
Markov Processes Relat. Fields 2, 317–348 (1996) Markov MPRF&¹¸

º·
Processes
and
Related Fields
c©Polymat, Moscow 1996

Asymptotics and Scalings for Large

Product-Form Networks via the Central

Limit Theorem

G. Fayolle and J.-M. Lasgouttes
INRIA, Domaine de Voluceau, Rocquencourt, BP105–78153 Le Chesnay, France

Received March 5, 1996

Abstract. The asymptotic behaviour of a closed BCMP network, with n
queues and mn clients, is analyzed when n and mn become simultaneously large.
Our method relies on Berry –Esseen type approximations coming in the Central
Limit Theorem. We construct critical sequences m0

n, which are necessary and
sufficient to distinguish between saturated and non-saturated regimes for the
network. Several applications of these results are presented. It is shown that
some queues can act as bottlenecks, limiting thus the global efficiency of the
system.
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1. Introduction

In many applications (telecommunications, transportation, etc.), it is desir-
able to understand the behaviour and performance of stochastic networks as
their size increases. From an engineering point of view, the problem can be
roughly formulated as follows.

Problem. Consider a closed network with n nodes and exactly mn customers
circulating inside. Find a function f , such that m = f(n) yields an interesting
performance of the system as n increases.

In this study, we start from the so-called product-form networks, which play
an important role in quantitative analysis of systems. Although the equilibrium
state probabilities have then a simple expression (see for example Kelly [4]),
non-trivial problems remain, due to an intrinsic combinatorial explosion in the
formulas, especially in those involving the famous normalizing constant. To
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circumvent these drawbacks, the idea is to compute asymptotic expansions of
the characteristic values of the network, when m and n both tend to infinity.

This approach has been considered by Knessl and Tier [5], Kogan and Bir-
man [6, 7, 1] and Malyshev and Yakovlev [10]. However, it relies on purely
analytical tools, which are difficult to use in a more general setting and, in our
opinion, do not really give a structural explanation of the phenomena involved.

The method proposed hereafter has direct connections with the Central
Limit Theorem: instead of representing the values of interest as complex in-
tegrals, we express them in terms of distributions of scaled sums of independent
random variables. Besides giving a clear interpretation of the computations,
this allows to handle directly the general case of single-chain closed networks.
We show by construction the existence of critical sequences m0

n in the following
sense: the network saturates if, and only if, mn À m0

n. These results can also
be interpreted as insensitivity properties: as the number of stations n and the
number of customers mn go to infinity, the network is shown to be equivalent
to an open network of n independent queues (having a total mean number of
customers mn), in the sense that both systems have asymptotically the same
finite-dimensional distributions.

The paper is organized as follows. The model is introduced in Section 2,
together with a presentation of the method. In Section 3, asymptotics of the
marginal distribution of the queue lengths are given under normal conditions
and also when some queues become overloaded. Section 4 unifies the results
and contains the main theorems about scaling. Section 5 and 6 are devoted to
concrete applications of these results, in particular to service vehicle networks
(like the Praxitèle project, now developed at INRIA). Section 7 contains some
conclusive remarks. Most of the technical proofs are postponed in Appendix.

2. Mathematical model and view of the main results

Consider a closed BCMP network Cn with n queues and mn clients. The
number of clients at queue k at steady state is a random variable Qk,n. The
service rate at queue k when there are qk customers is µk,n(qk). The routing
probability from queue k to queue ` is pk,`,n and Pn denotes the transition
matrix supposed to be ergodic, with invariant measure πn = (π1,n, . . . , πn,n),
defined by:

πnPn = πn and π1,n + · · ·+ πn,n = 1. (2.1)

Then it is known that, for any q1, . . . , qn ≥ 0 such that q1 + · · ·+ qn = mn,

Pn(Q1,n = q1, . . . , Qn,n = qn) = Z−1
mn,n

n∏

k=1

πqk

k,n

µk,n(1) · · ·µk,n(qk)
, (2.2)
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with the normalizing condition

Zm,n =
∑

q1+···+qn=m

n∏

k=1

πqk

k,n

µk,n(1) · · ·µk,n(qk)
. (2.3)

It is worth noting that our analysis applies to any network which has a
product form equilibrium distribution like (2.2). It includes for example, as soon
as the matrix Pn is reversible, all systems having transition rates of the form
pk,`,n αk,n(qk)β`,n(q`), in which case finite capacity situations can be covered
(e.g. β`,n(q`) = 1{q`≤q̄`}). See Serfozo [11] for further examples.

To avoid hiding global results with tedious technicalities, we assume through-
out the study that, for all n, Cn contains at least one queue which, taken in
isolation, can be saturated with a finite input flow (e.g. a M/M/c/∞ queue).

The overall presentation requires definitions and an intermediate lemma,
given in Section 2.1. The informal presentation of the central results appears in
Section 2.2.

2.1. Preliminaries

Define, for each k, 1 ≤ k ≤ n, the generating function

fk,n(z) def=
∞∑

q=0

zq

µk,n(1) · · ·µk,n(q)
.

Note that for each n, fk,n has a singularity at finite distance for at least one
1 ≤ k ≤ n.

We consider a new system On(λ) that corresponds to the original closed
network Cn. The system On(λ) is open and consists of n parallel queues, with
service rates µk,n(x) and arrival intensity λπk,n at queue k, where the choice of
λ will be made more precise later. The queue length Xk,n(λ) of the kth queue
of On(λ) has a distribution given by

P(Xk,n(λ) = x) =
1

fk,n(λπk,n)
(λπk,n)x

µk,n(1) · · ·µk,n(x)
,

and X1,n(λ), . . . , Xn,n(λ) are independent variables. We assume that Xk,n(λ)
has some finite moments of order r ≥ 2 and introduce the following notation:

mk,n(λ) def= EXk,n(λ), Sn(λ) def=
∑n

k=1Xk,n(λ),

β(r)

k,n(λ) def= E|Xk,n(λ)−mk,n(λ)|r, β(r)
n (λ) def=

∑n
k=1 β

(r)

k,n(λ),

σ2
k,n(λ) def= β(2)

k,n(λ), σ2
n(λ) def= β(2)

n (λ),

β̄(3)

k,n(λ) def= E[Xk,n(λ)−mk,n(λ)]3, β̄(3)
n (λ) def=

∑n
k=1 β̄

(3)

k,n(λ).
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Let ϕk,n(θ ;λ) be the characteristic function of Xk,n(λ) − mk,n(λ). Then,
for any real θ,

ϕk,n(θ ;λ) def= Ee
i(Xk,n(λ)−mk,n(λ))θ =

fk,n(πk,nλe
iθ)

fk,n(πk,nλ)
e−imk,n(λ)θ, (2.4)

and
ϕn(θ ;λ) def= Ee

i(Sn(λ)−ESn(λ))θ = ϕ1,n(θ ;λ) · · ·ϕn,n(θ ;λ). (2.5)

The reason why On(λ) has been introduced is that the main performance
characteristics of the network Cn can be expressed simply in terms of the dis-
tribution of X1,n(λ), . . . , Xn,n(λ).

Lemma 2.1. (i) For any choice of mn, there exists a unique λn such that

ESn(λn) = E[X1,n(λn) + · · ·+Xn,n(λn)] = mn. (2.6)

From now on, unless otherwise stated, all quantities will pertain to the
network On(λn) and λn will be omitted.

(ii) Equations (2.2) and (2.3) can be rewritten as

P(Q1,n = q1, . . . , Qn,n = qn) =
1

P(Sn = mn)

n∏

k=1

P(Xk,n = qk). (2.7)

(iii) For any ` > 0 and q1, . . . , q` ≥ 0, the joint distribution of the number of
customers in the queues 1, . . . , ` of Cn is

P(Q1,n = q1, . . . , Q`,n = q`) (2.8)

= P(Sn −
∑`

k=1Xk,n = mn −
∑`

k=1 qk)
P(Sn = mn)

∏̀

k=1

P(Xk,n = qk)

= P(X1,n = q1, . . . , X`,n = q`
∣∣Sn = mn),

and, consequently, EQ`,n = E[X`,n

∣∣Sn = mn].

