
 

Page du projet MISTIS http://mistis.inrialpes.fr/

1 sur 1 12/07/11 13:28

Université Pierre et Marie CURIE - Sciences et Médecine - ... http://www.upmc.fr/fr/index.html

1 sur 1 12/07/11 12:19

Dissertation in fulfillment of the degree of

Doctor of Philosophy in Applied Mathematics
University Paris VI

Université Pierre et Marie Curie
École Doctorale de Sciences Mathématiques de Paris Centre

Application of Polynomial Optimization to
Electricity Transmission Networks

Cédric Josz

under the supervision of

Jean Charles Gilbert
French Institute for Research in Computer Science and Automation
Institut National de Recherche en Informatique et en Automatique

Jean Maeght and Patrick Panciatici
French Transmission System Operator

Réseau de Transport d’Électricité

funded by

French Transmission System Operator

French Ministry of Higher Education and Research
CIFRE ARNT contract 2013/0179

examined on July 13th 2016 by

Patrick Combettes University Paris VI
Stéphane Gaubert Ecole Polytechnique
Jean Charles Gilbert INRIA Paris
Jean Bernard Lasserre CNRS Toulouse
Patrick Panciatici RTE Versailles
Mihai Putinar UC Santa Barbara
Markus Schweighofer University of Konstanz
Pascal Van Hentenryck University of Michigan

ar
X

iv
:1

60
8.

03
87

1v
1 

 [
m

at
h.

O
C

] 
 1

2 
A

ug
 2

01
6





« Cherche et tu trouveras. »

Angélique Haenecour Josz
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Abstract
Transmission system operators need to adapt their decision-making tools to the techno-

logical evolutions of the twenty first century. A computation inherent to most tools seeks to
find alternating-current power flows that minimize power loss or generation cost. Mathemat-
ically, it consists in an optimization problem that can be described using only addition and
multiplication of complex numbers. The objective of this thesis is to find global solutions, in
other words the best solutions to the problem. One of the outcomes of this highly collabo-
rative doctoral project is to use recent results from algebraic geometry to compute globally
optimal power flows in the European high-voltage transmission network.

Keywords: polynomial optimization, semidefinite optimization, optimal power flow, Lasserre
hierarchy



Summary
This dissertation is motivated by an encouraging discovery made in the field of power

systems during the first decade of the twenty-first century. Numerical experiments on several
benchmark transmission networks showed that it is possible to find global solutions to the
optimal power flow problem using semidefinite optimization. The optimal power flow problem
seeks to find a steady-state operating point of an alternating-current transmission network
that is optimal under some criteria such as power loss or generation costs. After five decades of
research on this highly nonconvex problem, a method for finding global solutions was thought
to be out of reach. The concept used was to omit nonconvexities and solve a convex problem
instead. This is known as the Shor relaxation, in reference to the Ukrainian mathematician
Naum Zuselevich Shor. However, the Shor relaxation does not provide global solutions to
many networks of interest. Bridging this gap is the starting point of this dissertation.

The first step that was achieved (cf. Chapter 2) was to show that low orders of the
Lasserre hierarchy find the global solution to small-scale networks that the Shor relaxation
cannot solve. To do so, we realized that the optimal power flow problem is a particular
instance of polynomial optimization. Thankfully, any polynomial optimization problem with
a bounded feasible set can be approximated as close as desired by a sequence of semidefi-
nite optimization problems. This sequence is called the Lasserre hierarchy, in reference to
the French mathematician Jean Bernard Lasserre. This is remarkable because polynomial
optimization problems encompass many non-deterministic polynomial-time hard problems
such as quadratically-constrainted quadratic programming, mixed-integer linear program-
ming, and in particular the traveling salesman problem.

To further prove the numerical applicability of the Lasserre hierarchy, we proved that
there is zero duality gap in each semidefinite optimization problem in the hierarchy in the
case of the optimal power flow problem (cf. Chapter 3). This property is essential for efficient
solvers to work. More generally, we proved that for any polynomial optimization problem
containing a ball constraint, there is no duality gap. Adding a redundant ball constraint
to a problem with a bounded feasible set guarantees the global convergence of the Lasserre
hierarchy, hence the relevance of our result.

Having shown the applicability of the Lasserre hierarchy to small instances, the next
task was to be able to tackle large-scale problems. However, there were few large-scale
benchmark networks on which to test new approaches. Network are considered large-scale
if they contain several thousand buses. We filled this gap by providing data for the entire
European synchronous grid, with a little over 9,000 buses. To make it possible to work
progressively on the data, we provided four instances corresponding to larger and larger
parts of the European network (cf. Chapter 4). The data stems from a European project
involving many transmission system operators whose purpose was to develop new tools for
the pan-European grid.

Since it had been discovered in 2000, the Lasserre hierarchy had never been able to solve
practical problems with more than several dozens of variables. This changed when Daniel K.
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Molzahn and Ian A. Hiskens at the University of Michigan developed an algorithm to exploit
sparsity in the Lasserre hierarchy for the optimal power flow problem. This enabled them
to solve networks with several hundred buses. At around the same time, Ramtin Madani,
Morteza Ashraphijuo and Javad Lavaei at the University of Columbia showed that the Shor
relaxation succeeded on some large-scale networks provided two penalty terms were added to
the objective function. We proposed to combine both approaches to systematically provide
nearly global solutions to large-scale networks (cf. Chapter 5). This work was carried out in
collaboration with the University of Michigan. In the combined approach, only one penalty
parameter has to be specified, instead of two. In the case of active power loss minimization,
the objective function is convex (in function of the voltage variables) and we observed that
no penalization term is needed. This means that the approach finds the global solution. In
the case of generation cost minimization, the objective is not a convex function and a penalty
parameter must be specified, yielding a nearly global solution.

Specifying a penalization parameter is problematic because there is no general method
for doing so. To overcome this, we realized that successful penalizations of the optimal
power flow were related to the Laplacian matrix of the graph of the power network. We
thus proposed a Laplacian-based Shor relaxation to obtain nearly global solutions without
the need to specify any parameter (cf. Chapter 6). An issue that emerged while trying to
solve large-scale optimal power flow problems is that the data are ill-conditionned. Some
power lines have very low impedance, i.e., opposition to current, while others have up to one
thousand times larger impedance. As a result, in all large-scale numerical experiments in
this dissertation, the data is preprocessed to have more homogenous line characteristics.

Having shown the applicability of the Lasserre hierarchy to large-scale networks, we next
enhanced its tractability by transposing it from real to complex numbers (cf. Chapter 7).
What prompt us to do so is that the optimal power flow problem is written using complex
numbers. They are used to model an oscillatory phenomena, namely alternating-current. We
realized that omitting nonconvexities and converting from complex to real numbers are two
non-commutative operations. This lead us to propose a general approach for finding global
solutions to polynomial optimization problems with bounded feasible sets where variables
and data are complex numbers. It is based on recent results in algebraic geometry concern-
ing positive polynomials with complex indeterminates. By exploiting sparsity, it succeeds in
finding global solutions to problems with several thousand complex variables. In addition to
the operation and planning of future power systems, the complex moment/sum-of-squares
hierarchy we developed can be applied to signal processing, imaging science, automatic con-
trol, and quantum mechanics.

The dissertation is organized as follows.

Chapter 1 describes the optimal power flow problem and the underlying mathematical con-
cepts.
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Chapter 2 numerically illustrates that low orders of the Lasserre hierarchy find the global
solution to small-scale networks. Associated publication: C. Josz, J. Maeght, P. Panci-
atici, and J.C. Gilbert, Application of the Moment-SOS Approach to Global Optimization
of the OPF Problem, Institute of Electrical and Electronics Engineers, Transactions on Power
Systems, 30, pp. 463–470, May 2014. [doi] [preprint]

Chapter 3 proves that there is no duality gap between the primal and dual versions of an in-
stance of the Lasserre hierarchy in the presence of a ball constraint in the original polynomial
problem. Associated publication: C. Josz and D. Henrion, Strong Duality in Lasserre’s
Hierarchy for Polynomial Optimization, Springer Optimization Letters, February 2015. [doi]
[preprint]

Chapter 4 provides data of large-scale networks representing the European high-voltage trans-
mission network. Associated public data: C. Josz, S. Fliscounakis, J. Maeght, and
P. Panciatici, Power Flow Data of the European High-Voltage Transmission Network: 89,
1354, 2869, and 9241-bus PEGASE Systems, MATPOWER 5.1, March 2015. [link]

Chapter 5 computes nearly global solutions to large-scale networks using the Lasserre hi-
erarchy and a penalization parameter. Associated publication: D.K. Molzahn, C. Josz,
I.A. Hiskens, and P. Panciatici, Solution of Optimal Power Flow Problems using Mo-
ment Relaxations Augmented with Objective Function Penalization, 54th Annual Conference
on Decision and Control, Osaka, December 2015. [preprint]

Chapter 6 computes nearly global solutions to large-scale networks using Laplacian ma-
trices instead of a penalization parameter. Associated preprint: D.K. Molzahn, C. Josz,
I.A. Hiskens, and P. Panciatici, A Laplacian-Based Approach for Finding Near Globally
Optimal Solutions to OPF Problems, submitted to Institute of Electrical and Electronics En-
gineers, Transactions on Power Systems. [preprint]

Chapter 7 transposes the Lasserre hierarchy to complex numbers to enhance its tractability
when dealing with complex variables instead of real ones. Associated preprint: C. Josz, D.
K. Molzahn, Moment/Sum-of-Squares Hierarchy for Complex Polynomial Optimization,
submitted to Society for Industrial and Applied Mathematics, Journal on Optimization.
[preprint]

Chapter 8 suggests future research directions and is followed by references.

The abstract and summary are translated in French in the following pages.
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Abstract
Les gestionnaires des réseaux de transport d’électricité doivent adapter leurs outils d’aide

à la décision aux avancées technologiques du XXIième siècle. Une opération sous-jacente à
beaucoup d’outils est de calculer les flux en actif/réactif qui minimisent les pertes ou les
coûts de production. Mathématiquement, il s’agit d’un problème d’optimisation qui peut être
décrit en utilisant seulement l’addition et la multiplication de nombres complexes. L’objectif
de cette thèse est de trouver des solutions globales. Un des aboutissements de ce projet
doctoral hautement collaboratif est d’utiliser des résultats récents en géométrie algébrique
pour calculer des flux optimaux dans le réseau Européen à haute tension.

Mots-clefs: hiérarchie de Lasserre, réseau de transport d’électricité, optimisation polyno-
miale, optimisation semidéfinie



Résumé
Cette thèse est motivée par une découverte encourageante faite dans le domaine des

réseaux électriques durant la première décennie du XXIième siècle. Des expériences numériques
sur certains cas tests ont montré qu’il était possible de trouver des solutions globales au
problème d’écoulement des flux en utilisant l’optimisation semidéfinie positive. Le problème
d’écoulement des flux recherche un point stationnaire du réseau qui est optimal au sens des
pertes d’énergie ou des coûts de production. Après cinquante années de recherches sur ce
problème non convexe, une méthode pour trouver des solutions globales semblait hors de
portée. Le concept utilisé a été d’omettre les non convexités et de résoudre un problème
convexe à la place. Ce procédé est connu sous le nom de relaxation de Shor, en référence au
mathématicien ukrainien Naum Zuselevich Shor. Cependant, la relaxation de Shor ne fournit
pas de solutions globales dans tous les cas. Pallier ce manque est le point de départ de cette
dissertation.

La première étape qui a été franchie (cf. Chapitre 2) a été de montrer que l’on peut
résoudre des petits réseaux à l’aide de la hiérarchie de Lasserre avec des ordres faibles lorsque
la relaxation de Shor échoue. Nous nous sommes en effet aperçus que le problème de calcul
des flux optimaux est une instance particulière d’optimisation polynomiale. Or tout prob-
lème d’optimisation polynomiale dont le domaine d’admissibilité est borné peut être approché
d’aussi près que l’on veuille par une suite de problèmes d’optimisation semidéfinie positive.
Cette suite est connue sous le nom de hiérarchie de Lasserre, en référence au mathématicien
français Jean Bernard Lasserre. Ceci est remarquable car l’optimisation polynomiale en-
globe de nombreux problèmes NP-ardus tels que l’optimisation quadratique sous contraintes
quadratiques, l’optimisation linéaire en nombres entiers, et en particulier le problème du
voyageur de commerce.

Pour prouver davantage l’applicabilité de la hiérarchie de Lasserre d’un point de vue
numérique, nous avons prouvé qu’il n’y a pas de saut de dualité pour chaque problème
d’optimisation semidéfinie positive dans la hiérarchie, pour le cas du problème d’écoulement
des flux (cf. Chapitre 3). Cette propriété est essentielle pour que des solveurs efficaces
fonctionnent. Plus généralement, nous avons prouvé que pour tout problème d’optimisation
contenant une contrainte de boule, il n’y a pas de saut de dualité. Ajouter une contrainte de
boule redondante à un problème avec un ensemble admissible borné garantit la convergence
de la hiérarchie de Lasserre, d’où la pertinence de notre résultat.

Après que l’applicabilité de la hiérarchie de Lasserre ait été démontrée pour des petits
réseaux, la prochaine étape était de pouvoir traiter des réseaux de grande taille. Cependant,
il y avait peu de cas tests sur lequels tester de nouvelles approches. Les réseaux sont con-
sidérés de grande taille s’il contiennent plusieurs milliers de nœuds. Nous avons pallié ce
manque en fournissant des données du réseau Européen synchrone, contenant un peu plus de
9.000 nœuds. Afin de pouvoir travailler progressivement sur ces données, nous avons fourni
quatre instances correspondant à des parties de plus en plus grandes du réseau Européen (cf.
Chapitre 4). Les données émanent d’un projet européen impliquant nombreux gestionnaires



11

de réseaux dont le but était de développer de nouveaux outils pour le réseau supra-national
Européen.

Depuis sa découverte en 2000, la hiérarchie de Lasserre n’avait jamais résolu des prob-
lèmes provenant des applications avec plus de quelques dizaines de variables. Ceci changea
lorsque Daniel K. Molzahn et Ian A. Hiskens à l’université du Michigan developpèrent un
algorithme pour exploiter le creux dans la hiérarchie Lasserre pour le problème d’écoulement
des flux optimaux. Cela leur permit de s’attaquer à des réseaux avec quelques centaines
de nœuds. A peu près au même moment, Ramtin Madani, Morteza Ashraphijuo, et Javad
Lavaei à l’université de Columbia ont montré que la relaxation de Shor permet de résoudre
certains réseaux de grande taille à condition d’ajouter deux termes de pénalisation à l’objecif.
Nous avons proposé de combiner les deux approches afin d’apporter des solutions proches
de l’optimum global de façon systématique (cf. Chapitre 5). Ce travail a été effectué en
collaboration avec l’université du Michigan. Dans l’approche combinée, seul un paramètre
de pénalisation doit être spécifié, au lieu de deux. Dans le cas de la minimisation des pertes,
l’objectif est convexe (en fonction des variables de tensions) et nous avons observé qu’aucun
terme de pénalisation n’est nécessaire. Cela signifie que l’approche trouve l’optimum global.
Dans le cas de la minimisation des coûts de production, l’objectif n’est pas convexe et un
terme de pénalisation doit être spécifié, ce qui donne lieu à une solution proche de l’optimum
global.

Spécifier un paramètre de pénalisation est problématique car il n’existe pas de méthode
générale pour le faire. Pour contourner ce problème, nous nous sommes aperçus que les pénal-
isations réussites étaient liées à la matrice de Laplace du graphe du réseau électrique. Nous
avons donc proposé une relaxation de Shor basée sur la matrice de Laplace afin d’obtenir des
solutions proches de l’optimum global sans avoir à spécifier un paramètre (cf. Chapitre 6). Un
problème qui est survenu lorsque nous avons essayé de résoudre des problèmes de grande taille
est que les données sont mal conditionnées. Certaines lignes ont des impédences très faibles
alors que d’autres ont des impédences jusqu’à mille fois plus grandes. En conséquence, dans
toutes les expérimentations à grande échelle, les données subissent un traitement préalable
afin d’avoir des caractéristiques de lignes plus homogènes.

Ayant prouvé l’applicabilité de la hiérarchie de Lasserre aux réseaux de grande taille, nous
avons ensuite réduit son temps de calcul en la transposant des nombres réels aux nombres
complexes (cf. Chapitre 7). Ce qui nous a poussé à le faire est que le problème d’écoulement
des flux est écrit en nombres complexes. Ceux-ci sont utilisés pour modéliser un phénomème
oscillatoire, à savoir le courant alternatif. Nous nous sommes aperçus qu’omettre les non
convexités et convertir des nombres complexes aux réels sont deux opérations non commu-
tatives. Cela nous a conduit à proposer une approche générale pour trouver des solutions
globales à des problèmes d’optimisation avec un domaine admissible borné où les variables et
les données sont des nombres complexes. Elle est basée sur des résultats récents en géométrie
algébrique concernant des polynômes strictement positifs avec des indéterminées complexes.
En exploitant l’aspect creux, elle parvient à trouver des solutions globales à des problèmes à
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plusieurs milliers de variables complexes. En plus de la gestion et la planification des réseaux
d’électricité du futur, la hiérarchie complexe des moments et sommes de carrés que nous avons
développée pourra être appliquée en traitement du signal, en imagerie, en automatique, et
en mécanique quantique.

La thèse est organisée comme suit.

Le chapitre 1 décrit le problème de l’écoulement des flux dans un réseau de transport et
les concepts mathématiques sous-jacents.

Le chapitre 2 illustre numériquement que des ordres faibles de la hiérarchie de Lasserre
permettent de résoudre des réseaux de petite taille. Publication associée: C. Josz, J.
Maeght, P. Panciatici, and J.C. Gilbert, Application of the Moment-SOS Approach to
Global Optimization of the OPF Problem, Institute of Electrical and Electronics Engineers,
Transactions on Power Systems, 30, pp. 463–470, May 2014. [doi] [preprint]

Le chapitre 3 prouve qu’il n’y a pas de saut de dualité entre les versions primales et duales de la
hiérarchie de Lasserre en présence d’une contrainte de boule dans le problème d’optimisation
initial. Publication associée: C. Josz and D. Henrion, Strong Duality in Lasserre’s Hi-
erarchy for Polynomial Optimization, Springer Optimization Letters, February 2015. [doi]
[preprint]

Le chapitre 4 fournit des données de grande taille représentant le réseau Européen à haute
tension. Données publiques associées: C. Josz, S. Fliscounakis, J. Maeght, and P.
Panciatici, Power Flow Data of the European High-Voltage Transmission Network: 89,
1354, 2869, and 9241-bus PEGASE Systems, MATPOWER 5.1, March 2015. [link]

Le chapitre 5 calcule des solutions proches de l’optimum global pour des réseaux de grande
taille à l’aide de la hiérarchie de Lasserre et d’un paramètre de pénalisation. Publication as-
sociée: D.K. Molzahn, C. Josz, I.A. Hiskens, and P. Panciatici, Solution of Optimal
Power Flow Problems using Moment Relaxations Augmented with Objective Function Penal-
ization, 54th Annual Conference on Decision and Control, Osaka, December 2015. [preprint]

Le chapitre 6 calcule des solutions proches de l’optimum global pour des réseaux de grande
taille à l’aide de matrices de Laplace au lieu d’un paramètre de pénalisation. Papier soumis
associé: D.K. Molzahn, C. Josz, I.A. Hiskens, and P. Panciatici, A Laplacian-Based
Approach for Finding Near Globally Optimal Solutions to OPF Problems, submitted to In-
stitute of Electrical and Electronics Engineers, Transactions on Power Systems. [preprint]

Le chapitre 7 transpose la hiérarchie de Lasserre aux nombres complexes afin de réduire les

http://dx.doi.org/10.1109/TPWRS.2014.2320819
http://arxiv.org/pdf/1311.6370v1.pdf
http://dx.doi.org/10.1007/s11590-015-0868-5
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxjZWRyaWNqb3N6fGd4OjY1M2E5NDAyMjg2M2U2Y2Q
http://www.pserc.cornell.edu//matpower/
http://arxiv.org/pdf/1508.05037v1.pdf
http://arxiv.org/pdf/1507.07212v1.pdf
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temps de calculs lorsqu’on s’intéresse à des variables complexes au lieu de variables réelles.
Papier soumis associé: C. Josz, D. K. Molzahn, Moment/Sum-of-Squares Hierarchy for
Complex Polynomial Optimization, submitted to Society for Industrial and Applied Mathe-
matics, Journal on Optimization. [preprint]

Le chapitre 8 suggère des pistes de recherches futures et est suivi des références.

http://arxiv.org/pdf/1508.02068v1.pdf
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Chapter 1

Background and motivations

The industrial problem which motivates this work can be viewed as an optimization problem.
In this chapter, the equations that define this problem are presented and their relevance in
practice is discussed. Next, optimality conditions are presented for general optimization
problems. These are crucial to current methods used by industry, and remain important for
the approach investigated in this thesis. This approach consists in solving convex relaxations
of the original nonconvex problem. The original problem is written using complex numbers
and this thesis advocates the use of convex relaxations in complex numbers. To that end,
several definitions of complex numbers are provided.

1.1 Optimal power flow problem
The optimal power flow is a central problem in electric power systems introduced half a
century ago by Carpentier [25]. It seeks to find a steady state operation point of an alternating
current transmission network that respects Kirchoff’s laws, Ohm’s law, and power balance
equations. In addition, the point has to be optimal under a criteria such as generation costs. It
must also satisfy operational constraints which include narrow voltage ranges around nominal
values and line ratings to keep Joule heating to acceptable levels.

While many nonlinear methods [27, 50, 88, 132] have been developed to solve this notori-
ously difficult problem, there is a strong motivation for producing more robust and reliable
tools. Firstly, electric power systems are growing in complexity due to the increase in the
share of renewables, the increase in the peak load, and the expected wider use of demand
response and storage. This could hamper power systems reliability if decision-making tools
do not evolve. Costly power interruptions could occur more often. Secondly, new tools are
needed to profit from high-performance computing and advances in telecommunications such
as phasor measurement units and dynamic line ratings. This will reduce operation costs and
help keep power supply affordable at a time when expensive investments are being made for
renewables. Lastly, system operators face large-scale optimization problems with combinato-

16
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rial complexity due to phase-shifting transformers, high-voltage direct current transmission
lines, and special protection schemes. Solving the continuous case to global optimality would
be of great benefit for a more automated decision process.

Electricity transmission networks are meshed networks in which buses not only inject or
retrieve power from the network, but also serve as a relay for other buses. Topologically,
there exists cycles in the network. This is not the case for distribution networks where the
topology of the network is a tree1. A simple model of high-voltage power lines in transmission
networks uses a resitance R, an inductance L, and a capacitance C (cf. figure 1.1).

Figure 1.1: Π model of a high voltage transmission line

Continental Europe uses alternating current (AC) at a frequency of 50 Hz ± 0, 5 Hz,
which makes for an angular speed of ω ≈ 2π rad×50 Hz ≈ 314 rad.s−1. The total impedence
of a resistance R and an inductance L in series is R + jLω. 110 mH is a typical value for
inductance in a 100 km long line operating at 400 kV line, so reactance Lω is roughly equal
to 110 mH× 314 rad.s−1 ≈ 35 Ω. Divided by a hundred, the value lies in the range given in
table 1.1.

overhead line underground cable
63 - 90 kV 225 kV 400 kV 63 kV 225 kV

resistance (Ω/km) 0.10 - 0.16 0.022 - 0.065 0.022 - 0.039 0.028 - 0.225 0.028 - 0.110
reactance (Ω/km) 0.4 0.29 - 0.41 0.32 - 0.43 0.104 - 0.134 0.107 - 0.134

capacitance (nF/km) 9.1 - 9.5 8.9 - 12.5 8.7 - 11.5 158 - 289 131 - 320

Table 1.1: Range of physical values in high voltage transmission lines and cables [15]

In order to switch from one of the voltage levels shown in table 1.1 to another, electricity
transmission networks are equipped with an electrical device called transformer. In this
work, it is assumed that power entering a transformer is equal to power exiting it. Such a

1Optimization over distribution networks may involve graphs that are not trees however. This is due to
different possible configurations of the connections between buses in the network.
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transformer is said to be an ideal transformer. It is modeled by a complex number called
ratio. The output voltage is equal to the input voltage divided by the ratio while the output
current is equal to the input current multiplied by the conjugate of the ratio. This is visible
in figure 1.2 (where (·)H denotes the conjugate transpose). Regular transformers have a real
ratio and some special transformers called phase-shifting transformers have a complex ratio.

Consider a non-zero integer n ∈ N∗. We model an electricity transmission network by
a set of buses N := {1, . . . , n} of which a subset G ⊂ N is connected to generators. Let
sgen
k = pgen

k + jqgen
k ∈ C denote generated power at bus k ∈ G. All buses are connected to

a load (i.e. power demand). Let sdem
k = pdem

k + jqdem
k ∈ C denote power demand at bus

k ∈ N . Let vk ∈ C denote voltage at bus k ∈ N and ik ∈ C denote current injected into
the network at bus k ∈ N . The convention used for current means that vkiHk is the power
injected into the network at bus k ∈ N . This means that vkiHk = −sdem

k at bus k ∈ N \ G
and vkiHk = sgen

k − sdem
k at bus k ∈ G.

The network links buses to one another through a set of lines L ⊂ N ×N . A link between
two buses is described in figure 1.2. In this figure, ylm ∈ C denotes the mutual admittance
between buses (l,m) ∈ L (yml = ylm for all (l,m) ∈ L); ygr

lm ∈ C denotes the admittance-to-
ground at end l of line (l,m) ∈ L; ρlm ∈ C denotes the ratio of the phase-shifting transformer
at end l of line (l,m) ∈ L (ρlm = 1 if there is no transformer); and ilm ∈ C denotes current
injected in line (l,m) ∈ L at bus l.

Figure 1.2: Link between buses l and m

A formulation of the optimal power flow problem is given in tables 1.2 (where ak, bk, ck ∈
R) and 1.3.
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objective description
min

∑
k∈G ak(p

gen)2 + bkp
gen + ck generation cost

variables description
(ik)k∈N injected current

(ilm)(l,m)∈L current flow
(pgen
k )k∈N active generation

(qgen
k )k∈N reactive generation

(vk)k∈N voltage
data description

(ylm)(l,m)∈L mutual admittance
(ygr
lm)(l,m)∈L admittance-to-ground

(ρlm)(l,m)∈L ratio of (phase-shifting) transformer
(pdem
k )k∈N active power demand

(qdem
k )k∈N reactive power demand

vmin
k , vmax

k , pmin
k , pmax

k , qmin
k , qmax

k bounds at buses
imax
lm , vmax

lm , smax
lm , pmax

lm bounds on line flow

Table 1.2: Objective, variables, and data

k ∈ ...
(l,m) ∈ ... constraints description

N il =
∑

m∈N (l) ilm Kirchoff’s first law
L ρHlmilm = ygr

lm
vl
ρlm

+ ylm( vl
ρlm
− vm

ρml
) Kirchoff’s first law and Ohm’s law

N \ G vki
H
k = −pdem

k − jqdem
k power demand

G vki
H
k = pgen

k − pdem
k + j(qgen

k − qdem
k ) power demand and generation

G pmin
k 6 pgen

k 6 pmax
k bounds on active generation

G qmin
k 6 qgen

k 6 qmax
k bounds on reactive generation

N vmin
k 6 |vk| 6 vmax

k bounds on voltage amplitude
L |vl − vm| 6 vmax

lm bound on voltage difference
L |ilm| 6 imax

lm bound on current flow
L |vliHlm| 6 smax

lm bound on apparent power flow
L |Re(vliHlm)| 6 pmax

lm bound on active power flow

Table 1.3: Constraints

According to the second constraint in table 1.3, for all (l,m) ∈ L :

ilm =
ylm + ygr

lm

|ρlm|2
vl −

ylm
ρmlρHlm

vm (1.1)



CHAPTER 1. BACKGROUND AND MOTIVATIONS 20

Together with the first constraint in table 1.3, relationship (1.1) yields that for all l ∈ N :

il =
∑

m∈N\{l} ilm

=
∑

m∈N\{l}
ylm+ygrlm
|ρlm|2

vl − ylm
ρmlρ

H
lm
vm

=
(∑

m∈N\{l}
ylm+ygrlm
|ρlm|2

)
vl −

∑
m∈N\{l}

ylm
ρmlρ

H
lm
vm

Define the admittance matrix Y as the complex matrix of size n× n by:

Ylm :=

{ ∑
m∈N\{l}

ylm+ygrlm
|ρlm|2

if l = m

− ylm
ρmlρ

H
lm

if l 6= m

Also, define i := (ik)k∈N and v := (vk)k∈N . It follows that :

i = Y v

1.2 Optimality conditions in optimization
As mentionned in Section 1.1, current methods for solving the optimal power flow problem
use nonlinear optimization techniques. These aim to find at least a solution to the optimality
conditions, which we present in this section. Satisfaction of the optimality conditions does
not guarantee global optimality for nonconvex problems, but they do for convex problems.
The proposed approach in this dissertation uses the optimality conditions to solve convex
relaxations of the optimal power flow problem, a concept presented in the next section.

To discuss optimality conditions, we consider a general framework that encompasses both
the nonconvex and convex cases. Consider a finite dimensional normed vector space E over
R or C and an objective function f : E → R. Also, consider a feasible set X ⊂ E described
by a single function c : E → F where F is a Hilbert space over R or C. The feasible set is
also defined by a nonempty closed convex cone K ⊂ F. Using these notations, the problem
to be solved can be written:

inf
x∈E

f(x) subject to c(x) ∈ K

Objective function f and constraint function c will be considered twice differentiable.
This is valid for the optimal power flow problem and its convex relaxations.

Relationship between local optimality and derivatives
Let’s illustrate the relationship between local optimality and derivatives with a simple exam-
ple. Consider a function f : R → R with a local minimum in 0 equal to 0. The first order
Taylor series reads:

0 6 f(t) = f ′(0)t+ o(t) = t [f ′(0) + o(1)]
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Thus f ′(0) = 0. The second order Taylor series reads:

0 6 f(t) = f ′(0)t+
f ′′(0)

2
t2 + o(t2) =

1

2
t2 [f ′′(0) + o(1)]

Thus f ′′(0) > 0. If f ′′(0) > 0 then the above line of equations tells us that 0 is a strict local
minimum. Else if f ′′(0) = 0, the third order Taylor series reads:

0 6 f(t) = f ′(0)t+
f ′′(0)

2
t2 +

f ′′′(0)

6
t3 + o(t3) =

1

6
t3 [f ′′′(0) + o(1)]

Thus f ′′′(0) = 0. The fourth order Taylor series will then imply that f ′′′′(0) > 0. We can
again distinguish between stricly inequality and equality, and so on . . .

In practice, only first order and second order conditions are considered because higher or-
der derivatives are expensive to compute. Moreover, higher order derivatives are unrelated
to local optimality unless all lower order derivatives zero out in one point. An example is
f(t) = t4 where f ′(0) = f ′′(0) = f ′′′(0) = 0 and f ′′′′(0) = 1

4
> 0. The fourth order strict

inequality indicates that 0 is a strict local minimum. On the other hand, if one considers
α ∈ R and f(t) = t2 + αt3, this yields f ′(0) = 0, f ′′(0) = 2 > 0, and f ′′′(0) = 6α so that 0 is
a strict local minimum regardless of the value of the third order derivative.

First and second order necessary optimality conditions
Let’s go back to the general case where f : E→ R. When there are no constraints, a locally
optimal point must be stationnary, that is to say that first order derivatives must zero out in
that point. Indeed, consider an optimal point x and write the first order Taylor series for h
close to but different from zero:

0 6 f(x+ h)− f(x) = f ′(x).h+ o(‖h‖) = ‖h‖
[
f ′(x)

(
h

‖h‖

)
+ o(1)

]
Hence for all ‖d‖ = 1, one has f ′(x).d > 0. Taking d = −∇f(x) leads to f ′(x) = 0.

Consider the second order Taylor series for h close to but different from zero:

0 6 f(x+ h)− f(x) = f ′(x).h+ f ′′(x)(h, h) + o(‖h‖2) = ‖h‖2

[
f ′′(x)

(
h

‖h‖
,
h

‖h‖

)
+ o(1)

]
Hence for all ‖d‖ = 1, one has f ′′(x) (d, d) > 0.

