degree q : MAq
- $\frac{1}{q}$ polynomial of degree $p : AR_p \cdots$
- Aim : Generalize this kind of representation

Identity resolution

Spectral decomposition

$$\exists \mathsf{E}, \mathcal{M}, W = \int_{\mathcal{M}} \lambda \mathsf{d} \mathsf{E}(\lambda)$$

Definition (Identity resolution)

 $\mathfrak{M} \textit{ Sigma-algebra } E: \mathfrak{M} \to B_G \textit{ such that } \forall \omega, \omega' \in \mathfrak{M},$

- 1) $E(\omega)$ self-adjoint operator.
- 2) $E() = 0, E(\Omega) = I$
- 3) $E(\omega \cap \omega') = E(\omega)E(\omega')$
- 4) Si $\omega \cap \omega' =$, then $E(\omega \cup \omega') = E(\omega) + E(\omega')$

 $\forall i, j \in G, \forall \omega \in \mathcal{M}, \mu_{ij}(\omega) = E_{ij}(\omega)$

Identity resolution

Spectral decomposition

$$\exists \mathsf{E}, \mathcal{M}, \mathsf{W} = \int_{\mathcal{M}} \lambda \mathsf{d} \mathsf{E}(\lambda)$$

Definition (Identity resolution)

 $\mathfrak{M} \textit{ Sigma-algebra } E: \mathfrak{M} \to B_G \textit{ such that } \forall \omega, \omega' \in \mathfrak{M},$

- 1) $E(\omega)$ self-adjoint operator.
- 2) $E() = 0, E(\Omega) = I$
- 3) $E(\omega \cap \omega') = E(\omega)E(\omega')$
- 4) Si $\omega \cap \omega' =$, then $E(\omega \cup \omega') = E(\omega) + E(\omega')$

 $\forall i, j \in G, \forall \omega \in \mathcal{M}, \mu_{ij}(\omega) = E_{ij}(\omega)$

Identity resolution

Spectral decomposition

$$\exists \mathsf{E}, \mathcal{M}, \mathsf{W} = \int_{\mathcal{M}} \lambda \mathsf{d} \mathsf{E}(\lambda)$$

Definition (Identity resolution)

 $\mathfrak{M} \textit{ Sigma-algebra } E: \mathfrak{M} \to B_G \textit{ such that } \forall \omega, \omega' \in \mathfrak{M},$

- 1) $E(\omega)$ self-adjoint operator.
- 2) $E() = 0, E(\Omega) = I$
- 3) $E(\omega \cap \omega') = E(\omega)E(\omega')$
- 4) Si $\omega \cap \omega' =$, then $E(\omega \cup \omega') = E(\omega) + E(\omega')$

 $\forall i, j \in G, \forall \omega \in \mathcal{M}, \mu_{ij}(\omega) = E_{ij}(\omega)$

Definition

 $(X_i)_{i \in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_i)_{i \in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

• g polynomial :
$$MA_q^{(W)}$$

• $\frac{1}{g}$ polynomial : AR_p^(W) · · ·

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_{\mathfrak{i}})_{\mathfrak{i}\in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

• g polynomial :
$$MA_q^{(W)}$$

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_{\mathfrak{i}})_{\mathfrak{i}\in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

• g polynomial :
$$MA_q^{(W)}$$

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_{\mathfrak{i}})_{\mathfrak{i}\in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

• g polynomial :
$$MA_q^{(W)}$$

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_i)_{i\in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W

Definition

 $(X_i)_{i\in G}$ Gaussian field with covariance K.

If
$$K = \int_{Sp(W)} g(\lambda) dE(\lambda)$$
,

•
$$\frac{1}{g}$$
 polynomial : $AR_p^{(W)} \cdots$

- Conditions about g
- Equivalence with $\mathbb Z$
- K = g(W), with normal convergence of the series
- Dependency on W
• $\Theta \subset \mathbb{R}$ compact

- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on (G_n)_{n∈N} sequence of finite nested subgraphs Example G = Z : G_n = [1, n].
- $\boldsymbol{\theta}_{0} \in \mathring{\boldsymbol{\Theta}}, \, \mathbf{X} \sim \mathcal{N}(\mathbf{0}, K(f_{\boldsymbol{\theta}_{0}}))$
- We observe the restriction X_n of \mathbf{X} to \mathbf{G}_n , cov : $K_n(f_{\theta})$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

$$\mathsf{L}_{\mathsf{n}}(\theta) := -\frac{1}{2} \left(\mathsf{m}_{\mathsf{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathsf{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathsf{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathsf{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathsf{n}} \right)$$