(iv) For any 1 ≤ ` ≤ n,

EQ`,n = m`,n
P(Sn −X` + X̃` = mn)

P(Sn = mn)
, (2.9)

where X̃`,n is an integer-valued random variable, independent from every-
thing else and having distribution

P(X̃`,n = x) =
xP(X`,n = x)

m`,n
.
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Note that λn can be obtained as the unique solution to the equation

mn =
n∑

k=1

πk,nλnf
′
k,n(πk,nλn)

fk,n(πk,nλn)
. (2.10)

While this equation is in general impossible to solve explicitly, λn can be
computed numerically using classical methods.

Proof. A straightforward computation yields, for all 1 ≤ k ≤ n,

∂mk,n(λ)
∂λ

=
σ2

k,n(λ)
λ

> 0. (2.11)

The mean number of clients in On(λ) is thus a strictly increasing function
of λ, which equals zero when λ = 0 and goes to infinity with λ. This proves the
first assertion of the lemma.

Define

Yn
def=

Zmn,nλ
mn
n∏n

k=1 fk,n(πk,nλn)
.

Then (2.2) reads

Pn(Q1,n = q1, . . . , Qn,n = qn) =
1
Yn

n∏

k=1

P(Xk,n = qk),

which yields (2.7), since

Yn =
∑

q1+···+qn=mn

n∏

k=1

P(Xk,n = qk) = P(X1,n + · · ·+Xn,n = mn).

Equation (2.9) and the first part of (2.8) are derived similarly. For the second
part of (2.8), we simply note that

P
(
Sn −

∑̀

k=1

Xk,n = mn −
∑̀

k=1

qk

) ∏̀

k=1

P(Xk,n = qk)

= P(Sn = mn|X1,n = q1, . . . , X`,n = q`)
∏̀

k=1

P(Xk,n = qk)

= P(X1,n = q1, . . . , X`,n = q`|Sn = mn)P(Sn = mn).

2



322 G. Fayolle and J.-M. Lasgouttes

2.2. Informal description of the method

Most of the derivations obtained in the paper are based on the various repre-
sentations given in Lemma 2.1. Our approach relies on direct limit theorems for
the distribution of Sn, whereas the studies [6, 7, 1, 10] use mainly saddle-point
methods.

For example, assume that Sn −mn satisfies a local limit theorem such as:
under “suitable” conditions, there exists a distribution with density f and a
sequence an such that, for any integer x,

lim
n→∞

an P(Sn −mn = x)− f
( x

an

)
= 0. (2.12)

Then Lemma 2.1 will yield

P(Q1,n = q1, . . . , Qn,n = qn) ≈ an

f(0)

n∏

k=1

P(Xk,n = qk),

and, for any finite `,

P(Q1,n = q1, . . . , Q`,n = q`) ≈
∏̀

k=1

P(Xk,n = qk).

This amounts to say that the joint distribution of any finite number of queues
in the BCMP network Cn is, at steady state, asymptotically equivalent to the
product distribution of the corresponding queues in the system On.

It is at this moment important to emphasize that we do not require any
“smooth” limiting behaviour forOn, which is somehow an instrumental network,
computationally easier to evaluate.

To prove local limit theorems like (2.12), it is necessary to investigate care-
fully the behaviour of the variables Xk,n. In particular, since ESn = mn < ∞,
all queues in On are ergodic, which reads, for any 1 ≤ k ≤ n,

λnπk,n < µk,n ≤ ∞,

or, equivalently,
ρ0

n
def= λn max

1≤k≤n

πk,n

µk,n
< 1, (2.13)

where typically

µk,n = lim
q→∞

q

√
µk,n(1) · · ·µk,n(q).

Three main situations have been analyzed:

(i) ρ0
n is bounded away from 1: then Sn/σn satisfies a local Central Limit

Theorem and tends in distribution to a normal law (see Theorem 4.2);
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(ii) ρ0
n → 1 and the supremum in (2.13) is attained for a finite number of

queues: then the network subdivides into two subsets, the “saturated”
queues and the rest of the network. As shown in Theorem 4.3, under mild
regularity assumptions, there exists a sequence αn such that Sn/αn tends
to a gamma law;

(iii) ρ0
n → 1 and the supremum in (2.13) is attained for an unbounded num-

ber of queues: Sn/σn again tends in distribution to a normal law (see
Theorem 4.4).

In fact, Theorems 4.2, 4.3 and 4.4 quoted above are general, in the sense
that they provide a construction of efficient scalings in terms of mn, the number
of customers: the existence of critical sequences m0

n for the network Cn is shown
by explicit construction. Under reasonable assumptions, these sequences are
necessary and sufficient to discriminate between saturated and non saturated
regimes. This is similar to phase transition phenomena observed in [10], where
it was assumed that mn/n→ λ > 0 (see Section 6.1). Clearly, it is necessary to
have mn = O(n) for a non-saturated regime to exist as n → ∞; this condition
is not sufficient (see Section 6.2).

Condition (2.13) can be used to determine an upper bound for λn and to
exhibit queues which act as bottlenecks in the network Cn (see Section 4).

Remark. Rather than simple limit theorems, the results in Sections 3 and 4 are
given in terms of asymptotic expansions, using the symbols O and Ω defined as
follows:

a(η) = O(b(η)) iff there exists K > 0 such that for all η, |a(η)| ≤ K|b(η)|,
a(η) = Ω(b(η)) iff a(η) = O(b(η)) and b(η) = O(a(η)),

where η is some unspecified argument. Unless otherwise stated, all these bounds
are uniform with respect to n and all queue indexes.

3. Local limit theorems and asymptotic expansions

In this section we compute estimates of several performance measures of Cn

by means of local limit theorems on sums of independent random variables. The
two series of results presented here are of somewhat different nature: Proposi-
tion 3.3 relies on analytic properties of the generating function of some queues,
whereas the conditions of Proposition 3.1 depend on moments.

3.1. Normal traffic case

When the queues are not saturated (in a sense made more precise in Propo-
sition 3.1), it is possible to prove local Central Limit Theorems, relying more
exactly on Berry – Esseen type expansions (see for instance Feller [3]).
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Define γ2
k,n from Xk,n as in Lemma A.1 of the Appendix, and let

γ2
n

def= γ2
1,n + · · ·+ γ2

n,n ≤ σ2
n.

Proposition 3.1. (i) Let, for any 0 < r ≤ 1 such that β(2+r)
n exists,

δr
n

def=
1
2

σ2
n

β(2+r)
n

.

Let γnδn →∞ as n→∞. Then, for any integer x, the following approxi-
mation holds uniformly in x:

σn P(Sn −mn = x)− 1√
2π
e
− x2

2σ2
n (3.1)

= O

(
β(2+r)

n

σ2+r
n

)
+O

(
σn

γ2
nδn

exp
(
−γ

2
nδ

2
n

5

))
.

(ii) Let, for any 0 < r ≤ 1 such that β(3+r)
n exists,

δn
def=

1
2
σ2

n

β(3)
n
.

Let γnδn →∞ as n→∞. Then, for any integer x, the following approx-
imation holds uniformly in x:

σn P(Sn −mn = x)− 1√
2π
e
− x2

2σ2
n

[
1 +

β̄(3)
n

6σ3
n

(x3

σ3
n

− 3
x

σn

)]
(3.2)

= O

(
β(3+r)

n

σ3+r
n

)
+O

(
σn

γ2
nδn

exp
(
−γ

2
nδ

2
n

5

))
.

