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Preface

This book is entirely devoted to numerical algorithms for optimization, their
theoretical foundations and convergence properties, as well as their imple-
mentation, their use, and other practical aspects. The aim is to familiarize
the reader with these numerical algorithms: understanding their behaviour
in practice, properly using existing software libraries, adequately designing
and implementing “home-made” methods, correctly diagnosing the causes
of possible difficulties. Expected readers are engineers, Master or Ph.D. stu-
dents, confirmed researchers, in applied mathematics or from various other
disciplines where optimization is a need.

Our aim is therefore not to give most accurate results in optimization, nor
to detail the latest refinements of such and such method. First of all, little is
said concerning optimization theory itself (optimality conditions, constraint
qualification, stability theory). As for algorithms, we limit ourselves most of
the time to stable and well-established material. Throughout we keep as a
leading thread the actual practical value of optimization methods, in terms of
their efficiency to solve real-world problems. Nevertheless, serious attention is
paid to the theoretical properties of optimization methods: this book is mainly
based upon theorems. Besides, some new and promising results or approaches
could not be completely discarded; they are also presented, generally in the
form of special sections, mainly aimed at orienting the reader to the relevant
bibliography.

An introductory chapter gives some generalities on optimization and it-
erative algorithms. It contains in particular motivating examples, ranking
from meteorological forecast to power production management; they illus-
trate the large field of branches where optimization finds its applications.
Then come four parts, rather independent of each other. The first one is
devoted to algorithms for unconstrained optimization which, in addition to
their direct usefulness, are a basis for more complex problems. The second
part concerns rather special methods, applicable when the usual differentia-
bility assumptions are not satisfied. Such methods appear in the decompo-
sition of large-scale problems and the relaxation of combinatorial problems.
Nonlinearly constrained optimization forms the third part, substantially more
technical, as the subject is still in evolution. Finally, the fourth part gives a
deep account of the more recent interior point methods, originally designed
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for the simpler problems of linear and quadratic programming, and whose
application to more general situations is the subject of active research.

This book is a translated and improved version of the monograph [43],
written in French. The French monograph was used as the textbook of an
intensive two week course given several times by the authors, both in France
and abroad. Each topic was presented from a theoretical point of view in
morning lectures. The afternoons were devoted to implementation issues and
related computational work. The conception of such a course is due to J.-B.
Hiriart-Urruty, to whom the authors are deeply indebted.

Finally, three of the authors express their warm gratitude to Claude
Lemaréchal for having given the impetus to this new work by providing a
first English version.

Notes on this revised edition. Besides minor corrections, the present
version contains substantial changes with respect to the first edition. First
of all, (simplified but) nontrivial application problems have been inserted.
They involve the typical operations to be performed when one is faced with a
real-life application: modelling, choice of methodology and some theoretical
work to motivate it, computer implementation. Such computational exercises
help getting a better understanding of optimization methods beyond their
theoretical description, by addressing important features to be taken into
account when passing to implementation of any numerical algorithm.

In addition, the theoretical background in Part I now includes a discus-
sion on global convergence, and a section on the classical pivotal approach
to quadratic programming. Part II has been completely reorganized and ex-
panded. The introductory chapter, on basic subdifferential calculus and du-
ality theory, has two examples of nonsmooth functions that appear often in
practice and serve as motivation (pointwise maximum and dual functions).
A new section on convergence results for bundle methods has been added.
The chapter on applications of nonsmooth optimization, previously focusing
on decomposition of complex problems via Lagrangian duality, describes also
extensions of bundle methods for handling varying dimensions, for solving
constrained problems, and for solving generalized equations. Also, a brief
commented review of existing software for nonlinear optimization has been
added in Part III.

Finally, the reader will find additional information at http://www-rocq.
inria.fr/~gilbert/bgls. The page gathers the data for running the test
problems, various optimization codes, including an SQP solver (in Matlab),
and pieces of software that solve the computational exercises.

Paris, Grenoble, Rio de Janeiro, J. Frédéric Bonnans
May 2006 J. Charles Gilbert

Claude Lemaréchal
Claudia A. Sagastizábal
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In this part, we introduce and study numerical techniques based on New-
ton’s method to solve nonlinear optimization problems: objective function
and functional constraints can all be nonlinear, possibly nonconvex. Such
methods, in the form called sequential quadratic programming (SQP), date
back at least to R.B. Wilson’s thesis in 1963 [359], but were mainly popular-
ized in the mid-seventies with the appearance of their quasi-Newton versions
and their globalization, see U.M. Garcia Palomares and O.L. Mangasarian
[280], S.P. Han [184, 185], M.J.D. Powell [291, 292, 293], and the references
therein; let us also mention the earlier contributions by B.N. Pshenichnyj
[300] and S.M. Robinson [306, 307]. Ongoing research on SQP deals with the
efficient use of second derivatives, particularly for nonconvex or large-scale
problems, the use of trust regions [86], the treatment of singular or nearly
singular situations and of equilibrium constraints [242], globalization by fil-
ters, etc. SQP also appears as an auxiliary tool in interior point methods for
nonlinear programming [65].

Like Newton’s algorithm in unconstrained optimization, SQP is more a
methodology than a single algorithm. Here, the basic idea is to linearize the
optimality conditions of the problem and to express the resulting linear sys-
tem in a form suitable for calculation. The interest of linearization is that it
provides algorithms with fast local convergence. The linear system is made
up of equalities and inequalities, and is viewed as the optimality conditions of
a quadratic program. Thus, SQP transforms a nonlinear optimization prob-
lem into a sequence of quadratic optimization problems (quadratic objective,
linear equality and inequality constraints), which are simpler to solve. This
process justifies the name of the SQP family of algorithms. The approach is
attractive because efficient algorithms are available to solve quadratic prob-
lems: active-set methods [160, 128], augmented Lagrangian techniques [98],
and interior-point methods (for the last, see part IV of the present volume).

The above-mentioned principle alone is not sufficient to derive an imple-
mentable algorithm. In fact, one must specify how to solve the quadratic
program, how to deal with its possible inconsistency, how to cope with a
first iterate that is far from a solution (globalization of the method), how the
method can be used without computing second derivatives (quasi-Newton
versions), how to take advantage of the negative curvature directions, etc.
These questions have several answers, whose combinations result in various
algorithms, more or less adapted to a particular situation. There is little to
be gained from our describing each of these algorithms. Rather, our aim is
to present the concepts that form the building blocks of these methods and
to show why they are relevant. A good understanding of these tools should
allow the reader to adapt the algorithm to a particular problem or to choose
the right options of a solver, in order to make it more efficient.

The present review of Newton-like methods for constrained optimization
is probably more analysis- than practice-oriented. The aim in this short ac-
count is to make an inventory of the main techniques that are continuously
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used to analyze these algorithms. In particular, we state and prove precise
results on their properties. We also introduce and explain their structure in
some detail. However, theory does not cover all aspects of an algorithm. We
therefore strive to describe some heuristics that are important for efficient im-
plementations. In fact, it is no exaggeration to say that a method is primarily
judged good on the basis of its numerical efficiency. The analysis often comes
afterwards to try to explain such a good behavior. Finally, let us mention
that all the mathematical concepts used in the present text are simple. In
particular, even though we use nonsmooth merit functions, very few notions
of nonsmooth analysis are employed, so as to make the text accessible to
many.

This part is organized as follows. We start in chapter 13 by recalling
some theory on constrained optimization (optimality conditions, constraint
qualification, projection onto a convex set, etc.) and Newton’s method for
nonlinear equations and unconstrained minimization. This chapter ends with
the presentation of a numerical project that will go with us along the next
chapters of this part (in §§ 14.7, 15.4, 17.4, and 18.4). This project will give
us the opportunity to discuss fine points of the implementation of some of
the proposed algorithms and to illustrate their behavior in various situations;
it also shows, incidentally, that it is relatively easy to write one’s own SQP
code, provided a solver of quadratic optimization problems is available.

After these preliminaries come two chapters dealing with local methods,
whose convergence is ensured if the first iterate is sufficiently close to a solu-
tion. Chapter 14 is devoted to problems with only equality constraints. Here
we are in the familiar domain of Analysis, where the objects involved (func-
tions and feasible sets) are smooth. The tools are classical as well: mainly
linear algebra and differential calculus. A few concepts of differential ge-
ometry may be useful to interpret the algorithms. Chapter 15 considers the
case where equalities and inequalities are present. Introducing inequality con-
straints results in an important additional difficulty, due to intrinsic combi-
natorics in the problem. This comes from the fact that one does not know
a priori which inequality constraints are active at a solution, i.e., those that
vanish at a solution. If they were known, the algorithms from chapter 14
would apply. The algorithms themselves must therefore determine the set of
active constraints, among 2mI possibilities (mI being the number of inequal-
ity constraints). Combinatorics is a serious difficulty for algorithms, but SQP
copes with it by gracefully forwarding it to a quadratic subproblem, where
it is easier to manage. This also implies a change of style in the analysis of
the problem. Indeed, various sets of indices must be considered (active or
inactive, weakly or strongly active), with an accuracy that is not obtained
immediately.