When there are constraints, establishing necessary optimality conditions requires the con-
cept of duality in some way or another. Let’s establish these conditions using the notion
of saddle point in min-max duality. This implies an assumption of global rather than local
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optimality. Min-max duality consists of writing the objective function as the supremum of
a coupling function, that is to say : f(x) = supy∈Y ϕ(x, y). The optimization problem can
thus be written, for some X ⊂ E and some Y ⊂ F :

inf
x∈X

sup
y∈Y

ϕ(x, y)

If it is legitimate to swap inf and sup, i.e. infx∈X supy∈Y ϕ(x, y) = supy∈Y infx∈X ϕ(x, y)
(called no duality gap), and there exists a solution to the right-hand problem, then solving the
original problem is equivalent to finding a saddle point of the coupling function. Indeed, (x, y)
is saddle point of ϕ if and only if there is no duality gap and x solves infx∈X supy∈Y ϕ(x, y)
and y solves supy∈Y infx∈X ϕ(x, y).

The Lagrange function ϕ(x, y) = f(x) + 〈c(x), y〉 where X := E and Y := K− := { y ∈
F | 〈z, y〉 6 0, ∀z ∈ K } is an example of a coupling function with the enviable property that
ϕ(x, ·) is an affine function. Let’s consider a saddle point (x, y) ∈ X × Y of the Lagrange
function. By definition :

∀x ∈ X, ∀y ∈ Y, ϕ(x, y) 6 ϕ(x, y) 6 ϕ(x, y)

The right-hand side inequality means that x is an optimal solution of the unconstrained
problem infx∈E ϕ(x, y). Thus ϕ′x(x, y) = f ′(x) + c′(x)∗ y = 0. Proceeding in the same fashion
with the left-hand side inequality leads to a constrained optimization problem, so we will
proceed differently. The left-hand side inequality implies:

∀y ∈ K−, 〈c(x), y〉 6 〈c(x), y〉
Plugging in for y = 0 and y = 2ȳ yields 〈c(x), y〉 = 0, known as complementary slackness.

To sum up, if x is primal optimal and y is dual optimal and there is no duality gap, then:
first order condition: f ′(x) + c′(x)∗ y = 0

primal feasibility: c(x) ∈ K
dual feasibility: y ∈ K−

complementary slackness: 〈c(x), y〉 = 0

Note that min-max duality originates from the minimax theorem proven by Von Neumann in
his 1928 paper Zur Theorie der Gesellschaftsspeile. A generalization of the minimax theorem
states that if X and Y are nonempty convex sets, X is compact, and ϕ is continuous and
convex-concave, then:

inf
x∈X

sup
y∈Y

ϕ(x, y) = sup
y∈Y

inf
x∈X

ϕ(x, y)

In general, the KKT conditions do not guarantee global optimality, nor even local optimality
in fact. If the objective and constraint functions f and c are convex, then they guarantee
global optimality. In the next section, nonconvexities are removed from the optimal power
flow problem, yielding a relaxed convex problem. This convex problem is solved using interior-
point methods which involve solving for KKT conditions.



CHAPTER 1. BACKGROUND AND MOTIVATIONS 23

1.3 Convex relaxation of the optimal power flow problem
Lavaei and Low [66] proposed a formulation of the optimal power flow problem where the
variables are the real and imaginary parts of voltages at each bus. To do so, they defined
a real vector x = [ Re(v) Im(v) ]T where v ∈ Cn are the complex voltages. Next they
proposed a convex relaxation of the optimal power flow problem. We illustrate their work
by considering an example of power loss minimization. The system of Figure 1.3 links a

Figure 1.3: Two-Bus System

generator to a load via a line of admittance g+ ib while respecting upper voltage constraints.
Minimizing power loss reads

inf
v1,v2∈C

g |v1|2 − g v1v2 − g v2v1 + g |v2|2, (1.2)

subject to

−g − ib
2

v1v2 −
g + ib

2
v2v1 + g |v2|2 = −pdem

2 , (1.3)

b+ ig
2

v1v2 +
b− ig

2
v2v1 − b |v2|2 = −qdem

2 , (1.4)

|v1|2 6 (vmax
1 )2, (1.5)

|v2|2 6 (vmax
2 )2, (1.6)

where i denotes the imaginary number. Identifying real and imaginary parts of the variables
v1 =: x1 + ix3 and v2 =: x2 + ix4 leads to

inf
x1,x2,x3,x4∈R

gx2
1 + gx2

3 − 2gx1x2 − 2gx3x4 − gx2
2 − gx2

4, (1.7)

subject to
−gx1x2 − gx3x4 − bx1x4 + bx2x3 + gx2

2 + gx2
4 + pdem

2 = 0, (1.8)
bx1x2 + bx3x4 − gx1x4 + gx2x3 − bx2

2 − bx2
4 + qdem

2 = 0, (1.9)
x2

1 + x2
2 6 (vmax

1 )2, (1.10)
x2

3 + x2
4 6 (vmax

2 )2. (1.11)
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(1.12)

This problem can be rewritten as

inf
y

gy11 + gy33 − 2gy12 − 2gy34 − gy22 − gy44, (1.13)

subject to
−gy12 − gy34 − by14 + by23 + gy22 + gy44 + pdem

2 = 0, (1.14)
by12 + by34 − gy14 + gy23 − by22 − by44 + qdem

2 = 0, (1.15)
y11 + y22 6 (vmax

1 )2, (1.16)
y33 + y44 6 (vmax

2 )2, (1.17)
y11 y12 y13 y14

y12 y22 y23 y24

y13 y23 y33 y34

y14 y24 y34 y44

 < 0, (1.18)

rank(y) 6 1. (1.19)

Removing the rank constraint leads to a convex relaxation of the optimal power flow problem.
As an extension of Lavaei and Low’s work, Sojoudi and Lavaei [110] studied the theory

behind optimization over graphs. To help with future work, we provide fully detailed proofs
of results found in [110]. The reader may skip these by moving to Section 1.4 and still un-
derstand the rest of the dissertation.

Consider
Hn

+1 := { vvH | v ∈ Cn }.

Let i denote the imaginary number. The notation of set Hn
+1 stems from the following

proposition:

Proposition 1.1.
M ∈ Hn

+1 ⇐⇒ M ∈ Hn
+ and rk(M) 6 1

Proof. (=⇒) Consider a matrix M ∈ Hn
+1, that is, there exists v ∈ Cn such that M = vvH .

Firstly, observe that MH = (vvH)H = vvH = M . Secondly, for all z ∈ Cn, zHMz =
zHvvHz = (vHz)HvHz = |vHz|2 > 0. Lastly, each column of M = vvH is a linear combina-
tion of v, so that the rank of M is at most 1.

(⇐=) MatrixM is of rank at most 1 so there exists two vectors t,u ∈ Cn such thatM = tuH .
Define v ∈ Cn such that for all 1 6 i 6 n:

vi :=
√
|tiui| eiarg(ui)
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Thus :

viv
H
j =

√
|tiuitjuj| eiarg(ui) e−iarg(uj)

=
√
|tiujtjui| eiarg(ui) e−iarg(uj)

=
√
|tiuj|2 eiarg(ui) e−iarg(uj) (|tiuj| = |tjui| since tuH ∈ Hn)

= |tiuj| eiarg(ui) e−iarg(uj)

= |ti| eiarg(ui) |uj| e−iarg(uj)

= |ti| eiarg(ui) uHj
= |ti| eiarg(ti) uHj (arg(ti) ≡ arg(ui)[2π] since tiuHi ∈ R+ since tuH < 0)
= tiu

H
j

Vector v ∈ Cn thereby satisfies vvH = tuH = M .

Given a set of edges E ⊂ N ×N , define the following C-linear operator :

φE : Mn(C) 7−→ Mn(C)

M −→ φE(M)ij =

{
Mij if (i, j) ∈ E or i = j
0 else

Given a graph L, graph theory can be used to decompose the constraint M ∈ Hn
+1 +Ker(φL)

into several smaller constraints. (The graph L typically corresponds to the sparsity pattern.
In a such sparse optimization problem, the constraint M ∈ Hn

+1 may be replaced by M ∈
Hn

+1 + Ker(φL).) First, two lemmas are presented.

Lemma 1.2. Any undirected connected graph has a spanning tree.

Proof. Let L be the set of edges of an undirected connected graph. Define the following set :

S := { T ∈ P(L) | T is a tree }

(S,⊂) is a partially ordered set since (P(L),⊂) is a partially ordered set and S ⊂ P(L).
Consider a totally ordered subset of S and name it U . ∪T ∈UT is a bound of U in S. Zorn’s
lemma implies that S contains a maximal element. If the maximal element is not a spanning
tree, there exists a vertex not contained in it. Since the graph is connected, there exists a
path in L linking this vertex to a vertex in the maximum tree. The union of the maximum
tree and that path forms a tree of L that contradicts the maximality of the maximum tree.
Thus the maximum tree is a spanning tree of L.

Lemma 1.3. Let T denote a spanning tree of a finite, undirected, and connected graph (N ,L)
and let (θij)(i,j)∈T denote some real numbers. Assume that θij +θji ≡ 0 [2π] for all (i, j) ∈ T .
Then there exists some real numbers (θi)i∈N such that:

θi − θj ≡ θij [2π] , ∀(i, j) ∈ T
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Proof. Simply define (θi)i∈N by choosing a random real number θi0 for some i0 ∈ N and for
all i ∈ N \ {i0}, choose θi ≡ θi0 +

∑
l,m θlm [2π] where the sum is taken over the path in

T linking i to i0. This is possible because (N ,L) is a finite graph. Thus defined, the real
numbers (θi)i∈N satisfy for all (i, j) ∈ T :

θi − θj ≡ θij [2π]

because all terms in the sums associated respectively to θi and θj cancel each other out except
for θij. Indeed, (i, j) ∈ T so the paths starting at i and j and both ending at i0 are the same
expect that one contains (i, j) or (j, i) and the other doesn’t. If the former contains (i, j),
the only term that does not cancel out is θij. If the latter contains (j, i), the only term that
does not cancel out is −θji ≡ θij [2π].

Let (ci)16i6p denote a cycle basis of L and let (bi)16i6q denote the set of bridge edges of
L. Define the following set :

Ω := {c1, . . . , cp}︸ ︷︷ ︸
cycle basis

∪{b1, . . . , bq}︸ ︷︷ ︸
bridge edges

Proposition 1.4. The following statement holds:

Hn
+1 + Ker(φL) =

⋂
E∈Ω

Hn
+1 + Ker(φE)

Proof. (⊂) It suffices to see that Ker(φL) ⊂ Ker(φE) for all E ∈ Ω. Indeed, E ∈ Ω implies
that E ⊂ L.

(⊃) Consider M ∈
⋂
E∈Ω Hn

+1 + Ker(φE). For all E ∈ Ω, there exists vE ∈ Cn and NE ∈
Ker(φE) such that :

M = vE(vE)H +NE

Thus, for all i, j ∈ N :
Mij = vEi (vEj )H +NEij

Moreover, φE(NE) = 0 so NEij = 0 if (i, j) ∈ E or i = j. It follows that for all E ∈ Ω :{
Mii = vEi (vEi )H , for all vertices i of E (1.20a)
Mij = vEi (vEj )H , ∀(i, j) ∈ E (1.20b)

L is an undirected connected graph so there exists a spanning tree T of L according to lemma
1.2. The real numbers (arg(Mij))(i,j)∈T satisfy arg(Mij) + arg(Mji) ≡ 0 [2π] due to (1.20b).
Indeed, given (i, j) ∈ T , there exists some E ∈ Ω such that (i, j) ∈ E and (j, i) ∈ E so that
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Mij = vEi (vEj )H and Mji = vEj (vEi )H . Moreover, the set of vertices N is finite. Lemma 1.3 can
thereby by applied to prove that there exists a vector v ∈ Cn such that :{

|vi| =
√
Mii , ∀i ∈ N (1.21a)

arg(vi)− arg(vj) ≡ arg(Mij) [2π] , ∀(i, j) ∈ T (1.21b)

Notice that for all (i, j) ∈ L,

|vivHj | = |vi| |vj|
=
√
Mii

√
Mjj due to (1.21a)

= |vEi | |vEj | due to (1.20a) where (i, j) ∈ E for some E ∈ Ω
= |vEi (vEj )H |
= |Mij| due to (1.20b)

Moreover, for all (i, j) ∈ L,

arg(viv
H
j ) ≡ arg(vi)− arg(vj) [2π]
≡

∑
l,m arg(vl)− arg(vm) [2π] telescoping sum along a path in T from i to j

≡
∑

l,m arg(Mlm) [2π] due to (1.21b) and (l,m) ∈ T
≡

∑
C
∑

(l,m)∈~C arg(Mlm) [2π] sum over cycles C ∈ Ω for which cycle defined
by path in T has nonzero coordinates

≡
∑
C
∑

(l,m)∈~C arg(vCl (vCm)H) [2π] due to (1.20b)
≡

∑
C
∑

(l,m)∈~C arg(vCl )− arg(vCm) [2π] telescoping sums over cycles are equal to zero
≡

∑
l,m arg(vCl )− arg(vCm) [2π] telescoping sum along path in T from i to j

≡ arg(vCi )− arg(vCj ) [2π]
≡ arg{vCi (vCj )H} [2π]
≡ arg(Mij) [2π] due to (1.20b)

To sum up : {
Mii = viv

H
i , ∀i ∈ N

Mij = viv
H
j , ∀(i, j) ∈ L

Therefore there exists NL ∈ Ker(φL) such that :

M = vvH +NL ∈ Hn
+1 + Ker(φL)

Lemma 1.5. Let C denote a cycle of a finite and undirected graph (N ,L) and let (θij)(i,j)∈C
denote some real numbers. Assume that θij + θji ≡ 0 [2π] for all (i, j) ∈ C and that∑

(i,j)∈~C θij ≡ 0 [2π]. Then for each vertex i of C, there exists a real number θi such that:

θi − θj ≡ θij [2π] , ∀(i, j) ∈ C
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Proof. Simply define the set of all θi’s for each vertex i of C by choosing a random real number
θi0 for some vertex i0 of C and for all other vertices i ∈ N \{i0}, choose θi ≡ θi0 +

∑
l,m θlm [2π]

where the sum is taken over the path in ~C linking i to i0 for some orientation of C. This is
possible because (N ,L) is a finite graph. Thus defined, the real numbers θi satisfy for all
(i, j) ∈ C:

θi − θj ≡ θij [2π]

Indeed, for all (i, j) ∈ ~C but the edge ending in i0, all terms in the sums associated respectively
to θi and θj cancel each other out except for θij. As for the edge (i, i0) ending in i0, notice
that θi ≡ θi0 +

∑
l,m θlm [2π] where the sum is taken over the path in ~C linking i to i0

so that
∑

(l,m)∈~C θlm ≡ θi0i +
∑

l,m θlm [2π]. It is assumed that
∑

(l,m)∈~C θlm ≡ 0 [2π] thus∑
l,m θlm ≡ −θi0i [2π]. It follows that θi ≡ θi0 − θi0i [2π], ie θi − θi0 ≡ θii0 [2π].

Proposition 1.6. The following statement holds:

M ∈ Hn
+1+Ker(φL) ⇐⇒ M ∈

⋂
(i,j)∈L

Hn
+1+Ker(φ(i,j)) &

∑
(i,j)∈~C

arg(Mij) ≡ 0 [2π] for all cycles C ∈ Ω

Proof. (⊂) Consider M ∈ Hn
+1 + Ker(φL). For all (i, j) ∈ L, Ker(φL) ⊂ Ker(φ(i,j)) thus

M ∈
⋂

(i,j)∈LHn
+1 + Ker(φ(i,j)).

Consider a cycle C ∈ Ω. There exists v ∈ Cn such that for all (i, j) ∈ ~C, Mij = viv
H
j .

Therefore: ∑
(i,j)∈~C arg(Mij) ≡

∑
(i,j)∈~C arg(viv

H
j ) [2π]

≡
∑

(i,j)∈~C arg(vi)− arg(vj) [2π] telescoping sum
≡ 0 [2π]

(⊃) ConsiderM ∈
⋂

(i,j)∈LHn
+1+Ker(φ(i,j)) such that

∑
(i,j)∈~C arg(Mij) ≡ 0 [2π] for all cycles C ∈

Ω. The following is true for all (i, j) ∈ L :{
Mkk = v

(i,j)
k (v

(i,j)
k )H , for k = i, j (1.22a)

Mlm = v
(i,j)
l (v(i,j)

m )H , for (l,m) = (i, j), (j, i) (1.22b)

Consider a cycle C ∈ Ω. The real numbers (arg(Mij))(i,j)∈C satisfy arg(Mij)+arg(Mji) ≡ 0 [2π]
due to (1.22b). Moreover, it is assumed that

∑
(i,j)∈~C arg(Mij) ≡ 0 [2π]. Lemma 1.5 can

therefore be used to show that there exists v ∈ Cn such that:{
|vi| =

√
Mii , for all vertices i of C (1.23a)

arg(vi)− arg(vj) ≡ arg(Mij) [2π] , ∀(i, j) ∈ C (1.23b)
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Notice that for all (i, j) ∈ C :

|vivHj | = |vi| |vj|
=
√
Mii

√
Mjj due to (1.23a)

= |v(i,j)
i | |v(i,j)

j | due to (1.22a)

= |v(i,j)
i (v

(i,j)
j )H |

= |Mij| due to (1.22b)

Thus for all C ∈ Ω :
M ∈ Hn

+1 + Ker(φC)

Moreover, it is assumed that :

M ∈
⋂

(i,j)∈L

Hn
+1 + Ker(φ(i,j))

Therefore :
M ∈

⋂
E∈Ω

Hn
+1 + Ker(φE) = Hn

+1 + Ker(φL)

where the equality follows from proposition 1.4.

1.4 Definitions of complex numbers
Complex numbers are a central aspect of the thesis. They are used to model an oscillatory
phenomenon, namely alternating current. We now consider several definitions of complex
numbers.

A complex number x+ iy can be thought of as the matrix:(
x −y
y x

)
.

The additions and multiplications of complex numbers translate into additions and multipli-
cations of real matrices. Concerning addition, we have

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)(
a −b
b a

)
+

(
c −d
d c

)
=

(
a+ c −b− d
b+ d a+ c

)
Concerning multiplication, we have:

(a+ ib) × (c+ id) = ac− bd+ i(ad+ bc)(
a −b
b a

)
×

(
c −d
d c

)
=

(
ac− bd −ad− bc
ad+ bc ac− bd

)
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In particular, we have

i × i = −1(
0 −1
1 0

)
×

(
0 −1
1 0

)
=

(
−1 0

0 −1

)
As stated above, a complex number can be viewed as a real matrix of size 2 × 2. More

generally, a complex square matrix can be viewed as a real matrix of double its size. This
will become very helpful when we consider optimization over complex matrix variables in
Chapter 7.

We note that complex numbers can also be defined using the Euclidian division of polyno-
mials. The idea is to build a solution to the equation x2 = −1 though it has no real solution.
To do so, consider the ring of polynomials R[X] with one real indeterminate X. The remain-
der of X2 when divided by 1 +X2 is equal to −1, which is written X2 ≡ −1 [1 +X2]. More
generally, given a polynomial P ∈ R[X], its division by 1 + X2 has a remainder of the form
a + bX where a and b are some real numbers. Indeed, the degree of the remainder must be
strictly less than the degree of 1 +X2. Let cl(P ) denote the equivalence class modulo 1 +X2

represented by P . The set of equivalence classes is thus equal to { cl(a+bX) | a, b ∈ R }. This
set may be identified with the set of complex numbers because it is isomorphic to it. Indeed,
consider two classes cl(a + bX) and cl(c + dX) with a, b, c, d ∈ R. Concerning addition, we
have

cl(a+ bX) + cl(c+ dX) = cl( (a+ c) + (b+ d)X )

since
(a+ bX) + (c+ dX) ≡ (a+ c) + (b+ d)X [1 +X2].

Concerning multiplication, we have

cl(a+ bX)× cl(c+ dX) = cl( ac− bd+ (ad+ bc)X )

since
(a+ bX)(c+ dX) ≡ ac+ bdX2 + (ad+ bc)X [1 +X2]

≡ ac− bd + (ad+ bc)X [1 +X2]

(because X2 ≡ −1 [1 +X2]).



Chapter 2

Lasserre hierarchy for small-scale
networks

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its
nonconvexity. A convex relaxation in the form of semidefinite optimization (SDP) had at-
tracted much attention when I started my Ph.D. Indeed, it yielded a global solution in several
practical cases. However, it did not in all cases, and such cases had been documented in sev-
eral publications. Here we present another SDP method known as the moment-sos (sum of
squares) approach, which generates a sequence that converges towards a global solution to
the OPF problem at the cost of higher runtime. Our finding is that in the small examples
where the previously studied SDP method fails, this approach finds the global solution. The
higher cost in runtime is due to an increase in the matrix size of the SDP problem, which can
vary from one instance to another. Numerical experiment shows that the size is very often a
quadratic function of the number of buses in the network, whereas it is a linear function of
the number of buses in the case of the previously studied SDP method. The material in this
chapter is based on the publication:

C. Josz, J. Maeght, P. Panciatici, and J.C. Gilbert, Application of the Moment-SOS
Approach to Global Optimization of the OPF Problem, Institute of Electrical and Electronics
Engineers, Transactions on Power Systems, 30, pp. 463–470, May 2014. [doi] [preprint]

2.1 Introduction
The optimal power flow can be cast as a nonlinear optimization problem which is NP-hard,
as was shown in [66]. So far, the various methods [50, 88] that have been investigated to
solve the OPF can only guarantee local optimality, due to the nonconvexity of the problem.
Recent progress suggests that it may be possible to design a method, based on semidefinite
optimization (SDP), that yields global optimality rapidly.
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The first attempt to use SDP to solve the OPF problem was made by Bai et al. [13] in
2008. In [66], Lavaei and Low show that the OPF can be written as an SDP problem, with an
additional constraint imposing that the rank of the matrix variable must not exceed 1. They
discard the rank constraint, as it is done in Shor’s relaxation [106], a procedure which applies
to quadratically constrained quadratic problems (see [71, 116] and the references therein).
They also accept quartic terms that appear in some formulations of the OPF, transforming
them by Schur’s complement. Their finding is that for all IEEE benchmark networks, namely
the 9, 14, 30, 57, 118, and 300-bus systems, the rank constraint is satisfied if a small resistance
is added in the lines of the network that have zero resistance. Such a modification to the
network is acceptable because in reality, resistance is never equal to zero.

There are cases when the rank constraint is not satisfied and a global solution can thus
not be found. Lesieutre et al. [67] illustrate this with a practical 3-bus cyclic network.
Gopalakrishnan et al. [45] find yet more examples by modifying the IEEE benchmark net-
works. Bukhsh et al. [22] provide a 2-bus and a 5-bus example. In addition, they document
the local solutions to the OPF in many of the above-mentioned examples where the rank
constraint is not satisfied [23].

Several papers propose ways of handling cases when the rank constraint is not satisfied.
Gopalakrishnan et al. [45] propose a branch and reduce algorithm. It is based on the fact
that the rank relaxation gives a lower bound of the optimal value of the OPF. But according
to the authors, using the classical Lagrangian dual to evaluate a lower bound is about as
efficient. Sojoudi and Lavaei [110] prove that if one could add controllable phase-shifting
transformers to every loop in the network and if the objective is an increasing function of
generated active power, then the rank constraint is satisfied. Though numerical experiments
confirm this [41], such a modification to the network is not realistic, as opposed to the one
mentioned earlier.

Cases where the rank constraint holds have been identified. Authors of [19, 111, 130]
prove that the rank constraint is satisfied if the graph of the network is acyclic and if load
over-satisfaction is allowed. This is typical of distribution networks but it is not true of
transmission networks.

This paper examines the applicability of the moment-sos (sum of squares) approach to the
OPF. This approach [61, 62, 89] aims at finding global solutions to polynomial optimization
problems, of which the OPF is a particular instance. The approach can be viewed as an
extension of the SDP method of [66]. Indeed, it proposes a sequence of SDP relaxations
whose first element is the rank relaxation in many cases. The subsequent relaxations of the
sequence become more and more accurate. When the rank relaxation fails, it is therefore
natural to see whether the second order relaxation provides the global minimum, then the
third, and so on.

The limit to this approach is that the complexity of the relaxations rapidly increases. The
matrix size of the SDP relaxation of order d is roughly equal to the number of buses in the
network to the power d. Surprisingly, in the 2, 3, and 5-bus systems found in [22, 67] where



CHAPTER 2. LASSERRE HIERARCHY FOR SMALL-SCALE NETWORKS 33

the rank relaxation fails, the second order relaxation nearly always finds the global solution.
Below, section 2.2 shows that the OPF can be viewed as a polynomial optimization

problem. The moment-sos approach which aims at solving such problems is described in
section 2.3. In section 2.4, numerical results show that this approach successfully finds the
global solution to the 2, 3, and 5-bus systems mentioned earlier. Conclusions are given in
section 2.5.

2.2 Polynomial optimization formulation
In order to obtain a polynomial formulation of the OPF, we proceed in 3 steps. First, we
write a formulation in complex numbers. Second, we use it to write a formulation in real
numbers. Third, we use the real formulation to write a polynomial formulation.

Let aH and AH denote the conjugate transpose of a complex vector a and of a complex
matrix A respectively. It can be deduced from [110] that there exist finite sets I and J ,
Hermitian matrices (Ak)k∈G of size n, complex matrices (Bi)i∈I and (Ci)i∈J of size n, and
complex numbers (bi)i∈I and (ci)i∈J such that the OPF can be written as

min
v∈Cn

∑
k∈G

ck2(vHAkv)2 + ck1vHAkv + ck0, (2.1)

subject to

∀ i ∈ I, vHBiv ≤ bi, (2.2)
∀ i ∈ J , |vHCiv| ≤ ci. (2.3)

Constraints (2.3) correspond to bounds on apparent power flow. Constraints (2.2) correspond
to all other constraints.

Let x ∈ R2n denote [Re(v)T Im(v)T ]T as is done in [66]. In order to transform the
complex formulation of the OPF (2.1)-(2.3) into a real number formulation, observe that
vHMv = (xTM rex) + j(xTM imx), where the superscript T denotes transposition,

M re :=

[
Re(M) −Im(M)
Im(M) Re(M)

]
, and

M im :=

[
Im(M) Re(M)
−Re(M) Im(M)

]
.

Then (2.1)-(2.3) becomes

min
x∈R2n

∑
k∈G

ck2(xTAre
k x)2 + ck1xTAre

k x + ck0, (2.4)

subject to

∀ i ∈ I, xTBre
i x ≤ Re(bi), (2.5)
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∀ i ∈ I, xTBim
i x ≤ Im(bi), (2.6)

∀ i ∈ J , (xTCre
i x)2 + (xTC im

i x)2 ≤ c2
i . (2.7)

We recall that a polynomial is a function p : x ∈ Rn 7→
∑

α∈A pαx
α, where A ⊂ Nn

is a finite set of integer multi-indices, the coefficients pα are real numbers, and xα is the
monomial xα1

1 · · ·xαnn . Its degree, denoted deg p, is the largest |α| =
∑n

i=1 αi associated with
a nonzero pα.

The formulation of the OPF in real numbers (2.4)-(2.7) is said to be a polynomial opti-
mization problem since the functions that define it are polynomials. Indeed, the objective
(2.4) is a polynomial of x ∈ Rn of degree 4, the constraints (2.5)-(2.6) are polynomials of x
of degree 2, and the constraints (2.7) are polynomials of x of degree 4.

Formulation (2.4)-(2.7) will however not be used below because it has infinitely many
global solutions. Indeed, formulation (2.1)-(2.3) from which it derives is invariant under
the change of variables v → vejθ where θ ∈ R. This invariance property transfers to (2.4)-
(2.7). An optimization problem with non isolated solutions is generally more difficult to solve
than one with a unique solution [17]. This feature manifests itself in some properties of the
moment-sos approach described in section 2.3. For this reason, we choose to arbitrarily set
the voltage phase at bus n to zero. Bearing in mind that vmin

n ≥ 0, this can be done by
replacing voltage constraint (2.8) at bus n by (2.9):

(vmin
n )2 ≤ x2

n + x2
2n ≤ (vmax

n )2, (2.8)
x2n = 0 and vmin

n ≤ xn ≤ vmax
n . (2.9)

In light of (2.9), a polynomial optimization problem where there are 2n − 1 variables
instead of 2n variables can be formulated. More precisely, the OPF can be cast as the
following polynomial optimization problem

PolyOPF:
min

x∈R2n−1
f0(x) :=

∑
α

f0,αxα, (2.10)

subject to
∀ i = 1, . . . ,m, fi(x) :=

∑
α

fi,αxα ≥ 0, (2.11)

where m is an integer, fi,α denotes the real coefficients of the polynomial functions fi, and
summations take place over N2n−1. The summations are nevertheless finite because only a
finite number of coefficients are nonzero.

2.3 Moment-sos approach
We first review some theoretical aspects of the moment-sos approach (a nice short account
can be found in [9], and more in [16, 64]). Next, we present a set of relaxations of PolyOPF
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obtained by this method and illustrate it on a simple example. Finally, we emphasize the
relationship between the moment-sos approach and the rank relaxation of [66].

The moment-sos approach has been designed to find global solutions to polynomial opti-
mization problems. It is grounded on deep results from real algebraic geometry. The term
moment-sos derives from the fact that the approach has two dual aspects: the moment and
the sum of squares approaches. Both approaches are dual of one another in the sense of
Lagrangian duality [99]. Below, we focus on the moment approach because it leads to SDP
problems that have a close link with the previously studied SDP method in [66].

Let K be a subset of R2n−1. The moment approach rests on the surprising (though easy
to prove) fact that the problem min{f0(x): x ∈ K} is equivalent to the convex optimization
problem in µ:

min
µ positive measure on K∫

dµ=1

∫
f0dµ. (2.12)

Although the latter problem has a simple structure, it cannot be solved directly, since its
unknown µ is an infinite dimensional object. Nevertheless, the realized transformation sug-
gests that the initial difficult global optimization problem can be structurally simplified by
judiciously expressing it on a space of larger dimension. The moment-sos approach goes along
this way by introducing a hierarchy of more and more accurate approximations of problem
(2.12), hence (2.10)-(2.11), defined on spaces of larger and larger dimension.

When f0 is a polynomial and K := {x ∈ R2n−1: fi(x) ≥ 0, for i = 1, . . . ,m} is defined
by polynomials fi like in PolyOPF, it becomes natural to approximate the measure µ by
a finite number of its moments. The moment of µ, associated with α ∈ N2n−1, is the real
number yα :=

∫
xα dµ. Then, when f0 is the polynomial in (2.10), the objective of (2.12)

becomes
∫
f0dµ =

∫
(
∑

α f0,αxα)dµ =
∑

α f0,α

∫
xαdµ =

∑
α f0,αyα, whose linearity in the

new unknown y is transparent. The constraint
∫
dµ = 1 is also readily transformed into

y0 = 1. In contrast, expressing which are the vectors y that are moments of a positive
measure µ on K (the other constraint in (2.12)) is a much more difficult task known as the
moment problem, which has been studied for over a century [97]. It is that constraint that is
approximated in the moment-sos approach, with more and more accuracy in spaces of higher
and higher dimension.

The sum of squares approach is dual to the moment approach in the sense of Lagrangian
duality [99]. It relies on the fact that minimizing a function f0 over a set K is equivalent
to maximizing a real number λ under the constraints f0(x) − λ ≥ 0 for all x ∈ K. These
trivial linear constraints are intractable because there is an infinite number of them. In the
case of polynomial optimization, one recovers the problem of finding certificates ensuring
the positivity of the polynomial f0 − λ on the semi-algebraic set K, which involves sums
of squares of polynomials [76]. Relaxations consist in imposing degree bounds on these sos
polynomials.

Lasserre [62] proposes a sequence of relaxations for any polynomial optimization problem
like PolyOPF that grow better in accuracy and bigger in size when the order d of the relax-
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ation increases. Here and below, d is an integer larger than or equal to each vi := d(deg fi)/2e
for all i = 0, . . . ,m (we have denote by d·e the ceiling operator).

Let Z < 0 denote that Z is a symmetric positive semidefinite matrix. Define Np
q := {α ∈

Np : |α| ≤ q}, whose cardinality is |Np
q| =

(
p+ q
q

)
:= (p + q)!/(p! q!), and denote by

(zα,β)α,β∈Npq a matrix indexed by the elements of Np
q .

