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OUTLINE

Context: Global traffic state analysis

Motivation: Compact feature representation of global traffic
states for mining and prediction

Data source: Traffic scene simulations and real traffic data

Methodology: Non-negative Matrix for mining global traffic
state patterns

Methodology: Tensor Factorization for mining/predicting
dynamical patterns of global traffic states

Summary



CONE]

o Intelligent Vehicles: Sensing scenes and controlling
itself without / with less drivers’ intervention

Background sensing

Control/

Optimization

Network-level traffic
state information




OUTLINE

Context: Global traffic state reconstruction, mining and
prediction

Motivation: Compact feature representation of global traffic
states for mining and prediction

Data source: Traffic scene simulations and real traffic data

Methodology: Non-negative Matrix for mining global traffic
state patterns

Methodology: Tensor Factorization for mining/predicting
dynamical patterns of global traffic states

Experimental results



MOTIVATION
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MOTIVATION

Some global information about traffic state patterns:

» Spatial configurations of local traffic states over the whole
network

Benefits from the global information......

» Prediction of traveling time for drivers ever since they left their
home

» Adjusting the overall transportation management strategy
» Suggestions to drivers automatically for choosing proper paths
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MOTIVATION

» Very high-dimensionality of the global traffic states

The traffic state of

one specific link
observed at one
specific time step




MOTIVATION

« Analysis of the high-dimensional global traffic states
» Feature dimension reduction, subspace learning ....

* Objective: Low-dimensional representation of global
traffic states

The low-dimensional representation is feasible to perform
data analysis tools, such as temporal regression

Clustering in the low-dimensional space 1s helpful in
finding typical spatial configuration pattern of the local
traffic states

Avoid the issue of curse-of-dimensionality



OUTLINE

Context: Global traffic state reconstruction, mining and
prediction

Motivation: Compact feature representation of global traffic
states for mining and prediction

Data source: Traffic scene simulations and real traffic data

Methodology: Non-negative Matrix for mining global traffic
state patterns

Methodology: Tensor Factorization for mining/predicting
dynamical patterns of global traffic states

Experimental results



SIMULATED TRAFFIC DATA:

IAURIF DATABASE

» Simulation of traffic scenes in the transportation network inside
Ile-de-France

» Data setting:

Recording traveling paths and traveling time of simulated floating
vehicles in an integrated simulation software

Covering totally 13,627 links and 146-day simulated scenes.

8-hour simulation in each scene, with 10-mintue time interval between
each neighboring pair of time sampling steps
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REAL TRAFFIC DATA: MOBILE

MILLENNIUM PROJECT

* Real traffic data: Traveling time observations in the San-Francisco
transportation network

« Mobile Millennium Project: UC Berkeley, NOKIA Research
Center and NAVTEQ launched from November 10, 2008

* Objective:
Collecting floating-car data from GPS devices equipped with taxis,
mobile phones and so on
Traveling time estimation in the network
Data fusion (cellular phones, radar, loop detectors and so on)
Covering over 4000 roads and over 3000 joints in the network

Covering totally 24-hours daily traffic dynamics
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OUTLINE

Context: Global traffic state reconstruction, mining and
prediction

Motivation: Compact feature representation of global traffic
states for mining and prediction

Data source: Traffic scene simulations and real traffic data

Methodology: Non-negative Matrix for mining global traffic
state patterns

Methodology: Tensor Factorization for mining/predicting
dynamical patterns of global traffic states

Experimental results
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METHODOLOGY

« Feature dimension reduction: Non-negative Matrix Factorization

O=|x-MV|, V,,20M, =0

« The matrix X with non-negative entries, with n rows and k
columns, 1s decomposed as the product of a non-negative loading
matrix M (with n rows and s columns) and a non-negative scoring
matrix V (with s columns and k columns)

» Cost function: Minimizing the Frobenius norm, element-wise
reconstruction error between X and the production of M and V

n k
ZZAij
\ i=1"j=1
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METHODOLOGY

X ;¢ The j-th column in X M, + The k-th column in M

Vii » The entry of V locating at the k-th row and j-th column

S
oo NETE
k=1

Considering the column space of X as high-
dimensional data:

High-dimensional
data

Columns of M are the expanding basis of
the low-dimensional projection space

Low-dimensional
representation

Columns of V represent the projections of
the high-dimensional data in the
projection space
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METHODOLOGY

e Characteristics of NMF, compared with PCA

S
X, =2 MV, V>0 Mz20
k=1

« Non-negativity constraints: decomposing the high-
dimensional data as a linear additional superposition
of the decomposition bases

« Part-based representation of the high-dimensional
data: each decomposing basis represents a localized
component in the data, just like we have done 1n blind
source separation and 1mage processing

15



Global components
represented by the PCA
bases

T
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Localized components
represented by the NMF
bases




GRAPH LAPLACIAN

CONSTRAINT IN NME

Insert an additional constraint on topological structures of the
derived subspace [1]

O=|X —MV|, +ATr(VLV")

L=D-W L: Graph Laplacian, which 1s used to describe
h topological structures of the data distribution

D is a diagonal matrix whose entries are D. EW

column-wise sum of W j

W Similarity matrix of data X W is the pair-wise similarity
measure between the i-th
and j-th column of data X

17



GRAPH LAPLACIAN

CONSTRAIN

Graph Laplacian Constrained NMF

the projected space

L=D-W

Graph Laplacian: the

- " - structural information
Data points in the original  structure of the data

high-dimensional data space distribution

18

Global smoothness of

Corresponding data points in
the low-dimensional NMF
projection space: keep the
similarity relationship between
data points in the projected
space



METHODOLOGY

» Analysis of global traffic states using the NMF method

Low-dimensional representation of the global traffic
states derived using the Graph Laplacian Constrained
NMF

Clustering of the global traffic states using the proposed
NMF method

Localized segments of the transportation network derived
by the NMF decomposition
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IAURIF DATABASE




IAURIF DATABASE

Traffic

state
matrix: X




REAL TRAFFIC DATA: MOBILE

MILLENNIUM PROJECT

2626 roads and 52,992

time sampling steps
-_— ==

52,992 time sampling steps

- Fland HP -l

Traffic
state 2626 links

matrix; X

o K7 )25t Network-level traffic state: the global traffic
S e p \ —— state observed at the specific time sampling step
aly Chy r. T Reaeaston Aves
: \ A 262652992 matrix. Each column corresponds
Transportation network n to a network-level traffic state obtained at each

San-Francisco 13316 step, which is a 2626-dimensional vectors.



THE FLOW CHART OF DATA

Feature

dimension
reduction

PROCESSING

High-dimensional
network-level traffic state

Graph Laplacian
constrained NMF
projection

Low-dimensional representation based
on matrix factorization

Clustering and prediction of the global traffic
configurations ir the projected space




EXPERIMENTAL RESULTS

» Clustering of the network-level traffic state

 Find out typical spatial configurations of local traffic
states over the whole large-scale network

» Correlated links groups found in the learned NMF
decomposing bases
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CLUSTERING RESULTS
ON [AU-PARIS DATABASE




CLUSTERING RESULTS

O Free Flowing Cluster

A | Rk Y O Light Isotropic ..
: N/ "Congestion:Cluster

Increasing the
number of
cluster to 5

ON IAURIF DATABASE

11O Anisotropic Congestion Cluster |

Free Flowing Cluster

Peak Congestion Cluster

After-Peak Congestioﬁ FCIus‘tber v

“Light Isotropic- Congestion Cluster
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Congestion Cluster
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SPATIAL CONFIGURATION PATTERNS

OF LOCAL TRAFFIC STATES

Visualization of peak congestion global state for each cluster
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CLUSTERING RESULTS

ON REAL TRAFHIC DATA
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EXPERIMENTAL RESULTS

» Clustering of the network-level traffic state

» Find out typical spatial configurations of local traffic
states over the whole large-scale network

 Correlated links groups found in the learned NMF
decomposing bases
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CORRELATED LINK GROUP IN

THE NETWORK

» We label the localized links with the top 20% largest
entries in each NMF basis and illustrate their spatial
locations using red legends.