- $\Theta \subset \mathbb{R}$ compact
- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on $(\mathbf{G}_n)_{n \in \mathbb{N}}$ sequence of finite nested subgraphs Example $G = \mathbb{Z}$: $G_n = [1, n]$.
- $\boldsymbol{\theta}_0 \in \mathring{\boldsymbol{\Theta}}, \, \mathbf{X} \sim \mathcal{N}(\mathbf{0}, K(f_{\boldsymbol{\theta}_0}))$
- We observe the restriction X_n of \mathbf{X} to \mathbf{G}_n , cov : $K_n(f_{\theta})$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

$$\mathsf{L}_{\mathfrak{n}}(\theta) \coloneqq -\frac{1}{2} \left(\mathsf{m}_{\mathfrak{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathfrak{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathfrak{n}} \right)$$

- $\Theta \subset \mathbb{R}$ compact
- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on $(\mathbf{G}_n)_{n\in\mathbb{N}}$ sequence of finite nested subgraphs Example $G = \mathbb{Z}$: $G_n = [1, n]$.
- $\boldsymbol{\theta}_0 \in \mathring{\boldsymbol{\Theta}}, \, \mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(f_{\boldsymbol{\theta}_0}))$
- We observe the restriction X_n of \mathbf{X} to \mathbf{G}_n , cov : $K_n(f_{\theta})$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

 $\mathsf{L}_{\mathfrak{n}}(\theta) \coloneqq -\frac{1}{2} \left(\mathsf{m}_{\mathfrak{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathfrak{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathfrak{n}} \right)$

- $\Theta \subset \mathbb{R}$ compact
- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on $(\mathbf{G}_n)_{n\in\mathbb{N}}$ sequence of finite nested subgraphs Example $G = \mathbb{Z}$: $G_n = [1, n]$.
- $\theta_0 \in \mathring{\Theta}, \mathbf{X} \sim \mathcal{N}(0, K(f_{\theta_0}))$
- We observe the restriction X_n of ${\bf X}$ to ${\bf G}_n,$ cov : ${\sf K}_n({\sf f}_\theta)$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

 $\mathsf{L}_{\mathfrak{n}}(\theta) \coloneqq -\frac{1}{2} \left(\mathsf{m}_{\mathfrak{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathfrak{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathfrak{n}} \right)$

- $\Theta \subset \mathbb{R}$ compact
- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on $(\mathbf{G}_n)_{n\in\mathbb{N}}$ sequence of finite nested subgraphs Example $G = \mathbb{Z}$: $G_n = [1, n]$.
- $\theta_0 \in \mathring{\Theta}, \mathbf{X} \sim \mathcal{N}(0, K(f_{\theta_0}))$
- We observe the restriction X_n of ${\bf X}$ to ${\bf G}_n,$ cov : ${\sf K}_n({\sf f}_\theta)$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

 $\mathsf{L}_{\mathfrak{n}}(\theta) := -\frac{1}{2} \left(\mathsf{m}_{\mathfrak{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathfrak{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathfrak{n}} \right)$

- $\Theta \subset \mathbb{R}$ compact
- $(f_{\theta})_{\theta \in \Theta}$ parametric family of densities associated to $K(f_{\theta}) = f_{\theta}(W)$
- Asymptotic on $(\mathbf{G}_n)_{n\in\mathbb{N}}$ sequence of finite nested subgraphs Example $G = \mathbb{Z}$: $G_n = [1, n]$.
- $\theta_0 \in \mathring{\Theta}, \mathbf{X} \sim \mathcal{N}(0, K(f_{\theta_0}))$
- We observe the restriction X_n of ${\bf X}$ to ${\bf G}_n,$ cov : ${\sf K}_n({\sf f}_\theta)$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$

Aim : Estimate θ_0 by maximum likelihood :

 $\mathsf{L}_{\mathfrak{n}}(\theta) := -\frac{1}{2} \left(\mathsf{m}_{\mathfrak{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathfrak{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathfrak{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathfrak{n}} \right)$

- $\Theta \subset \mathbb{R}$ compact
- $(f_\theta)_{\theta\in\Theta}$ parametric family of densities associated to $K(f_\theta)=f_\theta(W)$
- Asymptotic on (G_n)_{n∈N} sequence of finite nested subgraphs Example G = Z : G_n = [1, n].
- $\theta_0 \in \mathring{\Theta}, \mathbf{X} \sim \mathcal{N}(0, K(f_{\theta_0}))$
- We observe the restriction X_n of \mathbf{X} to \mathbf{G}_n , cov : $K_n(f_\theta)$
- $\mathfrak{m}_n = \sharp \mathfrak{G}_n$
- Aim : Estimate θ_0 by maximum likelihood :

$$\mathsf{L}_{\mathsf{n}}(\theta) := -\frac{1}{2} \left(\mathfrak{m}_{\mathsf{n}} \log(2\pi) + \log \det \left(\mathsf{K}_{\mathsf{n}}(\mathsf{f}_{\theta})\right) + \mathsf{X}_{\mathsf{n}}^{\mathsf{T}} \left(\mathsf{K}_{\mathsf{n}}(\mathsf{f}_{\theta})\right)^{-1} \mathsf{X}_{\mathsf{n}} \right)$$