Relaxation of order d:
min

(yα)
α∈N2n−1

2d

∑
α

f0,αyα, (2.13)

subject to

y0 = 1, (2.14)
(yα+β)α,β∈N2n−1

d
< 0, (2.15)

∀ i = 1, . . . ,m,
∑
γ

fi,γ (yα+β+γ)α,β∈N2n−1
d−vi

< 0. (2.16)

We have already discussed the origin of (2.13)-(2.14) in the above SDP problem, while (2.15)-
(2.16) are necessary conditions to ensure that y is formed of moments of some positive measure
on K. When d increases, these problems form a hierarchy of semidefinite relaxations, called
that way because the objective (2.13) is not affected and the feasible set is reduced as the size
of the matrices in (2.15)-(2.16) increases. These properties show that the optimal value of
problem (2.13)-(2.16) increases with d and remains bounded by the optimal value of (2.10)-
(2.11).

For the method to give better results, a ball constraint ‖x‖2 ≤M must be added according
to the technical assumption 1.1 in [9]. For the OPF problem, this can be done easily by
setting M to

∑
k∈N (vmax

k )2 without modifying the problem. The following two properties
hold in this case [9, theorem 1.12]:

1. the optimal values of the hierarchy of semidefinite relaxations increasingly converge
toward the optimal value of PolyOPF,

2. let yd denote a global solution to the relaxation of order d and (ei)1≤i≤2n−1 denotes the
canonical basis of N2n−1; if PolyOPF has a unique global solution, then (ydei)1≤i≤2n−1

converges towards the global solution to PolyOPF as d tends to +∞.

The largest matrix size of the moment relaxation appears in (2.14) and has the value

|N2n−1
d | =

(
2n− 1 + d

d

)
, where n is the number of buses. For a fixed d, matrix size is

therefore equal to O(nd). This makes high order relaxations too large to compute with
currently available SDP software packages. Consequently, the success of the moment-sos
approach relies wholly upon its ability to find a global solution with a low order relaxation,
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for which there is no guarantee. Note that the global solution is found by a finite order
relaxation under conditions that include the convexity of the problem [63] (not the case of
PolyOPF though) or the positive definiteness of the Hessian of the Lagrangian at the saddle
points of the Lagrangian [39] (open question in the case of PolyOPF).

Moment-sos relaxations and rank relaxation

When the polynomials fi defining PolyOPF are quadratic, the first order (d = 1) relaxation
(2.13)-(2.16) is equivalent to Shor’s relaxation [60]. To make the link with the rank relaxation
of [66], consider now the case when the varying part of the fi’s are quadratic and homogeneous
like in [66], that is fi(x) = xTAix − ai for all i = 0, . . . ,m, with symmetric matrices Ai
and scalars ai. Then introducing the vector s and the matrix Y defined by si = yei and
Ykl = yek+el , reads

min(s,Y ) trace(A0Y )− a0, (2.17)

subject to [
1 sT

s Y

]
< 0 and trace(AiY ) ≥ ai (∀ i = 1, . . . ,m). (2.18)

Using Schur’s complement, the positive semidefiniteness condition in (2.18) is equivalent to
Y − ssT < 0. Since s does not intervene elsewhere in (2.17)-(2.18), it can be eliminated and
the constraints of the problem can be replaced by

Y < 0 and trace(AiY ) ≥ ai (∀ i = 1, . . . ,m). (2.19)

The pair made of (2.17) and (2.19) is the rank relaxation of [66]. We have just shown
that the equivalence between that the SDP relaxation of [66] and to the first-order moment
relaxation holds when the varying part of the fi’s are quadratic and homogeneous. For the
OPF problem, this certainly occurs when

1. the objective of the OPF is an affine function of active power,

2. there are no constraints on apparent power flow,

3. (2.8) is not replaced by (2.9).

Point 1 ensures that the objective is quadratic and has a homogeneous varying part. Points 2
and 3 guarantee the same property for the constraint functions.

2.4 Numerical results
We present numerical results for the moment-sos approach applied to instances of the OPF
for which the rank relaxation method of [66] fails to find the global solution. We focus on the
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WB2 2-bus system, LMBM3 3-bus system, and the WB5 5-bus system that are described
in [22]. Note that LMBM3 is also found in [67]. For each of the three systems, the authors
of [22] modify a bound in the data and specify a range for which the rank relaxation fails.
We consider 10 values uniformly distributed in the range in order to verify that the rank
relaxation fails and to assess the moment-sos approach. We proceed in accordance with the
discussion of section 2.3 by adding the redundant ball constraint. Surprisingly, the second
order relaxation whose greatest matrix size is equal to (2n+1)n nearly always finds the global
solution.

The materials used are:

• Data of WB2, LMBM3, WB5 systems available online [23],

• Intel R© XeonTM MP CPU 2.70 GHz 7.00 Go RAM,

• MATLAB version 7.7 2008b,

• MATLAB-package MATPOWER version 3.2 [132],

• SeDuMi 1.02 [115] with tolerance parameter pars.eps set to 10−12 for all computations,

• MATLAB-based toolbox YALMIP [69] to compute Optimization 4 (Dual OPF) in [66]
that yields the solution to the rank relaxation,

• MATLAB-package GloptiPoly version 3.6.1 [48] to compute solutions to a hierarchy of
SDP relaxations (2.13)-(2.16).

The same precision is used as in the solutions of the test archives [23]. In other words,
results are precise up to 10−2 p.u. for voltage phase, 10−2 degree for angles, 10−2 MW for
active power, 10−2 MVA for reactive power, and cent per hour for costs. Computation time
is several seconds.

GloptiPoly can guarantee that it has found a global solution to a polynomial optimization
problem, up to a given precision. This is certainly the case when it finds a feasible point x
giving to the objective a value sufficiently close to the optimal value of the relaxation.

2-bus network: WB2

Authors of [22] observe that in the WB2 2-bus system of figure 2.1, the rank constraint is not
satisfied in the rank relaxation method of [66] when 0.976 p.u. < vmax

2 < 1.035 p.u. In table
2.1, the first column is made up of 10 points in that range that are uniformly distributed.
The second column contains the lowest order of the relaxations that yield a global solution.
The optimal value of the relaxation of that order is written in the third column. The fourth
column contains the optimal value of the rank relaxation (it is put between parentheses when
the relaxation is inexact).
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Figure 2.1: WB2 2-bus system

Table 2.1: Order of hierarchy needed to reach global solution to WB2 when rank relaxation
fails

vmax
2 relax. optimal rank relax.

(p.u.) order value ($/h) value ($/h)
0.976 2 905.76 905.76
0.983 2 905.73 (903.12)
0.989 2 905.73 (900.84)
0.996 2 905.73 (898.17)
1.002 2 905.73 (895.86)
1.009 2 905.73 (893.16)
1.015 2 905.73 (890.82)
1.022 3 905.73 (888.08)
1.028 3 905.73 (885.71)
1.035 2 882.97 882.97

The hierarchy of SDP relaxations is defined for d ≥ 1 because the objective is an affine
function and there are no apparent flow constraints. Let’s explain how it works in the case
where vmax

2 = 1.022 p.u. The optimal value of the first order relaxation is 861.51 $/h, that
of the second order relaxation is 901.38 $/h, and that of the third is 905.73 $/h. This is
coherent with point 1 of the discussion of section 2.3 that claims that the optimal values
increase with d. Computing higher orders is not necessary because GloptiPoly numerically
proves global optimality for the third order.

Notice that for vmax
2 = 1.022 p.u. the value of the rank relaxation found in table 2.1

(888.08 $/h) is different from the value of the first order relaxation (861.51 $/h). If we run
GloptiPoly with (2.8) instead of (2.9), the optimal value of the first order relaxation is equal
888.08 $/h as expected according to section 2.3.

For vmax
2 = 0.976 p.u. and vmax

2 = 1.035 p.u. (see the first and last rows of table 2.1), the
rank constraint is satisfied in the rank relaxation method so its optimal value is equal to the
one of the successful moment-sos method. In between those values, the rank constraint is
not satisfied since the optimal value is less than the optimal value of the OPF. Notice the
correlation between the results of table 2.1 and the upper half of figure 8 in [22]. Indeed, the
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figure shows the optimal value of the OPF is constant whereas the optimal value of the rank
relaxation decreases in a linear fashion when 0.976 p.u. < vmax

2 < 1.035 p.u.
Surprisingly and encouragingly, according to the second column of table 2.1, the second

order moment-sos relaxation finds the global solution in 8 out of 10 times, and the third
order relaxation always find the global solution.

Remark: The fact that the rank constraint is not satisfied for the WB2 2-bus system
of [22] seems in contradiction with the results of papers [19,111,130]. Indeed, the authors of
the papers state that the rank is less than or equal to 1 if the graph of the network is acyclic
and if load over-satisfaction is allowed. However, load over-satisfaction is not allowed in this
network. For example, for vmax

2 = 1.022 p.u., adding 1 MW of load induces the optimal value
to go down from 905.73 $/h to 890.19 $/h. One of the sufficient conditions in [18] for the
rank is less than or equal to 1 relies on the existence of a strictly feasible point. It is not the
case here because equality constraints must be enforced in the power balance equation.

3-bus network: LMBM3

We observe that in the LMBM3 3-bus system of figure 2.2, the rank constraint is not satisfied
in the rank relaxation method of [66] when 28.35 MVA ≤ smax

23 = smax
32 < 53.60 MVA. Below

28.35 MVA, no solutions can be found by the OPF solver runopf in MATPOWER nor by
the hierarchy of SDP relaxations. At 53.60 MVA, the rank constraint is satisfied in the rank
relaxation method so its optimal value is equal to the optimal value of the OPF found by
the second order relaxation; see to the last row of table 2.2.

Figure 2.2: LMBM3 3-bus system
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Table 2.2: Order of hierarchy needed to reach global solution to LMBM3 when rank relaxation
fails

smax
23 = smax

32 relax. optimal rank relax.
(MVA) order value ($/h) value ($/h)
28.35 2 10294.88 (6307.97)
31.16 2 8179.99 (6206.78)
33.96 2 7414.94 (6119.71)
36.77 2 6895.19 (6045.33)
39.57 2 6516.17 (5979.38)
42.38 2 6233.31 (5919.12)
45.18 2 6027.07 (5866.68)
47.99 2 5882.67 (5819.02)
50.79 2 5792.02 (5779.34)
53.60 2 5745.04 5745.04

The objective of the OPF is a quadratic function of active power so the hierarchy of SDP
relaxations is defined for d > 2. Again, it is surprising that the second order moment-sos
relaxation always finds the global solution to the LMBM3 system, as can be seen in the
second column of table 2.2.

Authors of [66] make the assumption that the objective of the OPF is an increasing
function of generated active power. The moment-sos approach does not require such an
assumption. For example, when smax

23 = smax
32 = 50 MVA, active generation at bus 1 is equal

to 148.07 MW and active generation at bus 2 is equal to 170.01 MW using the increasing cost
function of [23,67]. Suppose we choose a different objective which aims at reducing deviation
from a given active generation plan at each generator. Say that this plan is pplan

1 = 170 MW
at bus 1 and pplan

2 = 150 MW at bus 2. The objective function is equal to (pgen
1 − pplan

1 )2 +
(pgen

2 − pplan
2 )2. It is not an increasing function of pgen

1 and pgen
2 . The second order relaxation

yields a global solution in which active generation at bus 1 is equal to 169.21 MW and active
generation at bus 2 is equal to 149.19 MW.

5-bus network: WB5

Authors of [22] observe that in the WB5 5-bus system of figure 2.3, the rank constraint
is not satisfied in the rank relaxation method of [66] when qmin

5 > −30.80 MVAR. Above
61.81 MVAR, no solutions can be found by the OPF solver runopf in MATPOWER. At
−30.80 MVAR, the rank constraint is satisfied in the rank relaxation method so its optimal
value is equal to the optimal value of the OPF found by the second order moment-sos relax-
ation; see the first row of table 2.3. As for the 9 values considered greater than −30.80 MVAR,
the rank constraint is not satisfied since the optimal value is not equal to the optimal value
of the OPF. Notice that the objective of the OPF is a linear function of active power and
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there are bounds on apparent flow so the hierarchy of SDP relaxations is defined for d > 1.

Figure 2.3: WB5 5-bus system

Table 2.3: Order of hierarchy needed to reach global solution to WB5 when rank relaxation
fails

qmin
5 relax. optimal rank relax.

(MVAR) order value ($/h) value ($/h)
-30.80 2 945.83 945.83
-20.51 2 1146.48 (954.82)
-10.22 2 1209.11 (963.83)
00.07 2 1267.79 (972.85)
10.36 2 1323.86 (981.89)
20.65 2 1377.97 (990.95)
30.94 2 1430.54 (1005.13)
41.23 2 1481.81 (1033.07)
51.52 2 1531.97 (1070.39)
61.81 - - (1114.90)

When qmin
5 = 61.81 MVAR, the hierarchy of SDP relaxations is unable to find a feasible

point, hence the empty slots in the last row of table 2.3. Apart from that value, the second
order moment-sos relaxation again always finds the global solution according to the second
column of table 2.3.

Waki et al. [125] have produced a piece of software called SparsePOP [127] similar to
GloptiPoly only that it seeks to reduce problem size in Lasserre’s relaxations using matrix
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completion theory in semidefinite programming. SparsePOP successfully solves the systems
studied in this paper to global optimality but fails to reduce the size of the moment-sos
relaxations and to solve problems with a larger number of buses.

2.5 Conclusion
This chapter examined the application of the moment-sos (sum of squares) approach to the
global optimization of the optimal power flow (OPF) problem. The result is that the OPF
can be successfully convexified in the case of several small networks where a previously known
SDP method fails. The SDP problems considered in this paper can be viewed as extensions of
the previously used rank relaxation. It is guaranteed to be more accurate than the previous
one but requires more runtime.

Interestingly, Daniel K. Molzahn and Ian A. Hiskens independently made very similar
findings [79] as presented in this chapter. They successfully solved networks with up to 10
buses. A group at IBM research Ireland was also working on the same ideas [44]. They
managed to solve networks with up to 40 buses. To do so, they formulated the OPF problem
as a quadratically-constrained quadratic problem and used SparsePOP. This works better
than what we had tried, namely using SparsePOP with an OPF formulation with monomials
of order 4.

We next focus on a property of the moment-sos approach to further prove its applicability
in practice. In the small examples considered in this chapter, there is no duality gap at each
order of the moment-sos hierarchy according to numerical results. This property is necessary
for efficient solvers to work such as interior-point solvers. However, in the existing literature,
there were no results guaranteeing this property. In the next chapter, we prove there is no
duality gap in the moment-sos hierarchy in the presence of a ball constraint. We also explain
why there is no duality gap when applying the moment-sos hierarchy to the OPF without a
ball constraint.



Chapter 3

Zero duality gap in the Lasserre
hierarchy

A polynomial optimization problem (POP) consists of minimizing a multivariate real poly-
nomial on a semi-algebraic set K described by polynomial inequalities and equations. In its
full generality it is a nonconvex, multi-extremal, difficult global optimization problem. More
than an decade ago, J. B. Lasserre proposed to solve POPs by a hierarchy of convex semidef-
inite optimization (SDP) relaxations of increasing size. Each problem in the hierarchy has a
primal SDP formulation (a relaxation of a moment problem) and a dual SDP formulation (a
sum-of-squares representation of a polynomial Lagrangian of the POP). In this chapter, we
show that there is no duality gap between each primal and dual SDP problem in Lasserre’s
hierarchy, provided one of the constraints in the description of set K is a ball constraint. Our
proof uses elementary results on SDP duality, and it does not assume that K has a strictly
feasible point. The material in this chapter is based on the publication:

C. Josz and D. Henrion, Strong Duality in Lasserre’s Hierarchy for Polynomial Opti-
mization, Optimization Letters, February 2015. [doi] [preprint]

3.1 Introduction
Consider the following polynomial optimization problem (POP)

infx f(x) :=
∑

α fαx
α

s.t. gi(x) :=
∑

α gi,αx
α ≥ 0, i = 1, . . . ,m

(3.1)

where we use the multi-index notation xα := xα1
1 · · ·xαnn for x ∈ Rn, α ∈ Nn and where the

data are polynomials f, g1, . . . , gm ∈ R[x] so that in the above sums only a finite number of
coefficients fα and gi,α are nonzero. Let K denote its feasible set:

K := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m}
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To solve POP (3.1), Lasserre [61, 62] proposed a semidefinite optimization (SDP) relaxation
hierarchy with guaranteed asymptotic global convergence provided an algebraic assumption
holds:
Assumption 3.1. There exists a polynomial u ∈ R[x] such that {x ∈ Rn : u(x) ≥ 0} is
bounded and u = u0 +

∑m
i=1 uigi where polynomials ui ∈ R[x], i = 0, 1, . . . ,m are sums of

squares (SOS) of other polynomials.
Nie et al. [87] have proven that Assumption 3.1 also implies generically finite convergence,

that is to say that for almost every instance of POP, there exists a finite-dimensional SDP
relaxation in the hierarchy whose optimal value is equal to the optimal value of the POP.
Assumption 3.1 can be difficult to check computationally (as the degrees of the SOS mul-
tipliers can be arbitrarily large), and it is often replaced by the following slightly stronger
assumption:
Assumption 3.2. The description of K contains a ball constraint, say gm(x) = R2 −

∑n
i=1 x

2
i

for some real number R.
Indeed, under Assumption 3.2, simply choose u = gm, u1 = · · · = um−1 = 0, and um = 1

to conclude that Assumption 3.1 holds as well. In practice, it is often easy to see to it that
Assumption 3.2 holds. In the case of a POP with a bounded feasible set, a redundant ball
constraint can be added.

More generally, if the intersection of the sublevel set {x ∈ Rn : f(x) ≤ f(x0)} with
the feasible set of the POP is bounded for some feasible point x0, then a redundant ball
constraint can also be added. As an illustration, a reviewer suggested the example of the
minimization of f(x) = x2

1 +x2
2−3x1x2 on the unbounded set defined on R2 by the constraint

g1(x) = 1 − 3x1x2 ≥ 0. The intersection of the feasible set with the set defined by the
constraint f(x) ≤ f(0) = 0 is included in the ball defined by g2(x) = 1− x2

1− x2
2 ≥ 0 so that

the POP can be equivalently defined on the bounded setK = {x ∈ R2 : g1(x) ≥ 0, g2(x) ≥ 0}.
Each problem in Lasserre’s hierarchy consists of a primal-dual SDP pair, called SDP

relaxation, where the primal corresponds to a convex moment relaxation of the original
(typically nonconvex) POP, and the dual corresponds to a SOS representation of a polynomial
Lagrangian of the POP. The question arises of whether the duality gap vanishes in each
SDP relaxation. This is of practical importance because numerical algorithms to solve SDP
problems are guaranteed to converge only where there is a zero duality gap, and sometimes
under the stronger assumption that there is a primal or/and dual SDP interior point.

In [104, Example 4.9], Schweighofer provides a two-dimensional POP with no interior
point for which Assumption 3.1 holds, yet a duality gap exists at the first SDP relaxation:
inf x1x2 s.t. x ∈ K = {x ∈ R2 : −1 ≤ x1 ≤ 1, x2

2 ≤ 0}, with primal SDP value equal to
zero and dual SDP value equal to minus infinity. This shows that a stronger assumption is
required to ensure a zero SDP duality gap. A sufficient condition for strong duality has been
given in [62]: set K should contain an interior point. However, this may be too restrictive:
in the proof of Lemma 1 in [47] the authors use notationally awkward arguments involving
truncated moment matrices to prove the absence of SDP duality gap for a certain set K that
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contains no interior point. This shows that the existence of an interior point is not necessary
for a zero SDP duality gap. More generally, it is not possible to assume the existence of an
interior point for POPs with explicit equality constraints, and a weaker assumption for zero
SDP duality gap is welcome.

Motivated by these observations, in this note we prove that under the basic Assumption
3.2 on the description of set K, there is no duality gap in the SDP hierarchy. Our inter-
pretation of this result, and the main message of this contribution, is that in the context of
Lasserre’s hierarchy for POP, a practically relevant description of a bounded semialgebraic
feasibility set must include a redundant ball constraint.

3.2 Proof
For notational convenience, let g0(x) = 1 ∈ R[x] denote the unit polynomial. Define the
localizing matrix

Md−di(giy) :=

(∑
γ

gi,γyα+β+γ

)
|α|,|β|≤d−di

=
∑
|α|≤2d

Ai,αyα

where di is the smallest integer greater than or equal to half the degree of gi, for i =
0, 1, . . . ,m, and |α| =

∑n
i=1 αi. The Lasserre hierarchy for POP (3.1) consists of a primal

moment SDP problem

(Pd) :
infy

∑
α fαyα

s.t. y0 = 1
Md−di(giy) � 0, i = 0, 1, . . . ,m

and a dual SOS SDP problem

(Dd) :

supz,Z z
s.t. f0 − z =

∑m
i=0〈Ai,0, Zi〉

fα =
∑m

i=0〈Ai,α, Zi〉, 0 < |α| ≤ 2d
Zi � 0, i = 0, 1, . . . ,m, z ∈ R

where A � 0 stands for matrix A positive semidefinite, 〈A,B〉 = trace AB is the inner
product between two matrices. The Lasserre hierarchy is indexed by an integer d ≥ dmin :=
maxi=0,1,...,m di. The primal-dual pair (Pd, Dd) is called the SDP relaxation of order d for

POP (3.1). The size of the primal variable (yα)|α|≤2d is
(
n+ 2d
n

)
and the size of the dual

variable Zi is
(
n+ d− di

n

)
.

Let us define the following sets:
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• Pd: feasible points for Pd;

• Dd: feasible points for Dd;

• int Pd: strictly feasible points for Pd;

• intDd: strictly feasible points for Dd;

• P∗d : optimal solutions for Pd;

• D∗d: optimal solutions for Dd.

Finally, let us denote by val Pd the infimum in problem Pd and by val Dd the supremum in
problem Dd.

Lemma 3.3. int Pd nonempty or intDd nonempty implies val Pd = valDd.

Lemma 3.3 is classical in convex optimization, and it is generally called Slater’s condition,
see e.g. [105, Theorem 4.1.3].

Lemma 3.4. The two following statements are equivalent :

1. Pd is nonempty and intDd is nonempty;

2. P∗d is nonempty and bounded.

A proof of Lemma 3.4 can be found in [122]. According to Lemmas 3.3 and 3.4, P∗d
nonempty and bounded implies strong duality. This result is also mentioned without proof
at the end of [105, Section 4.1.2].

Lemma 3.5. Under Assumption 3.2, set Pd is included in the Euclidean ball of radius√(
n+ d
n

)∑d
k=0 R

2k centered at the origin.

Proof. If Pd = ∅, the result is obvious. If not, consider a feasible point (yα)|α|≤2d ∈ Pd. Let
k ∈ {1, . . . , d}. In the SDP problem Pk, the localizing matrix associated to the ball constraint
gm(x) = R2 −

∑n
i=1 x

2
i ≥ 0 reads

Mk−1(gmy) =

(∑
γ

gm,γ yα+β+γ

)
|α|,|β|≤k−1
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with trace equal to

traceMk−1(gmy) =
∑
|α|≤k−1

∑
γ gm,γ y2α+γ

=
∑
|α|≤k−1

(
gm,0 y2α +

∑
|γ|=1 gm,2γ y2α+2γ

)
=

∑
|α|≤k−1

(
R2y2α −

∑
|γ|=1 y2(α+γ)

)
=

∑
|α|≤k−1R

2y2α −
∑
|α|≤k−1,|γ|=1 y2(α+γ)

≤ 1 R2(
∑
|α|≤k−1 y2α) + y0 −

∑
|α|≤k y2α

≤ R2 traceMk−1(y) + 1− traceMk(y).

From the structure of the localizing matrix, it holds Mk−1(gmy) � 0 hence
traceMk−1(gmy) ≥ 0 and

traceMk(y) ≤ 1 +R2 traceMk−1(y)

from which we derive

traceMd(y) ≤
d∑

k=1

R2(k−1) +R2d traceM0(y) =
d∑

k=0

R2k

since trace M0(y) = y0 = 1. The operator norm ‖Md(y)‖, equal to the maximum eigenvalue
of Md(y), is upper bounded by trace Md(y), the sum of the eigenvalues of Md(y), which are
all nonnegative. Moreover the Frobenius norm satisfies

‖Md(y)‖2
F := 〈 Md(y) , Md(y) 〉

= 〈
∑
|δ|≤2dA0,δ yδ ,

∑
|δ|≤2dA0,δ yδ 〉

=
∑
|δ|≤2d 〈A0,δ, A0,δ〉 y2

δ by orthogonality of matrices (A0,δ)|δ|≤2d

≥
∑
|δ|≤2d y

2
δ because 〈A0,δ, A0,δ〉 ≥ 1

1In the associated publication [56], there is an equality instead of an inequality, which is an error. Indeed,∑
|α|≤k−1,|γ|=1 y2(α+γ) =

∑
0<|α|6k y2α is false whereas

∑
|α|≤k−1,|γ|=1 y2(α+γ) >

∑
0<|α|6k y2α is true. The

reason for this is that each term y2α with 0 < |α| 6 k appears at least once in
∑
|α|≤k−1,|γ|=1 y2(α+γ), but

can potentially appear more than once. More precisely, we have
∑
|α|≤k−1,|γ|=1 y2(α+γ) =

∑
|α|6k |α|y2α >∑

0<|α|6k y2α. This error thankfully has no impact on the rest of the proof other than the inequality right
below it.
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where matrices (A0,δ)|δ|≤2d can be written using column vectors (eα)|α|≤d , containing only
zeros apart from the value 1 at index α, via the explicit formula

A0,δ =
∑

α + β = δ
|α|, |β| ≤ d

eαe
T
β .

The proof follows then from√∑
|δ|≤2d

y2
δ ≤ ‖Md(y)‖F ≤

√(
n+ d
n

)
‖Md(y)‖ ≤

√(
n+ d
n

) d∑
k=0

R2k.

Theorem 3.6. Assumption 3.2 implies that −∞ < val Pd = valDd for all d ≥ dmin.

Proof. Let d ≥ dmin. Firstly, let us consider the case when Pd is nonempty. According to
Lemma 3.5, Pd is bounded and closed, and the objective function in Pd is linear, so we con-
clude that P∗d is nonempty and bounded. According to Lemma 3.4, intDd is nonempty, and
from Lemma 3.3, val Pd = valDd.

Secondly, let us consider the case when Pd is empty. An infeasible SDP problem can be
either weakly infeasible or strongly infeasible, see [40, Section 5.2] for definitions. Let us
prove by contradiction that Pd cannot be weakly infeasible. If Pd is weakly infeasible, there
must exist a sequence (yp)p∈N such that

∀p ∈ N ,

{
1− 1

p+1
≤ yp0 ≤ 1 + 1

p+1

λmin(Md−di(giy
p)) ≥ − 1

p+1
, i = 0, 1, . . . ,m

where λmin denotes the minimum eigenvalue of a symmetric matrix. According to the proof
of Lemma 3.5, for all 1 ≤ k ≤ d and all real numbers (yα)|α|≤2d, one has

traceMk−1(gmy) = R2 traceMk−1(y) + y0 − traceMk(y).

Clearly, trace Mk−1(gmy) ≥ − c
1+p

where c :=

(
n+ d
n

)
denotes the size of the moment

matrix Md(y). The following holds

traceMk(y
p) ≤ R2 traceMk−1(yp) + 1 +

1 + c

1 + p

from which we derive

traceMd(y
p) ≤ (1 +

1 + c

1 + p
)

d∑
k=0

R2k.
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Together with λmin(Md(y
p)) ≥ − 1

1+p
, this yields

λmax(Md(y
p)) ≤ (1 +

1 + c

1 + p
)

d∑
k=0

R2k +
c− 1

1 + p

where λmax denotes the minimum eigenvalue of a symmetric matrix. Hence for all p ∈ N, the
spectrum of the moment matrix Md(y

p) is lower bounded by l := −1 and upper bounded by
u := (2 + c)

∑d
k=0R

2k + c− 1. Therefore:√∑
|δ|≤2d

(ypδ )
2 ≤ ‖Md(y

p)‖F ≤
√
c max(|l|, |u|)

The sequence (yp)p∈N is hence included in a compact set. Thus there exists a subsequence
which converges towards ylim such that ylim

0 = 1 and λmin(Md−di(giy
lim)) ≥ 0, i = 0, 1, . . . ,m.

The limit ylim is thus included is Pd, which is a contradiction.

SDP problem Pd is strongly infeasible which means that its dual problem Dd has an im-
proving ray [40, Definition 5.2.2]. To conclude that val Dd = +∞, all that is left to prove
is that Dd 6= ∅. Consider the primal problem Pd discarding all constraints but y0 = 1,
Md(y) < 0, and Md−1(gmy) < 0. It is a feasible and bounded SDP problem owing to Lemma
3.5. According to Lemma 3.4, its dual problem must contain a feasible point (z, Z0, Zm) and
hence (z, Z0, 0, . . . , 0, Zm) ∈ Dd.

3.3 Conclusion
We prove that there is no duality gap in Lasserre’s SDP hierarchy for POPs whose description
of the feasible set contains a ball constraint. Prior results ensuring zero duality gap required
the existence of a strictly feasible point, which excludes POPs with equality constraints.
A zero duality gap is an important property for interior-point solvers to successfully find
solutions. A slight adaption of the proof we propose shows that in the case of the optimal
power flow problem, upper bounds on voltage imply that there is no duality gap at each order
of the Lasserre hierarchy. The adaption consists of summing the traces of each localizing
matrix associated to an upper voltage constraint. The sum is equal to the trace of the
localizing matrix of a sphere constraint that would be obtained by adding all upper voltage
constraints. This means that the computation in Lemma 3.5 is still valid and that the overall
proof still holds.

In Chapter 2, we’ve proven the applicability of Lasserre’s hierarchy from numerical per-
spective. In this chapter, its applicability was enforced from a theoretical perspective. To
prove its applicability to large-scale networks, new test cases needed to be made publicly
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available. Indeed, the only large-scale networks available so far were Polish networks, each
corresponding to a different period in the year, and the Great Britain network. These net-
works contain roughly two to three thousand buses each. In the next chapter, we present
new data of European networks from various countries and with up to nine thousand buses.
Figure 3.1 gives a brief history of the computations prior to the introduction of these net-
works. Only computations leading to physically meaningful results are presented, in other
words those that lead to feasible solutions. These are either global solutions or nearly global
solutions (in the case of penalization). Working in collaboration with Daniel K. Molzahn and
Ian Hiskens, we were to find global solutions in the case of active power minimization for
well-conditioned networks with up to two thousand variables (Chapters 5 and 7).

Figure 3.1: Timeline of computional advances [44, 57,66,72,79,81]



Chapter 4

Data of European transmission network

We contributed four new test cases [55] to Matpower [132], a package of MATLAB.
They represent parts and all of the European high voltage AC transmission network. The
data stems from the Pan European Grid Advanced Simulation and State Estimation (PE-
GASE) project, part of the 7th Framework Program of the European Union (http://www.
fp7-pegase.com/). Its goal was to develop new tools for the real-time control and opera-
tional planning of the pan-Euporean transmission network. Specifically, new approaches were
implemented for state estimation, dynamic security analysis, steady state optimization. A
dispatcher training simulator was also created. The associated public data we provided is:

C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, Power Flow Data for European High-
Voltage Transmission Network: 89, 1354, 2869, and 9241-bus PEGASE Systems, Matpower
5.1, March 2015. [link]

PEGASE data contains asymmetric shunt conductance and susceptance in the PI transmis-
sion line model of branches. However, Matpower format do not allow for asymmetry. As a
result, we set the total line charging susceptance of branches to 0 per unit in the Matpower
files. We used the nodal representation of shunt conductance and susceptance. This proce-
dure leaves the power flow equations unchanged compared with the original PEGASE data.
However, line flow constraints in the optimal power flow problem are modified.

The data includes negative resistances and negative lower bounds on active power gener-
ation. This is due to sections of the network that are not represented. These sections may
include generators, which accounts for the negative resistances. Imports and exports with
these sections account for negative bounds on generation. These sections may be a country
connected to the European network that is represented by the data. It may also be a section
within a country for which data was not provided. A big challenge when making realistic test
cases is to account for missing data in a sensible manner. See [6,86] for work on the subject.
Note that the non-represented sections also account for buses where voltage magnitudes have
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very large lower and upper bounds. All others buses have tight constraints, plus or minus
10% of the nominal value. This is visible is figure 4.2. It represents the voltages at each bus
along with the lower and upper constraints resulting in an annulus.