Proof. See Appendix A.2. 2

The main assumption of the previous proposition is classical, since it is
nothing else but the Lyapunov condition, popular in the Central Limit Problem:
for some r > 0,

lim
n→∞

β(2+r)
n

σ2+r
n

= 0. (3.3)

This condition yields in particular (see e.g. Loève [9])

lim
n→∞

max
1≤k≤n

σk,n

σn
= 0, (3.4)

which in turn implies the uniform asymptotic negligibility of the Xk,n’s. Note
that it would be possible by truncation methods to prove similar results without
requiring the existence of moments.

We are now in a position to present some basic estimates when the size of
the network increases.
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Theorem 3.2. Let r be a real number such that 0 < r ≤ 2. Assume that
σn = O(γn), that β(2+r)

n exists and β(2+r)
n /σ2+r

n → 0 as n → ∞. Then the
following asymptotic expansions hold.

(i)

P(Q1,n = q1, . . . , Qn,n = qn) (3.5)

=
√

2πσn

n∏

k=1

P(Xk,n = qk)
[
1 +O

(
β(2+r)

n

σ2+r
n

)]
.

(ii) For any finite `, if [
∑`

j=1mj,n − qj ]/σn → 0,

P(Q1,n = q1, . . . , Q`,n = q`) =
∏̀

k=1

P(Xk,n = qk)
[
1 +O(ε1,n)

]
, (3.6)

ε1,n =
β(2+r)

n

σ2+r
n

+

∑`
j=1 σ

2
j,n + (

∑`
j=1mj,n − qj)2

σ2
n

+ 1{r>1}
(
∑`

j=1mj,n − qj)β̄(3)
n

σ4
n

.

(iii) For any j,

EQj,n = EXj,n

[
1 +O(ε2,n)

]
, (3.7)

ε2,n =
β(2+r)

n

σ2+r
n

+
σ2

j,n

σ2
n

+
β(2+r)

j,n

mj,nσ
1+r
n

+ 1{r>1}
β̄(3)

n

σ4
n

σj,n

(
1 +

σj,n

mj,n

)
.

Proof. Equation (3.5) is a simple application of Proposition 3.1 to (2.7).
To prove (3.6) from (2.8) when r ≤ 1, we simply write

P(Sn −
∑`

k=1Xk,n = mn −
∑`

k=1 qk)
P(Sn = mn)

=
(
1−

∑`
j=1 σ

2
j,n

σ2
n

)−1/2
[
1 +O

(
β(2+r)

n

σ2+r
n

+ exp
{
−

(∑`
j=1mj,n − qj

)2

2σ2
n

}
− 1

)]

and use the relation |e−u2/2 − 1| ≤ u2. When 1 < r ≤ 2, it suffices to take into
account the inequality

(u3 − 3u)e−u2/2 = O(u).

Relation (3.7) is also derived from (2.8). 2
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3.2. Heavy traffic case

We proceed now to analyze the behavior of the network Cn when some queues
saturate, as n → ∞. This, in particular, implies that the Lyapunov condi-
tion (3.3) is no more valid. In fact, after a suitable normalization, Sn−mn will
be shown to converge in distribution to a random variable having a gamma dis-
tribution, under the broad assumption that the first singularities of the relevant
generating functions are algebraic.

Let, for some ρ0
n ∈ [0, 1) (to be specified in Section 4),

ωn(θ) def=
1− ρ0

n

1− ρ0
ne

iθ
,

and assume the following condition to hold.

Assumption A1. There exists a set F0
n of “saturable” queues, such that, for

all k ∈ F0
n, there exist a real number ξk,n and a function ψk,n(θ) satisfying the

relation
ϕk,n(θ) = e−imk,nθω

ξk,n
n (θ)ψk,n(θ).

Moreover, ψ′k,n(θ) = O(1), uniformly in k and n, and there exists a constant
ξmax such that

1 ≤ ξk,n < ξmax <∞.

Clearly, the term ω
ξk,n
n (θ) coming in the definition of ϕk,n(θ) emphasizes the

fact that the generating function fk,n(z) pertaining to queue k ∈ F0
n has its first

singularity which is algebraic of order ξk,n. If, in addition, ρ0
n → 1 as n → ∞,

the working conditions of the system ensure all queues in F0
n saturate so that,

in particular, EXk,n ∼ ξk,nαn, where

αn
def=

ρ0
n

1− ρ0
n

.

While this assumption covers a wide range of known queues, it is clear that
other types of singularities could be handled via the same method.

Let
ξn

def=
∑

k∈F0
n

ξk,n

and define the total characteristic function of the queues in Fn \ F0
n by

ϕ̂n(θ) def=
∏

k 6∈F0
n

ϕk,n(θ).

Let r be a real number, 0 < r ≤ 1. Hereafter, σ̂n, β̂(2+r)
n , γ̂n and δ̂n will

denote quantities having the same meaning as in Proposition 3.1, but related
to ϕ̂n(θ).

The counterpart of Theorem 3.2 now reads, in the case of heavy operating
conditions:
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Proposition 3.3. Let ρ0
n → 1. If ξn is bounded, σ̂n/αn → 0 and δ̂nγ̂n → ∞

as n→∞, then the following estimate holds:

αn P(Sn −mn = x)− (ξn + x/αn)ξn−1e−ξn+x/αn

Γ(ξn)
(3.8)

= O

(( σ̂n

αn

)2

+
1
αn

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)2+r

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)ξn−1
)

+O

(
e−γ̂2

nδ̂2
n/5

γ̂2
nδ̂

ξn+1
n αξn−1

n

)
.

Proof. See Appendix A.2. 2

The estimates of Proposition 3.3 allow to establish the main result of this
section.

Theorem 3.4. Let σ̂n/αn → 0, β̂(2+r)
n /σ̂2+r

n → 0 and σ̂n = O(γ̂n) as n → ∞.
Then the following expansions hold when ξn is uniformly bounded:

(i) for any q1, . . . , qn ≥ 0,

P(Q1,n = q1, . . . , Qn,n = qn) (3.9)

=
αnΓ(ξn)

e−ξnξξn−1
n

n∏

k=1

P(Xk,n = qk)
[
1 +O(εn)

]
,

with

εn =
( σ̂n

αn

)2

+
1
αn

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)2+r

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)ξn−1

;

(ii) for any finite `, such that F0
n ∩ [1, `] = ∅,

P(Q1,n = q1, . . . , Q`,n = q`) (3.10)

=
∏̀

k=1

P(Xk,n = qk)
[
1 +O(εn) +O

(∑`
k=1mk,n − qk

αn

)]
;

(iii) for any j 6∈ F0
n,

EQj,n = EXj,n

[
1 +O(εn) +O

(
σ2

j,n +m2
j,n

mj,nαn

)]
; (3.11)

(iv) for any j ∈ F0
n,

EQj,n = EXj,n

[
1 +O(εn)

]
. (3.12)

Proof. The proof of (i) –(iii) follows essentially along the same lines as for The-
orem 3.2, while (iv) depends on equation (2.9) of Lemma 2.1. 2
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4. Scaling

As it is mentioned in the introduction, this section provides guidelines for
using the above technical results in two ways.

• Quantitative estimates for the error terms (w.r.t. some limiting distribu-
tion), explicitly obtained from the original data (e.g. the total number of
customers mn).

• Qualitative understanding of the “critical” values for mn which, in some
sense, induce phase transitions of interest.

The queues are partitioned as follows:

Fn
def=

{
0 ≤ k ≤ n : lim

q→∞
q

√
µk,n(1) · · ·µk,n(q) <∞

}
,

In
def=

{
0 ≤ k ≤ n : lim

q→∞
q

√
µk,n(1) · · ·µk,n(q) = ∞

}
.

From the general discussion at the beginning of Section 2, Fn is never empty.
Let also

µk,n
def=





lim
q→∞

q

√
µk,n(1) · · ·µk,n(q), if k ∈ Fn,

µk,n(1), if k ∈ In,

ρk,n
def=

λnπk,n

µk,n
, λ0

n
def= min

k∈Fn

µk,n

πk,n
, ρ0

n
def= max

k∈Fn

ρk,n =
λn

λ0
n

.