The concrete problem

The concrete problem

Overview

- 1 Collaboration overview
- 2 Industrial context
- 3 Road traffic models : examples
- 4 Shape Invariant Models
- 5 Speed Models with Gaussian Field on a Graph
- 6 Applications

Applications

Fig: Graphe G

Applications

Fig: Empirical spectral measure

Applications

Fig: Empirical distribution of estimation error

Spectrum of the road network

Real datas Aim : Predict missing values on FRC 0 in Toulouse

Real datas

Aim : Predict missing values on FRC 0 in Toulouse **Protocol** :

- 10% of datas hidden to test the quality of the prediction
- Model : AR₁

Real datas Aim : Predict missing values on FRC 0 in Toulouse

A concrete problem

A solution?

Let's compare

An alternative : prediction

Observations of the process on a growing sequence of subgraphs of G, with missing values.

Let (O, M) be a partition of G. The set O will denote the asymptotic for observed values index set, and B the "blind" missing values index set (finite).

Let $(G_N)_{N\in\mathbb{N}}$ be a growing sequence of induced subgraphs of G. From now on, we assume that N is large enough to ensure $B \subset G_N$. The observation index set will be denoted $O_N := O \cap G_N$. We consider the restriction $X_{O_N} := (X_i)_{i\in O_N}$, and assume from now on, that we dispose of a consistent estimation procedure \hat{f}_N for f, such that there exists (r_N) such that

•
$$\mathbb{E}\left[\left\|\hat{f}_{N}-f\right\|_{\infty}^{2}\right]^{\frac{1}{2}} \leqslant r_{N}.$$

•
$$\mathbb{E}\left[\left\|\hat{f}_{N}-f\right\|_{\infty}^{4}\right]^{\frac{1}{4}} \leqslant r_{N}.$$

Linear Prediction : Kriging

Recall that the best linear predictor of Z_B (this is also the best predictor in the Gaussian case) can be written

$$\bar{Z}_{B} = P_{[X_{O_{N}}]}(f)Z_{B} := \mathfrak{a}_{BMO_{N}}^{\mathsf{T}}(f) \left(_{O_{N}}(f)\right)^{-1} X_{O_{N}}$$

Then, remark that we asymptotically observe X_O and introduce the best linear prediction of Z_B knowing X_O :

$$\tilde{\mathsf{Z}}_{B} := \mathsf{P}_{[\mathsf{X}_{O}]}(f)\mathsf{Z}_{B} := \mathfrak{a}_{B\mathsf{M}O}^{\mathsf{T}}(f) \left(_{O}(f)\right)^{-1} \mathsf{X}_{O}.$$

The blind problem can be formulated as following :

- Estimation step : Estimate $P_{[X_{O_N}]}(f)$ by $\hat{P}_{[X_{O_N}]}(f) := P_{[X_{O_N}]}(\hat{f})$
- Prediction step : Build $\hat{Z}_B := P_{[X_{O_N}]}(\hat{f})Z_B$

Extension to graph of Kriging method

Under the assumption that There exists m, M > 0 such that

 $\forall t\in \text{Sp}(A), m\leqslant f(t)\leqslant M.$

Risk :

$$\begin{split} \mathbf{R}_{\mathsf{K},\mathsf{N}} &= \sup_{Z_B \in [X_B] \mathsf{var}(Z_B) = 1} \mathbb{E}\left[\left(Z_B - \hat{Z}_B \right)^2 \right]^{\frac{1}{2}} \, . \\ \\ \mathcal{R}_{\mathsf{N}} &= \sup_{Z_B \in [X_B] \mathsf{var}(Z_B) = 1} \mathbb{E}\left[\left(\tilde{Z}_B - \bar{Z}_B \right)^2 \right]^{\frac{1}{2}} + \sup_{Z_B \in [X_B] \mathsf{var}(Z_B) = 1} \mathbb{E}\left[\left(\bar{Z}_B - \hat{Z}_B \right)^2 \right]^{\frac{1}{2}} \right]^{\frac{1}{2}} \end{split}$$

Result :

$$\Re_N \leqslant \frac{\sqrt{M}(m+M)}{m^2} r_N + \frac{1}{m^2} \left(\frac{M^{\frac{5}{2}}}{m} + M^{\frac{3}{2}} \right) \sum_{k \geqslant d_G(B, (G \setminus G_N))} \left| (\frac{1}{f})_k \right|.$$

Thank you for your Attention

J-M. Loubes (IMT Toulouse)

Statistical tools for road traffic prediction

INRIA-12th of June 62 / 61