The concept of exact penalty is central to force convergence of algorithms,
independently of the initial iterate (a concept known as “globalization”); this
is studied in chapter 16. First, the exactness properties of the Lagrangian and
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augmented Lagrangian can be analyzed thanks to their smoothness. These
results are then used to obtain the exactness of a nondifferentiable merit
function. In chapter 17, it is shown how this latter function can be used
and how the local algorithms can be modified to obtain convergence of the
generated iterates from a starting point that can be far from a solution. The
transition from globally convergent algorithms to algorithms with rapid local
convergence is also studied in that chapter.

In the quasi-Newton versions of the algorithms, the matrices containing
second derivatives are replaced by matrices updated with adequate formulae;
this is the subject of chapter 18.

The Problem to Solve

This text presents efficient algorithms for minimizing a real-valued function
f : Ω → R, defined on an open set Ω in R

n, in the presence of functional con-
straints on the parameters x = (x1, . . . , xn) to optimize. Equality constraints
ci(x) = 0, for i ∈ E, as well as inequality constraints ci(x) ≤ 0, for i ∈ I ,
can be present. It is supposed that the index sets E (for equalities) and I
(for inequalities) are finite, having respectively mE and mI elements. These
constraints can also be written

cE(x) = 0 and cI(x) ≤ 0.

Vector inequalities, such as cI(x) ≤ 0 above, are to be understood com-
ponentwise. Hence cI(x) ≤ 0 means that all the components of the vector
cI(x) ∈ R

mI must be nonpositive. The functions f and c need not be convex.
We therefore look for a point x∗ ∈ Ω that minimizes f on the feasible set

X = {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0}.

A point in X is said to be feasible. The problem is written in a condensed
way as follows:

(PEI )





minx f(x)
cE(x) = 0
cI(x) ≤ 0
x ∈ Ω.

The open set Ω appearing in (PEI ) cannot be used to express general
constraints, since a solution cannot belong to its boundary. It is simply the
domain of definition of the functions f , cE , and cI . It is also the set where
some useful properties are satisfied. For example, we always suppose that cE

is a submersion on Ω, i.e., that its Jacobian matrix at x ∈ Ω,

AE(x) := ∇cE(x)>,

of dimension mE × n (the rows of AE(x) contain the transposed gradients
∇ci(x)>, i ∈ E, for the Euclidean scalar product), is surjective (or onto), for
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any x ∈ Ω. Also, f and c are assumed to be smooth on Ω, for example of
class C2 (twice continuously differentiable).

We recall from definition 2.2 that problem (PEI ) is said to be convex
when Ω is convex, f and the components of cI are convex and cE is affine.
In this case, the feasible set X is convex.

Notation

We denote by
m = mE +mI

the total number of functional constraints. It will be often convenient to
assume that E and I form a partition of {1, . . . ,m}:

E ∪ I = {1, . . . ,m} and E ∩ I = ∅.

Then, for v ∈ R
m, we denote by vE the mE-uple made up of the components

vi of v, with indices i ∈ E; likewise for vI . The constraints cE and cI are
then considered to be obtained from a single function c : Ω → R

m, whose
components indexed in E [resp. I ] form cE [resp. cI ].

With a vector v ∈ R
m, one associates the vector v# ∈ R

m, defined as
follows:

(v#)i =

{
vi if i ∈ E
v+

i if i ∈ I,
where v+

i = max(0, vi). With this notation, (PEI) is concisely written as:





minx f(x)
c(x)# = 0
x ∈ Ω.

Indeed, c(x)# = 0 if and only if cE(x) = 0 and cI(x) ≤ 0.
Let x ∈ Ω. If ci(x) = 0, the constraint i is said to be active at x. We

denote by
I0(x) = {i ∈ I : ci(x) = 0}

the set of indices of inequality constraints that are active at x ∈ Ω.
The Euclidean or `2 norm is denoted by ‖ · ‖2. We use the same notation

for the associated matrix norm.

Codes

A number of pieces of software based on the algorithmic techniques presented
in this part have been written. We give a few words on some of them with a
vocabulary that will be clear only after having read part III of the book.
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• VF02AD by Powell [293; 1978] is part of the Harwell library. It uses
Fletcher’s VE02AD code (also part of the Harwell library) for solving
the osculating quadratic problems [125].

• NLPQL by Schittkowski [323; 1985-86] can be found in the IMSL library.
The osculating quadratic problems are solved by the dual method of Gold-
farb and Idnani [165] with the modification proposed by Powell [296] (QL
code).

• NPSOL by Gill, Murray, Saunders, and Wright [158; 1986] is available in
the NAG library.

• FSQP by Lawrence, Tits, and Zhou [282, 222, 223, 224; 1993-2001] uses
an SQP algorithm that evaluates the objective function only at points
satisfying the inequality constraints. This nice property can be important
for certain classes of applications.

• SPRNLP by Betts and Frank [29; 1994] can use second derivatives (if
not positive definite, the Hessian of the Lagrangian is modified using
a Levenberg parameter) and exploits sparsity information. It has been
used to solve many optimal control problems after a direct transcription
discretization.

• FAIPA by Herskovits et al. [189, 190; 1995-1998] also forces the iterates
to be strictly feasible with respect to the inequality constraints. Inter-
estingly, the algorithm requires to solve only linear systems of equations,
no quadratic optimization problems [283]. This approach is connected to
interior point algorithms.

• DONLP2 by Spellucci [342; 1998] is available on Netlib. It uses an active
set technique on the nonlinear problem, so that the osculating quadratic
problems have only equality constraints.

• SNOPT by Gill, Murray, and Saunders [156; 2002] is designed for sparse
large-scale problems. The Hessian of the Lagrangian is approximated by
limited memory BFGS updates (§ 6.3). The quadratic programs are solved
approximately by an active set method. The globalization is done by line-
search on an augmented Lagrangian merit function.

• SQPAL by Delbos, Gilbert, Glowinski, and Sinoquet [99; 2006] can solve
large-scale problems since it uses an augmented Lagrangian approach for
solving the quadratic problems [98], a method that has the property of
identifying the active constraints in a finite number of iterations.

Notes

Surveys on Newton’s method for constrained optimization have been written
by Bertsekas [26; 1982], Powell [295; 1986], Fletcher [128; 1987], Gill, Murray,
Saunders, and Wright [159; 1989], Spellucci [340; 1993], Boggs and Tolle [35;
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1995], Polak [285; 1997], Sargent [320; 1997], Nocedal and Wright [277; 1999,
Chapter 18], Conn, Gould, and Toint [86; 2000, Chapter 15], and Gould,
Orban, and Toint [178; 2005]. See also [242] for problems with equilibrium
constraints and [28, 325] for applications to optimal control problems.
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14 Local Methods for Problems with

Equality Constraints

In this chapter, we present and study several local methods for minimizing
a nonlinear function subject only to nonlinear equality constraints. This is
the problem (PE) represented in figure 14.1: Ω is an open set of R

n, while

M∗ := {x ∈ Ω : c(x) = 0}

(PE)





minx f(x)
c(x) = 0
x ∈ Ω

x∗

Fig. 14.1. Problem (PE) and its feasible set

f : Ω → R and c : Ω → R
m are differentiable functions. Since we always

assume that c is a submersion, which means that c′(x) is surjective (or onto)
for all x ∈ Ω, the inequality m < n is natural. Indeed, for the Jacobian of
the constraints to be surjective, we must have m ≤ n; but if m = n, any
feasible point is isolated, which results in a completely different problem,
for which the algorithms presented here are hardly appropriate. Therefore, a
good geometrical representation of the feasible set of problem (PE) is that of
a submanifold M∗ of R

n, like the one depicted in figure 14.1.
There are several reasons for postponing the study of optimization prob-

lems with inequality constraints. First, we tackle difficulties and notation
progressively, and prepare the intuition for the general case. Also, the re-
duced Hessian method (§ 14.5) has no simple equivalent form when inequali-
ties are present. Finally, such problems arise both in their own right and as
subproblems in some algorithmic approaches to solve optimization problems
with inequality constraints. For instance, nonlinear interior point algorithms
sometimes transform an inequality constrained problem into a sequence a
equality constrained problems by introducing slack or shift variables and a
logarithmic penalization (see [143, 65, 11] for examples). A good mastery of
the techniques used to solve problem (PE) is therefore helpful.
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By local methods, we mean methods whose convergence is ensured pro-
vided the initial iterate is close enough to a solution. In this case, the algo-
rithms presented in chapters 14 and 15 have the nice property to converge
quadratically. This feature comes from the linearization of the optimality
conditions. Among the quadratically convergent algorithms that have been
proposed to solve problem (PE), we have chosen to describe two of them (and
some of their useful variants): Newton’s method (§ 14.1) and the reduced
Hessian method (§ 14.5). These are probably the most often implemented
algorithms. Also, they offer a framework in which different techniques can
be used: line-search and trust region globalization techniques, quasi-Newton
Hessian approximations, etc.

When c is a submersion, the feasible set of (PE) forms a submanifold
of R

n. However, the algorithms studied in this section do not force the iter-
ates to stay in that manifold. For general nonlinear constraints, this would
generally require too much computing time. Rather, optimality and feasibil-
ity are searched simultaneously, so that optimality is obtained in a time of the
same order of magnitude as that needed to obtain feasibility in a code with-
out optimization. This nice feature makes these algorithms very attractive in
practice.