We shall also need the following subset of Fn:

F0
n

def= {k ∈ Fn : ρk,n = ρ0
n}.

Note that the definitions of µk,n and ρ0
n are consistent with the discussion

which lead to (2.13). Moreover, in most practical cases, µk,n(q) → µk,n as
q →∞, provided that this limit exists and is finite.

To avoid uninteresting technicalities, it will be convenient to introduce As-
sumptions A2 and A3, but it should be pointed out that the results of Section 3
are valid in a more general setting. Simple conditions ensuring A1 and A3 are
discussed in Section 5.

Assumption A2. The following limit holds:

lim
n→∞

max
1≤k≤n

πk,n/µk,n

π1,n/µ1,n + · · ·+ πn,n/µn,n
= 0.
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Assumption A2 is somehow unavoidable to obtain a meaningful asymptotic
behaviour of the network. It says that it is possible to let mn →∞ as n→∞,
without saturating the network and, under the forthcoming Assumption A3,
it amounts to the Lyapunov condition (3.3). Note that, when µk,n = Ω(1)
uniformly in k and n, A2 is simply equivalent to

lim
n→∞

max
1≤k≤n

πk,n = 0.

Assumption A3. (i) For any real A < 1 and any integer r ≤ 4, and for any
k ∈ Fn such that ρk,n ≤ A,

mk,n = Ω(ρk,n), β(r)

k,n = Ω(ρk,n), γ2
k,n = Ω(ρk,n) (4.1)

uniformly in k and n.

(ii) Condition (4.1) also holds for all k ∈ In.

The derivation of the most general results of the section is done in Lemma 4.1
and Theorem 4.2. Further insight, under some additional assumptions, is pre-
sented in Theorems 4.3 and 4.4.

Definition 4.1. A sequence m0
n is said to be weakly critical for Cn if, for any

0 < t < 1,

g(t) def= lim
n→∞

mn(tλ0
n)

m0
n

(4.2)

exists and lim
t→1−

g(t) be either 1 or ∞.

If, in addition, the relation

lim
t→1−

lim
n→∞

mn(tλ0
n)

m0
n

= lim
t→1−

lim
n→∞

mn(tλ0
n)

m0
n

,

holds, then the sequence is said to be strongly critical for Cn.

Before seeing how such critical sequences can be used, the next lemma proves
their existence.

Lemma 4.1. Under Assumption A3, a convenient weakly critical sequence
for Cn is, for some fixed 0 < u < 1,

m0
n(u) def= humn(uλ0

n), (4.3)

where hu is correctly chosen.
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Proof. Choose (t, u) ∈ (0, 1)× (0, 1). From A3,

mn(tλ0
n) = Ω(mn(uλ0

n)) = Ω
( n∑

k=1

tλ0
nπk,n

µk,n

)
,

and the application t 7→ mn(tλ0
n)/mn(uλ0

n) is increasing and locally bounded.
Therefore,

ĝu(t) def= lim
n→∞

mn(tλ0
n)

mn(uλ0
n)

exists and is increasing. To conclude the proof, take

hu =

{ lim
t→1−

ĝu(t), if the limit is finite,

1, otherwise.

It is interesting to note that, if the above limit is finite for some u, it is finite
for all u ∈ (0, 1). The proof of the lemma is concluded. 2

In fact, as shown in Theorem 4.2, any critical sequencem0
n acts as a threshold

parameter for mn. Under A2 and A3, which are satisfied by a wide variety of
networks, we provide a nearly complete classification in terms of necessary and
sufficient scaling. It is worth to emphasize that any m0

n chosen from (4.3) has
a pseudo-explicit form, given in terms of the data of the original network.

The second step is to enumerate in a consistent way the desirable properties
of the distribution of Q1,n, . . . , Qn,n: for some finite j and some unspecified εn,
such that εn → 0 as n→∞, we have

EQj,n = EXj,n

[
1 +O(εn)

]
, (4.4)

P(Q1,n = q1, . . . , Qj,n = qj) =
j∏

k=1

P(Xk,n = qk)
[
1 +O(εn)

]
, (4.5)

and also, when Theorem 3.2 [resp. Theorem 3.4] holds, equation (4.6) [resp.
(4.7)] holds:

P(Q1,n = q1, . . . , Qn,n = qn)

=
√

2πσn

n∏

k=1

P(Xk,n = qk)
[
1 +O(εn)

]
, (4.6)

P(Q1,n = q1, . . . , Qn,n = qn)

=
αnΓ(ξn)

ξξn−1
n e−ξn

n∏

k=1

P(Xk,n = qk)
[
1 +O(εn)

]
. (4.7)
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Theorem 4.2. Let A2 and A3 hold and m0
n be a weakly critical sequence for

Cn, with the associated function g(t).
Assume first that limt→1− g(t) = 1. Then the following classification holds:

(i) If

lim
n→∞

mn

m0
n

< 1,

then (4.4), (4.5) and (4.6) hold with εn = 1/mn. In particular EQk,n is
bounded, uniformly in k and n.

(ii) If

lim
n→∞

mn

m0
n

> 1,

then, for any sequence of queues kn in F0
n, we have lim

n→∞EQkn,n = ∞.

(iii) If m0
n is a strongly critical sequence and

lim
n→∞

mn

m0
n

> 1,

then, for any sequence of queues kn in F0
n, we have lim

n→∞EQkn,n = ∞.

In the situation limt→1− g(t) = ∞, the same results hold, just replacing
“< 1” (resp. “> 1”) in the r.h.s. of the inequalities by “<∞” (resp. “= ∞”).

Proof. To prove (i) , note that mn = mn(λn) = mn(ρ0
nλ

0
n). Since mn(tλ0

n) is
increasing in t, this implies that, when limn→∞ ρ0

n = 1, we have also

lim
n→∞

mn/m
0
n ≥ 1.

Therefore, in case (i) , there exists τ < 1 such that ρ0
n ≤ τ for any n ∈ N.

Using A3, we can estimate all error terms coming in Theorem 3.2 and the result
is proved.

Similarly in case (ii) [resp. (iii) ], we have necessarily limn→∞ ρ0
n = 1 [resp.

limn→∞ ρ0
n = 1], and the result follows from the monotonicity of the function

t 7→ mkn,n(tλ0
n).

The case limt→1− g(t) = ∞ is handled with the same method. 2

Direct applications of Theorem 4.2 are proposed in Sections 6.1 and 6.2.
In order to get finer results, the next assumption ensures that the queues

not belonging to F0
n stay uniformly away from saturation conditions.

Assumption A4. There exists a constant A < 1 such that

λ0
n

πk,n

µk,n
≤ A, for all k ∈ Fn \ F0

n. (4.8)



332 G. Fayolle and J.-M. Lasgouttes

In order to properly reformulate the results of Section 3, let us define

m̂n(λ) def=
∑

k 6∈F0
n

mk,n(λ), (4.9)

m̂0
n

def= m̂n(λ0
n). (4.10)

Using (2.11), it is not difficult to see that m̂0
n defined (4.10) is a strongly

critical sequence for Cn under A1, A2, A3 and A4. Therefore, all results of
Theorem 4.2 hold, as well as the following theorem.

Theorem 4.3. Let A1, A2, A3 and A4 hold. If ξn is uniformly bounded, then
the following results hold.

(i) If there exists θn > 0, such that, for all n ∈ N,

mn

m̂0
n

≤ 1− θn,

and limn→∞ θ2nmn = ∞, then (4.4), (4.5) and (4.6) hold with

εn
def=

1
mn

+
1

m2
nθ

4
n

,

except when a queue in F0
n is concerned, in which case (4.4) and (4.5)

hold with

εn =
1

θ2nmn
.

(ii) If there exists θn > 0, such that, for all n ∈ N,

mn

m̂0
n

≥ 1 + θn,

and limn→∞ θnm̂
0
n = limn→∞ θ2nm̂

0
n = ∞, then (4.4) and (4.7) hold with

εn
def=

1
θ2nm̂

0
n

+
1

θnm̂0
n

+
1√
m̂0

n

[
1

m̂0
nθ

2
n

](ξn−1)/2

.