4.1 case89pegase
This case accurately represents the size and complexity of a small part of the European
high voltage transmission network. The network contains 89 buses, 12 generators, and 210
branches. It operates at 380, 220, and 150 kV.

4.2 case1354pegase
This case accurately represents the size and complexity of a medium part of the European
high voltage transmission network. The network contains 1,354 buses, 260 generators, and
1,991 branches. It operates at 380, and 220 kV.

4.3 case2869pegase
This case accurately represents the size and complexity of a large part of the European high
voltage transmission network. The network contains 2,869 buses, 510 generators, and 4,582
branches. It operates at 380, 220, 150, and 110 kV.

4.4 case9241pegase
This case accurately represents the size and complexity of the European high voltage trans-
mission network. The network contains 9,241 buses, 1,445 generators, and 16,049 branches.
It operates at 750, 400, 380, 330, 220, 154, 150, 120 and 110 kV. It represents 23 countries
as can be seen in figure 4.1. The numbers between the countries correspond the sum of the
active power flows traded at the interconnections for the voltage profile of figure 4.2. This
voltage profile was found with the nonlinear solver KNITRO. It is contained in the case9241
Matpower file.
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Figure 4.1: PEGASE network with active power flows in MW (courtesy of Stéphane Flis-
counakis)
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Figure 4.2: Local optimum

The PEGASE data provides large-scale test cases on which to test new methods and
tools. After having shown the applicability of moment/sum-of-squares approach to small-
scale systems, the main challenge was to make the approach tractable for large-scale systems.
A significant turn took place when Daniel K. Molzahn and Ian A. Hiskens proposed a novel
way to exploit sparsity when applying the moment-sos hierarchy to the OPF problem [81].
The main idea is that a global solution can be obtained by only applying high-order moments
to some constraints. These constraints are deduced by looking at the moment matrix when
the relaxation fails. The authors of [81] were thus able to solve networks to global optimality
with up to three hundred buses. In the next chapter, their method is combined with a
penalization approach due to Madani et al [72]. Tests are made with the PEGASE data in
the next three chapters.



Chapter 5

Penalized Lasserre hierarchy

Applications of convex relaxation techniques to the nonconvex OPF problem have been of re-
cent interest, including work using the Lasserre hierarchy of “moment” relaxations to globally
solve many OPF problems. By preprocessing the network model to eliminate low-impedance
lines, this chapter demonstrates the capability of the moment relaxations to globally solve
large OPF problems that minimize active power losses for portions of several European power
systems. Large problems with more general objective functions have thus far been compu-
tationally intractable for current formulations of the moment relaxations. To overcome this
limitation, this chapter proposes the combination of an objective function penalization with
the moment relaxations. This combination yields feasible points with objective function val-
ues that are close to the global optimum of several large OPF problems. Compared to an
existing penalization method, the combination of penalization and the moment relaxations
eliminates the need to specify one of the penalty parameters and solves a broader class of
problems. The material presented in this chapter is based on the publication:

D.K. Molzahn, C. Josz, I.A. Hiskens, and P. Panciatici, Solution of Optimal Power
Flow Problems using Moment Relaxations Augmented with Objective Function Penalization,
54th Annual Conference on Decision and Control, Osaka, December 2015. [preprint]

5.1 Introduction
The SDP relaxation of [66] has been generalized to a family of “moment relaxations” using the
Lasserre hierarchy [64] for polynomial optimization [44,57,79]. The moment relaxations take
the form of SDPs, and the first-order relaxation in this hierarchy is equivalent to the SDP
relaxation of [66]. Increasing the relaxation order in this hierarchy enables global solution of
a broader class of OPF problems.

The ability to globally solve a broader class of OPF problems has a computational cost; the
moment relaxations quickly become intractable with increasing order. Fortunately, second-
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and third-order moment relaxations globally solve many small problems for which the first-
order relaxation fails to yield the globally optimal decision variables.

However, increasing system size results in computational challenges even for low-order
moment relaxations. The second-order relaxation is computationally intractable for OPF
problems with more than ten buses. Exploiting network sparsity enables solution of the first-
order relaxation for systems with thousands of buses [52,82] and the second-order relaxation
for systems with about forty buses [44, 81]. Recent work [81] solves larger problems (up
to 300 buses) by both exploiting sparsity and only applying the computationally intensive
higher-order moment relaxations to specific buses in the network. Other recent work improves
tractability using a second-order cone programming (SOCP) relaxation of the higher-order
moment constraints [80].

Solving larger problems using moment relaxations is often limited by numerical conver-
gence issues rather than computational performance. We present a preprocessing method
that improves numerical convergence by removing low-impedance lines from the network
model. Similar methods are commonly employed (e.g., PSS/E [107]), but more extensive
modifications are needed for adequate convergence due to the limited numerical capabilities
of current SDP solvers.

After this preprocessing, the moment relaxations globally solve several large OPF prob-
lems which minimize active power losses for European power systems. Directly using the
moment relaxations to globally solve more general large OPF problems with objective func-
tions that minimize generation cost has been computationally intractable thus far.

To solve these OPF problems, we form moment relaxations using a penalized objective
function. Previous literature [72, 74] augments the SDP relaxation [66] with penalization
terms for the total reactive power generation and the apparent power loss of certain lines.
For many problems, this penalization finds feasible points with objective function values that
are very close to the lower bounds obtained from the SDP relaxation. Related work [83] uses
a Laplacian-based objective function with a constraint on generation cost to find feasible
points are very near the global optima. This section analyzes the physical and convexity
properties of the reactive power penalization.

There are several disadvantages of the penalization method of [72]. This penalization
often requires choosing multiple parameters. (See [83] for a related approach that does not
require choosing penalty parameters.) Also, there are OPF problems that are globally solved
by the moment relaxations, but no known penalty parameters yield a feasible solution.

We propose a “moment+penalization” approach that augments the moment relaxations
with a reactive power penalty. Typical penalized OPF problems only require higher-order
moment constraints at a few buses. Thus, for a variety of large test cases, augmenting
the moment relaxation with the proposed single-parameter penalization achieves feasible
solutions that are at least very near the global optima (within at least 1% for a variety of
example problems). The moment+penalization approach enables solution of a broader class
of problems than either method individually.
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Below, Section 5.2 describes the low-impedance line preprocessing. Section 5.3 discusses
the existing penalization and the proposed moment+penalization approaches. Section 5.6
demonstrates the moment+penalization approach using several large test cases, and Sec-
tion 5.7 concludes.

5.2 Preprocessing low-impedance lines
By exploiting sparsity and selectively applying the higher-order constraints, the moment
relaxations globally solve many OPF problems with up to 300 buses. Solution of larger prob-
lems with higher-order relaxations is typically limited by numerical convergence issues rather
than computational concerns. This section describes a preprocessing method for improving
numerical properties of the moment relaxations.

Low-impedance lines, which often represent “jumpers” between buses in the same physical
location, cause numerical problems for many algorithms. Low line impedances result in a
large range of values in the bus admittance matrix Y, which causes numerical problems in
the constraint equations.

To address these numerical problems, many software packages remove lines with impedances
below a threshold. For instance, lines with impedance below a parameter thrshz are removed
prior to applying other algorithms in PSS/E [107].

We use a slightly modified version of the low-impedance line removal procedure in PSS/E [107].1
Low-impedance lines are eliminated by grouping buses that are connected by lines with
impedances below a specified threshold thrshz. Each group of buses is replaced by one bus
that is connected to all lines terminating outside the group. Generators, loads, and shunts
(including the shunt susceptanes of lines connecting buses within a group) are aggregated.
The series parameters of lines connecting buses within a group are eliminated.

Removing low-impedance lines typically has a small impact on the solution. To recover
an approximate solution to the original power system model, assign identical voltage phasors
to all buses in each group and distribute flows on lines connecting buses within a group under
the approximation that all power flows through the low-impedance lines.

A typical low-impedance line threshold thrshz is 1× 10−4 per unit. However, the nu-
merical capabilities of SDP solvers are not as mature as other optimization tools. Therefore,
we require a larger thrshz = 1 × 10−3 per unit to obtain adequate convergence of the mo-
ment relaxations. This larger threshold typically introduces only small errors in the results,
although non-negligible errors are possible.

Matpower solutions obtained for the Polish [132] and most PEGASE systems [42, 55]
were the the same before and after low-impedance line preprocessing to within 0.0095 per
unit voltage magnitude and 0.67◦ voltage angle difference across each line. Operating costs
for all test problems were the same to within 0.04%. The 2869-bus PEGASE system had

1Lines with non-zero resistances are not considered to be “low impedance” by PSS/E. We consider both
the resistance and the reactance.
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larger differences: 0.0287 per unit voltage magnitude and 1.37◦ angle difference. A power flow
solution for the full network using the solution to the OPF problem after low-impedance line
preprocessing yields smaller differences: 0.0059 per unit voltage magnitude and 1.17◦ angle
difference. Thus, the differences from the preprocessing for the 2869-bus PEGASE system
can be largely attributed to the sensitivity of the OPF problem itself to small changes in the
low-impedance line parameters. Preprocessing reduced the number of buses by between 21%
and 27% for the PEGASE and between 9% and 26% for the Polish systems.

These results show the need for further study of the sensitivity of OPF problems to
low-impedance line parameters as well as additional numerical improvements of the moment
relaxations and SDP solvers to reduce thrshz.

5.3 Moment relaxations and penalization
As will be shown in Section 6.4, the moment relaxations globally solve many large OPF
problems with active power loss minimization objectives after removing low-impedance lines
as described in Section 5.2. Directly applying the moment relaxations to many large OPF
problems with more general cost functions has so far been computationally intractable. This
section describes the nonconvexity associated with more general cost functions and proposes
a method to obtain feasible solutions that are at least near the global optimum, if not, in
fact, globally optimal for many problems.

Specifically, we propose augmenting the moment relaxations with a penalization in the
objective function. Previous literature [72, 74] adds terms to the first-order moment relax-
ation that penalize the total reactive power injection and the apparent power line loss (i.e.,√

(fPlm + fPml)
2 + (fQlm + fQml)

2) for “problematic” lines identified by a heuristic. This
penalization often finds feasible points that are at least nearly globally optimal.

However, the penalization in [72] requires choosing two penalty parameters and fails to
yield a feasible solution to some problems. This section describes progress in addressing
these limitations by augmenting the moment relaxations with a reactive power penalization.
The proposed “moment+penalization” approach only requires a single penalty parameter
and finds feasible points that are at least nearly globally optimal for a broader class of
OPF problems. This section also analyzes the convexity properties and provides a physical
intuition for reactive power penalization.

5.4 Penalization of reactive power generation
The penalization method proposed in [72] perturbs the objective function to include terms
that minimize the total reactive power loss and the apparent power loss on specific lines
determined by a heuristic method. These terms enter the objective function with two scalar
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parameter coefficients. Obtaining a feasible point near the global solution requires appropri-
ate choice of these parameters.

For typical operating conditions, reactive power is strongly associated with voltage mag-
nitude. Penalizing reactive power injections tends to reduce voltage magnitudes, which also
tends to increase active power losses since a larger current flow, with higher associated loss,
is required to deliver a given quantity of power at a lower voltage magnitude.

For many problems for which the first-order moment relaxation fails to yield the global
optimum, the relaxation “artificially” increases the voltage magnitudes to reduce active power
losses. This results in voltage magnitudes and power injections that are feasible for the SDP
relaxation but infeasible for the OPF problem.

By choosing a reactive power penalty parameter that balances these competing tendencies
(increasing voltage magnitudes to reduce active power losses vs. decreasing voltage magni-
tudes to reduce the penalty), the penalized relaxation finds a feasible solution to many OPF
problems. Since losses typically account for a small percentage of active power generation
and active and reactive power are typically loosely coupled, the reactive power penalization
often results in a feasible point that is near the global optimum.

We next study the convexity properties of the cost function and the reactive power penal-
ization. The cost function is convex in terms of active power generation but not necessarily
in terms of the real and imaginary voltage components.2 Thus, the objective function is a
potential source of nonconvexity which may result in the relaxation’s failure to globally solve
the OPF problem.

Consider the eigenvalues of the symmetric matrices C and D, where, for the vector x̂
containing the voltage components, x̂ᵀCx̂ is a linear cost of active power generation and
x̂ᵀDx̂ calculates the reactive power losses. For the 2383-bus Polish system [132], which has
linear generation costs, the most negative eigenvalue of C is −8.53×107. Thus, the objective
function of the original OPF problem is nonconvex in terms of the voltage components, which
can cause the SDP relaxation to fail to yield the global optimum. Conversely, active power
loss minimization is convex in terms of the voltage components due to the absence of negative
resistances.

As indicated by the potential for negative eigenvalues of D (e.g., the matrix D for the 2383-
bus Polish system has a pair of negative eigenvalues at −0.0175), penalizing reactive power
losses is generally nonconvex due to capacitive network elements (i.e., increasing voltage
magnitudes may decrease the reactive power loss). See [83] for related work that uses a
convex objective based on a Laplacian matrix.

Further work is needed to investigate the effects of reactive power penalization on OPF
problems with more realistic generator models that explicitly consider the trade-off between
active and reactive power outputs (i.e., generator “D-curves”). A tighter coupling between
active and reactive power generation may cause the reactive power penalization to yield

2The cost function of the moment relaxation is always convex. This section studies the convexity of the
penalized objective function for the original nonconvex OPF problem.
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solutions that are far from the global optimum.
The apparent power line loss penalty’s effects are not as easy to interpret as the reactive

power penalty. Ongoing work includes understanding the effects of the line loss penalty.

5.5 Moment+penalization approach
Although the reactive power penalization often yields a near rank-one solution, this penaliza-
tion alone is not sufficient to obtain a feasible point for many problems. Reference [72] penal-
izes the apparent power line loss associated with certain lines to address the few remaining
non-rank-one “problematic” submatrices. However, this approach has several disadvantages.

First, penalizing apparent power line losses introduces another parameter.3 Introducing
parameters is problematic, especially when lacking an intuition for appropriate values.

Second, the combination of reactive power and line loss penalization may not yield a fea-
sible solution to some problems. For instance, the OPF problems case9mod and case39mod1
from [22] are globally solved with low-order moment relaxations, but there is no known pe-
nalization of reactive power and/or apparent power line loss that yields a feasible solution for
these problems. Also, the penalization approach is not guaranteed to yield a feasible solution
that is close to the global optimum.

Unlike the penalization approach, the moment relaxation approach does not require the
choice of penalty parameters, globally solves a broader class of OPF problems, and is guar-
anteed to yield the global optimum when the rank-one condition is satisfied. However, direct
application of the moment relaxations to large problems has so far been limited to active
power loss minimization objective functions. We conjecture that the nonconvexity associated
with more general cost functions requires higher-order moment constraints at too many buses
for computational tractability.

To apply the moment relaxations to large OPF problems with active power generation
cost objective functions, we augment the moment relaxations with a reactive power penalty.
Specifically, we add to the objective the total reactive power produced by all generators
multiplied by a penalization parameter εb (which is a positive scalar). That is, rather than
apply an apparent power loss penalization to the objective function, we apply higher-order
moment constraints to specific buses [81]. As will be demonstrated in Section 6.4, higher-
order moment constraints are only needed at a few buses in typical OPF problems after
augmenting the objective function with a reactive power penalization term.

Similar to the existing penalization, when the rank condition is satisfied, the proposed
“moment+penalization” approach yields the global solution to themodified OPF problem, but
not necessarily to the original OPF problem. However, since the penalization does not change
the constraint equations, the solution to the moment+penalization approach is feasible for the
original OPF problem. The first-order moment relaxation without penalization (i.e., εb = 0)

3Reference [72] uses the same penalization parameter for each “problematic” line. Generally, each line
could have a different penalty parameter.



CHAPTER 5. PENALIZED LASSERRE HIERARCHY 62

gives a lower bound on the globally optimal objective value for the original OPF problem.
This lower bound provides an optimality metric for the feasible solution obtained from the
moment+penalization approach. As will be shown in Section 6.4, the feasible solutions for a
variety of problems are within at least 1% of the global optimum.

The moment+penalization approach inherits a mix of the advantages and disadvantages
of the moment relaxation and penalization methods. First, the moment+penalization ap-
proach requires selection of a single scalar parameter (one more than needed for the moment
relaxations, but one less than generally needed for the penalization in [72]). This parameter
must be large enough to result in a near rank-one solution, but small enough to avoid large
changes to the OPF problem.

Second, the penalization eliminates the moment relaxations’ guarantees: the
moment+penalization approach may yield a feasible solution that is far from the global
optimum or not give any solution. However, the moment+penalization approach finds
global or near-global solutions to a broader class of small OPF problems than penaliza-
tion approach of [72] (e.g., case9mod and case39mod1 with εb = 0, and case39mod3 with
εb = $0.10/MVAr [22]). This suggests that the moment+penalization approach inherits the
ability of the moment relaxations to solve a broad class of OPF problems.

Finally, the penalization in the moment+penalization approach enables calculation of
feasible solutions that are at least nearly globally optimal for a variety of large OPF problems
with objective functions that minimize active power generation cost rather than just active
power losses.

Note that it is not straightforward to compare the computational costs of the
moment+penalization approach and the penalization approach in [72]. A single solution of
a penalized first-order moment relaxation, as in [72], is faster than a relaxation with higher-
order moment constraints. Thus, if one knows appropriate penalty parameters, the method
in [72] is faster. Although a relatively wide range of penalty parameters tends to work
well for typical OPF problems, there are problems for which no known penalty parameters
yield feasible solutions. For these problems, the moment+penalization approach has a clear
advantage.

The moment+penalization approach has the advantage of systematically tightening the
relaxation rather than requiring the choice of penalty parameters. However, the higher-order
constraints can significantly increase solver times. Thus, there is a potential trade-off between
finding appropriate penalization parameters for the approach in [72] and increased solver time
from the moment+penalization approach. The speed of the moment+penalization approach
may be improved using the mixed SDP/SOCP relaxation from [80].

5.6 Numerical results
This section first globally solves several large, active-power-loss minimizing OPF problems
using moment relaxations without penalization (εb = 0). Next, this section applies the mo-
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ment+penalization approach to find feasible points that are at least nearly globally optimal
for several test cases which minimize active power generation cost. Unless otherwise stated,
the preprocessing method from Section 5.2 with thrshz set to 1 × 10−3 per unit is applied
to all examples. No example enforces a minimum line resistance.

The results are generated using the iterative algorithm from [81] which selectively applies
the higher-order moment relaxation constraints. The algorithm terminates when all power
injection mismatches are less than 1 MVA.

The implementation uses MATLAB 2013a, YALMIP 2015.06.26 [69], and Mosek 7.1.0.28,
and was solved using a computer with a quad-core 2.70 GHz processor and 16 GB of RAM.
The test cases are the Polish system models in Matpower [132] and several PEGASE
systems [42,55] representing portions of the European power system.

Active Power Loss Minimization Results

Table 5.1 shows the results of applying the moment relaxations to several large OPF prob-
lems that minimize active power losses. The solutions to the preprocessed problems are
guaranteed to be globally optimal since there is no penalization. The columns in Table 5.1
list the case name, the number of iterations of the algorithm from [81], the maximum power
injection mismatch, the globally optimal objective value, and the solver time summed over all
iterations. The abbreviation “PL” stands for “Poland”. Table 5.1 excludes several cases (the
89-bus PEGASE system and the Polish 2736sp, 2737sop, and 2746wp systems) which only
require the first-order relaxation and thus do not illustrate the capabilities of the higher-order
relaxations. PEGASE-1354 and PEGASE-2869 use a thrshz of 3× 10−3 per unit. All other
systems use 1× 10−3 per unit.

Table 5.1: Active Power Loss Minimization Results
Case Num. Global Obj. Max Smis Solver
Name Iter. Val. ($/hr) (MVA) Time (sec)

PL-2383wp 3 24990 0.25 583
PL-2746wop 2 19210 0.39 2662
PL-3012wp 5 27642 1.00 319
PL-3120sp 7 21512 0.77 387

PEGASE-1354 5 74043 0.85 407
PEGASE-2869 6 133944 0.63 921

Each iteration of the algorithm in [81] after the first adds second-order constraints at two
buses. Thus, a small number of second-order buses (between 0.1% and 0.7% of the number
of buses in the systems in Table 5.1 after the low-impedance line preprocessing) are applied
to all examples in Table 5.1. This results in computational tractability for the moment
relaxations.

Note that PL-2746wop has a much greater solver time than the other systems even though
it only has second-order constraints at two buses. This slow solution time is due to the fact
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Figure 5.1: Eigenvalue ratio (largest/second-largest eigenvalue) for each submatrix for PL-
2383wp. Large values (>104) indicate satisfaction of the rank-1 condition. For εb = 0 (green),
most of the submatrices are not rank one. For εb = $50/MVAr (red), most submatrices satisfy
the rank condition with the exception of those on the far left of the figure. Applying second-
order moment constraints to two of the buses that are in these submatrices (blue) results in
all submatrices satisfying the rank condition.

that the two second-order buses are contained in submatrices corresponding to cliques with
10 and 11 buses. The second-order constraints for these large submatrices dominate the
solver time. The mixed SDP/SOCP relaxation in [80] may be particularly useful beneficial
for such cases.

Since the low-impedance line preprocessing has been applied to these systems, the solu-
tions do not exactly match the original OPF problems. Matpower [132] solutions of the
original problems have objective values that are slightly larger than the values in Table 5.1
due to losses associated with the line resistances removed by the preprocessing.

After the low-impedance line preprocessing, local solutions from Matpower match the
solutions from the moment relaxations and are therefore, in fact, globally optimal. This is
not the case for all OPF problems [22,81].

Moment+Penalization for More General Cost Functions

As discussed in Section 5.4, minimization of active power generation cost often yields a
nonconvex objective function in terms of the voltage components. Despite this nonconvexity,
low-order moment relaxations typically yield global solutions to small problems, including
problems without known penalty parameters for obtaining a feasible points (e.g., case9mod
and case39mod1 from [22]).

However, the moment relaxations are thus far intractable for some large OPF problems
with nonconvex objective functions. A reactive power penalty often results in the first-
order moment relaxation yielding a solution that is nearly globally optimal (i.e., most of the
submatrices in the clique decomposition satisfy the rank-one condition). Enforcing higher-
order constraints at buses in the remaining submatrices yields a feasible solution to the OPF
problem. This is illustrated in Fig. 5.1, which shows the ratio between the largest and second-
largest eigenvalues of the submatrices of the moment matrix, arranged in increasing order, for
the 2383-bus Polish system. If the submatrices were all rank one, then this eigenvalue ratio
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would be infinite. Thus, large numeric values (i.e., greater than 1× 104) indicate satisfaction
of the rank condition within numerical precision. Without the reactive power penalty, the
rank condition is not satisfied for most submatrices. With the reactive power penalty, the
rank condition is satisfied for many but not all submatrices. Enforcing higher-order moment
constraints at two buses which are in the high-rank submatrices results in a feasible (rank-one)
operating point for the OPF problem which is within at least 0.74% of the global optimum.

To further illustrate the effectiveness of the moment+penalization approach, Table 5.2
shows the results of applying the moment+penalization approach to several large OPF prob-
lems with active power generation cost functions. The optimality gap column gives the
percent difference between a lower bound on the optimal objective value from the first-order
moment relaxation and the feasible solution obtained from the moment+penalization ap-
proach for the system after low-impedance line preprocessing.

Table 5.2: Generation Cost Minimization Results
Case εb Num. Opt. Max Smis Solver
Name ($/MVAr) Iter. Gap (MVA) Time (sec)

PL-2383wp 50 2 0.74% 0.13 152.2
PL-3012wp 50 7 0.49% 0.20 1056.3
PL-3120sp 100 6 0.92% 0.08 1164.4

The penalized first-order relaxation requires 74.6, 88.9, and 97.0 seconds for PL-2383wp,
PL-3012wp, and PL-3120sp, respectively. Attributing the rest of the solver time to the
higher-order constraints implies that these constraints accounted for 3.1, 433.7, and 582.4
seconds beyond the time required to repeatedly solve the first-order relaxations.

The moment+penalization approach can yield feasible points that are at least nearly
globally optimal for cases where both the penalization method of [72] and low-order moment
relaxations fail individually. For instance, the moment+penalization approach with a reactive
power penalty of εb = $0.10/MVAr gives a feasible point within 0.28% of the global optimum
for case39mod3 from [22], but both second- and third-order moment relaxations and the
penalization method in [72] fail to yield global solutions.

5.7 Conclusion
“Moment” relaxations from the Lasserre hierarchy for polynomial optimization globally solve
a broad class of OPF problems. By exploiting sparsity and selectively applying the compu-
tationally intensive higher-order moment relaxations, previous literature demonstrated the
moment relaxations’ capability to globally solve moderate-size OPF problems. This chapter
presented a preprocessing method that removes low-impedance lines to improve the numer-
ical conditioning of the moment relaxations. After applying the preprocessing method, the
moment relaxations globally solve a variety of OPF problems that minimize active power
losses for systems with thousands of buses. A proposed “moment+penalization” method is
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capable of finding feasible points that are at least nearly globally optimal for large OPF prob-
lems with more general cost functions. This method has several advantages over previous
penalization approaches, including requiring fewer parameter choices and solving a broader
class of OPF problems. In the next chapter, we devise a method that provides nearly global
solutions to large-scale OPF problems without the need to specify any parameter.



Chapter 6

Laplacian matrix approach

A semidefinite optimization (SDP) relaxation globally solves many optimal power flow (OPF)
problems. For other OPF problems where the SDP relaxation only provides a lower bound
on the objective value rather than the globally optimal decision variables, recent literature
has proposed a penalization approach to find feasible points that are often nearly globally
optimal. A disadvantage of this penalization approach is the need to specify penalty pa-
rameters. This paper presents an alternative approach that algorithmically determines a
penalization appropriate for many OPF problems. The proposed approach constrains the
generation cost to be close to the lower bound from the SDP relaxation. The objective func-
tion is specified using iteratively determined weights for a Laplacian matrix. This approach
yields feasible points to the OPF problem that are guaranteed to be near the global opti-
mum due to the constraint on generation cost. The proposed approach is demonstrated on
both small OPF problems and a variety of large test cases representing portions of European
power systems. The material presented in this chapter is based on the submitted manuscript:

D.K. Molzahn, C. Josz, I.A. Hiskens, and P. Panciatici, A Laplacian-Based Ap-
proach for Finding Near Globally Optimal Solutions to OPF Problems, submitted to Institute
of Electrical and Electronics Engineers, Transactions on Power Systems. [preprint]

6.1 Introduction
Literature has proposed an objective function penalization approach for finding feasible points
that are near the global optimum for the OPF problem [72, 74]. The penalization approach
has the advantage of not using potentially computationally expensive higher-order moment
constraints, but has the disadvantage of requiring the choice of appropriate penalization
parameters. This choice involves a compromise, as the parameters must induce a feasible
solution to the original problem while avoiding large modifications to the problem that would
cause unacceptable deviation from the global optimum.
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The penalization formulation in the existing literature [72] generally requires specifying
penalty parameters for both the total reactive power injection and apparent power flows on
certain lines. Penalty parameters in the literature range over several orders of magnitude for
various test cases, and existing literature largely lacks systematic algorithms for determining
appropriate parameter values. Recent work [84] proposes a “moment+penalization” approach
that eliminates the need to choose apparent power flow penalization parameters, but still
requires selection of a penalty parameter associated with the total reactive power injection.

This chapter presents an iterative algorithm that builds an objective function intended to
yield near-globally-optimal solutions to OPF problems for which the SDP relaxation is not
exact. The proposed algorithm first solves the SDP relaxation to obtain a lower bound on the
optimal objective value. This lower bound is often very close to the global optimum of many
practical OPF problems. The proposed approach modifies the SDP relaxation by adding a
constraint that the generation cost must be within a small percentage (e.g., 0.5%) of this
lower bound. This percentage is the single externally specified parameter in the proposed
approach.

This constraint on the generation cost provides freedom to specify an objective function
that aims to obtain a feasible rather than minimum-cost solution for the OPF problem. In
other words, we desire an objective function such that the SDP relaxation yields a feasible
solution to the original nonconvex OPF problem, with near-global optimality ensured by the
constraint on generation cost.

This chapter proposes an algorithm for calculating an appropriate objective function de-
fined using a weighted Laplacian matrix. The weights are determined iteratively based on
the mismatch between the solution to the relaxation and the power flows resulting from a
related set of voltages. The paper will formalize these concepts and demonstrate that this
approach results in near global solutions to many OPF problems, including large test cases.
Like many penalization/regularization techniques, the proposed approach is not guaranteed
to yield a feasible solution. As supported by the results for several large-scale, realistic test
cases, the proposed algorithm broadens the applicability of the SDP relaxation to achieve op-
erating points for many OPF problems that are within specified tolerances for both constraint
feasibility and global optimality.

There is related work that chooses the objective function of a relaxation for the purpose of
obtaining a feasible solution for the original nonconvex problem. For instance, [67] specifies
objective functions that are linear combinations of squared voltage magnitudes in order to
find multiple solutions to the power flow equations. Additionally, [73] proposes a method
for determining an objective function that yields solutions to the power flow equations for a
variety of parameter choices. The objective function in [73] is defined by a matrix with three
properties: positive semidefiniteness, a simple eigenvalue of 0, and null space containing the
all-ones vector. We note that the weighted Laplacian objective function developed in this
paper is a special case of an objective function that also has these three properties.

This chapter is organized as follows. Section 6.2 describes the Laplacian objective function
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approach that is the main contribution of this chapter. Section 6.3 describes an algorithm
for determining the Laplacian weights. Section 6.4 demonstrates the effectiveness of the
proposed approach through application to a variety of small OPF problems as well as several
large test cases representing portions of European power systems. Section 6.5 concludes the
chapter.

6.2 Laplacian objective function
The proposed approach exploits the empirical observation that the SDP relaxation provides
a very close lower bound on the optimal objective value of many typical OPF problems (i.e.,
there is a very small relaxation gap). For instance, the SDP relaxation gaps for the large-
scale Polish [132] and PEGASE [42,55] systems, which represent portions of European power
systems, are all less than 0.3%.12 Further, the SDP relaxation is exact (i.e., zero relaxation
gap) for the IEEE 14-, 30-, 39-, 57-bus systems, the 118-bus system modified to enforce a
small minimum line resistance, and several of the large-scale Polish test cases.

We assume that the lower bound c∗ provided by the SDP relaxation is within a given
percentage δ of the global optimum to the OPF problem. (Most of the examples in Section 6.4
specify δ = 0.5%.) We constrain the generation cost using this assumption by requiring it
to be less than or equal to c∗(1 + δ). Note that the feasible set thus defined is non-empty
(i.e., the corresponding SDP problem is feasible) for any choice of δ ≥ 0. However, if δ is too
small, there may not exist a rank-one matrix W (i.e., a feasible point for the original OPF
problem) in the feasible space.

The lack of a priori guarantees on the size of the relaxation gap is a challenge that
the proposed approach shares with many related approaches for convex relaxations of the
optimal power flow problem. Existing sufficient conditions that guarantee zero relaxation
gap generally require satisfaction of non-trivial technical conditions and a limited set of
network topologies [70, 74]. The SDP relaxation is exact for a significantly broader class of
OPF problems than those that have a priori exactness guarantees, and has a small relaxation
gap for an even broader class of OPF problems.

There are test cases that are specifically constructed to exhibit somewhat anomalous
behavior in order to test the limits of the convex relaxations. The SDP relaxation gap is
not small for some of these test cases. For instance, the 3-bus system in [78], the 5-bus
system in [85], and the 9-bus system in [22] have relaxation gaps of 20.6%, 8.9%, and 10.8%,
respectively, and the test cases in [58] have relaxation gaps as large as 52.7%. The approach
proposed in this paper is not appropriate for such problems. Future progress in convex
relaxation theory is required to develop broader conditions that provide a priori certification

1To obtain satisfactory convergence of the SDP solver, these systems are pre-processed to remove low-
impedance lines (i.e., lines whose impedance values have magnitudes less than 1× 10−3 per unit) as in [84].

2These relaxation gaps are calculated using the objective values from the Shor SDP relaxation and solutions
obtained either from the second-order moment relaxation [81] (where possible) or from Matpower [132].
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that the SDP relaxation is exact or has a small relaxation gap. We also await the development
of more extensive sets of OPF test cases to further explore the observation that many typical
existing practical test cases have small SDP relaxation gaps.