According to the first-order optimality conditions (13.1), we know that,
when the constraints are qualified at a solution x∗ ∈ Ω to (PE), there exists
a Lagrange multiplier λ∗ ∈ R

m such that

{
∇f(x∗) +A(x∗)>λ∗ = 0
c(x∗) = 0.

(14.1)

We have denoted by A(x) := c′(x) the m × n Jacobian matrix of the con-
straints: the ith row of A(x) is the transposed gradient∇ci(x)> of the ith con-
straint; hence the (i, j)th element of A(x) is the partial derivative ∂ci/∂xj(x).

14.1 Newton’s Method

The Newton Step

We have seen in chapter 13 how Newton’s method can be used to solve non-
linear equations (see (13.18)) and to minimize a function (see (13.24)). For
optimization problems with equality constraints, it is therefore tempting to
compute the step dk at xk by means of a quadratic [resp. linear] approxima-
tion of the objective function [resp. constraints] at xk . With such a method,
dk would solve or would compute a stationary point of the quadratic problem

{
mind f

′(xk) · d+ 1
2f

′′(xk) · d2

c(xk) + c′(xk) · d = 0,
(14.2)
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and the next iterate would be xk+1 = xk + dk. Beware of the nonconver-
gence of this algorithm! In some cases, the generated sequence moves away
from a solution, no matter how close the initial iterate is to this solution1.

The right approach consists in dealing simultaneously with the objective
minimization and the constraint satisfaction, by working on the optimality
conditions (14.1). Actually, these form a system of n+m nonlinear equations
in the n+m unknowns (x∗, λ∗), a system that can be solved by Newton’s
method. This results is a so-called primal-dual method, which means that a
sequence {(xk, λk)} is generated, in which xk approximates a primal solu-
tion x∗ and λk approximates the associated dual solution λ∗.

Let (xk , λk) be the current primal-dual iterate. We use the notation

fk := f(xk), ck := c(xk), Ak := A(xk) := c′(xk), ∇x`k := ∇x`(xk , λk),

and finally denote by

Lk := L(xk, λk) := ∇2
xx`(xk, λk)

the Hessian of the Lagrangian ` with respect to x at (xk , λk). See (13.2) for
a definition of the Lagrangian. Newton’s method defines a step in (x, λ) at
(xk , λk) by linearizing the system (14.1) at (xk , λk). One finds

(
Lk A

>
k

Ak 0

)(
dk

µk

)
= −

(
∇x`k
ck

)
. (14.3)

Given a solution (dk, µk) to (14.3), the Newton method defines the next iterate
(xk+1, λk+1) by

xk+1 = xk + dk and λk+1 = λk + µk. (14.4)

Since ∇x`k is linear with respect to λk, (14.3) can be rewritten as follows:
(
Lk A

>
k

Ak 0

)(
dk

λQP

k

)
= −

(
∇fk

ck

)
, (14.5)

where we have used the notation

λQP

k := λk + µk.

The superscript ‘QP’ suggests the fact that, as we shall see below, λQP

k is the
multiplier associated with the constraints of a quadratic problem. The next
iterate (xk+1, λk+1) of Newton’s method is in this case

1 See exercise 14.1 for an example, in which f is concave. When f is strongly convex
and has a bounded Hessian, one can get convergence with line-search along the
direction computed by (14.2). When f is nonconvex, convergence can still be
obtained with line-search and the truncated SQP algorithm. This will be clearer
with the concepts developed in chapter 17. Nevertheless, as this is shown below,
the step computed by (14.2) neglects an important part of the “curvature” of
problem (PE).
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xk+1 = xk + dk and λk+1 = λQP

k . (14.6)

This formulation reveals the less important role played by λk , compared with
that of xk. Observe indeed in (14.5) that λk only appears in the matrix Lk,
while xk is the linearization point of the functions defining the problem.

Osculating Quadratic Problems

Just as in the unconstrained case, the Newton equation (14.3) can be viewed
as the optimality system of a quadratic problem (QP), namely

{
mind ∇x`

>
k d+ 1

2d
>Lkd

ck +Akd = 0.
(14.7)

This one is called the osculating quadratic problem of (PE) at (xk , λk). If we
consider (14.5) instead of (14.3), we find

{
mind ∇f>

k d+ 1
2d

>Lkd
ck +Akd = 0,

(14.8)

which is another osculating quadratic problem, whose optimality system is
(14.5).

The transformations from (14.3) to (14.7) and from (14.5) to (14.8) call
for some comments.

1. Any linear system with a symmetric matrix having the structure of that
in (14.5) (the distinguishing feature is the zero (2, 2) block of the matrix)
can be viewed as the first order optimality conditions of the associated QP
in (14.8). This point of view can be fruitful when numerical techniques
to solve (14.5) are designed.

2. We know that (14.7) and (14.8) have the same primal solutions. This can
also be deduced by observing that their objective functions only differ in
the term λ>kAkd, which is the constant −λ>k ck anywhere on the feasible
set. However, these problems have different dual solutions. With (14.7),
we obtain the step µk to add to the multiplier λk (λk+1 = λk +µk), while
(14.8) gives directly the new multiplier (λk+1 = λQP

k ).

3. One can obtain (14.7) directly from (PE): the constraints are linearized
at the current point xk and the objective function is a quadratic approx-
imation of the Lagrangian at (xk, λk) (the constant term `(xk, λk) of this
approximation can be added to the objective function of (14.7), without
changing the solution).

4. Note the difference between (14.2) and (14.8). The former takes the Hes-
sian of the objective function; the latter uses the Hessian of the La-
grangian. The difference between these two Hessians comes from the con-
straint curvature (sum of the terms (λk)i∇2ci(xk)). In order to have fast
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convergence, this curvature must be taken into account. This is all the
more important when f is nonconvex.

The validity of (14.7) can be justified a posteriori. Indeed the Lagrangian
has a minimum in the subspace tangent to the constraints (if the second-
order sufficient conditions of optimality of theorem 13.4 hold); there-
fore, it makes sense to minimize the quadratic approximation of this
Lagrangian, subject to the linearized constraints. Since the same cannot
be said of f , (14.2) appears suspect.

We can also make the following remark. To have a chance of being
convergent, an algorithm should at least generate a zero displacement
when starting at a solution. We see that this property is not enjoyed by
(14.2). In fact, if xk solves (PE), then ck = 0 and ∇f(xk)>d = 0 for all
d ∈ N(Ak); hence (14.2) amounts to minimizing 1

2d
>∇f(xk)2d onN(Ak).

If the Hessian of f is not positive semi-definite in the space tangent to
the constraints, which may well happen, then d = 0 does not solve (14.2)
(unbounded problem). In contrast, (14.3) and (14.5) do enjoy this mini-
mal property, insofar as the matrix appearing in these linear systems is
nonsingular (see proposition 14.1 below and the comments that follow
definition 14.2).

5. No equivalence holds between (14.5) and (14.8): the minimization prob-
lem (14.8) may have a stationary point (hence satisfying (14.5)) but no
minimum (unbounded problem). Equivalence does hold between (14.5)
and (14.8) – or (14.3) and (14.7) – if Lk satisfies

d>Lkd > 0, for all nonzero d in N(Ak).

In fact, in this case, d 7→ ∇f>
k d + 1

2d
>Lkd is quadratic strictly convex

on the affine subspace {d : ck +Akd = 0}. Therefore (14.8) has a unique
solution, which solves the optimality equations (14.5). These equations
have no other solution (proposition 14.1).

6. From a numerical point of view, the osculating quadratic problem shows
that the Newton equations can be solved by minimization algorithms. For
large-scale problems, the reduced conjugate gradient algorithm is often
used: one computes a restoration step rk that is feasible for (14.8) (hence
satisfying ck + Akrk = 0) and then one generates directions in the null
space of Ak. We shall come back to this issue in § 14.4 and § 17.2.

Regular Stationary Points

The Newton step can be computed if the linear system that defines it, (14.5)
say, is nonsingular. The next proposition gives conditions equivalent to this
nonsingularity.

Proposition 14.1 (regular stationary point). Let A be an m×n matrix,
L be an n× n symmetric matrix, and
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K :=

(
L A>

A 0

)
. (14.9)

Then the following conditions are equivalent:
(i) K is nonsingular;

(ii) A is surjective and any d ∈ N(A) satisfying Ld ∈ N(A)⊥ vanishes;
(iii) A is surjective and Z−>LZ− is nonsingular for some (or any) n ×

(n−m) matrix Z− whose columns form a basis of N(A).

Proof. [(i) ⇒ (ii)] Since K is surjective, so is A. On the other hand, if
d ∈ N(A) satisfies Ld ∈ N(A)⊥ = R(A>), there exists µ ∈ R

m such that
(d, µ) ∈ N(K), so that d = 0.

[(ii)⇒ (iii)] Let Z− be a matrix like in (iii). If Z−>LZ−u = 0 for some
u ∈ R

n−m, d := Z−u ∈ N(A) and Ld ∈ N(Z−>) = R(Z−)⊥ = N(A)⊥, so
that Z−u = 0 by (ii). Now u = 0 by the injectivity of Z−.