Moreover, if in equation (4.5), [1, j] ∩ F0
n = ∅, then the latter also holds,

with εn having the above value.

Proof. To prove (i) , note that when mn ≤ (1− θn)m̂0
n,

m̂n(λn) ≤ mn(λn) ≤ (1− θn)m̂n(λ0
n).
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Moreover, using A3, A4 and (2.11), Taylor’s formula yields, for some λ ∈
(λn, λ

0
n),

m̂0
n − m̂n(λn) = m̂n(λ0

n)− m̂n(λn)

= (λ0
n − λn)

σ̂2
n(λ)
λ

= (λ0
n − λn)Ω

( ∑

k∈Fn\F0
n

πk,n

µk,n

)
,

which implies

1− m̂n(λn)
m̂0

n

= Ω(1− ρ0
n) ≥ θn.

Hence,
1

1− ρ0
n

= O

(
1
θn

)

and, using m̂n(λn) = Ω(β̂(r)
n ) = Ω(σ̂2

n), a direct but tedious computation shows
that Theorem 3.2 applies with appropriate error terms.

Let us now prove assertion (ii) . It follows from

mn − m̂n(λn) = Ω
( ξnρ

0
n

1− ρ0
n

)
≥ θnm̂

0
n →∞,

that ρ0
n → 1 and

σ̂2
n

α2
n

= Ω(m̂n(λn)(1− ρ0
n)2)

= O
( m̂n(λn)

(mn − m̂n(λn))2
)

= O
( m̂n(λn)
θ2n[m̂0

n]2
)

= O
( 1
θ2nm̂

0
n

)
.

Thus, Theorem 3.4 applies and (ii) is proved. 2

It remains to state what happens when ξn →∞ as n→∞. As shown below,
this behaviour does not depend on the saturation of the queues in F0

n.

Theorem 4.4. Let ξn → ∞ as n → ∞. Let also A1, A2, A3 and A4 hold.
Then, under the uniformity assumption

β(4)

k,n = O

(
ξk,nρ

0
n

(1− ρ0
n)4

)
, for all k ∈ F0

n, (4.11)

the results (4.4), (4.5) and (4.6) are again valid, with

εn
def=

1
(1− ρ0

n)mn
.
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Proof. The statement relies on Theorem 3.2, taking r = 2. First, from classical
weak compactness and moment convergence theorems (see e.g. [9]), it follows
that, for k ∈ F0

n and all 0 < s ≤ 4

β(s)

k,n = Ω
(

ξk,nρ
0
n

(1− ρ0
n)s

)
.

Thus, the term coming in the Lyapunov condition (3.3) is equal to

β(4)
n

σ4
n

= Ω




m̂n + ρ0
nξn

(1−ρ0
n)4[

m̂n + ρ0
nξn

(1−ρ0
n)2

]2




= Ω

(
(1− ρ0

n)4m̂n + ρ0
nξn

[(1− ρ0
n)2m̂n + ρ0

nξn]2

)

= O

(
1

(1− ρ0
n)m̂n + ρ0

nξn

)

= O

(
1

(1− ρ0
n)mn

)
,

which tends to 0 as n → ∞. The other error terms given in Theorem 3.2 are
estimated in the same way.

The only thing left to check is that σ2
n = O(γ2

n). In fact, since γ2
n = Ω(m̂n),

this relation will only hold when ρ0
n is uniformly bounded away from 1. However,

for any k ∈ F0
n and for any θ ∈ [−π, π],

|ϕk,n(θ)| = |ωk,n(θ)|ξk,n

∣∣∣1 +O(θ)
∣∣∣

≤
[

1
1 + α2

nθ
2/6

]ξk,n/2 ∣∣∣1 +O(θ)
∣∣∣

≤
[

1
1 + α2

nθ
2/6

]ξk,n/4

,

provided that a < ρ0
n < 1, where a is some fixed constant. This bound can be

used to replace equation (A.2) in the proof of Proposition 3.1 by
∣∣∣∣∣∣∣

∫

δn≤|θ|≤π

e−iθxϕn(θ)dθ

∣∣∣∣∣∣∣
≤

∫

|θ|≥δn

[
1

1 + α2
nθ

2/6

]ξn/4

dθ

= O

(
1

δnα2
nξn

1
(1 + α2

nδ
2
n)ξn/4−1

)
,

which is exponentially small in ξn, since δnαn = Ω(1). 2
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5. Towards more tangible assumptions

The assumptions used in the results of the previous section may seem difficult
to check in practice. However, as shown hereafter, they can be replaced (at the
expense of a loss in generality) by simpler properties directly related to the
service mechanisms of the queues.

The next lemma provides a realistic context in which A3 is satisfied.

Lemma 5.1. Assume that

(i) there exist sequences R(q) and T (q) such that

lim
q→∞

q
√
R(1) · · ·R(q) = 1,

lim
q→∞

T (q) = ∞,

and, for any q > 0,

µk,n(q) ≥ R(q)µk,n, for k ∈ Fn,

µk,n(q) ≥ T (q)µk,n, for k ∈ In;

(ii) there exists a constant B <∞ such that

λ0
n

πk,n

µk,n
< B, for all k ∈ In.

Then A3 holds.

Remark. This lemma can be applied in particular to any mixing of M/M/∞
and multiple-server queues with at most c servers, with

R(q) = min
[
1,
q

c

]
, T (q) = q.

Proof. For each queue k ∈ Fn such that ρk,n ≤ A, and for all r ∈ N, we have

∞∑
q=0

qr (λnπk,n)q

µk,n(1) · · ·µk,n(q)
≤

∞∑
q=0

qrAq

R(1) · · ·R(q)
<∞.

In particular, fk,n(λnπk,n) = Ω(1) and

mk,n =
λnπk,n

µk,n(1)fk,n(λnπk,n)

∞∑
q=1

q
(λnπk,n)q−1

µk,n(2) · · ·µk,n(q)
= Ω

(
λnπk,n

µk,n(1)

)
.
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Similarly, for any r ∈ N,

β(r)

k,n = Ω
(
λnπk,n

µk,n(1)

)
.

The same computations can be applied to k ∈ In, thus proving A3(ii) . 2

The results of Section 4 can be easily generalized to a situation where some
M/M/∞ queues of In become saturated, in which case A3(ii) is no longer sat-
isfied. Indeed, the characteristic function of the number of clients X in an
M/M/∞ queue with parameter ρ can be written as

Ee
iθX = exp

(
ρ(eiθ − 1)

)
=

[
exp

( ρ

bρc (e
iθ − 1)

)]bρc
,

which means that a saturated infinite server queue can be replaced by several
non-saturated infinite-server queues without changing the distribution of Sn.
Therefore, the results of Section 4 still hold, except for marginal distributions
containing one of the saturated queues.

Theorems 4.3 and 4.4 also required assumption A1 on the service mechanisms
of the so-called “saturable” queues. It is often enough to restrict ourselves to
the following two categories of queues, which encompass the standard M/M/c
queue.

Lemma 5.2. Assume that, for any k ∈ F0
n, either

(i) there is a constant qc, independent of k and n, such that

µk,n(q)
µk,n

=
{
O(1), if q < qc,
1, otherwise,

(5.1)

or

(ii) for some finite constants ξmin and ξmax,

log
µk,n(q)
µk,n

= −ξk,n − 1
q

+ ∆k,n(q), (5.2)

with

∆k,n(q) = O

(
1
q2

)
, 1 < ξmin ≤ ξk,n ≤ ξmax ,

uniformly in k and n. (See also Section 7.)

Then A1 holds.
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Proof. In view of equation (2.4), for any fixed k and n, the quantity to estimate
is related to

fk,n(λnπk,ne
iθ) =

∞∑
q=0

(λnπk,ne
iθ)q

µk,n(1) · · ·µk,n(q)

=
∞∑

q=0

q∏
p=1

µk,n

µk,n(p)
(ρk,ne

iθ)q.

