"Not just your usual BP": Making it work in two examples

Florent Krzakala ESPCI, PCT and Gulliver CNRS
in collaboration with
Emmanuelle Gouillart (St Gobain \& CNRS) Marc Mézard (ENS) \& François Sausset (St Gobain) Yifan Sun (ESPCI \& Beihang) and Lenka Zdeborová (IPhT Saclay)

Two problems

Compressed sensing

Discrete tomography

Compressed sensing

State of the art in CS

- Incoherent samplings (i.e. a random matrix F)
- Reconstruction by minimizing the $L_{\text {I }}$ norm $\|\vec{x}\|_{L 1}=\sum_{i}\left|x_{i}\right|$

Candès \& Tao (2005)
Donoho and Tanner (2005)

State of the art in CS

Reconstruction limited by the Donoho-Tanner transition for the $L_{\text {I }}$ norm minimization

Analysis of the BP/TAP algorithm

(Also known as AMP in compressed sensing, Montanari et al.)
The performance of the algorithm for a given distribution of signals can be analyzed using a method knows as density evolution (coding theory) or replica method (physics)

Rigourous
Bayati and Montanari
Lelarge and Montanari

Comparison BP/Algorithm 0.0001 for discrete and continuous values matrices

Steepest ascent of the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal
- For $\alpha<0.58$, a secondary maximum appears (meta-stable state): spinodal point
- A steepest ascent dynamics starting from large E would reach the signal for $\alpha>0.58$, but would stay block in the meta-stable state for $\alpha<0.58$, even if the true equilibrium is at $\mathrm{E}=0$.
- Similarity with supercooled liquids

Computing the Phase Diagram

A steepest ascent of the free entropy allows a perfect reconstruction until the spinodal line. This is more efficient than L_{1}-minimization

Trying different type of signals

The limit depends on the type of signal (while the Donoho-Tanner is universal)

Gauss-Bernoulli signal

Binary signals

A more complex signal

Shepp-Logan phantom, in the Haar-wavelet representation

$$
\alpha=0.5 \quad \alpha=0.4 \quad \alpha=0.3 \quad \alpha=0.2 \quad \alpha=0.1
$$

Can we do a better job?

Our work

A statistical physics approach to compressed sensing

- A probabilistic approach to reconstruction
- The Belief Propagation algorithm
- Seeded measurements matrices

This is good, but not good enough

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

This is good, but not good enough
How to pass the spinodal point?

By nucleation!

Special design of "seeded" matrices

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

Mixed "mean-field" and one-dimensional system:

I) Create many "mean-field" sub-systems

A construction inspired by the "spatially coupled matrices" developed in coding theory cf: Urbanke et al.

Mixed "mean-field" and one-dimensional system:

2) Add a first neighbor coupling

Mixed "mean-field" and one-dimensional system:

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

Mixed "mean-field" and one-dimensional system:

4) The solution will appear in the first sub-system (with large α), and then propagate in the system

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

 M such that the solution arise in this block... whole system!

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

Example with $\rho_{0}=0.4$, and Φ_{0}

a Gaussian distribution with 0 mean and unit variance

$$
\begin{array}{cccc}
L=20 & N=50000 & \rho=.4 & J_{1}=20 \\
& & \alpha_{1}=1 \\
& & & \alpha=.5
\end{array}
$$

Analytical results for seeding matrices

- One can repeat the replica/density evolution analysis for the seeded matrices, and the performance of the algorithm can be studied analytically, leading to $\alpha>\rho$ in the large N limit:

Asymptotically optimal measurements

-A special case (zero of vanishing noise, and with prior matching the signal) have been recently confirmed by a rigorous analysis by Donoho, Montanari and Javanmard (arxiv:1112.0708)
-But note that the analysis of the density evolution shows that our construction works even when the prior is not the correct one, and also with large noise (although with noise the performances depend on the prior)

Many way to design seeding matrices

A signal with $\alpha=0.5$ and $\rho=0.4$

Blue is the true signal reconstructed by s-BP Red is the signal found by L_{1}

A more interesting example

Shepp-Logan phantom, in the Haar-wavelet representation

A EVEN more interesting example

The Lena picture in the Haar-wavelet representation

Conclusions...

- Probabilistic approach to reconstruction in compressed sensing...
... with a Belief Propagation algorithm.
- Seeded measurements matrices allows to perform optimally

... and perspectives:

- More information in the prior ? Calibration noise, additive noise, approximated-sparsity, structure sparsity, etc...?
- Dictionary learning? Sparse PCA? Fast data compression? Quantum tomography? Group testing? etc...

Discrete Tomography

X-ray computed tomography

X-ray computed tomography

The reconstruction problem

Radon and inverse Radon Transform

$R f(\alpha, s)=\int_{-\infty}^{\infty} f(x(t), y(t)) d t$
Direct
$=\int_{-\infty}^{\infty} f((t \sin \alpha+s \cos \alpha),(-t \cos \alpha+s \sin \alpha)) d t$

Inverse

$$
\left.f(\mathbf{r})=\frac{1}{2 \pi} \int_{0}^{\pi} \int_{-\infty}^{+\infty}|k| \widetilde{f}\right)\left(k, \mathbf{u}_{\mathbf{t}}\right) e^{+i\left(\mathrm{r} \cdot \mathbf{u t}_{t}\right) k} \mathrm{~d} k \mathrm{~d} \Phi
$$

Works well, but need the knowledge of all possible projections!