[(iii)⇒ (i)] It suffices to show that K is injective. Take (d, µ) in its null
space. Then Ad = 0 and Ld+A>µ = 0, which imply d ∈ N(A) (or d = Z−u
for some u) and Z−>Ld = 0. From (iii), u = 0 and d = 0. Thus A>µ = 0,
and µ = 0 by the injectivity of A>.

Note that the nonsingularity of L and the surjectivity of A are not suffi-
cient to guarantee the equivalent conditions (i)–(iii). For a counter-example
consider

L =

(
1 0
0 −1

)
and A =

(
1 −1

)
.

The vector
(
1 1 −1

)>
is in the null space of K. On the other hand, when A is

surjective, condition (iii) is obviously satisfied if Z−>LZ− is positive definite,
and a fortiori if L is positive definite. Exercise 14.2 gives more information
on the spectrum of the matrix K: it is claimed in particular that, when A is
surjective, the matrix K always has m negative and m positive eigenvalues
(for the intuition, consider the case when n = m = 1 and observe that the
determinant of K is negative; hence there is always one negative and one
positive eigenvalue).

A consequence of exercise 14.2 is that a quadratic function, whose Hes-
sian is the matrix K with a surjective A, is never bounded below. If this
function has a stationary point, it is not a minimizer, but a saddle-point.
The symmetry of K suggests, however, that a linear system based on this
matrix expresses the optimality conditions of a quadratic minimization prob-
lem, but this one needs linear equality constraints (using the matrix A) to
have a chance of being well-posed: see (14.8) for an example. Actually, a
stationary point of this constrained quadratic problem will be a constrained
minimizer if and only if the matrix L is positive semi-definite on the null
space of A.

The discussion above leads us to introduce the following definition.
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Definition 14.2 (regular stationary point). A stationary point (x∗, λ∗)
of (PE) is said to be regular if A∗ := c′(x∗) is surjective and if Z−>

∗ L∗Z−
∗ is

nonsingular, for some (or any) n× (n−m) matrix Z−
∗ whose columns form a

basis of N(A∗).

A regular stationary point is necessarily isolated: it has a neighborhood con-
taining no other stationary point (see exercise 14.3 for a precise statement).
Also, a strong primal-dual solution (x∗, λ∗) to (PE) satisfying (LI-CQ) (i.e.,
A∗ surjective) is a regular stationary point. Indeed, in this case d>L∗d > 0
for all nonzero d ∈ N(A∗), so that the so-called reduced Hessian of the La-
grangian

H∗ := Z−>
∗ L∗Z

−
∗

is positive definite. The (n−m) × (n−m) matrix H∗ clearly depends on the
choice of the matrix Z−

∗ . In some cases, it can be viewed as a Hessian of some
function (see exercise 14.4).

The Algorithm

We conclude this section by giving a precise description of Newton’s algorithm
to solve problem (PE). As already mentioned, the method generates a primal-
dual sequence {(xk, λk)} ⊂ R

n × R
m.

Newton’s algorithm for (PE):

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Stop if ∇`(xk, λk) = 0 and c(xk) = 0 (optimality is reached).
2. Compute L(xk, λk) and find a primal-dual stationary point of the

quadratic problem (14.8), i.e., a solution (dk, λ
QP

k ) to (14.5).
3. Set xk+1 := xk + dk and λk+1 := λQP

k .
4. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
5. Increase k by 1 and go to 1.

In practice, the stopping criterion in step 1 would test whether ‖∇`(xk, λk)‖
and ‖c(xk)‖ are sufficiently small. This remark holds for all the algorithms
of this part of the book.

Before analyzing the convergence properties of this algorithm in § 14.3, we
introduce some notation that makes it easier to understand some interesting
variants of the method and highlights the structure of the Newton step dk.
How to compute this step is dealt with in § 14.4.
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14.2 Adapted Decompositions of R
n

A General Framework

Suppose that c is a submersion on the open set Ω ⊂ R
n. Then, the set

Mx := {y ∈ Ω : c(y) = c(x)}

is a submanifold of R
n with dimension n−m (for the few concepts of dif-

ferential geometry that we use, we refer the reader to [344, 51, 84, 112] for
example). Intuitively, the tangent space to Mx at x is the set of directions
of R

n along which c does not vary at the first order; it is therefore the null
space of the Jacobian matrix

Ax := A(x) := c′(x)

of c at x. This null space and a complementary subspace decompose R
n

into two subspaces, which make the description and interpretation of the
algorithms easier. This decomposition, which we now describe, is shown in
figure 14.2.

Mx − x0

R(Z−
x ) = N(Ax)

R(A−
x ) = N(Zx)

Fig. 14.2. Adapted decomposition of R
n

Consider first the tangent subspace N(Ax). We shall often assume that
we have a smooth mapping

Z− : Ω → R
n×(n−m) : x 7→ Z−

x := Z−(x),

such that for all x ∈ Ω, Z−
x is a basis of the tangent subspace. We mean by

this that the columns of Z−
x form a basis of N(Ax) or equivalently:

∀x ∈ Ω, Z−
x is n×(n−m) injective and AxZ

−
x = 0. (14.10)

Besides, since Ax is surjective, it has a right inverse: an n×m matrix A−
x

satisfying AxA
−
x = Im. We shall always assume that A−

x is the value at x of
a smooth mapping
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A− : Ω → R
n×m : x 7→ A−

x := A−(x).

Therefore
∀x ∈ Ω, A−

x is n×m injective and AxA
−
x = Im. (14.11)

The range space of A−
x is a subspace complementary to N(Ax), because

R(A−
x ) ∩N(Ax) = {0} and dimR(A−

x ) + dimN(Ax) = m+ (n−m) = n.
Thus, R

n can be written as the direct sum of the subspaces spanned by
the columns of Z−

x and the columns of A−
x : for all x ∈ Ω,

R
n = R(Z−

x )⊕R(A−
x ).

Lemma 14.3 (adapted decomposition of R
n). Let Z− : Ω → R

n×(n−m)

and A− : Ω → R
n×m be mappings satisfying respectively (14.10) and (14.11).

Then there exists a unique mapping

Z : Ω → R
(n−m)×n : x 7→ Zx := Z(x)

satisfying for all x ∈ Ω:

ZxA
−
x = O(n−m)×m, (14.12)

ZxZ
−
x = In−m. (14.13)

This mapping Z is also characterized by the following identity, valid for all
x ∈ Ω:

I = A−
xAx + Z−

x Zx. (14.14)

Proof. It can be easily checked that the matrixXx =
(
A−

x Z−
x

)
is nonsingular,

from which follow the existence and uniqueness of Zx satisfying (14.12) and
(14.13). Next observe from (14.10), (14.11), (14.12) and (14.13) that the

matrix Yx =
(
A>

x Z>
x

)>
is the inverse of Xx, since YxXx = In. Then (14.14) is

exactly the identity XxYx = In. Conversely, this last identity determines Yx,
hence Zx.

Figure 14.2 summarizes the properties of the operators Ax, Z−
x , A−

x ,
and Zx. The manifold Mx is translated by −x, so that the linearization
point x is at the origin. To find one’s way in this family of operators, a
mnemonic trick is welcome: the operators A−

x and Z−
x , with a minus expo-

nent, are injective and right inverses; while the operators Ax and Zx, without
a minus exponent, are surjective and left inverses.

Using the identity (14.14), we have for every vector v ∈ R
n,

v = A−
xAxv + Z−

x Zxv.

This identity allows us to decompose a vector v into its longitudinal compo-
nent Z−

x Zxv, tangent at x to the manifoldMx, and its transversal component
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A−
xAxv, which lies in the complementary space R(A−

x ). In view of our pre-
ceding development, this decomposition is well-defined, once the matrices Z−

x

and A−
x have been given. Observe also that A−

x Ax and Z−
x Zx = I − A−

x Ax

are oblique projectors on R(A−
x ) and R(Z−

x ). The orthogonal projectors on
these subspaces are

A−
x (A−>

x A−
x )−1A−>

x = I − Z>
x (ZxZ

>
x )−1Zx

and
Z−

x (Z−>
x Z−

x )−1Z−>
x = I −A>

x (AxA
>
x )−1Ax.

Below, we give some formulae for the computation of the matrices Z−
x and

A−
x satisfying properties (14.10) and (14.11). These formulae use inverses of

matrices, which need not be computed explicitly in algorithms. Likewise, the
matrices Z−

x and A−
x need not be computed explicitly. What matters is their

action (or the action of their transpose) on a vector, which can generally be
obtained by solving a linear system. For example, as we shall see, the right
inverse A−

x is usually applied to the vector c(x), whereas A−>
x is often applied

to ∇f(x).
We now proceed by giving examples of matrices Z−

x , A−
x , and Zx that are

frequently used in the algorithms.

Decomposition by Partitioning (or Direct Elimination)

This decomposition has its roots in optimal control problems (see § 1.2.2 and
§ 1.14 for examples of such problems), in which the variables x = (y, u) are
partitioned in state variables y ∈ R

m and control variables u ∈ R
n−m. The

Jacobian Ax is likewise partitioned in

Ax = (Bx Nx),

where Bx is an m×m matrix giving the derivatives of the constraints with
respect to the state variables. In the regular case, Bx is nonsingular. Such a
decomposition is also used in linear optimization.