For the sake of brevity, let us omit the k and n subscripts and define, for
any z ∈ C, |z| < 1,

g(z) def=
∞∑

q=0

q∏
p=1

µ

µ(p)
zq.

Thus, we have to estimate g(ρeiθ)/g(ρ), for θ ∈ [−π, π] and ρ < 1. This
proof proceeds in four steps.

a) Assume first that (5.1) holds. Then

g(z) =
1

1− z

[
O(1− z)

qc∑
q=0

q∏
p=1

µ

µ(p)
zq + zqc+1

qc∏
p=1

µ

µ(p)

]

and Assumption A1 holds with ξ = 1.

b) Under (5.2), one obtains, for q ≥ 1,

q∏
p=1

µ

µ(p)
= exp

[
(ξ − 1)

q∑
p=1

1
p
−

q∑
p=1

∆(p)

]

= exp[(ξ − 1)C −∆] · qξ−1[1 + aq/q],

where C is the Euler constant, ∆ def=
∑∞

p=1 ∆(p), and aq is uniformly
bounded. In the remainder of the proof, let

K
def= exp[(ξ − 1)C −∆].

c) Let, for |z| < 1 and s ∈ C,

ϕ(z, s) def=
∞∑

q=1

zq

qs
.

Then, for Re(s) > 0,

ϕ(z, s) =
z

Γ(s)

∞∫

0

ts−1dt

et − z
.
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In fact, this integral representation can be used to get an analytic contin-
uation with respect to s, by introducing the (classical) Hankel’s contour.
This yields, for all |z| < 1 and Re(s) > 0,

ϕ(z, s) =
iΓ(1− s)

2π

∫

L

(−t)s−1dt

et − z
.

Distorting L to include the zeros of et− z, the following expression holds,
for Re(s) < 0 and all values of z such that | arg(− log z + 2inπ)| ≤ π:

ϕ(z, s) = Γ(1− s)
∑

n∈Z

(− log z + 2inπ)s−1.

d) Using this expression, simple computations yield, when ξ > 1 and |z| < 1

g(z) = 1 +K

[
ϕ(z, 1− ξ) +

q∑
q=1

qξ−2aqz
q

]

=
K

logξ z

[
logξ z

K
+ 1 +

∑

n 6=0

(
log z

log z − 2inπ

)ξ

+ logξ z

q∑
q=1

qξ−2aqz
q

]
,

and, finally,
g(ρeiθ)
g(ρ)

=
[

1− ρ

1− ρeiθ

]ξ [
1 + ξρ(eiθ − 1)

]
.

This concludes the proof of the lemma. 2

6. Applications

6.1. A Jackson network with convergence properties

Consider the basic Jackson network (consisting of M/M/1 queues with con-
stant service rates) analyzed in [10].

In this case,

mn(tλ0
n) =

n∑

k=1

trk,n

1− trk,n
, with rk,n =

λ0
nπk,n

µk,n
.

Under the assumption made in [10] that the counting measure

In(A) def=
1
n

Card(k : rk,n ∈ A),
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Figure 1. A compound network of tandem queues.

defined for all Borel sets A, converges weakly to a probability measure I, we
have

lim
n→∞

mn(tλ0
n)

n
=

1∫

0

tr

1− tr
dI(r),

and

lim
t→1−

1∫

0

tr

1− tr
dI(r) def= λcr ≤ ∞.

Thus, the results of [10] are contained in the theorems of Section 4, taking
m0

n = nλcr, which is then a strongly critical sequence for Cn.

6.2. A network with tight bottlenecks

As pointed out in the introduction, there are cases of interest with mn =
o(n). This will be illustrated in the next example.

Consider a closed network consisting of sn subnetworks of M/M/1 queues
having each a unique entry point, in which a fixed number m of tasks circu-
late. The queues are subject to failures, taking place with some probability
f < 1. When a failure occurs, the task returns to the entry point of its current
subnetwork. Tasks visit the various subnetworks according to some probability
matrix.

This model exhibits tight bottlenecks, when the number and the size of the
subnetworks grow. This fact, for the sake of simplicity, will be illustrated on
a very simple topology, presented in Figure 1: all subnetworks are associated
in tandem, and each of them consists itself of `n queues in tandem, with unit
processing rates.

Here, the invariant measure of the routing matrix has the form

(π1,n, . . . , π`n,n;π1,n, . . . ; . . . , π`n,n),

where πk,n is the invariant probability associated with the kth queue of an arbi-
trary subnetwork. A straightforward computation, using symmetry properties,
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yields, for any t ∈ (0, 1),

πk,n =
1
sn

f(1− f)k−1

1− (1− f)`n
= (1− f)k−1π1,n,

mn(tλ0
n) = sn

`n∑

k=1

t(1− f)k−1

1− t(1− f)k−1
.

Choosing some fixed u ∈ (0, 1) and assuming that `n → ∞ as n → ∞, we
have

lim
n→∞

mn(tλ0
n)

mn(uλ0
n)

=
Lf (t)
Lf (u)

,

where Lf is defined on (0, 1) by

Lf (t) def=
∞∑

k=1

t(1− f)k−1

1− t(1− f)k−1

and limt→1− Lf (t) = ∞.
Therefore, mn(uλ0

n) is a strongly critical sequence for the network and the
sizes of the queues remain uniformly bounded if and only if

mn = O (mn(uλ0
n)) = O(sn) = o(n).

6.3. A service vehicle network

Consider a fleet of vehicles serving an area consisting of n stations forming a
fully connected graph. These vehicles are used to transport goods or passengers.
Vehicles wait at stations until they receive a request, in which case they go
to some other station. The routing among stations is done according to some
routing matrix Pn. When a request arrives to an empty station, it is immediately
lost. The request arrivals form a Poisson stream at each queue.

We model this system as follows: for all 0 ≤ k ≤ n, station k is represented
by a single-server queue with service rate µk,n which is equal to the arrival rate
at station k, since arrivals are lost when the station is empty. When a vehicle
leaves station k, it chooses its destination according to the Markovian routing
matrix Pn = (pk`,n). The duration of the journey between two stations k and `
is represented by an infinite server queue placed on the edge between them. The
service rate of this queue when there are q vehicles traveling between k and ` is
qµk`,n. Note that, contrary to the convention used throughout this paper, the
total number of queues is n2 + n. Let (π1,n, . . . , πn,n) be the invariant measure
of Pn, defined by (2.1). Then, with obvious notation, for all k, ` ∈ [1, n], for all
θ ∈ [−π, π],
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ρk,n
def=

λnπk,n

2µk,n
, ρk`,n

def=
λnπk,npk`,n

2µk`,n
,

mk,n
def=

ρk,n

1− ρk,n
, mk`,n

def= ρk`,n,

ϕk,n(θ) def=
(1− ρk,n)e−imk,nθ

1− ρk,neiθ
, ϕk`,n(θ) def= eρk`,n(eiθ−1−iθ).

Define F0
n as in Section 4 and assume that its cardinal is some fixed integer

K ≥ 1. Lemmas 5.1 and 5.2 apply, taking R(q) = 1, T (q) = q and ξk,n = 1
for q ≥ 1 and k ∈ F0

n. Thus, when A4 holds, Theorem 4.3 can be used and
estimates of many performance measures can be derived, with corresponding
error terms.

Some questions of interest arise:

• which maximal efficiency can be expected from this system?

• how many vehicles should be provided?

To answer these questions, it is convenient to define the loss probability as

Ploss(n) def=
∑n

k=1 µk,n P(Qk,n = 0)∑n
k=1 µk,n

.