By inserting the original cost function as a constraint, this effectively frees the choice of the
objection function (which we will denote f (W)) to obtain a feasible rather than minimum-
cost solution to the OPF. Here, W denotes the real SDP matrix variable of 2n × 2n where
n is the number of buses. Any solution with rank (W) = 1 yields a feasible solution to
the OPF problem within δ of the globally optimal objective value. We therefore seek an
objective function f (W) which maximizes the likelihood of obtaining rank (W) = 1. This
section describes a Laplacian form for the function f (W). Specifically, we consider a nl×nl
diagonal matrix D containing weights for the network Laplacian matrix L = Aᵀ

incDAinc,
where Ainc is the nl×n incidence matrix for the network. The off-diagonal term Lij is equal
to the negative of the sum of the weights for the lines connecting buses i and j, and the
diagonal term Lii is equal to the sum of the weights of the lines connected to bus i. The
objective function is

f (W) = tr

([
L 0n×n

0n×n L

]
W

)
. (6.1)

The choice of an objective function based on a Laplacian matrix is motivated by previous
literature. An existing penalization approach [74] augments the objective function by adding
a term that minimizes the total reactive power injection. This reactive power penalty can be
implemented by adding the term

εb tr

 <(YH−Y
2j

)
=
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YH−Y
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)
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)
<
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to the objective function of the Shor relaxation of the OPF, where εb is a specified penalty
parameter, (·)H indicates conjugate transpose, and Y is the admittance matrix. In the
absence of phase-shifting transformers (i.e., θlm = 0 ∀ (l,m) ∈ L), the matrix YH−Y

2j
is

equivalent to −= (Y) = −B, which is a weighted Laplacian matrix (with weights determined
by the branch susceptance parameters blm = −Xlm

R2
lm+X2

lm
) plus a diagonal matrix composed of

shunt susceptances.
Early work on SDP relaxations of OPF problems [66] advocates enforcing a minimum

resistance of εr for all lines in the network. For instance, the SDP relaxation fails to be exact
for the IEEE 118-bus system [1], but the relaxation is exact after enforcing a minimum line
resistance of εr = 1 × 10−4 per unit. After enforcing a minimum line resistance, the active
power losses are given by
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where Yr is the network admittance matrix after enforcing a minimum branch resistance of
εr. In the absence of phase-shifting transformers, Yr+YH

r

2
is equivalent to < (Yr), which is a

weighted Laplacian matrix (with weights determined by the branch conductance parameters
glm = Rlm

R2
lm+X2

lm
) plus a diagonal matrix composed of shunt conductances. Since typical OPF

problems have objective functions that increase with active power losses, enforcing minimum
line resistances is similar to a weighted Laplacian penalization.3

The proposed objective function (6.1) is equivalent to a linear combination of certain
components of W:

f (W) =
∑

(l,m)∈L

D(l,m) (Wll − 2Wlm + Wmm

+Wl+n,l+n − 2Wl+n,m+n + Wm+n,m+n) (6.4)

where D(l,m) is the diagonal element of D corresponding to the line from bus l to bus m.
From a physical perspective, the Laplacian objective’s tendency to reduce voltage differ-

ences is similar to both the reactive power penalization proposed in [74] and the minimum
branch resistance advocated in [66]. For typical operating conditions, reactive power in-
jections are closely related to voltage magnitude differences, so penalizing reactive power
injections tends to result in solutions with similar voltages. Likewise, the active power losses
associated with line resistances increase with the square of the current flow through the line,
which is determined by the voltage difference across the line. Thus, enforcing a minimum
line resistance tends to result in solutions with smaller voltage differences in order to reduce
losses.

In addition, a Laplacian regularizing term has been used to obtain desirable solution
characteristics for a variety of other optimization problems (e.g., machine learning prob-
lems [77,109], sensor network localization problems [128], and analysis of flow networks [120]).
The Laplacian matrix is also used for image reconstruction problems [31].

6.3 Determining Laplacian weights
Having established a weighted Laplacian form for the objective function, we introduce an
iterative algorithm for determining appropriate weights D for obtaining a solution with
rank (W) = 1. We note that the proposed algorithm is similar in spirit to the method
in [24, Section 2.4], which iteratively updates weighting parameters to promote low-rank
solutions of SDPs related to image reconstruction problems.

The proposed algorithm is inspired by the apparent power line flow penalty used in [72]
and the iterative approach to determining appropriate buses for enforcing higher-order mo-
ment constraints in [81]. The approach in [72] penalizes the apparent power flows on lines

3Note that since enforcing minimum line resistances also affects the power injections and the line flows, the
minimum line resistance cannot be solely represented as a Laplacian penalization of the objective function.
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associated with certain submatrices of W that are not rank one.4 Similar to the approach
in [72], the proposed algorithm adds terms to the objective function that are associated with
certain “problematic lines.”

The heuristic for identifying problematic lines is inspired by the approach used in [81] to
detect “problematic buses” for application of higher-order moment constraints. Denote the
SDP solution as W? and the closest rank-one matrix to W? as W(1). Previous work [81]
compares the power injections associated with W? and W(1) to calculate power injection
mismatches Sinj misk for each bus k ∈ N :

Sinj misk =∣∣tr{Yk

(
W? −W(1)

)}
+ jtr

{
Ȳk

(
W? −W(1)

)}∣∣ (6.5)

where | · | denotes the magnitude of the complex argument. In the parlance of [81], problem-
atic buses are those with large power injection mismatches Sinj misk .

To identify problematic lines rather than buses, we modify (6.5) to calculate apparent
power flow mismatches Sflowmis(l,m) for each line (l,m) ∈ L:

Sflowmis(l,m) =∣∣tr{Zlm

(
W? −W(1)

)}
+ jtr

{
Z̄lm

(
W? −W(1)

)}∣∣
+
∣∣tr{Zml

(
W? −W(1)

)}
+ jtr

{
Z̄ml

(
W? −W(1)

)}∣∣ . (6.6)

Observe that Sflowmis(l,m) sums the magnitude of the apparent power flow mismatches at both
ends of each line.

The condition rank (W?) = 1 (i.e., “feasibility” in this context) is considered satisfied for
practical purposes using the criterion that the maximum line flow and power injection mis-
matches (i.e., max(l,m)∈L S

flowmis
(l,m) and maxk∈N S

inj mis
k ) are less than specified tolerances εflow

and εinj, respectively, and the voltage magnitude limits are satisfied to within a specified
tolerance εV .5

As described in Algorithm 1, the weights on the diagonal of D are determined from
the line flow mismatches Sflowmis(l,m) . Specifically, the proposed algorithm first solves the Shor
relaxation to obtain both the lower bound c∗ on the optimal objective value and the initial
line flow and power injection mismatches Sflowmis(l,m) , ∀ (l,m) ∈ L and Sinj misk , ∀k ∈ N .

While the termination criteria (max(l,m)∈L
{
Sflowmis(l,m)

}
< εflow, maxk∈N

{
Sinj misk

}
< εinj,

and no voltage limits violated by more than εV ) are not satisfied, the algorithm solves the
SDP relaxation with the constraint ensuring that the generation cost is within δ of the lower
bound. The objective function is defined using the weighting matrix D = diag

(
Sflowmis

)
,

4The submatrices are determined by the maximal cliques of a chordal supergraph of the network; see [52,
72,82] for further details.

5For all test cases, the voltage magnitude limits were satisfied whenever the power injection and line flow
mismatch tolerances were achieved.
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Algorithm 1 Iterative Algorithm for Determining Weights
1: Input: tolerances εflow and εinj, max relaxation gap δ
2: Set D = 0nl×nl
3: Solve the Shor SDP relaxation to obtain c∗
4: Calculate Sflowmis and Sinj mis using (6.6) and (6.5)
5: while termination criteria not satisfied
6: Update weights: D← D + diag

(
Sflowmis

)
7: Solve the generation-cost-constrained relaxation
8: Calculate Sflowmis and Sinj mis using (6.6) and (6.5)
9: Calculate the voltage phasors and terminate

where diag (·) denotes the matrix with the vector argument on the diagonal and other entries
equal to zero. Each iteration adds the line flow mismatch vector Sflowmis to the previous
weights (i.e., D← D + diag

(
Sflowmis

)
).

Note that Algorithm 1 is not guaranteed to converge. Non-convergence may be due to the
value of δ being too small (i.e., there does not exist a rank-one solution) or failure to find a
rank-one solution that does exist. To address the former case, Algorithm 1 could be modified
to include an “outer loop” that increments δ by a specified amount (e.g., 0.5%) if convergence
is not achieved in a certain number of iterations. We note that, like other convex relaxation
methods, the proposed approach would benefit from further theoretical work regarding the
development of a priori guarantees on the size of the relaxation gap for various classes of
OPF problems.

For some problems with large relaxation gaps (e.g., the 3-bus system in [78], the 5-bus
system in [85], and the 9-bus system in [22]), no purely penalization-based methods have so
far successfully addressed the latter case where the proposed algorithm fails to find a rank-one
solution that satisfies the generation cost constraint with sufficiently large δ (i.e., no known
penalty parameters yield feasible solutions using the methods in [72,74] for these test cases).
One possible approach for addressing this latter case is the combination of penalization
techniques with Lasserre’s moment relaxation hierarchy [44, 57, 79, 81]. The combination of
the moment relaxations with the penalization methods enables the computation of near-
globally-optimal solutions for a broader class of OPF problems than either method achieves
individually. See [84] for further details on this approach.

We note that despite the lack of a convergence guarantee, the examples in Section 6.4
demonstrate that Algorithm 1 is capable of finding feasible points that are near the global
optimum for many OPF problems, including large test cases.
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6.4 Numerical results
This section demonstrates the effectiveness of the proposed approach using several small
example problems as well as large test cases representing portions of European power systems.
The SDP relaxation yields a small but non-zero relaxation gap for the test cases selected in
this section, and Algorithm 1 yields points that are feasible for the OPF (to within the
specified termination criteria) and that are near the global optimum for these test cases. For
other test cases with a large SDP relaxation gap, such as those mentioned earlier in [22, 58,
78,85], the proposed algorithm does not converge when tested with a variety of values for δ.

The results in this section use line flow and power injection mismatch tolerances εflow
and εinj that are both equal to 1 MVA and εV = 5 × 10−4 per unit. The implementation
of Algorithm 1 uses MATLAB 2013a, YALMIP 2015.02.04 [69], and Mosek 7.1.0.28 [2], and
was solved using a computer with a quad-core 2.70 GHz processor and 16 GB of RAM.

Applying Algorithm 1 to several small- to medium-size test cases from [1, 58, 67, 81, 85]
yields the results shown in Table 6.1. Tables 6.2 and 6.3 show the results from applying
Algorithm 1 to large test cases which minimize generation cost and active power losses,
respectively. These test cases, which are from [132] and [42, 55], represent portions of Eu-
ropean power systems. The Shor relaxation has a small but non-zero relaxation gap for all
test cases considered in this section. The columns of Tables 6.1–6.3 show the case name
and reference, the number of iterations of Algorithm 1, the final maximum apparent power
flow mismatch max(l,m)∈L

{
Sflowmis(l,m)

}
in MVA, the final maximum power injection mismatch

maxk∈N
{
Sinj misk

}
in MVA, the specified value of δ, an upper bound on the relaxation gap

from the solution to the Shor relaxation, and the total solver time in seconds.
Note that the large test cases in Tables 6.2 and 6.3 were preprocessed to remove low-

impedance lines as described in [84] in order to improve the numerical convergence of the SDP
relaxation. Lines which have impedance magnitudes less than a threshold (thrshz in [84])
of 1 × 10−3 per unit are eliminated by merging the terminal buses. Table 6.4 describes
the number of buses and lines before and after this preprocessing. Low-impedance line
preprocessing was not needed for the test cases in Table 6.1. After preprocessing, MOSEK’s
SDP solver converged with sufficient accuracy to yield solutions that satisfied the voltage
magnitude limits to within εV = 1× 10−4 per unit and the power injection and line flow
constraints to within the corresponding mismatches shown in Tables 6.1–6.3.

These results show that Algorithm 1 finds feasible points (within the specified tolerances)
that have objective values near the global optimum for a variety of test cases. Further,
Algorithm 1 globally solves all OPF problems for which the Shor relaxation is exact (e.g.,
many of the IEEE test cases [66], several of the Polish test systems [82], and the 89-bus
PEGASE system [42, 55]). Thus, the algorithm is a practical approach for addressing a
broad class of OPF problems.

We note, however, that Algorithm 1 does not yield a feasible point for all OPF problems.
For instance, the test case WB39mod from [22] has line flow and power injection mismatches
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Table 6.1: Results for Small and Medium Size Test Cases
Case Num. Max Max δ Max Solver
Name Iter. Flow Mis. Inj. Mis. (%) Relax. Time

(MVA) (MVA) Gap (%) (sec)
LMBD3 [67] 1 1.3e−5 1.6e−5 0.5 0.50 0.7
MLD3 [85] 1 7.3e−6 7.2e−5 0.5 0.50 0.5
MH14Q [81] 2 1.8e−5 9.9e−6 0.5 0.02 1.2
MH14L [81] 2 8.1e−5 7.8e−5 0.5 0.33 1.2
KDS14Lin [58] 1 1.2e−3 9.2e−4 1.0 1.00 0.7
KDS14Quad [58] 1 1.4e−4 8.4e−5 1.0 1.00 0.6
KDS30Lin [58] 7 9.3e−1 9.2e−1 2.5 2.50 4.6
KDS30Quad [58] 6 8.1e−1 8.0e−1 2.0 2.00 3.6
KDS30IEEEQuad [58] 100 9.5e−1 7.2e−1 2.5 2.50 129.8
MH39L [81] 1 1.3e−2 9.8e−3 0.5 0.27 0.7
MH57Q [81] 1 1.2e−3 6.9e−4 0.5 0.03 0.7
MH57L [81] 1 3.2e−4 5.2e−4 0.5 0.16 0.9
MH118Q [81] 2 3.3e−3 2.7e−3 0.5 0.50 2.6
MH118L [81] 2 3.1e−3 3.1e−3 1.0 1.00 3.3
IEEE 300 [1] 1 1.3e−1 1.2e−1 0.5 0.01 3.0

of 18.22 MVA and 12.99 MVA, respectively, after 1000 iterations of Algorithm 1. The chal-
lenge associated with this case seems to result from light loading with limited ability to
absorb a surplus of reactive power injections, yielding at least two local solutions. In addi-
tion to challenging the method proposed in this paper, no known penalty parameters yield
feasible solutions to this problem. Generalizations of the SDP relaxation using the Lasserre
hierarchy have successfully calculated the global solution to this case [81,84]. Further, while
Algorithm 1 converges for five of the seven test cases in [58] which have small relaxation gaps
(less than 2.5%), the algorithm fails for two other such test cases as well as several other test
cases in [58] which have large relaxation gaps. We note that the tree topologies used in the
test cases in [58] are a significant departure from the mesh networks used in the standard test
cases from which they were derived; the proposed algorithm succeeds for several test cases
that share the original network topologies.

We note that the interior point solver in Matpower obtained superior relaxation gaps for
the test cases considered in this paper. Within approximately five seconds for the large test
cases in Tables 6.2 and 6.3, Matpower obtained relaxation gaps that ranged from 0.14%
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Table 6.2: Results for Large Test Cases that Minimize Generation Cost
Case Num. Max Max δ Max Solver
Name Iter. Flow Mis. Inj. Mis. (%) Relax. Time

(MVA) (MVA) Gap (%) (sec)
PL-2383wp [132] 2 0.54 0.50 0.5 0.50 78.6
PL-3012wp [132] 2 0.36 0.27 0.5 0.50 107.6
PL-3120sp [132] 2 0.56 0.33 0.5 0.50 84.2

Table 6.3: Results for Large Test Cases that Minimize Active Power Loss
Case Num. Max Max δ Max Solver
Name Iter. Flow Mis. Inj. Mis. (%) Relax. Time

(MVA) (MVA) Gap (%) (sec)
PL-2383wp [132] 5 0.21 0.16 0.5 0.26 154.0
PL-3012wp [132] 5 0.08 0.04 0.5 0.18 232.2
PL-3120sp [132] 5 0.25 0.19 0.5 0.38 232.6
PEGASE-1354 [42,55] 12 0.27 0.18 0.5 0.15 199.2
PEGASE-2869 [42,55] 38 0.91 0.69 0.5 0.15 2378.4

Table 6.4: Descriptions of Large Test Cases Before and After Low-Impedance Line Prepro-
cessing

Case Before Preprocessing After Preprocessing
Name Num. Num. Num. Num.

Buses Lines Buses Lines
PL-2383wp 2,383 2,869 2,177 2,690
PL-3012wp 3,012 3,572 2,292 2,851
PL-3120sp 3,120 3,693 2,314 2,886
PEGASE-1354 1,354 1,991 1,179 1,803
PEGASE-2869 2,869 4,582 2,120 4,164

to 0.32% smaller than those obtained with Algorithm 1.6 This suggests that smaller values
of δ could be used in Algorithm 1. Indeed, additional numerical experiments demonstrated
that Algorithm 1 converged with δ = 0.25% (half the value used in previous numerical
experiments) for all test cases for which the Matpower solution indicated that a value of

6Of course, Matpower cannot provide any measure of the quality of its solution in terms of a lower
bound on the globally optimal objective value whereas Algorithm 1 provides such guarantees.



CHAPTER 6. LAPLACIAN MATRIX APPROACH 77

5 10 15 20 25 30 35
10

−2

10
−1

10
0

10
1

10
2

10
3

Iteration

M
a
x
im

u
m

 F
lo

w
 M

is
m

a
tc

h
 (

M
V

A
)

Maximum Apparent Power Flow Mismatch

 

 

PL−2383wp
PL−3012wp
PL−3120sp
PEGASE−1354
PEGASE−2869

Figure 6.1: Maximum Apparent Power Flow Mismatches versus Iteration of Algorithm 1 for
Active Power Loss Minimizing Test Cases

δ = 0.25% was achievable.
We select termination parameter values of εflow and εinj of 1 MVA. This tolerance is

typically numerically achievable with MOSEK’s SDP solver, which experience suggests is
often a limiting factor to obtaining smaller mismatches.

Note that the maximum mismatches do not necessarily decrease monotonically with each
iteration of Algorithm 1. Figs. 6.1 and 6.2 show the maximum flow mismatches (on a loga-
rithmic scale) for the test cases that minimize active power losses (cf. Table 6.3). Likewise,
Figs. 6.3 and 6.4 show the maximum power injection mismatches for the same test cases.
Although the mismatches do not always decrease monotonically, there is a generally decreas-
ing trend which results in satisfaction of the termination criteria for each test case. At each
iteration, Algorithm 1 yields larger reactive power mismatches than active power mismatches
for these test cases.

Note that it is not straightforward to compare the computational costs of the Laplacian
objective approach and other penalization approaches in the literature [72,74]. A single solu-
tion of the penalized SDP relaxations in [72] requires approximately the same computational
effort as one iteration of Algorithm 1. Thus, if one knows appropriate penalty parameters, the
method in [72] is faster for problems where the SDP relaxation is not exact. However, the key
advantage of the proposed approach is that there is no need to specify any parameters other
than the value of δ used in the generation cost constraint. In contrast, the literature largely
lacks systematic approaches for identifying appropriate parameter values for the penalization
methods in [72,74].
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Figure 6.2: Maximum Active and Reactive Power Flow Mismatches versus Iteration of Algo-
rithm 1 for Active Power Loss Minimizing Test Cases

6.5 Conclusion
The SDP relaxation of [66] is capable of globally solving a variety of OPF problems. To
address a broader class of OPF problems, this paper has described an approach that finds
feasible points with objective values that are within a specified percentage of the global
optimum. Specifically, the approach in this paper adds a constraint to ensure that the gen-
eration cost is within a small specified percentage of the lower bound obtained from the
SDP relaxation. This constraint frees the objective function to be chosen to yield a feasible
(i.e., rank-one) solution rather than a minimum-cost solution. Inspired by previous penal-
ization approaches and results in the optimization literature, an objective function based on
a weighted Laplacian matrix is selected. The weights for this matrix are iteratively deter-
mined using “line flow mismatches.” The proposed approach is validated through successful
application to a variety of both small and large test cases, including several OPF problems
representing large portions of European power systems. There are, however, test cases for
which the approach takes many iterations to converge or does not converge at all.

Future work includes modifying the algorithm for choosing the weights in order to more
consistently require fewer iterations. Also, future work includes testing alternative SDP solu-
tion approaches with “hot start” capabilities to improve computational efficiency by leveraging
knowledge of the solution to a “nearby” problem from the previous iteration of the algorithm.
Future work also includes extension of the algorithm to a broader class of OPF problems,
such as the test case WB39mod from [22] and several examples in [58].

In this chapter and the one before that, two methods were proposed to find nearly global
solutions to large-scale OPF problems with generation cost minimization. In the case of active
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Figure 6.3: Maximum Apparent Power Injection Mismatches versus Iteration of Algorithm 1
for Active Power Loss Minimizing Test Cases

power loss minimization, Lasserre’s hierarchy finds the global solution to large-scale problems,
provided the data is preprocessed to avoid bad conditioning. The difference between the two
cases is that active power loss is a convex function of voltages, whereas generation cost is not.
In the next chapter, Lasserre’s hierarchy is transposed to complex numbers in order to reduce
its computional cost for OPF problems. Moreover, the sparsity exploiting algorithm from [81]
designed for OPF problems is formalized for general polynomial optimization problems with
either real or complex variables.
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Figure 6.4: Maximum Active and Reactive Power Injection Mismatches versus Iteration of
Algorithm 1 for Active Power Loss Minimizing Test Cases



Chapter 7

Complex hierarchy for enhanced
tractability

We consider the problem of finding the global optimum of a real-valued complex polynomial
f : z ∈ Cn 7−→

∑
α,β fα,β z̄

αzβ ∈ R (zα := zα1
1 . . . zαnn , fα,β = fβ,α) on a compact set defined

by real-valued complex polynomial inequalities. It reduces to solving a sequence of complex
semidefinite optimization relaxations that grow tighter and tighter thanks to D’Angelo’s and
Putinar’s Positivstellenstatz discovered in 2008. In other words, the Lasserre hierarchy may
be transposed to complex numbers. We propose a method for exploiting sparsity and apply
the complex hierarchy to problems with several thousand complex variables. These problems
consist of computing optimal power flows in the European high-voltage transmission network.
The material presented in this chapter is based on the submitted manuscript:

C. Josz, D. K. Molzahn, Moment/Sum-of-Squares Hierarchy for Complex Polynomial
Optimization, submitted to Society for Industrial and Applied Mathematics, Journal on Op-
timization. [preprint]

7.1 Introduction
Multivariate polynomial optimization where variables and data are complex numbers is a non-
deterministic polynomial-time hard problem that arises in various applications such as electric
power systems (Section 7.4), imaging science [14, 24, 43, 108], signal processing [3, 12, 29, 68,
71,75], automatic control [121], and quantum mechanics [49]. Complex numbers are typically
used to model oscillatory phenomena which are omnipresent in physical systems. Although
complex polynomial optimization problems can readily be converted into real polynomial
optimization problems where variables and data are real numbers, efforts have been made
to find ad hoc solutions to complex problems [53, 54, 112]. The observation that relaxing
nonconvex constraints and converting from complex to real numbers are two non-commutative

81

http://arxiv.org/pdf/1508.02068v1.pdf
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operations motivates our work. This leads us to transpose to complex numbers Lasserre’s
moment/sum-of-squares hierarchy [62] for real polynomial optimization.

The moment/sum-of-squares hierarchy succeeds to the vast development of real algebraic
geometry during the twentieth century [91]. In 1900, Hilbert’s seventeenth problem [103]
raised the question of whether a non-negative polynomial in multiple real variables can be
decomposed as a sum of squares of fractions of polynomials, to which Artin [10] answered
in the affirmative in 1927. Later, positive polynomials on sets defined by a finite num-
ber of polynomial inequality constraints were investigated by Krivine [59], Stengle [113],
Schmüdgen [102], and Putinar [92]. A theorem concerning such polynomials is referred to as
Positivstellensatz [101]. For instance, Putinar proved under an assumption slightly stronger
than compactness that they can be decomposed as a weighted sum of the constraints where
the weights are sums of squares of polynomials. Lasserre [61,62,64] used this result in 2001 to
develop a hierarchy of semidefinite programs to solve real polynomial optimization problems
with compact feasible sets, with Parrilo [89,90] making a similar contribution independently.
In order to satisfy the assumption made by Putinar, Lasserre proposed to add a redundant
ball constraint x2

1 + . . . + x2
n 6 R2 to the description of the feasible set when it is included

in a ball of radius R. Subsequent work on the hierarchy includes its comparison with lift-
and-project methods [65], a new proof of Putinar’s Positivstellensatz via a 1928 theorem of
Pólya [104], and a proof of generically finite convergence [87].

In 1968, Quillen [98] showed that a real-valued bihomogenous complex polynomial that is
positive away from the origin can be decomposed as a sum of squared moduli of holomorphic
polynomials when it is multiplied by (|z1|2 + . . . + |zn|2)r for some r ∈ N. The result was
rediscovered years later by Catlin and D’Angelo [28] and ignited a search for complex ana-
logues of Hilbert’s seventeenth problem [35,36] and the ensuing Positivstellensätze [38,94–96].
Notably, D’Angelo and Putinar [37] proved in 2008 that a positive complex polynomial on
a sphere intersected by a finite number of polynomial inequality constraints can be decom-
posed as a weighted sum of the constraints where the weights are sums of squared moduli of
holomorphic polynomials. Similar to Lasserre, we use D’Angelo’s and Putinar’s Positivstel-
lensatz to construct a complex moment/sum-of-squares hierarchy of semidefinite programs
to solve complex polynomial optimization problems with compact feasible sets. To satisfy
the assumption in the Positivstellensatz, we propose to add a slack variable zn+1 ∈ C and a
redundant constraint |z1|2 + . . . + |zn+1|2 = R2 to the description of the feasible set when it
is in a ball of radius R. The complex hierarchy is more tractable than the real hierarchy yet
produces potentially weaker bounds. Computational advantages are shown using the optimal
power flow problem in electrical engineering.

Below, Section 7.2 uses Shor and second-order conic relaxations to motivate the con-
struction of a complex moment/sum-of-squares hierarchy in Section 7.3. Using a sparsity-
exploiting method, numerical experiments on the optimal power flow problem are presented
in Section 7.4. Section 7.5 concludes our work.
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7.2 Motivation
Let N, N∗, R, R+ and C denote the set of natural, positive natural, real, non-negative real,
and complex numbers respectively. Also, let “i” denote the imaginary unit and Hn denote
the set of Hermitian matrices of order n ∈ N∗. Let’s begin with the subclass of complex
polynomial optimization composed of quadratically-constrained quadratic programs

QCQP-C : inf
z∈Cn

zHH0z, (7.1a)

s.t. zHHiz 6 hi, i = 1, . . . ,m, (7.1b)

where m ∈ N∗, H0, . . . , Hm ∈ Hn, h0, . . . , hm ∈ R, and (·)H denotes the conjugate transpose.
The feasible set is not assumed to contain a point (i.e. it may be empty). The Shor [106]
and second-order conic relaxations of QCQP-C share the following property: it is better to
relax nonconvex constraints before converting from complex to real numbers rather than to
do the two operations in the opposite order.

Shor relaxation

For H ∈ Hn and z ∈ Cn, the relationship zHHz = Tr(HzzH) holds where Tr (·) denotes the
trace1 of a complex square matrix. Relaxing the rank of Z = zzH in (7.1) yields

SDP-C : inf
Z∈Hn

Tr(H0Z), (7.2a)

s.t. Tr(HiZ) 6 hi, i = 1, . . . ,m, (7.2b)
Z < 0, (7.2c)

where < 0 indicates positive semidefiniteness.
Let ReZ and ImZ denote the real and imaginary parts of the matrix Z ∈ Cn×n respec-

tively. Consider the ring homomorphism Λ : (Cn×n,+,×) −→ (R2n×2n,+,×) defined by

Λ(Z) :=

(
ReZ −ImZ
ImZ ReZ

)
, (7.3)

whose relevant properties are proven in Appendix A. To convert SDP-C into real numbers,
real and imaginary parts of the complex matrix variable are identified using two properties:
(1) a complex matrix Z is positive semidefinite if and only if the real matrix Λ(Z) is positive
semidefinite, and (2) if Z1, Z2 ∈ Hn, then Tr [Λ(Z1)Λ(Z2)] = Tr [Λ(Z1Z2)] = 2Tr(Z1Z2). This
yields the converted problem

CSDP-R : inf
X∈S2n

Tr(Λ(H0)X), (7.4a)

1For all matrices A,B ∈ Cn×n, Tr(AB) =
∑

16i,j6nAijBji.
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s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m, (7.4b)
X < 0, (7.4c)

X =

(
A BT

B C

)
&

A = C,
BT = −B, (7.4d)

where S2n denotes the set of real symmetric matrices of order 2n and (·)T indicates the
transpose. Note that the set of matrices satisfying (7.4d) is isomorphic to Cn×n. A global
solution to QCQP-C can be retrieved from CSDP-R if and only if rank(X) ∈ {0, 2} at
optimality (proof in Appendix B).

In order to convert QCQP-C into real numbers, real and imaginary parts of the complex
vector variable are identified. This is done by considering a new variable x =

(
(Rez)T (Imz)T

)T
and observing that if H ∈ Hn, then zHHz = xTΛ(H)x = Tr(Λ(H)xxT ). This gives rise to a
problem which we will call QCQP-R. Relaxing the rank of X = xxT yields

SDP-R : inf
X∈S2n

Tr(Λ(H0)X), (7.5a)

s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m, (7.5b)
X < 0. (7.5c)

A global solution to QCQP-C can be retrieved from SDP-R if and only if rank(X) ∈ {0, 1}
or rank(X) = 2 and (7.4d) holds at optimality.

We have val(SDP-C) = val(CSDP-R) = val(SDP-R) where “val” is the optimal value of
a problem (proof in Appendix C). The number of scalar variables of CSDP-R is half that of
SDP-R due to constraint (7.4d). This constraint also halves the possible ranks of the matrix
variable, which must be an even integer in CSDP-R whereas it can be any integer between
0 and 2n in SDP-R. The number of variables in SDP-R can be reduced by a small fraction
( 2

2n+1
to be exact) by setting a diagonal element of X to 0. This does not affect the optimal

value (proof in Appendix D). Figure 7.1 summarizes this section.

Second-order conic relaxation

In SDP-C, assume that the semidefinite constraint (7.2c) is relaxed to the second-order cones(
Zii Zij
ZH
ij Zjj

)
< 0 , 1 6 i 6= j 6 n. (7.6)

Equation (7.6) is equivalent to constraining the determinant ZiiZjj − ZijZ
H
ij and diagonal

elements Zii to be non-negative. This yields

SOCP-C : inf
Z∈Hn

Tr(H0Z), (7.7a)

s.t. Tr(HiZ) 6 hi, i = 1, . . . ,m, (7.7b)
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Figure 7.1: Non-Commutativity of Relaxation and Complex-to-Real Conversion

|Zij|2 6 ZiiZjj, 1 6 i 6= j 6 n, (7.7c)
Zii > 0, i = 1, . . . , n, (7.7d)

where | · | denotes the complex modulus. Identifying real and imaginary parts of the matrix
variable Z leads to

CSOCP-R : inf
X∈S2n

Tr(Λ(H0)X), (7.8a)

s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m, (7.8b)
X2
ij +X2

n+i,j 6 XiiXjj, 1 6 i 6= j 6 n, (7.8c)
Xii +Xn+i,n+i > 0, i = 1, . . . , n, (7.8d)

X =

(
A BT

B C

)
&

A = C,
BT = −B. (7.8e)

In SDP-R of Section, assume that the semidefinite constraint (7.5c) is relaxed to the second-
order cones (

Xii Xij

Xij Xjj

)
< 0 , 1 6 i 6= j 6 2n. (7.9)

This leads to

SOCP-R : inf
X∈S2n

Tr(Λ(H0)X), (7.10a)

s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m, (7.10b)
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X2
ij 6 XiiXjj, 1 6 i 6= j 6 2n, (7.10c)

Xii > 0, i = 1, . . . , 2n. (7.10d)

Unlike in the Shor relaxation, we have val(SOCP-C) = val(CSOCP-R) > val(SOCP-R)
(proof in Appendix E). The number of scalar variables of CSOCP-R is half that of SOCP-R
due to constraint (7.8e). The number of second-order conic constraints in CSOCP-R, equal
to n(n−1)

2
, is roughly a fourth of that in SOCP-R, equal to 2n(2n−1)

2
.