The decomposition of R
n given below is often used for large-scale opti-

mization problems, in which a fixed partitioning of the variables leads to a
nonsingular matrix Bx. Note that it is always possible to make a partition
of the surjective matrix Ax as above, leading to a nonsingular matrix Bx,
provided some permutation of the columns of Ax is performed. There are
linear solvers that can select the columns of Ax in order to form a matrix Bx

with a reasonably well optimized condition number.
In the framework just described the matrix

Z−
x =

(
−B−1

x Nx

In−m

)
(14.15)

is well defined and satisfies properties (14.10), while the matrix
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A−
x =

(
B−1

x

0

)
(14.16)

is also well defined and satisfies (14.11). The mapping Z given by lemma 14.3
has for its value at x:

Zx =
(
O In−m

)
.

Now, let us highlight some other links with the optimal control framework.
Assuming that c is of class C1, the nonsingularity of Bx implies that y, the
solution to c(y, u) = c(x) for fixed x, is an implicit function of u: y = y(u) and
c(y(u), u) = c(x) for all u in a nonempty open set. Then the basis Z−

x above is
obtained by differentiating the parametrization u 7→ (y(u), u) of the manifold
Mx := {x′ ∈ Ω : c(x′) = c(x)}. On the other hand, the displacement

−A−
x c(x) =

(
−B−1

x c(x)
0

)

is a Newton step to solve the state equation c(y, u) = 0, with fixed control u.
From a computational point of view, we see that, to evaluate A−

x c(x), it
is sufficient to solve the linear system Bxv = c(x), whose solution v gives the
first m components of A−

x c(x). This is less expensive than computing B−1
x

explicitly! Likewise, the first m components h of Z−
x u can be obtained by

solving the linear system Bxh = −Nxu.

Orthogonal Decomposition

The orthogonal decomposition is obtained by choosing a right inverse A−
x ,

whose columns are perpendicular to N(Ax) (they cannot be orthonormal in
general), and a tangent basis Z−

x with orthonormal columns. The condition
on A−

x implies that this matrix has the form A−
x = A>

xS, for some matrix S.
Since AxA

−
x = I must hold, A−

x is necessarily given by

A−
x = A>

x (AxA
>
x )−1. (14.17)

Now, let Z−
x be an arbitrary orthonormal basis of N(Ax): AxZ

−
x = 0 and

Z−>
x Z−

x = In−m. To get the matrix Zx provided by lemma 14.3, let us mul-
tiply both sides of the identity (14.14) to the left by Z−>

x , using (14.17).
Necessarily

Zx = Z−>
x .

One way of computing the matrices A−
x and Z−

x just described, is to use
the QR factorization of A>

x (see [170] for example):

A>
x =

(
Y −

x Z−
x

)(Rx

O

)
= Y −

x Rx, (14.18)

where
(
Y −

x Z−
x

)
is an orthogonal matrix and Rx is upper triangular. The

matrix Rx is nonsingular since Ax is assumed to be surjective. Then, the
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last n−m columns Z−
x of the orthogonal factor form an orthonormal basis

of R(Y −
x )⊥ = R(A>

x )⊥, which is indeed the null space of Ax. Furthermore,
(14.18) and the nonsingularity of Rx show that the columns of Y −

x ∈ R
n×m

span R(A>
x ) = N(Ax)⊥. Since, by multiplying the extreme sides of (14.18) to

the left by Y −>
x , it follows that AxY

−
x = R>

x or AxY
−
x R−>

x = Im, the right
inverse of Ax given by (14.17) is necessarily

A−
x = Y −

x R−>
x .

The orthogonal decomposition just described has the advantage of being
numerically stable and of computing a perfectly well-conditioned basis Z−

x .
The QR factorization can be carried out by using Givens rotations or with
at most m Householder reflections. Therefore, this is a viable approach when
m is not too large.

Oblique Decomposition

Let M be a matrix that is nonsingular on the null space of Ax, meaning that
Z−>

x MZ−
x is nonsingular for some basis Z−

x of N(Ax) (this property of M
does not depend on the choice of Z−

x , see proposition 14.1). Then, one can
associate with M a right inverse of Ax, defined as follows. Take v ∈ R

m. Then
the quadratic problem in d

{
mind

1
2d

>Md
Axd = v

(14.19)

has a unique stationary point, which satisfies the optimality conditions

{
Md+A>

xλ = 0
Axd = v,

(14.20)

for some multiplier λ ∈ R
m. We see that d depends linearly on v. Denoting

by Â−
x the matrix representing this linear mapping, i.e., d = Â−

x v, the second

equation in (14.20) shows that Â−
x is a right inverse of Ax. This matrix Â−

x

will be useful to write a simple expression of the Newton displacement to
solve (PE).

An explicit expression of Â−
x can be given by using a basis Z−

x of the null
space of Ax and a right inverse A−

x of Ax. Then (14.14) and (14.20) show
that d = A−

x v+Z−
x u for some u ∈ R

n−m. By premultiplying both sides of the
first equation of (14.20) by Z−>

x , we obtain u = −(Z−>
x MZ−

x )−1Z−>
x MA−

x v.
Finally

Â−
x =

(
I − Z−

x

(
Z−>

x MZ−
x

)−1
Z−>

x M
)
A−

x . (14.21)

Even though A−
x and Z−

x appear in this formula, Â−
x does not depend on them

(from its definition). From lemma 14.3, there corresponds to the operatorsZ−
x
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and Â−
x a unique matrix Ẑx such that ẐxÂ

−
x = 0 and ẐxZ

−
x = I . To give an

analytic expression of Ẑx, observe first that from (14.21), one has

Z−>
x MÂ−

x = 0, (14.22)

which expresses the fact that the range spaces R(Z−
x ) and R(Â−

x ) are “or-
thogonal” with respect to the matrix M (this would correspond to a proper
notion of orthogonality if the matrix M were positive definite). It is then easy
to check that

Ẑx =
(
Z−>

x MZ−
x

)−1
Z−>

x M

satisfies the required properties.
To conclude, note that Â−

x may not exist if M is singular on the null space
of Ax. Here is a counter-example with n = 2 and m = 1:

M =

(
1 1
1 0

)
, Ax =

(
1 0
)
, and Z−

x =

(
0
1

)
.

Since Z−>
x M = Ax, Â−

x cannot satisfy both AxÂ
−
x = I and (14.22). Observe

finally that the right inverses (14.16) and (14.17) obtained previously can

be recovered from Â−
x by an appropriate choice of M ; this is the subject of

exercise 14.7.

14.3 Local Analysis of Newton’s Method

Local Convergence

In this section, we study the local convergence of the Newton algorithm to
solve problem (PE), introduced in § 14.1. We use the notation

A∗ = A(x∗) and L∗ = L(x∗, λ∗).

Quadratic convergence of the primal-dual sequence {(xk, λk)} will be
shown thanks to theorem 13.6. We shall also use proposition 14.1, whose
conditions (i)-(iii) imply that the constraints are qualified at the solution x∗
in the sense (LI-CQ):

A∗ is surjective. (14.23)

A consequence of proposition 14.1 is that, when (x∗, λ∗) is a regular stationary
point, the system (14.3) or (14.5) has a unique solution for (xk , λk) close to
(x∗, λ∗). Therefore Newton’s method is well defined in the neighborhood of
regular stationary points.

Theorem 14.4 (convergence of Newton’s algorithm). Suppose that f
and c are of class C2 in a neighborhood of a regular stationary point x∗ of
(PE), with associated multiplier λ∗. Then, there exists a neighborhood V of



228 14 Local Methods for Problems with Equality Constraints

(x∗, λ∗) such that, if the first iterate (x1, λ1) ∈ V , the Newton algorithm de-
fined in § 14.1 is well-defined and generates a sequence {(xk, λk)} converging
superlinearly to (x∗, λ∗). If f ′′ and c′′ are Lipschitzian in a neighborhood of
x∗, the convergence of the sequence is quadratic.

Proof. The result is obtained by applying theorem 13.6 with z = (x, λ) and

F (z) =

(
∇f(x) +A(x)>λ

c(x)

)
.

Clearly, F is of class C1 in a neighborhood of z∗ = (x∗, λ∗) and F ′(z∗) is non-
singular (from proposition 14.1). The superlinear convergence of {(xk, λk)}
to (x∗, λ∗) follows if (x1, λ1) is close enough to (x∗, λ∗). If f ′′ and c′′ are Lips-
chitzian near x∗, so is F ′ near z∗, and the quadratic convergence of {(xk, λk)}
follows.

This theorem tells us that Newton’s algorithm makes no distinction be-
tween stationary points, provided they are regular in the sense of defini-
tion 14.2. The iterates are indeed attracted by such a point, even if it is not
a local minimum of (PE); in particular it can be a maximum. The reason of
this property comes from the fact that Newton’s algorithm is essentially a
method to solve nonlinear equations (here the optimality conditions of (PE)).
When one tries to find a minimizer, this is not a nice property. We shall see,
however, that the techniques of chapter 17 tends to overcome this undesirable
feature.

Note that the quadratic convergence of the sequence {(xk, λk)} by no
means implies that of {xk} (see exercise 14.8). However, we shall see in chap-
ter 15 (theorem 15.7) that {xk} does converge superlinearly. On the other
hand, there are versions of Newton’s method that guarantee the quadratic
convergence of the primal sequence {xk}. Here is an example of such an
algorithm.