Thus Ploss(n) is the proportion of customers that are lost because they arrive
at an empty station. This is a good indicator of the quality of service provided
by the network. Under appropriate conditions

Ploss(n) ∼
∑n

k=1 µk,n P(Xk,n = 0)∑n
k=1 µk,n

∼ 1− λn

2
∑n

k=1 µk,n
, (6.1)

as n→∞.
The last expression is a decreasing function of λn, which is itself bounded by

λ0
n. Therefore, the minimum of the loss probability is attained when λn → λ0

n;
this happens with

mn = (1− θn)m̂0
n, lim

n→∞
θn = 0,

where θn is chosen to satisfy assumption (i) of Theorem 4.3. With this choice
of mn, (6.1) holds with

λn = λ0
n(1 +O(θn)),

which is asymptotically optimal. Consequently, a “good” value for mn is mn =
m̂0

n, and having a number of vehicle proportional to the number of stations can
be a poor choice, especially when some stations are more loaded than others.
These stations act as bottlenecks of the system, which should be removed by
altering the routing probabilities.
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7. General remarks

First, a chief difficulty of the analysis is due to the need of dealing with
rate of convergence and limits of densities: this is the field of Berry –Esseen
theorems and large deviations.

Secondly, the results have been obtained under several technical assumptions
(especially uniformity), which in some sense are unavoidable. This means pre-
cisely that the choice of conditions slightly different from A1, A3 and A4 would
have led to different families of limit laws having infinitely divisible distributions.

In particular, from a physical point of view, it is worth commenting equation
(5.2). The inequality ξk,n ≥ 1 implies that the maximal service rate of the
queues in F0

n is reached from below; this is not the case if 0 < ξk,n < 1, and
the analysis was omitted, since the technicalities involved would have made the
text unnecessarily obscure. At last, the case ξk,n ≤ 0 dealing with other types
of singularities (for instance logarithmic), was not carried out, and would yield
other limit laws.

The future class of problems of interest concerns some non-product form
networks.

Appendix

A.1. A bound on periodic characteristic functions

One of the problems arising in the computation of convergence rates in the
Central Limit Theorem is to find upper bounds on the modulus of a character-
istic function ϕ(θ) for θ bounded away from 0. One typical property used can
be stated as follows:

there exist θ0 > 0 and a < 1 such that, for all |θ| > θ0, |ϕ(θ)| < a.

It is pointed out in Feller [3] that this condition is usually easy to fulfill in
practice, as long as X does not have a lattice distribution. Unfortunately, we
are in the lattice case and thus must cope with the periodicity of ϕ.

Next lemma shows how a bound on |ϕ(θ)| can be derived for |θ| ≤ π.

Lemma A.1. Let X be an integer-valued random variable with distribution
P (X = k) = pk, k ∈ N. Then we have

γ2 def=
∞∑

k=0

p2kp2k+1

p2k + p2k+1
≤ min

(
VarX,

1
4

)
,

where the summands are taken to be zero when p2k = p2k+1 = 0. Then, for any
θ ∈ [−π, π], the characteristic function ϕ of X satisfies:

|ϕ(θ)| ≤ exp
(
−γ

2

5
θ2

)
. (A.1)



Asymptotics and scalings for large product-form networks 343

Proof. We have

|ϕ(θ)| =
∣∣∣
∞∑

k=0

pke
ikθ

∣∣∣ ≤
∞∑

k=0

∣∣∣p2k + p2k+1e
iθ

∣∣∣.

Moreover,

∣∣∣p2k + p2k+1e
iθ

∣∣∣ =
√

(p2k + p2k+1 cos θ)2 + p2
2k+1 sin2 θ

=
√

(p2k + p2k+1)2 − 2p2kp2k+1(1− cos θ)

≤ p2k + p2k+1 − p2kp2k+1

p2k + p2k+1
(1− cos θ).

Hence, for θ ∈ [0, π],

|ϕ(θ)| ≤ 1− (1− cos θ)
∞∑

k=0

p2kp2k+1

p2k + p2k+1

≤ 1− 2
π2
θ2γ2

≤ exp
(−2γ2

π2
θ2

)
,

which yields (A.1). Inequality γ2 ≤ VarX can be seen by a Taylor expansion
of ϕ in the neighborhood of θ = 0, while the relation γ2 ≤ 1/4 follows from the
trivial inequality

p2kp2k+1

p2k + p2k+1
≤ p2k + p2k+1

4
.

2

The quantity γ has the desirable property to be zero when X is an integer
variable with a span strictly greater than 1, in which case the period of ϕ is less
than 2π. Another desirable property would be that γ →∞ when the moments
of X are unbounded; since γ ≤ 1/2, this is obviously not possible here. This
“feature” is somehow unavoidable; it can be seen from the following example:

ϕ(θ) def=
2 + eiθ

4
+

1
4

∞∑

k=2

eikθ

k(k − 1)

=
1 + eiθ

2
+ (1− eiθ) ln(1− eiθ).

The random variable having ϕ as characteristic function admits no finite
moments of order greater or equal to 1, but no bound on |ϕ| is substantially
better than (A.1).
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A.2. Proof of Propositions 3.1 and 3.3

Proof of Proposition 3.1. Using a Fourier inversion formula, the left hand side
of (3.1) can be rewritten as

σn

2π

π∫

−π

e−iθxϕn(θ)dθ − 1
2π

∞∫

−∞
e−ixu/σne−u2/2du.

Thus, our goal is to evaluate the quantity

In
def=

π∫

−π

e−iθxϕn(θ)dθ −
∞∫

−∞
e−iθxe−σ2

nθ2/2dθ

=

δn∫

−δn

e−iθx
(
ϕn(θ)− e−σ2

nθ2/2
)
dθ

−
∫

|θ|≥δn

e−iθxe−σ2
nθ2/2dθ +

∫

|θ|∈[δn,π]

e−iθxϕn(θ)dθ.

It is known that
∫

|θ|≥δn

e−σ2
nθ2/2dθ ≈ 2

σ2
nδn

e−σ2
nδ2

n/2,

applying Lemma A.1 to ϕn, we get
∣∣∣∣∣∣∣

∫

δn≤|θ|≤π

e−iθxϕn(θ)dθ

∣∣∣∣∣∣∣
≤

∫

|θ|≥δn

e−γ2
nθ2/5dθ = O

(
1

γ2
nδn

e−γ2
nδ2

n/5

)
. (A.2)

Finally, we obtain a bound on |In| which is uniform in x:

|In| ≤
δn∫

−δn

∣∣∣ϕn(θ)− e−σ2
nθ2/2

∣∣∣dθ

+O

(
1

σ2
nδn

e−σ2
nδ2

n/2

)
+O

(
1

γ2
nδn

e−γ2
nδ2

n/5

)
. (A.3)

We proceed now to estimate the above integral, so that implicitly |θ| ≤ δn.
The derivation relies on the following simple inequality, valid for all complex
numbers x1, . . . , xn and y1, . . . , yn:

|x1 · · ·xn − y1 · · · yn| ≤
n∑

k=1

|x1 · · ·xk−1||xk − yk||yk+1 · · · yn|, (A.4)
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which will be used with xk = ϕk,n(θ) and yk = exp(−σ2
k,nθ

2/2).
The characteristic function ϕk,n of the random variable Xk,n satisfies the

inequality ∣∣∣ϕk,n(θ)− 1 + σ2
k,n

θ2

2

∣∣∣ ≤ β(2+r)

k,n

|θ|2+r

2
(A.5)

(see for example Loève [9]).
Hence, using the inequality |e−x − 1 + x| ≤ xs/s, valid for all x ≥ 0 and

1 < s ≤ 2, we get
∣∣∣ϕk,n(θ)− e−σ2

k,nθ2/2
∣∣∣ ≤

∣∣∣ϕk,n(θ)− 1 + σ2
k,nθ

2/2
∣∣∣ +

∣∣∣e−
σ2

k,n
θ2

2 − 1 + σ2
k,n

θ2

2

∣∣∣

≤ β(2+r)

k,n

|θ|2+r

2
+ σ2+r

k,n

|θ|2+r

2
≤ β(2+r)

k,n |θ|2+r. (A.6)

To find an upper bound for |ϕk,n|, assume first σk,nδn ≤ 1, so that

|ϕk,n(θ)| ≤ 1− σ2
k,n

θ2

2
+ β(2+r)

k,n

|θ|2+r

2

≤ exp(−σ2
k,n + β(2+r)

k,n δr
n)
θ2

2
. (A.7)

In fact, (A.7) also holds when σk,nδn ≥ 1, since in this case

−σ2
k,n + β(2+r)

k,n δr
n ≥ −σ2

k,n + σ2+r
k,n δ

r
n ≥ 0.