Exploiting sparsity

Given an undirected graph (V , E) where V ⊂ {1, . . . , n} and E ⊂ V ×V , define for all Z ∈ Hn

Ψ(V,E)(Z)ij :=

{
Zij if (i, j) ∈ E or i = j ∈ V ,
0 else. (7.11)

We associate an undirected graph G to QCQP-C whose nodes are {1, . . . , n} and that
satisfies Hi = ΨG(Hi) for i = 0, . . . ,m. Let H+

n denote the set of positive semidefinite
Hermitian matrices of size n and let “Ker” denote the kernel of a linear application. Given
the definition of G, constraint (7.2c) of SDP-C can be relaxed to Z ∈ H+

n + Ker ΨG̃ without
changing its optimal value for any graph G̃ whose nodes are {1, . . . , n} and where G ⊂ G̃.
Consider a chordal extension G ⊂ Gch, that is to say that all cycles of length four or more
have a chord (edge between two non-consecutive nodes of the cycle). Let C1, . . . , Cp ⊂ Gch

denote the maximal cliques of Gch. (A clique is a subgraph where all nodes are linked to
one another. The set of maximally sized cliques of a given graph can be computed in linear
time [117]). A chordal extension has a useful property for exploiting sparsity [46]: for all
Z ∈ Hn, we have that Z ∈ H+

n + Ker ΨGch if and only if ΨCi(Z) < 0 for i = 1, . . . , p. Note
that ΨCi(Z) < 0 if and only if Λ ◦ ΨCi(Z) < 0, where “◦” is the composition of functions.
Given a graph (V , E), define for X ∈ S2n

Ψ̃(V,E)(X) :=

(
Ψ(V,E)(A) Ψ(V,E)(B

T )
Ψ(V,E)(B) Ψ(V,E)(C)

)
, (7.12)

using the block decomposition in the left hand part of (7.4d). Notice that Λ ◦ Ψ(V,E) =

Ψ̃(V,E) ◦ Λ. As a result, (7.4c) can be replaced by Ψ̃Ci(X) < 0 for i = 1, . . . , p without
changing the optimal value of CSDP-R, with an analogous replacement for constraint (7.5c)
in SDP-R. If in SDP-R we exploit the sparsity of matrices Λ(Hi) instead of that of Hi,
the resulting graph has twice as many nodes. Computing a chordal extension and maximal
cliques is hence more costly.

Sparsity in the second-order conic relaxations is exploited using the fact that applying
(7.8c) and (7.10c) only for (i, j) that are edges of G does not change the optimal values of
CSOCP-R and SOCP-R.
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7.3 Complex moment/sum-of-squares hierarchy
We now transpose the work of Lasserre [62] from real to complex numbers. Let zα denote
the monomial zα1

1 · · · zαnn where z ∈ Cn and α ∈ Nn for some integer n ∈ N∗. Define
|α| := α1 + . . .+αn and w as the conjugate of w ∈ C. Define z̄ := (z̄1, . . . , z̄n)T where z ∈ Cn.
Consider the sets

C[z] := { p : Cn → C | p(z) =
∑
|α|6l pαz

α, l ∈ N, pα ∈ C },
C[z̄, z] := { f : Cn → C | f(z) =

∑
|α|,|β|6l fα,β z̄

αzβ, l ∈ N, fα,β ∈ C },
R[z̄, z] := { f ∈ C[z̄, z] | f(z) = f(z), ∀z ∈ Cn },

Σ[z] := { σ : Cn → C | σ =
∑r

j=1 |pj|2, r ∈ N∗, pj ∈ C[z] },

(7.13)

and for all d ∈ N

Cd[z] := { p : Cn → C | p(z) =
∑
|α|6d pαz

α, pα ∈ C },
Cd[z̄, z] := { f : Cn → C | f(z) =

∑
|α|,|β|6d fα,β z̄

αzβ, fα,β ∈ C },
Rd[z̄, z] := { f ∈ Cd[z̄, z] | f(z) = f(z), ∀z ∈ Cn },

Σd[z] := { σ : Cn → C | σ =
∑r

j=1 |pj|2, r ∈ N∗, pj ∈ Cd[z] }.

(7.14)

Note that the coefficients of a function f ∈ R[z̄, z] satisfy fα,β = fβ,α for all |α|, |β| 6 l for
some l ∈ N. The set of complex polynomials C[z̄, z] is a C-algebra (i.e. commutative ring
and vector space over C) and the set of holomorphic polynomials C[z] is a subalgebra of it
(i.e. subspace closed under sum and product). The set of real-valued complex polynomials
R[z̄, z] is an R-algebra. The set of sums of squared moduli of holomorphic polynomials Σ[z]
and the set Σd[z] ⊂ Rd[z] are pointed cones (i.e. closed under multiplication by elements
of R+) that are convex (i.e. tu + (1 − t)v with 0 6 t 6 1 belongs to them if u and v
do). Let C(K,C) denote the Banach (i.e. complete) C-algebra of continuous functions from
a compact set K ⊂ Cn to C equipped with the norm ‖ϕ‖∞ := supz∈K |ϕ(z)|. Consider
RK : C[z̄, z] −→ C(K,C) defined by f 7−→ f|K where f|K denotes the restriction of f to
K. RK(C[z̄, z]) is a unital subalgebra of C(K,C) (i.e. contains multiplicative unit) that
separates points of K (i.e. u 6= v ∈ K =⇒ ∃ϕ ∈ RK(C[z̄, z]) : ϕ(u) 6= ϕ(v)) and that
is closed under complex conjugation. It is hence a dense subalgebra due to the Complex
Stone-Weiestrass Theorem. Likewise, C(K,R) := {ϕ ∈ C(K,C) | ϕ(z) = ϕ(z), ∀z ∈ Cn} is
a Banach R-algebra of which RK(R[z̄, z]) is a dense subalgebra. In other words, a continuous
real-valued function of multiple complex variables can be approximated as close as desired by
real-valued complex polynomials when restricted to a compact set. They are hence a powerful
modeling tool in optimization. Speaking of which, letm ∈ N∗ and k, k1, . . . , km ∈ N. Consider
(f, g1, . . . , gm) ∈ Rk[z̄, z] × Rk1 [z̄, z] × . . . × Rkm [z̄, z] where there exists |α| = k and |β| 6 k
such that fα,β 6= 0. In addition, for i = 1, . . . ,m, there exists |α| = ki and |β| 6 ki such that
gi,α,β 6= 0. Consider the complex multivariate polynomial optimization problem

f opt := infz∈Cn f(z) s.t. gi(z) > 0, i = 1, ...,m, (7.15)
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where by convention f opt := +∞ if the feasible set is empty. The feasible set is a closed
semi-algebraic set on which we make the following assumption from now on:

K := { z ∈ Cn | gi(z) > 0, i = 1, ...,m } is compact. (7.16)

Let Kopt denote the set of optimal solutions to (7.15). It may be empty because we do not
assume K to be non-empty. (Note that in practice, it is often hard to know whether there
exists a feasible solution, as for the application of Section 7.4.)

LetM(K) denote the Banach space over R of Radon measures on K. Bear in mind that
since K is compact, M(K) may be identified with the topological dual of C(K,R) i.e. the
Banach space over R of linear continuous applications from C(K,R) to R equipped with the
operator norm. (This is due to the Riesz-Markov-Kakutani Representation Theorem.) For
ϕ ∈ C(K,C), define

∫
K
ϕdµ :=

∫
K
Re(ϕ)dµ + i

∫
K
Im(ϕ)dµ [100, 1.31 Definition]2. Next,

consider the convex pointed cone P(K) := { ϕ ∈ C(K,R) | ϕ(z) > 0, ∀z ∈ K }. A Radon
measure µ is positive (denoted µ > 0) if ϕ ∈ P(K) implies that

∫
K
ϕdµ > 0. Let M+(K)

denote the set of positive Radon measures. With these definitions, we have

f opt = infµ∈M(K)

∫
K
fdµ s.t.

∫
K
dµ = 1 & µ > 0. (7.17)

Indeed, if z ∈ K, then the Dirac3 measure δz is a feasible point of (7.17) for which the
objective value is equal to f(z). Hence the optimal value of (7.17) is less than or equal
to f opt. Conversly, if µ is a feasible point of (7.17), then

∫
K

(f − f opt)dµ > 0 and hence∫
K
fdµ >

∫
K
f optdµ = f opt

∫
K
dµ = f opt.

Proposition 7.1. The set of optimal solutions to (7.17) is

{ µ ∈M+(K) | µ(Kopt) = 1 & µ(K \Kopt) = 0 }. (7.18)

As a consequence, if Kopt is a finite set of S ∈ N∗ points z(1), . . . , z(S) ∈ Cn, then the set
optimal solutions to (7.17) is {

∑S
j=1 λjδz(j) |

∑S
j=1 λj = 1 & λ1, . . . , λS ∈ R+}.

Proof. Consider µ an optimal solution to (7.17). It must be that
∫
K

(f − f opt)dµ = 0. Thus∫
K\Kopt(f − f opt)dµ = 0 and µ(K \Kopt) =

∫
K\Kopt dµ = 0. Therefore µ(Kopt) =

∫
Kopt dµ =

µ(K) − µ(K \ Kopt) = 1. Conversly, if µ belongs to the set in (7.18), then it is feasible
for (7.17) and

∫
K

(f − f opt)dµ =
∫
K\Kopt(f − f opt)dµ = 0. Hence

∫
K
fdµ =

∫
K
f optdµ =

f opt
∫
K
dµ = f opt.

In order to dualize the equality constraint in (7.17), consider the Lagrange function L :
M+(K) × R −→ R defined by (µ, λ) 7−→

∫
K
fdµ + λ

(
1−

∫
K
dµ
)
. We have L(µ, λ) =

2We wish to thank Bruno Nazaret for bringing this reference to our attention.
3The Dirac measure δz with z ∈ K may be identified with the continuous linear application from C(K,R)

to R defined by ϕ 7−→ ϕ(z). This is one way to interpret the fact that
∫
K
fdδz = f(z).
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λ+
∫
K

(f − λ)dµ and

inf
µ∈M+(K)

∫
K

(f − λ)dµ =

{
0 if f(z)− λ > 0, ∀z ∈ K,

−∞ else, (7.19)

since, in the second case, we may consider tδz for a z ∈ K such that f(z) − λ < 0 and
t→ +∞. This leads to the dual problem

f opt = supλ∈R λ s.t. f(z)− λ > 0, ∀z ∈ K. (7.20)

Primal problem (7.17) gives rise to the complex moment hierarchy below. Dual problem
(7.20) gives rise to the complex sum-of-squares hierarchy below.

Complex moment hierarchy

Let H (respectively Hd) denote the set of sequences of complex numbers (yα,β)α,β∈Nn (respec-
tively (yα,β)|α|,|β|6d) such that yα,β = yβ,α for all α, β ∈ Nn (respectively |α|, |β| 6 d).

Definition 7.2. An element y ∈ H is said to have a representing measure µ on K if µ ∈
M+(K) and yα,β =

∫
K
z̄αzβdµ for all α, β ∈ Nn. In that case, yα,β is called the (α, β)-moment

of µ.

When y ∈ H has a representing measure on K, the measure is unique because RK(C[z̄, z])
is dense in C(K,C). The complex moment problem consists in characterizing the sequences
that are representable by a measure on K and is connected to other branches of mathematics
such as functional analysis and spectral theory of operators [4]. It has been studied by
Atzmon [11], Schmüdgen [102], Putinar [93], Curto and Fialkow [32–34], Stochel [114], and
Vasilescu [124]. For example, Atzmon [11, Theorem 2.1] proved that the solutions to the
complex moment problem where K = {z ∈ C | |z| = 1} are the sequences y ∈ H such that∑

m,n,j,k∈N cn,j cm,k ym+j,n+k > 0 and
∑

m,n∈Nwmwn (ym,n − ym+1,n+1) > 0 for all complex
numbers (cj,k)j,k∈N and (wn)n∈N with only finitely many non-zero terms. A generalization
to the multidimensional case is considered in Section 7.3. We conclude our presentation of
the complex moment problem by noting that the case where K is not compact is an open
problem.

Consider a feasible point µ of (7.17) and the sequence y ∈ H that has representation
measure µ onK. Notice that

∫
K
fdµ =

∫
K

∑
|α|,|β|6k fα,β z̄

αzβdµ =
∑
|α|,|β|6k fα,β

∫
K
z̄αzβdµ =∑

|α|,|β|6k fα,βyα,β =: Ly(f) and
∫
K
dµ =

∫
K
z̄0z0dµ = y0,0 = 1. For all p ∈ C[z], we have

|p|2gi > 0 on K. Since µ > 0, this implies that
∫
K
|p|2gidµ > 0. Naturally, we also have∫

K
|p|2g0dµ > 0 if we define g0 := 1. Define k0 := 0 and dmin := max{k, k1 . . . , km}. Consider
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d > dmin, 0 6 i 6 m, and p ∈ Cd−ki [z]. We have
∫
K
|p|2gidµ = . . .

=
∫
K
|
∑
|α|6d−ki pαz

α|2 (
∑
|γ|,|δ|6ki gi,γ,δ z̄

γzδ) dµ

=
∫
K

(
∑
|α|,|β|6d−ki pαpβ z̄

αzβ) (
∑
|γ|,|δ|6ki gi,γ,δ z̄

γzδ) dµ

=
∫
K

∑
|α|,|β|6d−ki pαpβ

∑
|γ|,|δ|6ki gi,γ,δ z̄

α+γzβ+δ dµ

=
∑
|α|,|β|6d−ki pαpβ

∑
|γ|,|δ|6ki gi,γ,δ

∫
K
z̄α+γzβ+δ dµ

=
∑
|α|,|β|6d−ki pαpβ (

∑
|γ|,|δ|6ki gi,γ,δ yα+γ,β+δ) =: Md−ki(giy)(α, β)

=
∑
|α|,|β|6d−ki pαpβ Md−ki(giy)(α, β)

= ~pHMd−ki(giy)~p,

(7.21)

where ~p := (pα)|α|6d−ki and Md−ki(giy) is a Hermitian matrix indexed by |α|, |β| 6 d− ki. As
a result

Md−ki(giy) < 0, i = 0, . . . ,m, ∀d > dmin. (7.22)

To sum up, y is a feasible point of

ρ := infy∈H Ly(f),
s.t. y0,0 = 1,

Md−ki(giy) < 0, i = 0, . . . ,m, ∀d > dmin,
(7.23)

with same objective value as µ in (7.17). Automatically, ρ 6 f opt. Consider the relaxation
of (7.23) defined by

ρd := infy∈Hd Ly(f),
s.t. y0,0 = 1,

Md−ki(giy) < 0, i = 0, . . . ,m,
(7.24)

which we name the complex moment relaxation of order d for reasons that will become clear
with Theorem 7.11. In Section 7.3, we will introduce its dual counterpart.

Remark 7.3. Given y ∈ H, the function Ly in this section can be formally be defined by
the C-linear operator Ly : C[z̄, z] −→ C such that Ly(z̄αzβ) = yα,β for all α, β ∈ N. If
ϕ ∈ C[z̄, z] and ϕ = ϕ, then Ly(ϕ) = Ly(ϕ). Given l, d ∈ N and ϕ ∈ Rl[z̄, z], the matrix Md

in (7.21) can be formally be defined as the Hermitian matrix indexed by |α|, |β| 6 d such that
Md(ϕy)(α, β) := Ly(ϕ(z)z̄αzβ) =

∑
|γ|,|δ|6l ϕγ,δ yα+γ,β+δ. Notice that Md(ϕy)(0, 0) = Ly(ϕ).

Lastly, define Md(y) := Md(g0y) which we refer to as complex moment matrix of order d.

Complex sum-of-squares hierarchy

We introduced notation ~p for p ∈ Cd[z] where d ∈ N and will now extend it to σ ∈
Σd[z]. For such an element, there exists r ∈ N∗ and pj ∈ Cd[z] such that σ =

∑r
j=1 |pj|2.

Let ~σ :=
∑r

j=1 ~pj~p
H
j . Also, define 〈A,B〉Hd := Tr(AB) where A,B ∈ Hd. Given d >
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dmin, consider the Lagrange function Ld : Hd × R × Σd−k0 [z] × . . . × Σd−km [z] −→ R de-
fined by (y, λ, σ0, . . . , σm) 7−→ Ly(f) + λ(1 − y0,0) −

∑m
i=0〈Md−ki(giy), ~σi〉Hd−ki . Compute

Ld(y, λ, σ0, . . . , σm) = λ + Ly(f − λ) −
∑m

i=0

∑ri
j=0(~p ij )HMd−ki(giy)~p ij = λ + Ly(f − λ) −∑m

i=0

∑ri
j=0 Ly(|pij|2gi) = λ+ Ly(f − λ−

∑m
i=0 σigi). Observe that

inf
y∈H

Ly

(
f − λ−

m∑
i=0

σigi

)
=


0 if f(z)− λ−

∑m
i=0 σi(z)gi(z) = 0,

for all z ∈ Cn,
−∞ else.

(7.25)

Indeed, in the second case, there exists z ∈ Cn such that f(z) − λ −
∑m

i=0 σi(z)gi(z) 6= 0.
With (yα,β)α,β∈N := (z̄αzβ)α,β∈N, Lty(f − λ −

∑m
i=0 σigi) −→ −∞ for either t −→ −∞ or

t −→ +∞. The associated dual problem of (7.24) is thus

ρ∗d := supλ,σ λ,
s.t. f − λ =

∑m
i=0 σigi,

λ ∈ R, σi ∈ Σd−ki [z], i = 0, . . . ,m,
(7.26)

which we name the complex sum-of-squares relaxation of order d. Consider

ρ∗ := supλ,σ λ,
s.t. f − λ =

∑m
i=0 σigi,

λ ∈ R, σi ∈ Σ[z], i = 0, . . . ,m,
(7.27)

whose relationship with (7.23) is touched upon in Proposition 7.4 below.

Proposition 7.4. We have ρ∗d 6 ρd for all d > dmin and ρ∗d −→ ρ∗ 6 ρ 6 f opt.

Proof. The sequence (ρ∗d)d>dmin is non-decreasing and upper bounded by ρ∗ ∈ R ∪ {±∞}.
Thus it converges towards some limit ρ∗lim ∈ R ∪ {±∞} such that ρ∗lim 6 ρ∗. If ρ∗ = −∞,
then ρ∗d = −∞ for all d > dmin and ρ∗d −→ ρ∗. If not, by definiton of the optimum ρ∗, there
exists a sequence (λl, σl0, . . . , σ

l
m) of feasible points such that λl 6 ρ∗ and λl −→ ρ∗. To each

l ∈ N, we may associate an integer d(l) ∈ N such that (λl, σl0, . . . , σ
l
m) is a feasible point

of the complex sum-of-squares relaxation of order d(l). Thus λl 6 ρ∗d(l) 6 ρ∗. As a result,
ρ∗limit = ρ∗. Moreover, (ρd)d>dmin is non-decreasing and upper bounded by ρ ∈ R ∪ {±∞}.
Thus it converges towards some limit ρlim ∈ R ∪ {±∞} such that ρlim 6 ρ. Moreover,
weak duality implies that ρ∗d 6 ρd (6 ρ). Thus ρ∗ 6 ρlim 6 ρ. It was already shown that
ρ 6 f opt.

Remark 7.5. Problems (7.27) and (7.23) may be interpreted as a pair of primal-dual linear
programs in infinite-dimensional spaces [8]. Indeed, consider the duality bracket 〈., .〉 defined
from R[z̄, z] ×H to R by 〈ϕ, y〉 := Ly(ϕ). A sequence (ϕn)n∈N in R[z̄, z] is said to converge
weakly towards ϕ ∈ R[z̄, z] if for all y ∈ H, we have 〈ϕn, y〉 −→ 〈ϕ, y〉. Consider the weakly
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continuous R-linear operator A : R[z̄, z] −→ R[z̄, z] defined by ϕ 7−→ ϕ− ϕ0,0. Its dual A∗ :
H −→ H is defined by y 7−→ y−y0,0δ0,0 where (δ0,0)0,0 = 1 and (δ0,0)α,β = 0 if (α, β) 6= (0, 0).
Indeed, 〈Aϕ, y〉 = 〈ϕ,A∗y〉 for all (ϕ, y) ∈ R[z̄, z] × H. Consider the convex pointed cone
defined by C := Σ[z]g0 + . . .+ Σ[z]gm and its dual cone C∗ := {y ∈ H | ∀ϕ ∈ C, 〈ϕ, y〉 > 0}.
With b := Af , notice that

f0,0 − ρ∗ = infϕ∈R[z̄,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b & ϕ ∈ C,
f0,0 − ρ = supy∈H 〈b, y〉 s.t. δ0,0 − A∗y ∈ C∗.

(7.28)

Let cl(C) denote the weak closure of C in R[z̄, z]. According to [5, 5.91 Bipolar Theorem]4,
we have cl(C) = C∗∗. In the next section, Theorem 7.6 and Theorem 7.11 provide a sufficient
condition ensuring no duality gap in (7.28) and cl(C) = {ϕ ∈ R[z̄, z] | ϕ|K > 0} respectively.

Convergence of the complex hierarchy

We now turn our attention to a result from algebraic geometry discovered in 2008.

Theorem 7.6 (D’Angelo’s and Putinar’s Positivstellenstatz [37]). If one of the constraints
that define K in (7.16) is a sphere constraint |z1|2 + . . .+ |zn|2 = 1, then

f|K > 0 =⇒ ∃σ0, . . . , σm ∈ Σ[z] : f =
m∑
i=0

σigi. (7.29)

Proof. D’Angelo and Putinar wrote the theorem slightly differently so we provide an ex-
planation. Say that constraints gm−1 and gm are such that gm−1 = s and gm = −s
where s(z) := 1 − |z1|2 − . . . − |zn|2. With the assumptions of Theorem 7.6, the authors
of [37, Theorem 3.1] show that there exists σ0, . . . , σm−2 ∈ Σ[z] and r ∈ R[z̄, z] such that
f(z) =

∑m−2
i=0 σi(z)gi(z) + r(z)s(z) for all z ∈ Cn. Thanks to [36, Proposition 1.2], there

exists σm−1, σm ∈ Σ[z] such that r = σm−1 − σm hence the desired result.

Theorem 7.6 can easily be generalized to any sphere |z1|2 + . . . + |zn|2 = R2 of radius
R > 0. With scaled variable w = z

R
∈ Cn, the sphere constraint has radius 1 and a monomial

of (7.15) with coefficient cα,β ∈ C reads cα,β z̄αzβ = cα,β(Rw̄)α(Rw)β = R|α|+|β|cα,βw̄
αwβ.

With the scaled coefficients R|α|+|β|cα,β, Theorem 7.6 can then be applied. Reverting back
to the old scale z = Rw in (7.29) leads to the desired result. Accordingly, we define the
following statement which we will consider true only when explicitly stated:

Sphere Assumption:

One of the constraints of polynomial
optimization problem (7.15) is a sphere
constraint |z1|2 + . . .+ |zn|2 = R2 for
some radius R > 0.

(7.30)

Under the sphere assumption, K is compact so assumption (7.16) holds.
4We wish to thank Jean-Bernard Baillon for bringing this reference to our attention.
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Corollary 7.7. Under the sphere assumption (7.30), ρ∗d → f opt and ρd → f opt.

Proof. Theorem 7.6 implies that ρ∗ = f opt because for all ε > 0, function f − (f opt − ε)
is positive on K. The sequences (ρ∗d)d>dmin and (ρd)d>dmin converge towards f opt due to
Proposition 7.4.

To require a sphere constraint in a complex polynomial optimization problem seems very
restrictive and irrelevant for many problems. But in fact, a sphere constraint can be applied
to any complex polynomial optimization problem (7.15) with a feasible set contained in a
ball |z1|2 + . . . + |zn|2 6 R2 of known radius R > 0. Indeed, simply add a slack variable
zn+1 ∈ C and the constraint

|z1|2 + . . .+ |zn+1|2 = R2. (7.31)

Let K̂ denote the feasible set of the problem in n + 1 variables. If (z1, . . . , zn+1) ∈ K̂,
then (z1, . . . , zn) ∈ K and has the same objective value. Conversly, if (z1, . . . , zn) ∈ K,
then (z1, . . . , zn+1) ∈ K̂ for all zn+1 ∈ C such that |zn+1|2 = R2 − |z1|2 . . . − |zn|2. Again,
the objective value is unchanged. To ensure a bijection between K and K̂, add yet two
more constraints izn+1 − izn+1 = 0 and zn+1 + zn+1 > 0, thereby preserving the number
of global solutions. In that case, the application from K to K̂ defined by (z1, . . . , zn) 7−→
(z1, . . . , zn,

√
R2 − |z1|2 − . . .− |zn|2) is a bijection. Adding the two extra constraints is op-

tional and not required for convergence of optimal values.
As seen in Theorem 7.6, an equality constraint may be enforced via two opposite inequality

constraints. Let h1, . . . , he denote e ∈ N∗ equality constraints in polynomial optimization
problem (7.15). Putinar and Scheiderer [95, Propositions 6.6 and 3.2 (iii)] show that the
sphere assumption in D’Angelo’s and Putinar’s Positivstellensatz may be weakened to the
existence of r1, . . . , re ∈ R[z̄, z], σ ∈ Σ[z], and a ∈ R such that

e∑
j=1

rj(z)hj(z) =
n∑
i=1

|zi|2 + σ(z) + a, ∀z ∈ Cn. (7.32)

If a problem contains the constraints |z1|2 − 1 = . . . = |zn|2 − 1 = 0, then the assumption is
satisfied by r1 = . . . = rn = 1, σ = 0 and a = −n. In particular, there is no need to add a
slack variable in the non-bipartite Grothendieck problem over the complex numbers [14].

Example 7.8. D’Angelo and Putinar [37] consider 1
3
< a < 4

9
and problem

infz∈C f(z) := 1− 4
3
|z|2 + a|z|4,

s.t. g(z) := 1− |z|2 > 0,
(7.33)

whose set of global solutions is Kopt = {z ∈ C | |z| = 1} and f opt = a− 1
3
> 0. They prove

that the decomposition f = σ0 + σ1g (σ0, σ1 ∈ Σ[z]) of Theorem 7.6 does not hold. As a
result, the optimal values of the complex sum-of-squares relaxations cannot exceed 0 even
though f opt > 0. Indeed, if ρ∗d > 0 for some order d > dmin, then there exists λ > ρ∗d

2
and
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σ0, σ1 ∈ Σd[z] such that f − λ = σ0 + σ1g. Thus f = λ + σ0 + σ1g where λ + σ0 ∈ Σd[z],
which is a contradiction. We suggest solving

infz1,z2∈C f̂(z1, z2) := 1− 4
3
|z1|2 + a|z1|4,

s.t. ĝ(z1, z2) := 1− |z1|2 − |z2|2 = 0,
(7.34)

for which the decomposition of Theorem 7.6 holds thereby ensuring convergence of the com-
plex moment/sum-of-squares hierarchy (Corollary 7.7). In other words, for all λ < f opt there
exists σ̂0 ∈ Σ[z1, z2] and r̂ ∈ R[z1, z2, z1, z2] such that

f̂(z1, z2)− λ = σ̂0(z1, z2) + r̂(z1, z2)ĝ(z1, z2), ∀z1, z2 ∈ C. (7.35)

Plug in z1 = z and z2 = 0 and obtain f(z) − λ = σ̂0(z, 0) + r̂(z, 0)g(z) for all z ∈ C. While
function z 7−→ σ̂0(z, 0) belongs to Σ[z], function z 7−→ r̂(z, 0) does not! Hence we do not
contradict the fact that f = σ0+σ1g (σ0, σ1 ∈ Σ[z]) is impossible. Consider a = 1

2
(1

3
+ 4

9
) = 7

18

so that f opt = 1
18
. Notice that dmin = 2 for (7.33) and (7.34). The complex relaxations of

orders 2 6 d 6 3 of (7.33) both yield5 the value −0.3333. The complex relaxation of
order 2 of (7.34) yields the value 0.0556 (≈ f opt) and optimal polynomials σ̂0(z1, z2) =
0.2780|z2|2 + 0.2776|z1z2|2 + 0.6667|z2|4 and r̂(z1, z2) = 0.9444− 0.3889|z1|2 + 0.6665|z2|2, all
of which satisfy (7.35).

Example 7.9. Putinar and Scheiderer [96] consider parameters 0 < a < 1
2
and C > 1

1−2a
, and

problem
infz∈C f(z) := C − |z|2,
s.t. g(z) := |z|2 − az2 − az̄2 − 1 = 0,

(7.36)

whose set of global solutions is Kopt =
{
± 1√

1−2a

}
and f opt = C − 1

1−2a
> 0. They prove

that the decomposition of Theorem 7.6 does not hold. Since the feasible set is included in
the Euclidean ball of radius

√
C, we suggest solving

infz1,z2∈C f̂(z1, z2) := C − |z1|2,
s.t. ĝ1(z1, z2) := |z1|2 − az2

1 − az̄2
1 − 1 = 0,

ĝ2(z1, z2) := C − |z1|2 − |z2|2 = 0,
ĝ3(z1, z2) := iz2 − iz2 = 0,
ĝ4(z1, z2) := z2 + z2 > 0.

(7.37)

Consider a = 1
4
and C = 1

1−2a
+ 1 = 3 so that f opt = 1. Notice that dmin = 2 for (7.36) and

(7.37). The complex relaxations of orders 2 6 d 6 3 of (7.36) are unbounded. The complex
relaxation of order 2 of (7.37) yields the value 0.6813. That of order 3 yields the value 1.0000

5MATLAB 2013a, YALMIP 2015.06.26 [69], and MOSEK are used for the numerical experiments.
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and the complex moment matrix6 with 10−4 precision

M3(y) =

(0
,0
)

(1
,0
)

(0
,1
)

(2
,0
)

(1
,1
)

(0
,2
)

(3
,0
)

(2
,1
)

(1
,2
)

(0
,3
)

(0, 0) 1 0 1 2 0 1 0 2 0 1
(1, 0) 0 2 0 0 2 0 4 0 2 0
(0, 1) 1 0 1 2 0 1 0 2 0 1
(2, 0) 2 0 2 4 0 2 0 4 0 2
(1, 1) 0 2 0 0 2 0 4 0 2 0
(0, 2) 1 0 1 2 0 1 0 2 0 1
(3, 0) 0 4 0 0 4 0 8 0 4 0
(2, 1) 2 0 2 4 0 2 0 4 0 2
(1, 2) 0 2 0 0 2 0 4 0 2 0
(0, 3) 1 0 1 2 0 1 0 2 0 1

(7.38)

which satisfies rank M3(y) = rank M1(y) = 2.

Examples 7.8 and 7.9 show the importance of the modeling of the feasible set of the
optimization problem. Depending on what equations are used to define the feasible set, the
complex moment/sum-of-squares hierarchy may or may not converge towards the globally
optimal value. If one of the constraints is a sphere, convergence is guaranteed. The real
moment/sum-of-squares hierarchy also depends on how the feasible set is modeled. In that
case, convergence is guaranteed if one of the constraints is a ball.

As a by-product of Corollary 7.7, we propose a solution to the complex moment problem
in Theorem 7.11 below. To that end, consider Lemma 7.10 below where we transpose [56,
Lemma 3] from real to complex numbers.

Lemma 7.10. Let s : Cn −→ R be defined by s(z) := R2 − |z1|2 − . . .− |zn|2. Given d ∈ N∗
and y ∈ Hd, we have

( Md(g0y) < 0 & Md−1(sy) = 0 ) =⇒ Tr(Md(g0y)) 6 y0,0

d∑
l=0

R2l. (7.39)

Proof. Given 1 6 l 6 d, we have Tr(Ml−1(sy)) = . . .

=
∑
|α|6l−1 Ml−1(sy)(α, α)

=
∑
|α|6l−1 Ly(s(z)z̄αzα)

=
∑
|α|6l−1

∑
|γ|61 sγ,γ yγ+α,γ+α

=
∑
|α|6l−1,|γ|=0 sγ,γ yγ+α,γ+α +

∑
|α|6l−1,|γ|=1 sγ,γ yγ+α,γ+α

=
∑
|α|6l−1R

2 yα,α −
∑
|α|6l−1,|γ|=1 yγ+α,γ+α.