A Primal Version of the Newton Algorithm

It has already been observed that, in Newton’s method, λk plays a less crucial
role than xk in the computation of the next iterate (xk+1, λk+1). If, instead
of letting the sequences {xk} and {λk} be generated independently, the dual
iterate λk is computed from the primal iterate xk, by means of a function
x 7→ λ(x), i.e.,

λk = λ(xk),

the algorithm becomes completely primal. Indeed, then the knowledge of
xk entirely determines the next iterate xk+1. We shall show below that the
function λ(·) can be chosen in such a way that the convergence of {xk} will be
quadratic, under natural assumptions. A possible candidate for that function
is the least-squares multiplier :
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λLS(x) := −A−(x)>∇f(x), (14.24)

where A−(x) is a right inverse of A(x). One speaks of least-squares multi-
plier because λLS(x) minimizes in λ a weighted `2 norm of ∇x`(x, λ) (see
exercise 14.9).

Let us make precise the algorithm under investigation.

Primal version of Newton’s Algorithm for (PE):

Choose an initial iterate x1 ∈ R
n.

Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Compute λk = λ(xk).
2. Stop if ∇`(xk, λk) = 0 and c(xk) = 0 (optimality is reached).
3. Compute L(xk, λk) and find a solution (dk, λ

QP

k ) to the linear sys-
tem

(
L(xk, λk) A(xk)>

A(xk) 0

)(
dk

λQP

k

)
= −

(
∇f(xk)
c(xk)

)
. (14.25)

4. Set xk+1 := xk + dk.
5. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
6. Increase k by 1 and go to 1.

We have used the same notation λQP

k for the dual solution to (14.25) and
(14.5), although their values are different, since here λk depends on xk . Note
that although λQP

k is computed, it has no influence on the value of xk+1.
The next theorem analyses the local convergence of this algorithm.

Theorem 14.5 (convergence of a primal version of Newton’s algo-
rithm). Suppose that f and c are of class C2 in a neighborhood of a regular
stationary point x∗ of (PE), with associated multiplier λ∗. Suppose also that
the function λ(·) used to set the value of λk satisfies λ(x∗) = λ∗ and is
continuous at x∗. Then, there exists a neighborhood V of x∗ such that, if
the first iterate x1 ∈ V , the above primal version of Newton’s algorithm is
well-defined, generates a sequence {xk} converging superlinearly to x∗, and
λQP

k − λ∗ = o(‖xk − x∗‖). If furthermore f ′′ and c′′ are Lipschitzian in a
neighborhood of x∗ and if there is a positive constant C such that

‖λ(x) − λ∗‖ ≤ C‖x− x∗‖, for x near x∗,

then the convergence of {xk} is quadratic and λQP

k − λ∗ = O(‖xk − x∗‖2).

Proof. We mimic the argument used in the proof of theorem 13.6. With the
notation
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F (x, ν) :=

(
∇x`(x, ν)
c(x)

)
,

and µk := λQP

k − λ∗, the linear system (14.25) can be written

F ′(xk , λk)

(
dk

µk

)
= −F (xk, λ∗).

If xk is in some neighborhood of the regular stationary point x∗, with as-
sociated multiplier λ∗, λk is near λ∗ (continuity of λ(·) at x∗). Further-
more, F ′(xk , λk) = F ′(xk , λ(xk)) is nonsingular (see proposition 14.1) and
has a bounded inverse on that neighborhood. With the notation zk+1 :=
(xk+1, λ

QP

k ), zk,∗ := (xk , λ∗), and z∗ := (x∗, λ∗), and the fact that f and c
are of class C2, one has

zk+1 − z∗ = zk,∗ − z∗ − F ′(xk , λk)−1F (xk , λ∗)

= F ′(xk , λk)−1
(
F ′(xk , λk)(zk,∗ − z∗)− F (z∗)

−
∫ 1

0

F ′(x∗ + t(xk−x∗), λ∗) · (zk,∗ − z∗) dt
)
.

Using F (z∗) = 0 and taking norms,

‖zk+1 − z∗‖ ≤ C ′
(∫ 1

0

‖F ′(xk , λk)− F ′(x∗ + t(xk−x∗), λ∗)‖ dt
)
‖xk − x∗‖,

where C ′ is a positive constant. Now, since f ′′, c′′, and λ are continuous
at x∗, F ′(·, λ(·)) is continuous at x∗ and the last estimate gives zk+1 − z∗ =
o(‖xk − x∗‖), implying the superlinear convergence of xk to x∗ and λQP

k −
λ∗ = o(‖xk − x∗‖). If furthermore f ′′ and c′′ are Lipschitzian near x∗ and
λ(x)−λ∗ = O(‖x−x∗‖), one has zk+1−z∗ = O(‖xk−x∗‖2), which means that
the convergence of {xk} is now quadratic and that λQP

k −λ∗ = O(‖xk−x∗‖2).

14.4 Computation of the Newton Step

In this section, we describe three ways of computing the Newton step dk

and the associated multiplier λQP

k : the direct inversion approach, the dual ap-
proach, and the reduced system approach. We are interested both in analytic
expressions of (dk, λ

QP

k ) and computational issues. Each of these methods has
its own advantages and drawbacks. It is the last one that most highlights
the structure of the Newton step. In each case, one has to find a solution to
(14.5), which is recalled here for convenience:

(
Lk A

>
k

Ak 0

)(
dk

λQP

k

)
= −

(
∇fk

ck

)
. (14.26)

Below, the matrix of this linear system is supposed nonsingular (see propo-
sition 14.1 for conditions ensuring this property), which implies that Ak is
surjective.
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The Direct Inversion Approach

The most straightforward approach for computing the Newton step is to
consider the linear system (14.26) as a whole, without exploiting its block
structure. One should not lose sight of the dimension n + m of this linear
system, which can be quite large in practice. Therefore, to make this approach
attractive the problem needs to have small dimensions or to have sparse
matrices Lk and Ak that can be taken into account. Using this approach could
also be a naive but rapid way of computing (dk, λ

QP

k ) in a personal program,
using matrix oriented languages like Matlab or Scilab, for instance.

As regards the numerical techniques used to solve the full linear system,
observe that, although the matrix in (14.26) is symmetric, it is never posi-
tive definite, even at a strong solution to problem (PE) (see exercise 14.2).
Therefore, a Cholesky factorization or conjugate gradient iterations are not
adequate algorithms to solve this linear system! Direct linear solvers (i.e.,
those that factorize the matrix in (14.26)) can be considered, in particular
when they can take advantage of the possible sparsity of Ak and Lk. The
methods of Bunch and Kaufman [56] for the dense case or the MA27/MA47
solvers of Duff and Reid [114, 115, 116] for the sparse case are often em-
ployed. For large-scale problems, iterative solvers with preconditioners have
also been developed, see for example [53, 20, 315, 358, 333].

The Dual Approaches

The dual approaches (sometimes called range-space approaches) need to have
nonsingular matrices Lk and AkL

−1
k A>

k . This condition is certainly satisfied
if Lk is positive definite (remember that Ak is always assumed surjective in
this section).

In the dual approach, the value of dk is given as a function of λQP

k , using
the first equation of (14.26):

dk = −L−1
k (∇fk +A>

kλ
QP

k ). (14.27)

Substituting this expression in the second equation of (14.26) gives the value
of the QP multiplier, which is the solution to the linear system

(AkL
−1
k A>

k )λQP

k = −AkL
−1
k ∇fk + ck. (14.28)

A way of solving (14.26) is then to consider the two linear systems (14.28)
and (14.27) one after the other: once λQP

k has been determined by (14.28),
dk can be evaluated by (14.27). The computational effort depends on how
these systems are solved, which should be a consequence of the problem size
and structure. If direct solvers are used, one can give a rapid count of the
number of linear systems to solve: m+1 with the n × n matrix Lk and one
with the m×m matrix AkL

−1
k A>

k . Indeed, the calculation can be organized
as follows: first, one computes L−1

k A>
k and L−1

k ∇fk; next, λQP

k is evaluated
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by solving (14.28); finally, dk is obtained by (14.27) without having to solve
any additional linear system.

When Lk is positive definite, λQP

k in (14.28) maximizes the dual function
associated with the osculating quadratic problem (14.8), which is the function
(see also part II)

λ 7→ min
d

(
1

2
d>Lkd+∇f>

k d+ λ>(ck +Akd)

)
. (14.29)

On the other hand, dk given by (14.27) is the solution to this minimiza-
tion problem in (14.29) with λ = λQP

k . This viewpoint gives its name to
the approach. It also suggests other ways of solving (14.26), which are of-
ten interesting for very large-scale problems such as the Stokes equations in
fluid mechanics (see [243] and references therein). We briefly discuss these
approaches below.

The Uzawa algorithm [13, 134] generates a sequence of multipliers λ con-
verging to λQP

k . For each λ, the minimization problem in (14.29) is solved,
which provides an approximation d of the solution dk. Next the multiplier is
updated by a steepest ascent step on the dual function: λ+ := λ+α(ck+Akd),
where α > 0 is an “appropriate” stepsize. This first order method in λ is some-
times too slow. One way of accelerating it in this simple quadratic setting
is to use the conjugate gradient (CG) algorithm on the dual function, which
is equivalent to solving the linear system (14.28) by CG. Each CG iteration
normally requires an accurate solution to a linear system with the matrix Lk,
although inexact solution can also be considered (see for example [355]).