From (3.4), we can choose n such that σk,n ≤ σn/2 and, using (A.4), (A.6)
and (A.7), we find

∣∣∣ϕn(θ)− e−σ2
nθ2/2

∣∣∣ ≤
n∑

k=1

β(2+r)

k,n |θ|2+r exp
(
−σ2

n + σ2
k,n + β(2+r)

n δr
n

)θ2
2

≤ β(2+r)
n |θ|2+r exp

(
−σ2

n

θ2

8

)
. (A.8)

Equation (3.1) follows, since the integral in (A.3) is bounded by

δn∫

−δn

∣∣∣ϕn(θ)− e−
σ2

nθ2

2

∣∣∣dθ ≤ β(2+r)
n

∞∫

−∞
|θ|2+r exp

(
−σ2

n

θ2

8

)
dθ

= O

(
1
σn

β(2+r)
n

σ2+r
n

)
.

The proof of (3.2) is similar, although the computations are more involved.
Redefine In as

In
def=

π∫

−π

e−iθxϕn(θ)dθ −
∞∫

−∞
e−iθx

(
1− i β̄(3)

n

θ3

6

)
e−σ2

nθ2/2dθ.
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To find a bound for |In|, we have to estimate
∣∣∣∣ϕn(θ)−

(
1− i β̄(3)

n

θ3

6

)
e−σ2

nθ2/2

∣∣∣∣ (A.9)

≤
∣∣∣∣ϕn(θ)− e−σ2

nθ2/2−iβ̄(3)
n θ3/6

∣∣∣∣ +
∣∣∣∣e−i

β̄
(3)
n θ3

6 − 1 + i β̄(3)
n

θ3

6

∣∣∣∣e−σ2
nθ2/2.

The first part of the r.h.s. of (A.9) is evaluated as above with (A.4) and (A.7)
replaced by

ϕk,n(θ) ≤ exp(−σ2
k,n + β(3)

k,nδn)
θ2

2
.

For the second part, we use the following inequality, valid for r ≥ 0 (see e.g.
Loève [9]) [

β(3)
n

σ3
n

]1+r/3

≤ β(3+r)
n

σ3+r
n

,

which yields
∣∣∣∣e−i

β̄
(3)
n θ3

6 − 1 + i β̄(3)
n

θ3

6

∣∣∣∣ ≤
∣∣∣β(3)

n

θ3

6

∣∣∣
1+r/3

≤ β(3+r)
n

σ3+r
n

σ3+r
n |θ|3+r

6
,

and (3.2) follows. 2

Proof of Proposition 3.3. The proof of this proposition is similar to the proof
of Proposition 3.1 and is only sketched here. Define

ω(u) def=
1

1− iu
,

yn
def=

∑
j∈F0

n
mj,n + x

αn
,

and

In
def= αn

π∫

−π

e−iθαnynωξn
n (θ)

∏

k∈F0
n

ψk,n(θ)ϕ̂n(θ)dθ

−
∞∫

−∞
e−iuynωξn(u)e

− σ̂2
n

α2
n

u2
2 du

=

παn∫

−παn

e−iuynωξn
n (u/αn)

[ ∏

k∈F0
n

ψk,n(u/αn)− 1
]
ϕ̂n(u/αn)du

+

παn∫

−παn

e−iuynωξn
n (u/αn)

[
ϕ̂n(u/αn)− e

− σ̂2
n

α2
n

u2
2

]
du
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+

παn∫

−παn

e−iuyn

[
ωξn

n (u/αn)− ωξn(u)
]
e
− σ̂2

n
α2

n

u2
2 du

−
∫

|u|≥παn

e−iuynωξn(u)e
− σ̂2

n
α2

n

u2
2 du. (A.10)

The evaluation of these integrals depends on the following straightforward
estimations, valid for |u| < παn,

|ωξn
n (u/αn)| = O

(
1

(1 + u2)ξn/2

)
,

|ωξn
n (u/αn)− ωξn(u)| = O

(
1
αn

u2

(1 + u2)ξn

)
,

∣∣∣
∏

k∈F0
n

ψk,n(u/αn)− 1
∣∣∣ = O

(
1 + |u|
αn

)
,

and on (A.8), which yields for |u| < αnδ̂n,

∣∣∣ϕ̂n(u/αn)− e
− σ̂2

n
α2

n

u2
2

∣∣∣ = O

(
β̂(2+r)

n

α2+r
n

)
u2+r exp

(
− σ̂

2
n

α2
n

u2

8

)
,

∣∣∣ϕ̂n(u/αn)
∣∣∣ ≤ exp

(
− σ̂

2
n

α2
n

u2

4

)
.

Moreover, we use the following approximation, valid for a, b > 0 and for
sufficiently small z:

J(a, b, z) def=

∞∫

−∞

|u|a
(1 + u2)b

e−z2u2
du = O(1) +O(z2b−a−1).

These relations, together with (A.10), yield:

In = O

(
1
αn

)
J
(
1,
ξn
2
,
σ̂n

2αn

)
+O

(
β̂(2+r)

n

α2+r
n

)
J
(
2 + r,

ξn
2
,
σ̂n√
8αn

)

+O

(
1
αn

)
J
(
2, ξn,

σ̂n√
2αn

)

+O

(( σ̂n

αn

)ξn−1
) ∫

v≥πσ̂n

v−ξne−v2/2dv

+O

(( γ̂n

αn

)ξn−1
) ∫

v≥δnγ̂n

v−ξne−v2/2dv
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= O

(
1
αn

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)2+r

+
β̂(2+r)

n

σ̂2+r
n

( σ̂n

αn

)ξn−1
)

+O

(
e−γ̂2

nδ̂2
n/5

γ̂2
nδ̂

ξn+1
n αξn−1

n

)
.

To conclude the proof of (3.8), the second term coming in the definition of
In is evaluated using Parseval’s identity and classical tools of complex analysis
(see e.g. Lavrentiev and Chabat [8]). This yields

∞∫

−∞
e−iynuωξn(u)e

− σ̂2
n

α2
n

u2
2 du =

yξn−1
n e−yn

Γ(ξn)

[
1 +O

(
σ̂2

n

α2
n

)]
.

2

References

[1] A. Birman and Y. Kogan (1992) Asymptotic evaluation of closed queuing
networks with many stations. Communications in Statistics — Stochastic Models
8 (3), 543–563.

[2] G. Fayolle and J.-M. Lasgouttes (1995) Limit laws for large product-form
networks: connections with the Central Limit Theorem. Rapport de Recherche
2513, INRIA.

[3] W. Feller (1971) An Introduction to Probability Theory and its Applications,
vol. II. Wiley, New York.

[4] F.P. Kelly (1979) Reversibility and Stochastic Networks. Wiley, New York.

[5] (1990) C. Knessl and C. Tier (1990) Asymptotic expansions for large closed
queuing networks. Journal of the ACM 37, 1 144–174.

[6] Y. Kogan (1992) Another approach to asymptotic expansions for large closed
queuing networks. Oper. Res. Lett. 11, 317–321.

[7] Y. Kogan and A. Birman (1991) Asymptotic analysis of closed queuing net-
works with bottlenecks. In: Proc. Int. Conf. on Performance of Distributed Sys-
tems and Integrated Communication Networks (Kyoto), T. Hasegawa, H. Takagi,
Y. Takahashi (eds.), 237–252.

[8] M. Lavrentiev and B. Chabat (1977) Méthodes de la théorie des fonctions
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