(7.40)

6It so happens that the Hermitian matrix M3(y), indexed by (α, β) ∈ N2 × N2 with |α|, |β| 6 3, is
real-valued in this example.
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Md−1(sy) = 0 implies that Ml−1(sy) = 0 for all 1 6 l 6 d and hence Tr(Ml−1(sy)) = 0. In
addition,

∑
0<|α|6l yα,α 6

∑
|α|6l−1,|γ|=1 yγ+α,γ+α. Thus∑

|α|6l

yα,α 6 y0,0 +R2
∑
|α|6l−1

yα,α, l = 1, . . . , d, (7.41)

which proves the lemma.

The next theorem can be deduced from [95] but we provide a different proof.

Theorem 7.11. Under the sphere assumption (7.30), a sequence y ∈ H has a representing
measure on K if and only if

Md(giy) < 0, i = 0, . . . ,m, ∀d ∈ N. (7.42)

Proof. It was already shown that if y ∈ H has a representing measure onK, then (7.22) holds.
Notice that (7.22) and (7.42) are equivalent, hence the “only if” part. Concerning the “if” part,
assume that y ∈ H satisfies (7.42). If y0,0 = 0, then Lemma 7.10 implies that y = 0 which can
be represented by µ = 0 on K. Otherwise y0,0 > 0 and y/y0,0 is a feasible point of problem
(7.23) whose optimal value is f opt for all f ∈ R[z̄, z] according to Corollary 7.7. If moreover
f|K > 0, then Ly/y0,0(f) > f opt > 0. In particular, if f|K = 0, then Ly/y0,0(f) = 0. We may
therefore define L̃y/y0,0 : RK(C[z̄, z]) −→ C such that L̃y/y0,0(ϕ|K) := Ly/y0,0(ϕ) (similarily
to Schweighofer [104, Proof of Theorem 2]). If ϕ ∈ RK(R[z̄, z]), then L̃y/y0,0(‖ϕ‖∞ − ϕ) >
0 and L̃y/y0,0(ϕ) 6 ‖ϕ‖∞. Linearity implies that |L̃y/y0,0(ϕ)| 6 ‖ϕ‖∞. As a result, for
all ϕ ∈ RK(C[z̄, z]), we have |L̃y/y0,0(ϕ)| = |L̃y/y0,0(Re(ϕ) + iIm(ϕ))| = |L̃y/y0,0(Re(ϕ)) +

iL̃y/y0,0(Im(ϕ))| 6 |L̃y/y0,0(Re(ϕ))| + |L̃y/y0,0(Im(ϕ))| 6 ‖Re(ϕ)‖∞ + ‖Im(ϕ)‖∞ 6 2‖ϕ‖∞.
Moreover, RK(C[z̄, z]) is dense in C(K,C). Therefore L̃y/y0,0 may be extended to a continous
linear functional on C(K,C) (we preserve the same name for the extension). K is compact
thus the Riesz-Markov-Kakutani Representation Theorem implies that there exists a unique
Radon measure µ such that L̃y/y0,0(ϕ) =

∫
K
ϕdµ for all ϕ ∈ C(K,C). It is positive because

ϕ ∈ P(K) implies that L̃y/y0,0(ϕ) > 0 (density argument). Finally, if α, β ∈ Nn, yα,β/y0,0 =
Ly/y0,0(z̄

αzβ) (c.f. Remark 7.3) hence y has representing measure y0,0µ on K.

Vasilescu [124, Theorem I.2.17] has already proposed a different solution to the complex
moment problem on K. We now transpose the proof of [56, Theorem 1] from real to complex
numbers.

Proposition 7.12. Under the sphere assumption (7.30), ρ∗d = ρd ∈ R ∪ {+∞} for all
d > dmin.

Proof. Given A ∈ Hd, consider the operator norm ‖A‖, the greatest eigenvalue of A in
absolute value, and the Frobenius norm ‖A‖Hd :=

√
〈A,A〉Hd . Consider d > dmin. Two
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cases can occur. The first is that the feasible set of the complex moment relaxation of
order d is non-empty, in which case we consider a feasible point (yα,β)|α|,|β|6d. All norms are
equivalent in finite dimension so there exists a constant Cd ∈ R such that

√∑
|α|,|β|6d |yα,β|2 =

‖Md(g0y)‖Hd 6 Cd ‖Md(g0y)‖ 6 Cd
∑d

l=0R
2l, according to Lemma 7.10. As a result, the

feasible set of the complex moment relaxation of order d is a non-empty compact set and so
is its image by Λ (defined in (7.3)). We can thus apply Trnovská’s result [122] which states
that in a semidefinite program in real numbers, if the primal feasible set is non-empty and
compact, then there exists a dual interior point and there is no duality gap.

The second case is that the feasible set of the complex moment relaxation of order d is
empty, i.e. ρd = +∞. It must be strongly infeasible because it cannot be weakly infeasible
(see [40, Section 5.2] for definitions). Indeed, if it is weakly infeasible, then there exists
a sequence (yj)j∈N of elements of H such that for all j ∈ N, we have |yj0,0 − 1| 6 1

j+1

and λmin(Md−ki(giy
j)) > − 1

j+1
where i = 0, . . . ,m. Define c := (n + d)!/(n!d!). We now

mimick the computations in Lemma 7.10 using yj0,0 6 1 + 1
j+1

6 2 and |Tr(Ml−1(syj))| 6
c
j+1

6 c if 1 6 l 6 d. Consider j0 ∈ N such that for all j > j0 and 1 6 l 6 d, we have∑
|α|6l−1,|γ|=1 y

j
γ+α,γ+α−

∑
0<|α|6l y

j
α,α > −1. Equation (7.41) then becomes

∑
|α|6l y

j
α,α 6 2 +

R2
(∑

|α|6l−1 y
j
α,α

)
+c+1. As a result, Tr(Md(g0y

j)) =
∑
|α|6d y

j
α,α 6 (3+c)

∑d
l=0R

2l, which,

together with λmin(Md(g0y
j)) > − 1

j+1
> −1, yields λmax(Md(g0y

j)) 6 (3+c)
∑d

l=0R
2l+c−1.

Hence for all j > j0, the spectrum ofMd(g0y
j) is lower bounded by −1 and upper bounded by

Bd := (3 + c)
∑d

l=0R
2l + c− 1 > 1. We therefore have

√∑
|α|,|β|6d |y

j
α,β|2 6 Cd ‖Md(g0y)‖ 6

Cd × Bd. The sequence (yj)j>j0 is thus included in a compact set. Hence there exists a
subsequence that converges towards a limit ylim which satisfies ylim

0,0 = 1 and the constraints
λmin(Md−ki(giy

lim)) > 0, i = 0, . . . ,m. Therefore ylim is a feasible point of the complex
moment relaxation of order d, which is a contradiction. Strong infeasibility means that the
dual feasible set contains an improving ray [40, Definition 5.2.2]. Moreover, infy∈Hd Ly(f)
subject to y0,0 = 1, Md(g0y) < 0, and Md−1(sy) = 0 is a semidefinite program with a non-
empty compact feasible set hence the dual feasible set contains a point (λ, σ0, σ1). As result
(λ, σ0, σ1, 0, . . . , 0) is a feasible point of the complex sum-of-squares relaxation of order d.
Together with the improving ray, this means that ρ∗d = +∞. To conclude, ρ∗d = ρd in both
cases.

Proposition 7.13. Assume that complex polynomial optimization problem (7.15) satisfies
(7.32) and has a global solution zopt ∈ Kopt. In addition, assume that (σopt

0 , . . . , σopt
m ) ∈

Σ[z]m+1 is an optimal solution to the sum-of-squares problem (7.27). Then (zopt, σopt
1 , . . . , σopt

m )
is a saddle point of φ : Cn × Σ[z]m −→ R defined by (z, σ) 7−→ f(z)−

∑m
i=1 σi(z)gi(z).

Proof. The optimality of (σopt
0 , . . . , σopt

m ) means that f − f opt =
∑m

i=0 σ
opt
i gi. With f(zopt)−

f opt =
∑m

i=0 σ
opt
i (zopt)gi(z

opt) = 0, σopt
i (zopt) > 0, and gi(zopt) > 0, we have σopt

i (zopt)gi(z
opt) =
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0 for i = 0, . . . ,m. It follows that φ(zopt, σ) 6 φ(zopt, σopt) for all σ ∈ Σ[z]. For all z ∈ Cn,
φ(zopt, σopt) 6 φ(z, σopt) because f(z)− f opt −

∑m
i=1 σ

opt
i (z)gi(z) = σopt

0 (z) > 0.

Given an application ϕ : Cn −→ R, define ϕ̃ : R2n −→ R by (x, y) 7−→ ϕ(x + iy). If ϕ̃
is R-differentiable at point (x, y) ∈ R2n, consider the Wirtinger derivative [129] defined by
∇ϕ(x+ iy) := 1

2
(∇xϕ̃(x, y)− i∇yϕ̃(x, y)) ∈ Cn.

Corollary 7.14. With the same assumptions as in Proposition 7.13, we have

∇f(zopt) =
∑m

i=1 σ
opt
i (zopt)∇gi(zopt),

σopt
i (zopt), gi(z

opt) > 0, i = 1, . . . ,m,
σopt
i (zopt)gi(z

opt) = 0, i = 1, . . . ,m.

(7.43)

Proof. zopt is a minimizer of z ∈ Cn 7−→ φ(z, σopt) thus ∇zφ(zopt, σopt) = ∇f(zopt) −∑m
i=1∇σ

opt
i (zopt)gi(z

opt) −
∑m

i=1 σ
opt
i (zopt)∇gi(zopt) = 0. Consider 1 6 i 6 m. Since

σopt
i (zopt) = 0 and σopt

i ∈ Σ[z], it must be that |zk − zopt
k |2 divides σopt

i,k : zk ∈ C 7−→
σopt
i (zopt

1 , . . . , zopt
k−1, zk, z

opt
k+1, . . . , z

opt
n ). With zopt

k =: xopt
k + iyopt

k , the real number xopt
k is a root

of multiplicity 2 of xk ∈ R 7−→ σopt
i,k (xk + iyopt

k ), with an analogous remark for yopt
k . Thus

∇σopt
i (zopt) = 0 which leads to the desired result.

Comparison of real and complex hierarchies

Similar to Shor relaxation and the second-order conic relaxation, the following notations
will be used: POP-C denotes the complex polynomial optimization problem (7.15); POP-R
denotes the real polynomial optimization problem after conversion of POP-C into real num-
bers; MSOSd-C denotes the complex moment/sum-of-squares relaxation of order d applied to
POP-C; CMSOSd-R denotes the conversion of MSOSd-C into real numbers; and MSOSd-R
denotes the real moment/sum-of-squares relaxation of order d applied to POP-R. Let dmin-
R and dmin-C respectively denote the minimum orders of the real and complex hierarchies.
Consider the sets

R[x, y] := { q : R2n → R | q(x, y) =
∑
|κ|6j qκ(x, y)κ, j ∈ N, qκ ∈ R},

Rd[x, y] := { q : R2n → R | q(x, y) =
∑
|κ|6d qκ(x, y)κ, qκ ∈ R },

Σd[x, y] := { σ : R2n → R | σ =
∑r

i=1 q
2
i , with r ∈ N∗, qi ∈ Rd[x, y] },

(7.44)

where κ ∈ N2n and (x, y)κ := xκ11 . . . xκnn y
κn+1

1 . . . yκ2nn .

Proposition 7.15. Under the sphere assumption (7.30), for all integer d greater than or
equal to max{dmin-R, dmin-C}, we have

val(MSOSd-C) = val(CMSOSd-R) 6 val(MSOSd-R). (7.45)
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Proof. It suffices to compare the optimal values of the real and complex sum-of-squares
relaxations. This is due to Proposition 7.12 and [56] where the ball constraint can be replaced
by the sphere constraint to ensure no duality gap. We have

val(POP-C) = supλ∈R λ,
s.t. f(z)− λ > 0, ∀z ∈ K,

val(MSOSd-C) = supλ,σ λ,
s.t. f − λ =

∑m
i=0 σigi,

λ ∈ R, σi ∈ Σd−ki [z], i = 0, . . . ,m,

val(CMSOSd-R) = supλ,σ λ,

s.t. f̃ − λ =
∑m

i=0 σig̃i,
λ ∈ R, σi ∈ Σd−ki [x+ iy], i = 0, . . . ,m,

val(POP-R) = supλ∈R λ,

s.t. f̃(x, y)− λ > 0, ∀(x+ iy) ∈ K,

val(MSOSd-R) = supλ,σ λ,

s.t. f̃ − λ =
∑m

i=0 σig̃i,
λ ∈ R, σi ∈ Σd−ki [x, y], i = 0, . . . ,m.

(7.46)

We now conclude because for all d ∈ N, Σd[x + iy] ⊂ Σd[x, y]. Indeed, if σ =
∑r

j=1 |pj|2

with r ∈ N∗ and p1, . . . , pr ∈ Cd[z], then σ̃(x, y) =
∑r

j=1 |p̃j(x, y)|2 = 1
4

∑r
j=1

(
p̃j(x, y) + p̃j(x, y)

)2

+(
ip̃j(x, y) + ip̃j(x, y)

)2

∈ Σd[x, y].

We may suspect the inequality in (7.45) to be strict in some cases because Σd[x + iy] is
a strict subset of Σd[x, y] for all d ∈ N∗. Indeed, for i = 1, . . . , n, we have x2

i =
(
zi+z̄i

2

)2
=

1
4
(z2
i +2|zi|2 + z̄2

i ) ∈ Σd[x, y]\Σd[x+ iy]. According to numerical experiments7, the inequality
is strict for (7.37) in Example 7.9 (val(CMSOS2-R) ≈ 0.6813 and val(MSOS2-R) ≈ 1.0000).

Proposition 7.45 seems to imply that the real moment/sum-of-squares hierarchy is better
than the complex one. However, the size of the largest semidefinite constraint of CMSOSd-R,
equal to 2(n+d)!/(n!d!), is far inferior to that of MSOSd-R, equal to (2n+d)!/((2n)!d!). For
instance, if n = 10 and d = 3, the former is 572 and the latter is 1,771.

Proposition 7.16. Given l ∈ N and ϕ ∈ Cl[z̄, z], we have

∀z ∈ Cn, ∀θ ∈ R, ϕ(eiθz) = ϕ(z) ⇐⇒ ∀|α|, |β| 6 l, |α− β|ϕα,β = 0. (7.47)
7We attempted a formal proof but it is difficult even on such a small example.
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Proof. (=⇒) Notice that ϕ(eiθz) =
∑
|α|,|β|6l ϕα,β(eiθz)

α
(eiθz)β = . . .∑

|α|,|β|6l ϕα,βe
i(|α|−|β|)θz̄αzβ. Polarization implies that for all z, w ∈ Cn, we have∑

|α|,|β|6l ϕα,βe
i(|α|−|β|)θz̄αwβ =

∑
|α|,|β|6l ϕα,β z̄

αwβ and hence for all |α|, |β| 6 l, ϕα,βei(|α|−|β|)θ =

ϕα,β. If ϕα,β 6= 0, then for all θ ∈ R, |α − β|θ ≡ 0[2π] and thus |α − β| = 0. (⇐=) Simply
compute ϕ(eiθz).

Definition 7.17. Complex polynomial optimization problem (7.15) is said to be oscillatory
if f, g1, . . ., and gm satisfy either of the two equivalent properties in (7.47).

Proposition 7.18. If complex polynomial optimization problem (7.15) is oscillatory, then
dmin-R = dmin-C.
Proof. Observe that dmin-C = max{|α|, |β| | fα,β g1,α,β . . . gm,α,β 6= 0} and dmin-R =
max{d(|α| + |β|)/2e | fα,β g1,α,β . . . gm,α,β 6= 0} where d.e denotes the ceiling of a real
number. Both are equal if the problem is oscillatory.

Conjecture 7.19. Under the sphere assumption (7.30), if complex polynomial optimization
problem (7.15) is oscillatory, then for all d > dmin-R = dmin-C, we have

val(MSOSd-C) = val(CMSOSd-R) = val(MSOSd-R). (7.48)

In Section 7.4, we consider problems for which Conjecture 7.19 seems to hold numerically.
This suggests that for oscillatory problems, the complex hierarchy is more tractable than the
real hierarchy at no loss of bound quality.

Exploiting sparsity in real and complex hierarchies

The chordal sparsity technique described in Section 7.2 has been extended to the real hier-
archy by Waki [126] and may readily be transposed to the complex hierarchy. Each positive
semidefinite constraint in (7.24) is replaced by a set of positive semidefinite constraints on
certain submatrices of Md−ki (giy). These submatrices are defined by the maximal cliques
of a chordal extension of the graph associated with the objective and constraint equations.
Equivalently, the sum-of-squares variables σi in the dual formulation (7.26) are restricted
to be functions of a subset (defined by the same maximal cliques) of the decision variables
z1, . . . , zn. These sparse relaxation hierarchies provide potentially lower bounds than their
dense counterparts yet retain convergence guarantees [64]. However, further size reduction
is often necessary. We propose to selectively apply computationally intensive higher-order
constraints in the sparse relaxations. In other words, rather than a single relaxation order
applied to all constraints, each constraint has an associated relaxation order. This allows for
solving many large-scale problems.

We now formalize our approach applied to the complex hierarchy.8 Objective function f
and constraints (gi)16i6m in (7.15) have an associated undirected sparsity graph G = (N , E)

8See [81] for the details of this approach as applied to MSOSd-R in the context of the optimal power flow
problem.
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with nodes N = {1, . . . , n} corresponding to each variable and edges E ⊂ N × N for each
pair of variables that appear together in any monomial that has a non-zero coefficient in the
objective function or constraints.

Each constraint function gi has an associated relaxation order di so that d ∈ Nm. When
di > 1, there must exist at least one clique of a chordal extension of G that contains all
variables with non-zero coefficients in gi. To ensure this, define a supergraph Ĝ = (N , Ê)
where Ê is composed of E augmented with edges connecting all variables with non-zero
coefficients in gi, not necessarily in the same monomial. For example, g1 (z) = z̄1z2 +
z̄2z1 + z̄1z3 + z̄3z1 + z̄1z4 + z̄4z1 with d1 > 1 implies E ⊃ {(1, 2) , (1, 3) , (1, 4)} and Ê ⊃
{(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}.

To exploit sparsity, construct a chordal extension Gch of Ĝ.9 Denote the set of maximally
sized cliques of the chordal extension by C1, . . . , Cp ⊂ Gch. By construction of Ĝ, each con-
straint function gi for which di > 1 has all associated variables contained in at least one
clique. For each gi for which di > 1, denote as C(i) the minimal covering clique (i.e., the
smallest clique in {C1, . . . , Cp} that contains all variables in gi). (If not unique, a single clique
C(i) is chosen arbitrarily among the smallest cliques.) Associate an order d̃ ∈ Np with each
clique Cγ, γ = 1, . . . , p defined such that d̃γ is the maximum relaxation order di among all
constraints for which the clique Cγ is the minimal covering clique. If a clique Cγ is not a min-
imal covering clique for any constraints, then d̃γ = 1. See Appendix F for a small illustrative
example.

For all 1 6 i 6 m such that di > 1, the positive semidefinite constraintsMd−ki (giy) < 0 in
the moment hierarchy (7.24) are replaced byNi (giy) < 0, i = 1, . . . ,m, whereNi (giy) (α, β) :=
Mdi−ki (giy) (α, β) such that all non-zero entries of α and β correspond to variables in C(i).
For i = 0, the positive semidefinite constraint Md (y) < 0 (recall that g0 = 1 and k0 = 0)
is replaced by constraints defined by each maximal clique: Ñγ (y) < 0, γ = 1, . . . , p, where
Ñγ (y) (α, β) =: Md̃γ

(y) (α, β) such that all non-zero entries of α and β correspond to vari-
ables in Cγ.

For the sum-of-squares representation of the hierarchy, the polynomials σi ∈ Σd−ki [z], i =
1, . . . ,m in (7.26) are replaced by sums-of-squares polynomials ωi ∈ Σdi−ki [zC(i) ], i = 1, . . . ,m,
where zC(i) denotes the subset of variables z that are in the clique C(i). The polynomial
σ0 ∈ Σd−k0 [z] is replaced by the polynomial

∑p
γ=1 τγ where τγ ∈ Σd̃γ

[zCγ ], γ = 1, . . . , p.
The sparse version of the real hierarchy MSOSd-R converges to the global optimum of a

polynomial optimization problem when the constraints include ball constraints on all decision
variables x included in each clique:

∑
k∈Ci x

2
k 6 (RCi)

2 , i = 1, . . . , p, where RCi is the radius
of a ball enclosing all decision variables in clique Ci [64]. A similar result holds for the complex
hierarchy MSOSd-C with sphere constraints enforced for the variables included in each clique.
Due to (7.32), the sparse version of the complex hierarchy is guaranteed to converge to

9One approach to creating a chordal extension is to use the sparsity pattern of a Cholesky factorization
(employing a minimum degree ordering to maintain sparsity) of the Laplacian matrix associated with Ĝ plus
an identity matrix.
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the global optimum of (7.15) with increasing relaxation order when the constraints include
(
∑

k∈Ci |zk|
2) + |zn+i|2 = (RCi)

2 , i = 1, . . . , p, where zn+i is a slack variable associated with
clique Ci.

Selectively applying the higher-order constraints requires a method for determining the
relaxation order di for each constraint. We use a heuristic based on “mismatches” to the closest
rank-one matrix [81]. The idea is to extract the largest eigenvalue λ1 and its associated unit-
length eigenvector η1 from (yα,β)|α|=|β|=1, hence defining an “approximate” solution zapprox :=√
λ1 η1 to the polynomial optimization problem. Define “mismatches” ζ ∈ R and ∆ ∈ Rm

between the solution y to the relaxation and zapprox:

ζ := |f (zapprox)− Ly(f)| , (7.49a)
∆i := |gi (zapprox)− Ly(gi)| , i = 1, . . . ,m. (7.49b)

We use the iteration in Algorithm 2 to determine relaxation orders di, i = 1, . . . ,m. Each
iteration solves the moment/sum-of-squares relaxation after increasing the relaxation orders
di in a manner that is dependent on the largest associated ∆i values. Denote dmax :=
maxi {di}.10 At each iteration of the algorithm, increment di at up to h constraints, where
h is a specified parameter, that have the largest mismatches ∆i among constraints satisfying
two conditions: (1) di < dmax and (2) ∆i > εg, where εg is a specified mismatch tolerance.
If no constraints satisfy both of these conditions, increment di at up to h constraints with
the largest ∆i greater than the specified tolerance and increment dmax. That is, in order to
prevent unnecessarily increasing the size of the matrices, the heuristic avoids incrementing the
maximum relaxation order dmax until di = dmax at all constraints gi with mismatch ∆i > εg.

There is a computational trade-off in choosing the value of h. Larger values of h likely
result in fewer iterations of the algorithm but each iteration is slower if more buses than
necessary have high-order relaxations. Smaller values of h result in faster solution at each
iteration, but may require more iterations.

The algorithm terminates upon satisfaction of two conditions: First, |∆|∞ 6 εg, where
| · |∞ denotes the infinity norm (maximum absolute value), which indicates that the iterate
is a numerically feasible point of polynomial optimization problem (7.15). Second, ζ 6 εf ,
which indicates global optimality to within a relative tolerance εf . If the relaxation satisfies
the former but not the latter termination condition (which was never observed in practice
for the problem in Section 7.4), the algorithm increases di at the h constraints with largest
mismatch ∆i and continues iterating.

The moment/sum-of-squares hierarchy is successively tightened in a manner that pre-
serves computational tractability. For sufficiently small tolerances εf and εg, Algorithm 2
eventually proceeds to build the complete moment/sum-of-squares hierarchies. Thus, Algo-
rithm 2 inherits the theoretical convergence guarantees of MSOSd-C. The same can be said
of the real version of Algorithm 2 applied to MSOSd-R.

10Note that dmax is not a specified maximum relaxation order but can change at each iteration.
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Algorithm 2 Iterative Solution for Sparse Moment/Sum-of-Squares Relaxations
1: Set di = 1, i = 1, . . . ,m.
2: repeat
3: Solve relaxation with order di for constraints gi (z) > 0, i = 1, . . . ,m.
4: Calculate mismatches ∆i, i = 1, . . . ,m using (7.49b).
5: Increase entries of d according to the mismatch heuristic.
6: until |∆|∞ < εg and ζ < εf
7: Extract solution zopt.

7.4 Numerical results
The optimal power flow problem is an instance of complex polynomial optimization. Since
2006, the power systems literature has been studying the ability of the Shor and second-
order conic relaxations to find global solutions [7, 13, 18, 20, 22, 30, 51, 66, 70, 72, 80, 82–85,
118, 119, 131]. Some relaxations are presented in real numbers [66, 82] and some in complex
numbers [18, 20, 131]. Nevertheless, in all numerical applications, standard solvers such as
SeDuMi, SDPT3, and MOSEK are used which currently handle only real numbers. Modeling
languages such as YALMIP and CVX do handle inputs in complex numbers, but the data
is transformed into real numbers before calling the solver [21, Example 4.42]. We use the
European network to illustrate the fact that it is beneficial to relax nonconvex constraints
before converting from complex to real numbers. The Shor relaxation, the second-order conic
relaxation, and the moment/sum-of-squares hierarchy are considered.

We consider large test cases representing portions of European electric power systems.
They represent Great Britain (GB) [123] and Poland (PL) [132] power systems as well as
other European systems from the PEGASE project [42,55]. The test cases were preprocessed
to remove low-impedance lines as described in [84] in order to improve the solver’s numerical
convergence, which is a typical procedure in power system analyses.11 A 1× 10−3 per unit
low-impedance line threshold was used for all test cases except for PEGASE-1354 and
PEGASE-2869 which use a 3× 10−3 per unit threshold. The processed data is described
in Table 7.1. This table also includes the at-least-locally-optimal objective values obtained
from the interior point solver in Matpower [132] for the problems after preprocessing. Note
that the PEGASE systems specify generation costs that minimize active power losses, so the
objective values in both columns are the same.

Implementations use YALMIP 2015.06.26 [69], Mosek 7.1.0.28, and MATLAB 2013a on
a computer with a quad-core 2.70 GHz processor and 16 GB of RAM. The results do not
include the typically small formulation times.

11Low-impedance lines often model connections between buses in the same physical location.
12PEGASE-9241 contains negative resistances to account for generators at lower voltage levels. In

PEGASE-9241R these are set to 0.
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Table 7.1: Size of Data (After Low-Impedance Line Preprocessing)
Test Number of Number of Matpower Solution [132]
Case Complex Edges Gen. Cost Loss Min.
Name Variables in Graph ($/hr) (MW)

GB-2224 2,053 2,581 1,942,260 60,614
PL-2383wp 2,177 2,651 1,868,350 24,991
PL-2736sp 2,182 2,675 1,307,859 18,336
PL-2737sop 2,183 2,675 777,617 11,397
PL-2746wop 2,189 2,708 1,208,257 19,212
PL-2746wp 2,192 2,686 1,631,737 25,269
PL-3012wp 2,292 2,805 2,592,462 27,646
PL-3120sp 2,314 2,835 2,142,720 21,513
PEGASE-89 70 185 5,819 5,819
PEGASE-1354 983 1,526 74,043 74,043
PEGASE-2869 2,120 3,487 133,945 133,945
PEGASE-9241 7,154 12,292 315,749 315,749
PEGASE-9241R12 7,154 12,292 315,785 315,785

Shor relaxation

Table 7.2 shows the results of applying SDP-R and SDP-C to the test cases. For some
problems, the Shor relaxation is exact and yields the globally optimal decision variables and
objective values. To practically identify such problems, solutions for which all power injection
mismatches Sinj mis

k (see Section 7.4) are less than a tolerance of 1 MVA are considered exact.
These problems are identified with an asterisk (*) in Table 7.2.

The lower bounds in Table 7.2 suggest that the corresponding Matpower solutions in
Table 7.1 are at least very close to being globally optimal. The gap between the Matpower
solutions and the lower bounds from SDP-C for the generation cost minimizing problems
are less than 0.72% for GB-2224, 0.29% for the Polish systems, and 0.02% for the PE-
GASE systems with the exception of PEGASE-9241. The non-physical negative resistances
in PEGASE-9241 result in weaker lower bounds from the relaxations, yielding a gap of 1.64%
for this test case.

As shown in Appendices C and D, the optimal objective values for SDP-R and SDP-C
should be identical. With all objective values in Table 7.2 matching to within 0.037%, this
is numerically validated.

For these test cases, SDP-C is significantly faster (between a factor of 1.60 and 3.31)
than SDP-R. This suggests that exploiting the isomorphic structure of complex matrices in
SDP-C is better than eliminating a row and column in SDP-R.
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Table 7.2: Real and Complex SDP (Generation Cost Minimization)
Case SDP-R SDP-C
Name Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,928,194 10.9 1,928,444 6.2
PL-2383wp 1,862,979 48.1 1,862,985 23.0
PL-2736sp* 1,307,749 35.7 1,307,764 22.0
PL-2737sop* 777,505 41.7 777,539 19.5
PL-2746wop* 1,208,168 51.1 1,208,182 22.8
PL-2746wp 1,631,589 43.8 1,631,655 20.0
PL-3012wp 2,588,249 52.8 2,588,259 24.3
PL-3120sp 2,140,568 64.4 2,140,605 25.5
PEGASE-89* 5,819 1.5 5,819 0.9
PEGASE-1354 74,035 11.2 74,035 5.6
PEGASE-2869 133,936 38.2 133,936 20.6
PEGASE-9241 310,658 369.7 310,662 136.1
PEGASE-9241R 315,848 317.2 315,731 95.9

Second-order conic relaxation

Table 7.3 shows the results of applying SOCP-R and SOCP-C to the test cases. Unlike
the Shor relaxation, the second-order conic relaxation is not exact for any of the test cases.
(SOCP-C is generally not exact with the exception of radial systems for which the relaxation
is provably exact when certain non-trivial technical conditions are satisfied [70].)

SOCP-C provides better lower bounds and is computationally faster than SOCP-R.
Specifically, lower bounds from SOCP-C are between 0.87% and 3.96% larger and solver
times are faster by between a factor of 1.24 and 6.76 than those from SOCP-R.

Moment/sum-of-squares hierarchy

Relaxations from the real moment/sum-of-squares hierarchy globally solve a broad class of
optimal power flow problems [44,57,79,81]. Previous work uses MSOSd-R by first converting
the complex formulation of the optimal power flow problem to real numbers.

We next summarize computational aspects of both the real and complex hierarchies. The
dense formulations of the hierarchies solve small problems (up to approximately ten buses).
Without also selectively applying the higher-order relaxations’ constraints (i.e., d1 = d2 =
. . . = dm = d), exploiting network sparsity enables solution of the second-order relaxations
for problems with up to approximately 40 buses.

Scaling to larger problems is accomplished by both exploiting network sparsity and selec-
tively applying the computationally intensive higher-order relaxation constraints to specific
“problematic” buses. To better match the structure of the optimal power flow constraint
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Table 7.3: Real and Complex SOCP (Generation Cost Minimization)
Case SOCP-R SOCP-C
Name Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,855,393 3.5 1,925,723 1.4
PL-2383wp 1,776,726 8.5 1,849,906 2.4
PL-2736sp 1,278,926 4.8 1,303,958 1.7
PL-2737sop 765,184 5.5 775,672 1.6
PL-2746wop 1,180,352 5.1 1,203,821 1.7
PL-2746wp 1,586,226 5.5 1,626,418 1.7
PL-3012wp 2,499,097 5.9 2,571,422 2.0
PL-3120sp 2,080,418 6.2 2,131,258 2.2
PEGASE-89 5,744 0.5 5,810 0.4
PEGASE-1354 73,102 3.4 73,999 1.5
PEGASE-2869 132,520 9.0 133,869 2.7
PEGASE-9241 306,050 35.3 309,309 10.0
PEGASE-9241R 312,682 36.7 315,411 5.4

equations, we use the algorithm in [81], which is slightly different than that described in Sec-
tion 7.3. Rather than consider each constraint individually, we use the mismatch in apparent
power injections at each bus rather than the active and reactive power injection equations
separately. The relaxation orders di associated with all constraints at a bus are changed
together.