Another way of accelerating the Uzawa procedure described above is
to substitute in (14.29) the Lagrangian by the augmented Lagrangian (see
§ 16.3):

λ 7→ min
d

(
1

2
d>Lkd+∇f>

k d+ λ>(ck +Akd) +
r

2
‖ck +Akd‖22

)
, (14.30)

where r > 0 is a parameter. The algorithm is similar: λ+ := λ+ r(ck +Akd),
where d is now the solution to the minimization problem in (14.30). See [134]
for more details.

Time saving is also possible by avoiding an exact minimization of the
problem in (14.29) or (14.30) before updating the multiplier (see [303, 118,
54, 92] for instance).

In conclusion, the dual approaches can be appropriate when Lk and
AkL

−1
k A>

k are nonsingular and a linear system with the matrix Lk is not
too difficult to solve. They can also be useful when quasi-Newton techniques
are used to approximate L−1

k by positive definite matrices in the nonlinear
algorithm (the one that sets problem (14.26)), since then there is no linear
system to solve with the matrix Lk, just a matrix-vector product needs to be
done.
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The Reduced System Approach

In this approach (sometimes called the null-space approach), it is assumed
that a decomposition of R

n has been chosen, similar to those described
in § 14.2. The operators A−(x) and Z−(x) should take advantage of the fea-
tures of the problem, in order to avoid expensive operations. We show below
that then the optimization aspect contained in (14.26) can be transferred
into a single linear system, involving an (n−m)× (n−m) symmetric matrix:
the reduced Hessian of the Lagrangian. This makes the reduced system ap-
proach particularly appropriate when n−m � n. Since the reduced Hessian
is positive definite at a strong solution to (PE), the approach makes it possi-
ble to detect convergence to a stationary point that is not a local minimum.
Furthermore, the method leads to formulae highlighting the structure of the
Newton step dk .

Let us start by introducing a very useful notion. We have denoted by
Z−(x) an n × (n−m) matrix, whose columns form a basis of N(A(x)), the
subspace tangent to the constraint manifold at x. We call reduced gradient
of f at x for the basis Z−, the vector of R

n−m defined by

g(x) := Z−(x)>∇f(x). (14.31)

We note gk := g(xk). This vector can be interpreted in Riemannian geom-
etry as follows. Equip the manifold Mx with a Riemannian structure by
defining at each point y ∈ Mx the scalar product on the tangent space
γy(Z−

y u, Z
−
y v) = u>v; then the gradient of f |Mx

at y for this Riemannian
metric is just the tangent vector Z−(y)g(y).

Consider now the computation of dk. Recalling (14.14), the second equa-
tion in (14.26) shows that dk has the form

dk = −A−
k ck + Z−

k uk,

for some uk ∈ R
n−m. Then, the first equation in (14.26) gives

LkZ
−
k uk +A>

kλ
QP

k = −∇fk + LkA
−
k ck.

Premultiplying by Z−>
k to eliminate λQP

k provides the reduced linear system:

Hkuk = −gk + Z−>
k LkA

−
k ck, (14.32)

where the (n−m)× (n−m) matrix

Hk := Z−>
k LkZ

−
k

is called the reduced Hessian of the Lagrangian at (xk, λk). It depends on
the choice of the basis Z−

k . This matrix is necessarily nonsingular when the
matrix in (14.26) is nonsingular (see proposition 14.1). This leads to

dk = −(I − Z−
k H

−1
k Z−>

k Lk)A−
k ck − Z−

k H
−1
k gk.
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The operator acting on ck, namely

Â−
k := (I − Z−

k H
−1
k Z−>

k Lk)A−
k , (14.33)

is the right inverse of Ak defined in (14.21), whereM and x have been replaced
by Lk and xk respectively. Finally

dk = −Â−
k ck − Z−

k H
−1
k gk. (14.34)

This computation reveals the structure of the Newton direction dk, made
up of two terms (see figure 14.3). The first term r̂k := −Â−

k ck is a stationary

xk

M∗ := {x ∈ R
n : c(x) = 0}

−Â−
k ck

−A−
k ck

tk

dk

x∗

{xk + d : ck +Akd = 0}

Fig. 14.3. Structure of the Newton step dk

point of the quadratic problem in r ∈ R
n:

{
minr

1
2r

>Lkr
ck +Akr = 0.

To see this, just set ∇fk = 0 in (14.8) and (14.34). This direction aims at
reducing ρ(·) = ‖c(·)‖, an arbitrary norm of the constraints. Indeed, when
ck 6= 0, r̂k is a descent direction of ρ, since according to lemma 13.1:

ρ′(xk; r̂k) = (‖ · ‖)′(ck;Ak r̂k) = (‖ · ‖)′(ck ;−ck) = −‖ck‖ < 0.

The second term in the right-hand side of (14.34), tk := −Z−
k H

−1
k gk, is a

stationary point of the quadratic problem in t ∈ R
n:

{
mint ∇f>

k t+ 1
2 t

>Lkt
Akt = 0.

To see this, just set ck = 0 in (14.8) and (14.34). It is tangent to the manifold
Mk := Mxk

and aims at decreasing the function f . Indeed, when Hk is
positive definite and gk 6= 0, tk is a descent direction of f at xk, since
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f ′(xk) · tk = ∇f(xk)>(−Z−
k H

−1
k gk) = −g>kH−1

k gk < 0.

We shall come back to this issue in § 14.6, when comparing the direction dk

with directions generated by other algorithms.
On the influence of Lk on the direction dk, we can observe the following.

1. The second-order information used in the Newton direction is entirely
contained in the part Z−>

k Lk of Lk. This can be seen in formula (14.34):

only this part enters the matrices Â−
k and Hk. In particular, the direction

dk is not changed if we add to Lk a matrix of the form A>
kSkAk , where

Sk is an arbitrary symmetric m×m matrix.

2. If we multiply Lk by a number α 6= 0, the transversal part −Â−
k ck of

the direction is not affected, while the longitudinal part −Z−
k H

−1
k gk is

divided by α. In other words, the “size” of Lk only acts on the tangential
part of dk.

Consider now the computation of λQP

k . Premultiply the first equation of

(14.26) by A−>
k and use formula (14.34) of dk to find

λQP

k = −Â−>
k ∇fk +A−>

k LkÂ
−
k ck. (14.35)

This multiplier, as well as the first term in (14.35),

λ̂k := −Â−>
k ∇fk, (14.36)

are sometimes called second-order multipliers, since they involve second-order
derivatives of the functions f and c, via the Hessian of the Lagrangian Lk.
These are estimates of the optimal multiplier, since λQP

k = λ̂k = λ∗ when
xk = x∗, a stationary point. Such is also the case of

λLS

k := −A−>
k ∇fk,

called the first-order multiplier or least-squares multiplier (see (14.24)). It is
said to be of first-order because it only involves the first derivatives of the
data.

With this section, we have concluded the description of Newton’s algo-
rithm to solve equality constrained optimization problems. Next comes the
description of an algorithm, also proceeding by linearizations, but different
from Newton’s method. It can be seen as a kind of nonlinear block Gauss-
Seidel approach.

14.5 Reduced Hessian Algorithm

There is an algorithm to solve problem (PE), different from Newton’s method,
that also enjoys local quadratic convergence. In optimization, its existence can
be suggested by the following considerations.
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When c is a submersion on Ω, the feasible set

M∗ = {x ∈ Ω : c(x) = 0}

is a manifold of dimension n−m. Then (PE) has only n−m degrees of freedom
and a natural question is whether there exists a method where the matrix
containing the second-order information (second derivatives of f and c or
their quasi-Newton approximation) is only (n−m)× (n−m). This is certainly
the case if the iterates xk are forced to stay inM∗. Indeed, such an algorithm
can be obtained by taking a parametrization ofM∗ around x∗ and applying
Newton’s method in the parameter space, which has dimension n−m. How-
ever, requiring xk ∈ M∗ is not realistic: it is often computationally expensive
and, anyway, it cannot be realized exactly when c is an arbitrary nonlinear
function. What is desired is a method with the following properties:

• the only matrix containing second-order information is (n−m)× (n−m),
• the iterates xk are not forced to satisfy the constraints at each iteration,
• the speed of convergence is quadratic.

In this section, we show how to introduce such an algorithm. We shall
see that this approach is particularly attractive when n−m � n and quasi-
Newton techniques are employed. Throughout the section, we assume that
the stationary point x∗ we are seeking is regular (see definition 14.2).

The Reduced Optimality System

The first stage leading to the definition of the algorithm is to provide an
optimality system of reduced size, with fewer equations than in (14.1). This
stage is optional but, by eliminating the multiplier from (14.1), it leads to a
more concise presentation.

Premultiply the first equation of (14.1) by Z−(x∗)> to find, with (14.10),
the reduced optimality system:

{
g(x∗) = 0
c(x∗) = 0,

(14.37)

where g is the reduced gradient of f , defined by (14.31). The multiplier λ∗
no longer appears in this system, which counts (n−m)+m = n equations for
the n unknowns x∗.