Algebraic methods: Inverting the matrix!

Can one reconstruct when M (number of measurements) is smaller than N (number of "pixel") ?

Discrete tomography

I) The image take discrete values: discrete tomography
2) Interfaces are rare

The problem: Example with two angles

In general: NP-hard problem for 3 angles and more Popular game known as PICROSS

Our work

A probabilistic approach to X-ray tomography

$$
P(\{\vec{S}\}) \propto \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i \in \mu} S_{i}\right) \prod_{\mu=1}^{M} e^{J \sum_{i \in \mu} S_{i} S_{i+1}}
$$

Solution of the linear system

BP for Discrete Tomography

Fix the sum of the spins for a given projection ...
1 constraint by projection ... and take care of the first-neighboring interaction

Pixels:
$\mathrm{S}_{\mathrm{i}}= \pm 1$

BP for Discrete Tomography

The usual BP equations

From spin to factor nodes:

From nodes to spins:
$\tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \propto \sum_{\sigma \in \mu \neq i} \delta\left(y_{\mu}-\sum_{j \in \mu} \sigma_{j}\right) e^{J_{\mu} \sum_{j \in \mu} \sigma_{j} \sigma_{j+1}} \prod_{j \in \mu \neq i} m_{j \rightarrow \mu}\left(\sigma_{j}\right)$

BP for Discrete Tomography

The usual BP equations

From spin to factor nodes:

$$
m_{i \rightarrow \gamma}\left(\sigma_{i}\right) \propto \prod_{\mu \in i \neq \gamma} \tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \quad m=\frac{e^{h}}{\cosh h} \quad h_{i \rightarrow \gamma}=\sum_{\mu \in i \neq \gamma} \tilde{h}_{\mu \rightarrow i}
$$

From nodes to spins:

$$
\tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \propto \sum_{\sigma \in \mu \neq i} \delta\left(y_{\mu}-\sum_{j \in \mu} \sigma_{j}\right) e^{J_{\mu} \sum_{j \in \mu} \sigma_{j} \sigma_{j+1}+\sum_{j \in \mu \neq i} h_{j \rightarrow \mu}}
$$

BP for Discrete Tomography

$2^{\text {L }}$ operations!
 ${ }^{2}$ Intractable

From spin to factor nodes:
$m_{i \rightarrow \gamma}\left(\sigma_{i}\right) \propto \prod_{\mu \in i \neq \gamma} \tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \quad m_{i \rightarrow \gamma}=\sum_{\mu \in i \neq \gamma} \tilde{h}_{\mu \rightarrow i}$

In each constraint: BP in BP!

$$
\tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \propto \sum_{\sigma \in \mu \neq i} \delta\left(y_{\mu}-\sum_{j \in \mu} \sigma_{j}\right) e^{J_{\mu} \sum_{j \in \mu} \sigma_{j} \sigma_{j+1}+\sum_{j \in \mu \neq i} h_{j \rightarrow \mu}}
$$

All the spin involved in one
 given constraints are just neighboring spins on a line

One needs to estimates the marginal of variables on a onedimension chain in random field

Use BP!

In each constraint: BP in BP!

$$
\tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \propto \sum_{\sigma \in \mu \neq i} \delta\left(y_{\mu}-\sum_{j \in \mu} \sigma_{j}\right) e^{J_{\mu} \sum_{j \in \mu} \sigma_{j} \sigma_{j+1}+\sum_{j \in \mu \neq i} h_{j \rightarrow \mu}}
$$

Replace the delta by a Lagrange multiplier (magnetic field)

$\tilde{m}_{\mu \rightarrow i}\left(\sigma_{i}\right) \propto \sum_{\sigma \in \mu \neq i} e^{H \sum_{i} S_{i}} e^{J_{\mu} \sum_{j \in \mu} \sigma_{j} \sigma_{j+1}+\sum_{j \in \mu \neq i} h_{j \rightarrow \mu}}$

Find H such that the delta constraint is satisfied (by Dichotomy or using Newton method)

BP at works...

30 angles

14 angles

17 angles

Fast, and need for only few projections

Robust to noise!

Adding a noise to the projections From 6 angles...

Original
BP

Continuous
+Total Variation
(i.e. LASSO-type problem)

Conclusions...

- Probabilistic approach to reconstruction in tomography...
- ... with a Belief Propagation algorithm
- Id ising model (BP in BP)

... and perspectives:

- Q-state and continuous tomographic reconstruction?
- Multi-scale approach?
- Generic message: LASSO type problem are often better to be replace by a probabilistic approach with a BP algorithm.
- Toward Applications!

Thanks for your attention

COMING SOON: Post-doc and Ph.d openings on these topics: If you work in Statistical physics, Information science, Signal processing, etc... Project

COMING SOON: An interdisciplinary school on these topics: Les Houches, October 2013, Organizers F. Krzakala \& L. Zdeborová