Specifically, mismatches for the active and reactive power injection constraints at bus i,
denoted as P injmis

i and Qinjmis
i , are calculated using (7.49b). Problematic buses are identified

as those with large apparent power injection mismatch Sinjmis
i = |P injmis

i + iQinjmis
i |. Applica-

tion of the higher-order relaxation’s constraints to these problematic buses using the iterative
algorithm described in [81] (cf Section 7.3) results in global solutions to many optimal power
flow problems and enables computational scaling to systems with thousands of buses [81,84].
This section extends this approach to the complex hierarchy.

Tables 7.4 and 7.5 show the results of applying the algorithm from [81] for both the
real and complex hierarchies to several test cases with tolerances εg = 1 MVA and εf =
0.05%.13 The optimal objective values in these tables match to at least 0.007%, which is
within the expected solver tolerance. Further, the solutions for both the real and complex
hierarchies match the optimal objective values for the loss minimizing problems obtained
from Matpower shown in Table 7.1 to within 0.013%, providing an additional numerical
proof that these solutions are globally optimal. Note, however, that local solvers do not

13The algorithm in [81] has a parameter h specifying the maximum number of buses to increase the
relaxation order di at each iteration. This parameter is set to two for these examples. Additionally, bounds on
the lifted variables y derived from the voltage magnitude limits are enforced to improve numeric convergence.
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always globally solve optimal power flow problems [22,26,81].
The test cases considered in Tables 7.4 and 7.5 minimize active power losses rather than

generation costs. Although the moment/sum-of-squares hierarchy solves many small- and
medium-size test cases which minimize generation cost, application of the algorithm in [81] to
larger generation-cost-minimizing test cases often requires too many higher-order constraints
for tractability. See [72,83,84] for related algorithms which often find feasible points that are
nearly globally optimal for such problems.

The feasible set of the optimal power flow problem is included is the ball of radius∑
k∈B (vmax

k )2 so a slack variable and a sphere constraint may be added as suggested in
Section 7.3. In order to preserve sparsity, a slack variable and a sphere constraint may be
added for each maximal clique of the chordal extension of the network graph. Global con-
vergence is then guaranteed due to (7.32). However, the sphere constraint tends to introduce
numerical convergence challenges in problems with several thousand buses, resulting in the
need for higher-order constraints at more buses and correspondingly longer solver times.

Interestingly, the examples in Table 7.5 converged without the slack variables and sphere
constraints, and the results therein correspond to relaxations without sphere constraints. A
potential way to account for the success of the complex hierarchy without sphere constraints
would be to compute the Hermitian complexity [38] of the ideal generated by the polynomials
associated with equality constraints. A step in that direction would be to assess the greatest
number of distinct points (possibly infinite) vi ∈ Cn, 1 6 i 6 p, such that (vi)H(Hk+iH̃k)v

j =
−pdem

k − iqdem
k for all buses k not connected to a generator and for all 1 6 i, j 6 p. Note that

the Hermitian complexity of the ideal generated by
∑n

i=1 |zi|2 + σ(z) + a as defined in (7.32)
with a < 0 is equal to 1.

Despite being unnecessary for convergence of the hierarchies in Table 7.5, the sphere
constraint can tighten the relaxations of some optimal power flow problems. Consider, for
instance, the 9-bus example in [22]. The dense second-order relaxations from the real and
complex hierarchies (both with and without the sphere constraint) yield the global optimum
of $3088/hour. Likewise, with second-order constraints enforced at all buses, the sparse
versions of the real hierarchy and the complex hierarchy with the sphere constraint yield the
global optimum. However, the sparse version of the second-order complex hierarchy without
the sphere constraint only provided a lower bound of $2939/hour. Thus, the sphere constraint
tightens the sparse version of the second-order complex hierarchy for this test case. Since the
sparse version of the third-order complex hierarchy without the sphere constraint yields the
global optimum, the sphere constraint is unnecessary for convergence in this example.

Similar to the second-order conic relaxation, the results in Tables 7.4 and 7.5 show that the
complex hierarchy generally has computational advantages over the real hierarchy. For all the
test cases except PEGASE-1354, MSOSd-C solves between a factor of 1.31 and 21.42 faster
than MSOSd-R. The most significant computational speed improvements for the complex
hierarchy over the real hierarchy are seen for cases (e.g., PL-2383wp and PL-2746wop) where
the higher-order constraints account for a large portion of the solver times. The complex
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Table 7.4: Real Moment/Sum-of-Squares Hierarchy MSOSd-R (Active Power Loss Minimiza-
tion)

Case Num. Global Obj. Max Smis Solver
Name Iter. Val. (MW) (MVA) Time (sec)

PL-2383wp 3 24,990 0.25 583.4
PL-2736sp 1 18,334 0.39 44.0
PL-2737sop 1 11,397 0.45 52.4
PL-2746wop 2 19,210 0.28 2,662.4
PL-2746wp 1 25,267 0.40 45.9
PL-3012wp 5 27,642 1.00 318.7
PL-3120sp 7 21,512 0.77 386.6
PEGASE-1354 5 74,043 0.85 406.9
PEGASE-2869 6 133,944 0.63 921.3

hierarchy for these cases has significantly fewer terms in the higher-order constraints than
the real hierarchy.

Observe that several of the test cases (PL-3012wp, PL-3120sp, PEGASE-1354, and PEGASE-2869)
require more iterations of the algorithm from [81] for MSOSd-C than for MSOSd-R. Never-
theless, the improved speed per iteration results in faster overall solution times for all of these
test cases except for PEGASE-1354, for which six additional iterations result in a factor of
2.78 slower solver time.

Both hierarchies were also applied to a variety of small test cases (less than ten buses)
from [22,67,78,85] for which the first-order relaxations failed to yield the global optima. For
all these test cases, the dense versions of both MSOSd-C and MSOSd-R converged at the same
relaxation order. Section 7.3 demonstrates that the MSOSd-R is at least as tight as MSOSd-C.
The results for small problems suggest that the hierarchies have the same tightness for some
class of polynomial optimization problems which includes the optimal power flow problem
with the sphere constraint (cf Conjecture 7.19). The numerical results for some large test
cases have different numbers of iterations between the real and complex hierarchies. Rather
than differences in the theoretical tightness of the relaxation hierarchies, we attribute this
discrepancy in the number of iterations to numerical convergence inaccuracies; not enforcing
the sphere constraint for the sparse complex hierarchy; and, in some cases, the algorithm
from [81] selecting different buses at which to enforce the higher-order constraints.

7.5 Conclusion
We construct a complex moment/sum-of-squares hierarchy for complex polynomial opti-
mization and prove convergence toward the global optimum. Theoretical and experimental
evidence suggest that relaxing nonconvex constraints before converting from complex to real
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Table 7.5: Complex Moment/Sum-of-Squares Hierarchy MSOSd-C (Active Power Loss Min-
imization)

Case Num. Global Obj. Max Smis Solver
Name Iter. Val. (MW) (MVA) Time (sec)

PL-2383wp 3 24,991 0.10 53.9
PL-2736sp 1 18,335 0.11 17.8
PL-2737sop 1 11,397 0.07 25.7
PL-2746wop 2 19,212 0.12 124.3
PL-2746wp 1 25,269 0.05 18.5
PL-3012wp 7 27,644 0.91 141.0
PL-3120sp 9 21,512 0.27 193.9
PEGASE-1354 11 74,042 1.00 1,132.6
PEGASE-2869 9 133,939 0.97 700.8

numbers is better than doing the operations in the opposite order. We conclude with the
question: is it possible to gain efficiency by transposing convex optimization algorithms from
real to complex numbers?

This chapter contains several appendices that may be found after Chapter 8.



Chapter 8

Conclusion and perspectives

The main challenge that prompted this doctoral project was to be able to provide global
solutions to the optimal power flow problem using semidefinite programming when the Shor
relaxation fails. Having realized that the Lasserre hierarchy offers a solution to this challenge
for small networks, the goal of the dissertation became to apply the Lasserre hierarchy to
solve large-scale networks. The main contribution was to adapt the Lasserre hierarchy to
the complex structure of our problem to enhance its tractability. This yielded a new general
approach, the complex moment/sum-of-squares hierarchy.

In Chapter 2, it was shown that the Lasserre hierarchy solves small-scale networks to
global optimality. These networks could not be solved using the Shor relaxation. Surprisingly,
the hierarchy solves them for low orders, generally the second or third order. However, the
second order relaxation can only be applied to about a dozen of variables. With more
variables, it becomes intractable.

In Chapter 3, it was proven that there is no duality gap at each order of the Lasserre
hierarchy provided one the constraints is a ball constraint. This result is relevant because
Lasserre proposes to add a redundant ball constraint to bounded feasible sets in order to
guarantee convergence of the hierarchy. As a corrolary, we obtained that there is no duality
gap at each order of the hierarchy applied to the optimal power flow problem, without having
to add a redundant ball constraint. Note that the ball constraint is not needed in the case of
our problem of interest due to upper bound constraints on the variables, that is to say upper
voltage bounds. The property we’ve proven is necessary for interior-point solvers to converge
to solutions of the semidefinite programs in the Lasserre hierarchy.

In Chapter 4, new large-scale test cases are presented. They correspond to sections of the
European high-voltage transmission network and the entire network. They can be viewed
as quadratically-constrained quadratic programs where the variables and data are complex
numbers. They consist in sparse problems with several thousand complex variables, with
9,241 variables in the biggest test case. The new data are representative of the size and
complexity of real world power systems. They can hence be used to validate new methods
and tools, such as those developed in this dissertation.

110
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In Chapter 5, the Lasserre hierarchy is applied to large-scale networks by combining it
with a penalization approach. As a result, nearly global solutions are found to generation
cost minizimation problems, with a guarantee of how far the value is from the global value.
For power loss minimization problems, the objective function is convex. In those cases,
the Lasserre hierarchy finds the global solution. In all cases, the sparsity of the problem
is exploited using the notions of chordal graph and maximal clique, as well as a technique
to identify problematic constraints. Higher-orders of the Lasserre hierarchy are then only
applied to those constraints, reducing computation time. Moreover, low impedance lines are
removed to cope with the inherent bad conditionning of power systems data.

In Chapter 6, a method for finding nearly global solutions to the optimal power flow
problem is proposed. It does so without having to specify a parameter, which a major
disadvantage of penalization approaches. It is inspired by successful penalizations of the
optimal power flow, which we observed to be linked with Laplacian matrices of the graph of
the power network. Minimizing a quadratic form defined by such a Laplacian matrix over the
power flow equations promotes low rank solutions. In fact, by iterative update of the weights
of the Laplacian matrix, the rank can be reduced to one for many large-scale test cases. To
guarantee near global optimality, the original objective function is set as a constraint. It is
constrained to be less than or equal to the lower bound obtained by the Shor relaxation, plus
a small fraction of it. This is founded because in all practical test cases, the Shor relaxation
computes a lower bound of very high quality.

In Chapter 7, the Lasserre hierarchy is transposed to complex numbers in order to reduce
the computional burden when solving polynomial problems with complex data and variables.
The motivation for this is that the optimal power flow problem is a special case of complex
polynomial optimization. We introduce a complex hierarchy and prove its convergence to
the global solution for any complex polynomial problem with a feasible set of known ra-
dius. The proof relies on recent developments in algebraic geometry. The global solution
to problems with several thousand complex variables is retrieved with the complex hierar-
chy. Sparsity is exploited by using chordal graphs techniques and a mismatch procedure to
identify problematic constraints.

There are various future research directions as a result of this dissertation. One direction
is to enhance the tractability of the complex moment/sum-of-squares hierarchy. A way to
accomplish this may be to develop a solver in complex numbers. Interior point solvers involve
Cholesky factorizations, and Cholesky factorizations could be carried out on the Hermitian
matrices. Another speed-up could come from developing a randomized complex hierarchy.
This is based on an idea proposed by Lasserre. Two polynomials are equal to one another
with high probability if they are equal on a randomly generated set of points. Thus far, the
complex hierarchy is only able to solve optimal power flow problems which minimize active
power loss, which is convex function of voltage. By enhancing the tractability of the complex
hierarchy, it will hopefully be possible to tackle more general objective functions such as
generation cost minimization or minimum deviation from a generation plan.
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The complex hierarchy entails a trade-off. It is more tractable than the real hierarchy at
a given order, but provides a potentially lower bound. It would interesting to know when the
bounds generated by both hierarchies are the same. That would correspond to the cases for
which it is certainly advantageous to use the complex hierarchy. In the case of the optimal
power flow problem, numerical results show it is advantageous. It would be enviable to better
understand why this is so.

Another research direction is to answer the following question. Do the power flow equa-
tions possess the Quillen property? In other words, is the complex hierarchy guaranteed to
converge without having to add a slack variable and a redundant sphere constraint? Numer-
ical experiments seem to show that this is true, but it is not clear why.

Lastly, transmission system operators are interested in optimization tools that cope with
discrete variables. Indeed, there are many decisions which must be made from a finite number
of possibilities: unit commitment, tap of phase-shifting transformers, and changes in network
topology. The framework of real and complex polynomial optimization encompasses such
cases, so real and complex hierarchies are relevant from a theoritical perspective. The Lasserre
hierarchy is known to provide the best bounds to hard combinatorial problems, so it makes
sense to try to apply real and complex hierarchies to the optimal power flow problem with
discrete variables.



Appendix A

Ring Homomorphism

It is shown here that the application Λ defined by (7.3) is a ring homomorphism.

Let Ip denote the identity matrix of order p ∈ N. Λ(In) = I2n and if Z1, Z2 ∈ Cn×n,
Λ(Z1 + Z2) = Λ(Z1) + Λ(Z2) and

Λ(Z1)Λ(Z2) =

(
ReZ1 −ImZ1

ImZ1 ReZ1

)(
ReZ2 −ImZ2

ImZ2 ReZ2

)
=

(
ReZ1ReZ2 − ImZ1ImZ2 −ReZ1ImZ2 − ImZ1ReZ2

ImZ1ReZ2 + ReZ1ImZ2 ReZ1ReZ2 − ImZ1ImZ2

)
= Λ[ReZ1ReZ2 − ImZ1ImZ2 + i(ImZ1ReZ2 + ReZ1ImZ2)]
= Λ[(ReZ1 + iImZ1)(ReZ2 + iImZ2)]
= Λ(Z1Z2).
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Appendix B

Rank-2 Condition

It is proven here that a Hermitian matrix Z is positive semidefinite and has rank 1 if and
only if Λ(Z) is positive semidefinite and has rank 2.

(=⇒) Say Z = zzH where real and imaginary parts are defined by z = x1 + ix2 and
(x1, x2) 6= (0, 0). Then

Λ(Z) =

(
x1x

T
1 + x2x

T
2 x1x

T
2 − x2x

T
1

x2x
T
1 − x1x

T
2 x1x

T
1 + x2x

T
2

)
(B.1a)

=

(
x1

x2

)(
x1

x2

)T
+

(
−x2

x1

)(
−x2

x1

)T
. (B.1b)

The rank of Λ(Z) is equal to 2 since ( xT1 xT2 )T and ( (−x2)T xT1 )T are non-zero orthogonal
vectors.

(⇐=) Say Λ(Z) = xxT + yyT where x and y are non-zero real vectors. Consider the block
structure x = ( xT1 xT2 )T and y = ( yT1 yT2 )T . For i = 1, . . . , n, it must be that

x2
1i + y2

1i = x2
2i + y2

2i, (B.2a)
x1ix2i + y1iy2i = 0. (B.2b)

Two cases can occur. The first is that x1ix2i 6= 0 in which case there exists a real number
λi 6= 0 such that {

y1i = −λi x2i,
y2i = 1

λi
x1i.

(B.3)

Equation (B.2a) implies that (1 − λ2
i )x

2
1i = (1 − 1

λ2i
)x2

2i thus (1 − λ2
i )(1 − 1

λ2i
) > 0 and

λi = ±1. The second case is that x1ix2i = 0. Then, according to (B.2b), y1iy2i = 0. If
either x1i = y1i = 0 or x2i = y2i = 0, then (B.2a) implies that x1i = x2i = y1i = y2i = 0. If
x1i = y2i = 0, then (B.2a) implies that y1i = ±x2i. If x2i = y1i = 0, then (B.2a) implies that
y2i = ±x1i.
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In any case, there exists εi = ±1 such that{
y1i = −εi x2i,
y2i = εi x1i.

(B.4)

For i, j = 1, . . . , n it must be that

(1− εiεj)(x1ix1j − x2ix2j) = 0, (B.5a)
(1− εiεj)(x1jx2i + x1ix2j) = 0. (B.5b)

Moreover {
x1ix1j + y1iy1j = x1ix1j + εiεjx2ix2j,
x1ix2j + y1iy2j = x1ix2j − εiεjx2ix1j.

(B.6)

It will now be shown that {
x1ix1j + y1iy1j = x1ix1j + x2ix2j,
x1ix2j + y1iy2j = x1ix2j − x2ix1j.

(B.7)

It is obvious if εiεj = 1. If εiεj = −1, then (B.5a)–(B.5b) imply

x1ix1j − x2ix2j = 0, (B.8a)
x1jx2i + x1ix2j = 0. (B.8b)

If x1ix1jx2ix2j = 0, it can be seen that (B.7) holds. If not, (B.8a) implies that there exists a
real number µij 6= 0 such that {

x2i = µij x1i,
x2j = 1

µij
x1j.

(B.9)

Further, (B.8b) implies that (µij + 1
µij

)x1jx2i = 0. This is impossible (µij + 1
µij
6= 0 and

x1jx2i 6= 0). Thus, (B.7) holds.
With the left hand side corresponding to Λ(Z) = xxT + yyT and the right hand side

corresponding to (B.1b), equation (B.7) implies that Λ(Z) is equal to (B.1b). Since the
function Λ is injective, it must be that Z = (x1 + ix2)(x1 + ix2)H .



Appendix C

Invariance of Shor Relaxation Bound

It is shown here that the Shor relaxation bound obtained by relaxing nonconvexities then
converting from complex to real numbers is the same as that obtained by converting from
complex to real number then relaxing nonconvexities.

We have val(CSDP-R) > val(SDP-R) since the feasible set is more tightly constrained due
to (7.4d). To prove the opposite inequality, define Λ̃(X) := (A+C)/2 + i(B −BT )/2 for all
X ∈ S2n using the block decomposition in the left hand part of (7.4d). It is proven here that
if X is a feasible point of SDP-R, then Λ ◦ Λ̃(X) is a feasible point of CSDP-R with same
objective value as X. Firstly, Λ ◦ Λ̃(X) satisfies (7.4d) because Λ̃(X) is a Hermitian matrix.
Secondly, in order to show that Λ ◦ Λ̃(X) satisfies (7.4c), notice that if x = ( xT1 xT2 )T then(

x1

x2

)T (
C −B
−BT A

)(
x1

x2

)
=(

−x2

x1

)T (
A BT

B C

)(
−x2

x1

)
.

(C.1)

Hence Λ◦Λ̃(X) is equal to the sum of two positive semidefinite matrices. Finally, to prove that
Λ ◦ Λ̃(X) satisfies (7.4b) and has same objective value as X, notice that if H ∈ Hn and Y ∈
S2n, then Tr [Λ(H)Y ] =

∑
16i,j62n Λ(H)ijYji =

∑
16i,j62n Λ(H)ijYij =

∑
16i,j6nRe(H)ijAij +

Im(H)ijBij + (−Im(H)ij)(B
T )ij + Re(H)ijCij =

∑
16i,j6nRe(Hij)(A + C)ij + Im(Hij)(B −

BT )ij = 2
∑

16i,j6nRe[Hij(Λ̃(Y )ij)
H ] = 2

∑
16i,j6nHij(Λ̃(Y )ij)

H = 2Tr[HΛ̃(Y )]. Completing
the proof, for all H ∈ Hn, Tr[Λ(H) Λ ◦ Λ̃(X)] = 2Tr[HΛ̃(X)] = Tr [Λ(H)X].
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Appendix D

Invariance of SDP-R Relaxation Bound

We consider the semidefinite problem obtained by converting from complex to real numbers
then relaxing nonconvexities. It is proven here that setting the phase of one of the variables
to zero does not affect the relaxation bound.

We assume that X is a feasible point of SDP-R and construct a feasible point of SDP-R
with same objective value and first diagonal entry equal to 0. Consider the eigenvalue de-
composition X =

∑p
k=1 xkx

T
k for some xk ∈ R2n and p ∈ N. For all θ ∈ R, define

Rθ := Λ[cos(θ)In + i sin(θ)In] =

(
cos(θ)In − sin(θ)In
sin(θ)In cos(θ)In

)
. (D.1)

For k = 1, . . . , p, define θk ∈ R such that xk,n+1 + ixk,1 =:
√
x2
k,n+1 + x2

k1e
iθk . Construct

X̃ :=
∑p

k=1(Rθkxk)(Rθkxk)
T < 0 whose first diagonal entry is equal to 0. If H ∈ Hn, then

Tr(Λ(H)X̃) =
∑p

k=1 Tr[Λ(H)Rθkxkx
T
kR

T
θk

] =
∑p

k=1 Tr[R
T
θk

Λ(H)Rθkxkx
T
k ] =

∑p
k=1 Tr[Λ{(cos(θk)In−

i sin(θk)In)H(cos(θk)In + i sin(θk)In)}xkxTk ] =
∑p

k=1 Tr[Λ(H)xkx
T
k ] = Tr(Λ(H)X).
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Appendix E

Discrepancy Between Second-Order
Conic Relaxation Bounds

It is shown here that the second-order conic relaxation bound obtained by relaxing noncon-
vexities then converting from complex to real numbers is different from that obtained by
converting from complex to real number then relaxing nonconvexities.

We have val(CSOCP-R) > val(SOCP-R) since the feasible set is more tightly constrained.
The opposite inequality between optimal values does not hold, and this can be proven by
considering the example QCQP-C defined by infz1,z2∈C (1 + i)z̄1z2 + (1 − i)z̄2z1 s.t. z̄1z1 6
1, z2z2 6 1. CSOCP-R yields the globally optimal value of −2

√
2, while SOCP-R yields −4,

as can be seen below.

−2
√

2 = infX∈S4 2X12 + 2X34 + 2X23 − 2X14,
s.t. X11 +X33 6 1, X22 +X44 6 1,

X2
12 +X2

23 6 X11X22,
X11 = X33, X12 = X34, X22 = X44,
X13 = X24 = 0, X23 +X14 = 0,

−4 = infX∈S4 2X12 + 2X34 + 2X23 − 2X14,
s.t. X11 +X33 6 1, X22 +X44 6 1,

X2
12 6 X11X22, X2

13 6 X11X33,
X2

14 6 X11X44, X2
23 6 X22X33,

X2
24 6 X22X44, X2

34 6 X33X44.

(E.1)
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Appendix F

Five-Bus Illustrative Example for
Exploiting Sparsity

To illustrate the selective application of second-order constraints, consider the five-bus opti-
mal power flow problem in [22] which is an instance of QCQP-C. Let ind(·) denote the set of
indices corresponding to monomials of either the objective f or constraint functions (gi)1620.
We have

ind(f) = {(1, 1), (1, 2), (1, 3), (3, 5), (4, 5), (5, 5)},
ind(g1) = ind(g2) = {(1, 1), (1, 2), (1, 3)}

[
Pmin

1 , Qmin
1

]
,

ind(g3) = ind(g4) = {(1, 2), (2, 2), (2, 3), (2, 4)} [P2, Q2] ,

ind(g5) = ind(g6) = {(1, 3), (2, 3), (3, 3), (3, 5)} [P3, Q3] ,

ind(g7) = ind(g8) = {(2, 4), (4, 4), (4, 5)} [P4, Q4] ,

ind(g9) = ind(g10) = {(3, 5), (4, 5), (5, 5)}
[
Pmin

5 , Qmin
5

]
, (F.1)

ind(g11) = ind(g12) = {(1, 1)}
[
V min

1 , V max
1

]
,

ind(g13) = ind(g14) = {(2, 2)}
[
V min

2 , V max
2

]
,

ind(g15) = ind(g16) = {(3, 3)}
[
V min

3 , V max
3

]
,

ind(g17) = ind(g18) = {(4, 4)}
[
V min

4 , V max
4

]
,

ind(g19) = ind(g20) = {(5, 5)}
[
V min

5 , V max
5

]
,

where the text in brackets indicates the origin of the constraint: Pi and Qi for active and
reactive power injection equality constraints, Pmin

i and Qmin
i for lower limits on active and

reactive power injections, and V min
i and V max

i for squared voltage magnitude limits at bus i.
For brevity, the sphere constraints discussed in Section 7.3 are not enforced in this exam-

ple. Regardless, the complex hierarchy with di = 1, ∀i ∈ {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16},
di = 2, ∀i ∈ {7, 8, 9, 10, 17, 18, 19, 20} converges to the global solution. The second-order
constraints are identified using the maximum power injection mismatch heuristic in [81].
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The graph G = (N , E) corresponding to (F.1) is shown in Fig. F.1. The nodes correspond
to the complex variablesN = {1, . . . , 5}. Edges E , which are denoted by solid lines in Fig. F.1,
connect variables that appear in the same monomial in any of the constraint equations or
objective function. The supergraph Ĝ =

(
N , Ê

)
has edges Ê comprised of E (solid lines in

Fig. F.1) augmented with edges connecting all variables within each constraint with di > 1
(dashed lines in Fig. F.1). In this case, Ĝ is already chordal, so there is no need to form a
chordal extension Gch.

The maximal cliques of Ĝ are C1 = {1, 2, 3} and C2 = {2, 3, 4, 5}. Clique C2 is the minimal
covering clique for all second-order constraints gi (z) , ∀i ∈ {7, 8, 9, 10, 17, 18, 19, 20}. The
order associated with C2 is two (d̃2 = 2) since the highest order di among all constraints for
which C2 is the minimal covering clique is two. Clique C1 is not the minimal covering clique
for any constraints with di > 1, so d̃1 = 1.

The globally optimal objective value obtained from the complex hierarchy specified above
is 946.8 with corresponding decision variable z = (1.0467+0.0000i, 0.9550−0.0578i, 0.9485−
0.0533i, 0.7791 + 0.6011i, 0.7362 + 0.7487i)T .

Figure F.1: Graph Corresponding to Equations (F.1) from Five-Bus System in [22]



Appendix G

Complex Hierarchy Applied to Optimal
Power Flow

We consider an example of power loss minimization. The system of Figure G.1 links a
generator to a load via a line of admittance g+ ib while respecting upper voltage constraints.

Figure G.1: Two-Bus System

Minimizing power loss reads

inf
v1,v2∈C

g |v1|2 − g v1v2 − g v2v1 + g |v2|2, (G.1)

subject to

−g − ib
2

v1v2 −
g + ib

2
v2v1 + g |v2|2 = −pdem

2 , (G.2)

b+ ig
2

v1v2 +
b− ig

2
v2v1 − b |v2|2 = −qdem

2 , (G.3)

|v1|2 6 (vmax
1 )2, (G.4)

|v2|2 6 (vmax
2 )2. (G.5)

The feasible set is included in the ball defined by |v1|2 + |v2|2 6 (vmax
1 )2 + (vmax

2 )2. In
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accordance with Section 7.3, let’s add a slack variable v3 ∈ C and a constraint

|v1|2 + |v2|2 + |v3|2 = (vmax
1 )2 + (vmax

2 )2. (G.6)

The first and second orders (i.e., MSOS1-C and MSOS2-C) are written below where the
notation yαβ := yα,β (α, β ∈ N3) is used to save space.

Example of MSOS1-C:

inf
y
g y100

100 − g y100
010 − g y010

100 + g y010
010, (G.7)

subject to

−g − ib
2

y100
010 −

g + ib
2

y010
100 + g y010

010 = −pdem
2 y000

000, (G.8)

b+ ig
2

y100
010 +

b− ig
2

y010
100 − b y010

010 = −qdem
2 y000

000, (G.9)

y100
100 6 (vmax

1 )2y000
000, (G.10)

y010
010 6 (vmax

2 )2y000
000, (G.11)

y100
100 + y010

010 + y001
001 =

(
(vmax

1 )2 + (vmax
2 )2

)
y000

000, (G.12)
y000

000 y000
100 y000

010 y000
001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 < 0, (G.13)

y000
000 = 1. (G.14)

Example of MSOS2-C:

inf
y
g y100

100 − g y100
010 − g y010

100 + g y010
010, (G.15)

subject to

pdem
2


y000

000 y000
100 y000

010 y000
001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 . . .
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−g − ib
2


y100

010 y100
110 y100

020 y100
011

y200
010 y200

110 y200
020 y200

011

y110
010 y110

110 y110
020 y110

011

y101
010 y101

110 y101
020 y101

011

 . . .

−g + ib
2


y010

100 y010
200 y010

110 y010
101

y110
100 y110

200 y110
110 y110

101

y020
100 y020

200 y020
110 y020

101

y011
100 y011

200 y011
110 y011

101

 . . .

+g


y010

010 y010
110 y010

020 y010
011

y110
010 y110

110 y110
020 y110

011

y020
010 y020

110 y020
020 y020

011

y011
010 y011

110 y011
020 y011

011

 = 0, (G.16)

qdem
2


y000

000 y000
100 y000

010 y000
001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 . . .

+
b+ ig

2


y100

010 y100
110 y100

020 y100
011

y200
010 y200

110 y200
020 y200

011

y110
010 y110

110 y110
020 y110

011

y101
010 y101

110 y101
020 y101

011

 . . .

+
b− ig

2


y010

100 y010
200 y010

110 y010
101

y110
100 y110

200 y110
110 y110

101

y020
100 y020

200 y020
110 y020

101

y011
100 y011

200 y011
110 y011

101

 . . .

−b


y010

010 y010
110 y010

020 y010
011

y110
010 y110

110 y110
020 y110

011

y020
010 y020

110 y020
020 y020

011

y011
010 y011

110 y011
020 y011

011

 = 0, (G.17)
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(vmax
1 )2


y000

000 y000
100 y000

010 y000
001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 . . .

−


y100

100 y100
200 y100

110 y100
101

y200
100 y200

200 y200
110 y200

101

y110
100 y110

200 y110
110 y110

101

y101
100 y101

200 y101
110 y101

101

 < 0, (G.18)

(vmax
2 )2


y000

000 y000
100 y000

010 y000
001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 . . .

−


y010

010 y010
110 y010

020 y010
011

y110
010 y110

110 y110
020 y110

011

y020
010 y020

110 y020
020 y020

011

y011
010 y011

110 y011
020 y011

011

 < 0, (G.19)

(
(vmax

1 )2 + (vmax
2 )2

)


y000
000 y000

100 y000
010 y000

001

y100
000 y100

100 y100
010 y100

001

y010
000 y010

100 y010
010 y010

001

y001
000 y001

100 y001
010 y001

001

 . . .

−


y100

100 y100
200 y100

110 y100
101

y200
100 y200

200 y200
110 y200

101

y110
100 y110

200 y110
110 y110

101

y101
100 y101

200 y101
110 y101

101

 . . .
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−


y010

010 y010
110 y010

020 y010
011

y110
010 y110

110 y110
020 y110

011

y020
010 y020

110 y020
020 y020

011

y011
010 y011

110 y011
020 y011

011

 . . .

−


y001

001 y001
101 y001

011 y001
002

y101
001 y101

101 y101
011 y101

002

y011
001 y011

101 y011
011 y011

002

y002
001 y002

101 y002
011 y002

002

 = 0, (G.20)



y000
000 y000

100 y000
010 y000

001 y000
200 y000

110 y000
101 y000

020 y000
011 y000

002

y100
000 y100

100 y100
010 y100

001 y100
200 y100

110 y100
101 y100

020 y100
011 y100

002

y010
000 y010

100 y010
010 y010

001 y010
200 y010

110 y010
101 y010

020 y010
011 y010

002

y001
000 y001

100 y001
010 y001

001 y001
200 y001

110 y001
101 y001

020 y001
011 y001

002

y200
000 y200

100 y200
010 y200

001 y200
200 y200

110 y200
101 y200

020 y200
011 y200

002

y110
000 y110

100 y110
010 y110

001 y110
200 y110

110 y110
101 y110

020 y110
011 y110

002

y101
000 y101

100 y101
010 y101

001 y101
200 y101

110 y101
101 y101

020 y101
011 y101

002

y020
000 y020

100 y020
010 y020

001 y020
200 y020

110 y020
101 y020

020 y020
011 y020

002

y011
000 y011

100 y011
010 y011

001 y011
200 y011

110 y011
101 y011

020 y011
011 y011

002

y002
000 y002

100 y002
010 y002

001 y002
200 y002

110 y002
101 y002

020 y002
011 y002

002



< 0, (G.21)

y000
000 = 1. (G.22)
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