« The labeled links with distinctively large magnitudes
correspond to the local links 1n the network are highly
correlated 1n terms of traffic dynamics
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Part-based representation of the network:
Grouping of links in three circular regions

The circular region surrounding the center
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Part-based representation of the network:
Grouping of links in three circular regions
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CONCLUSION

« Low-dimensional representation of the global traffic states
based on the Graph Laplacian constrained NMF

» Clustering in order to find out typical spatial configuration
patterns of the local traffic states

» Correlated link groups arranged in three different circular
regions: segmentation of the correlated links in the network
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OUTLINE

Context: Global traffic state reconstruction, mining and
prediction

Motivation: Compact feature representation of global traffic
states for mining and prediction

Data source: Traffic scene simulations and real traffic data

Methodology: Non-negative Matrix for mining global traffic
state patterns

Methodology: Tensor Factorization for mining /predicting
dynamical patterns of global traffic states

Experimental results
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GLOBAL TRAFFIC DYNAMICS

: The evoiution'_i!_rajectdfy'of--.__:___‘» |
__network-level traffic states -

35 Trafﬁc

| congestion

state




The st to the 12th
time sampling step

Wi

The 13th to the 24th
time sampling step

The 25th to the 36th
time sampling step

The 37th to the 48th
time sampling step

i

= Typical Trajectory
: of the ITD setting
o Typical Trajectory
; of the ATD setting

e Typical Trajectory
; of the ETD setting




3-WAY TENSOR

The number of
traffic scenes

[
,----l
1 |
: : 3-way tensor

The number of Bk structure for
links in the | : storing traffic
network : ; state data
1 |
n : >
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1 |
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| |
| |
| |
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Time sampling steps m The column fiber

nxmx/ N-dimensional network-
level traffic state

3-way tensor 7 & R




NON-NEGATIVE TENSOR

FACTORIZATION

Factorized into the outer product of three non-negative matrices

m time

sampling
steps

non-negative

Ar ’Br ’Cr

K
T=Y (A ®B ®C)

r=1



NON-NEGATIVE TENSOR
FACTORIZATION

sampling
steps

K
T£ o Zci,r(ArBf)
Fa==].

{C,3r=12.K)



NON-NEGATIVE TENSOR
FACTORIZATION

sampling
steps




CLUSTERING OF GLOBAL

TRAFFIC STATE DYNAMICS

« K-means clustering to the row space of the factorization
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PREDICTION OF GLOBAL

TRAFFIC STATE DYNAMICS

 Problem definition:

e (Given: All historic traffic data observations for / traffic
scenes Thistoric ERn*m*l

« Target: A partially observed traffic scene, with only the
first m, time sampling steps observed M e R™"

e Task: We aim to predict traffic dynamics of the whole
network from the m, +1 step until the end of the scene

44



PREDICTION OF GLOBAL

TRAFFIC STATE DYNAMICS

e Solution: Tensor reconstruction

» Step.1 : Non-negative Tensor Factorization on the historic
traffic data

* Step.2 : Treating { A"*""(B"*"")" }(r =1,2..K) as the
expansion basis matrices, M € R"""as a projected point
lying on the manifold expanded by the basis matrices, its
projection coordinates C is estimated as :

bs p
g 2“2 Sh
J
0 Jj=1

Fr

o

C’],VI . C}IlzjstoricHLZ(Ci\l 2 O)

K
M o ZC’{M ( Afistoric ® B:zistoriC)
r=1 45

M .
C~ =argmin
CM



PREDICTION OF GLOBAL

TRAFFIC STATE DYNAMICS

« Final step: Reconstruction of the missing entries in M
1S given as

« Basic scheme:
Manifold learning / reconstruction of missing entries

Nearest-neighboring constraint to smooth the obtained
manifold structure
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PREDICTION OF GLOBAL

TRAFFIC STATE DYNAMICS
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SUMMARY

Manifold embedding of very high dimensional feature
space

Potential use of Matrix/Tensor Completion 1n traffic
research

Prior knowledge about correlation between links, time
sampling steps, or even simulated scenes will do some
help in our method ?

Estimated global traffic state configuration as a spatial
consistency constraint to Markov Random Fields
based network model
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