Note that the two systems (14.1) and (14.37) have the same solutions x∗.
Indeed, we have just shown that (14.37) can be obtained from (14.1). On the
other hand, we deduce from the first equation of (14.37) that

∇f(x∗) ∈ N(Z−(x∗)
>) = R(Z−(x∗))

⊥ = N(A(x∗))
⊥ = R(A(x∗)

>).

Therefore there exists λ∗ ∈ R
m such that ∇f(x∗) + A(x∗)>λ∗ = 0. This is

the first equation of (14.1). Thus, there is no loss of solutions by considering
(14.37) instead of (14.1).
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Solving the Reduced Optimality System by a
Decoupling Technique

The reduced Hessian method essentially consists in performing one Newton-
like step to solve the second equation of (14.37), followed by one Newton-like
step to solve the first equation. This resembles a nonlinear block Gauss-Seidel
method. There is an important difference however. We shall show that, to
yield local quadratic convergence, the first step can be an arbitrary Newton-
like step, but the second one must have a very specific form. In particular, this
second step must be tangent to the manifold defined by the second equation
in (14.37).

The algorithm generates two sequences of iterates, {xk} and {yk}, both
converging to the same solution x∗. Local convergence is studied more eas-
ily if the method is thought of generating the sequence {yk}. It is this se-
quence that converges (almost) quadratically. Curiously the sequence {xk}
converges slightly less rapidly, but the algorithm is easier to implement in
terms of the sequence {xk}. We now introduce the method by considering
the sequence {yk}, while {xk} appears as an intermediate sequence.

Starting with an iterate yk ∈ Ω, we first perform a Newton-like step that
aims at solving the second equation of (14.37). For this, we use a right inverse
of the Jacobian of c. This gives an intermediate point xk, defined by

xk = yk −A−(yk)c(yk).

Note that, if m = n, then A−(yk) is the inverse of A(yk) and the step
−A−(yk)c(yk) is exactly the Newton step at yk to solve c(x) = 0 (com-
pare with (13.17) and (13.19)). When m < n, which is our situation, every
right inverse A−(yk) produces a particular solution xk − yk to the constraint
equation, linearized at yk.

We are now interested in making a Newton-like step from xk to solve the
first equation of (14.37). The point xk is supposed to be in Ω. Observe first
that the reduced gradient can be written g(x) = Z−>

x ∇x`(x, λ∗), where λ∗ is
the multiplier associated with the solution x∗. By optimality,∇x`(x∗, λ∗) = 0.
Hence, assuming that Z−

x is continuous at x∗ and using lemma 13.2, one has

g′(x∗) = Z−>
∗ L∗, (14.38)

where we have set Z−
∗ = Z−(x∗) and L∗ = L(x∗, λ∗), as usual. If (x∗, λ∗) is

a regular stationary point, the reduced Hessian of the Lagrangian at (x∗, λ∗),

H∗ := Z−>
∗ L∗Z

−
∗ ,

is nonsingular (see proposition 14.1), so that g′(x∗) is surjective. Therefore g
is a submersion in a neighborhood of x∗, which is supposed to contain Ω. As
above, we can therefore take a right inverse B−(xk) of g′(xk) and define the
next iterate by
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yk+1 = xk −B−(xk)g(xk).

We have just described a procedure for computing yk+1 from yk, with xk as
an intermediate iterate.

We now raise the following question. Is it possible to find a matrix map-
ping x 7→ B−(x) so as to obtain fast convergence of the sequence {yk} to x∗?
To answer this question, we introduce the functions ϕ and ψ : R

n → R
n

defined by:

ϕ(y) = y −A−(y)c(y)

ψ(x) = x−B−(x)g(x).

Then, the procedure we are analyzing can be viewed as fixed point iterations:
yk+1 = (ψ ◦ ϕ)(yk). As a result, if B−(·) can be determined in such a way
that (ψ ◦ ϕ)′(x∗) = 0, the algorithm is likely to converge quadratically (see
exercise 14.10). The next lemma specifies the value of B−

∗ := B−(x∗) to get
this property.

Lemma 14.6 (condition of quadratic convergence of a decoupling
method). Suppose that g and c are differentiable at x∗, that A−(·) and
B−(·) are continuous at x∗, and that (x∗, λ∗) is a regular stationary point
of (PE). Then

(ψ ◦ ϕ)′(x∗) = 0 ⇐⇒ B−
∗ = Z−

∗ H
−1
∗ ,

where H∗ := Z−>
∗ L∗Z−

∗ , for some basis Z−
∗ of N(A∗).

Proof. Set B∗ = Z−>
∗ L∗ and C∗ = (ψ ◦ ϕ)′(x∗). Then, with the assumptions

and lemma 13.2:
C∗ = (I −B−

∗ B∗)(I −A−
∗ A∗).

If (ψ ◦ ϕ)′(x∗) = 0, then C∗Z−
∗ = 0, which gives

B−
∗ B∗Z

−
∗ = Z−

∗ .

We deduce B−
∗ = Z−

∗ H
−1
∗ . Conversely, if B−

∗ = Z−
∗ H

−1
∗ , we have A∗B−

∗ = 0.
Then (

A∗
B∗

)
C∗ = 0.

Since the operator applied to C∗ is nonsingular, we haveC∗ = (ψ◦ϕ)′(x∗) = 0.

The Algorithm

Lemma 14.6 suggests designing the algorithm that generates the sequences {xk}
and {yk} as follows:
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xk = yk −A−(yk)c(yk)
yk+1 = xk − Z−(xk)H−1

k g(xk).

Here Hk is an (n−m)×(n−m) matrix approximating the reduced Hessian H∗
of the Lagrangian, or Z−(xk)>L(xk, λk)Z−(xk), for a certain multiplier λk.

As such, this algorithm can be very time-consuming because the con-
straints must be linearized at the two points xk and yk, and also the two
right inverses A−(yk) and Z−(xk) must be computed. Even though it is cru-
cial to compute g at xk and c at yk, theorem 13.6 states that good convergence
can be preserved if the operators involving first derivatives are evaluated at
other points; the important thing is that these points converge to the solu-
tion. Since the reduced gradient must be evaluated at xk, and since it involves
a basis Z−(xk) of the tangent space, the constraints must be linearized at xk

anyway. However, A− can be evaluated at xk instead of yk. This avoids lin-
earizing the constraints at yk. Stating the algorithm in terms of the sequence
{xk}, we then obtain

yk+1 = xk − Z−(xk)H−1
k g(xk)

xk+1 = yk+1 −A−(xk)c(yk+1).

Finally, setting gk = g(xk), A−
k = A−(xk), Z−

k = Z−(xk) and

tk = −Z−
k H

−1
k gk, (14.39)

the algorithm can be stated in a very concise manner:

xk+1 = xk + tk −A−
k c(xk+tk). (14.40)

As with the Newton method (14.34), the first phase of Algorithm (14.40)
consists in performing a displacement tangent to the manifoldMk at xk. In
the second phase, the algorithm aims at getting the next iterate xk+1 closer
to the manifoldM∗ by taking the displacement −A−

k c(xk+tk), in which the
constraints are evaluated at xk + tk, after the tangent step.

Although the reduced Hessian algorithm, which is summarized in the
recurrence (14.40), should be quite clear, we formally state it below.

Reduced Hessian algorithm for (PE):

Choose an initial iterate x1 = y1 ∈ R
n.

Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Compute the reduced gradient g(xk) by (14.31).
2. Stop if g(xk) = 0 and c(yk) = 0 (optimality is reached).
3. Compute the reduced Hessian of the Lagrangian Hk, or an ap-

proximation to it, and the tangent step tk by (14.39).
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4. Evaluate the constraint at yk+1 := xk + tk.
5. Compute the new iterate xk+1 by (14.40), ∇f(xk+1) and A(xk+1).
6. Increase k by 1 and go to 1.

Note that this algorithm is essentially primal, since it can be expressed only in
terms of the primal sequence {xk}. A multiplier estimate λk is however often
necessary, either to evaluate the reduced Hessian of the Lagrangian at (xk, λk)
in step 3 or to update a quasi-Newton approximation to it (see chapter 18).
The cheapest one is the least-squares multiplier defined by (14.24).

Simplified Newton Method

Algorithm (14.40) would be simpler if, in the second phase, the constraints
were evaluated at xk . It would then be written

xk+1 = xk + tk −A−
k ck. (14.41)

This algorithm is sometimes called the simplified Newton method because it
only uses the reduced Hessian of the Lagrangian Hk, not the full Hessian Lk

(compare with (14.34) or see § 14.6). It has a slower convergence speed than
(14.40): under natural assumptions, {xk} converges quadratically in two steps
(see exercise 14.11). On the other hand, there are examples showing that the
sequence {xk} may not converge quadratically in one step (see [63, 373]). To
get good convergence, it is therefore important to evaluate the constraints at
xk + tk, after the tangent displacement.

Local Convergence

The next theorem states that the sequence {yk} ≡ {xk + tk} of Algo-
rithm (14.40) converges superlinearly if the matrix Hk appearing in the tan-
gent step tk satisfies the estimate

Hk −H∗ = O(‖xk − x∗‖).

If Hk is set to Z−(xk)>L(xk, λk)Z−(xk), it depends on xk and λk and this
condition is satisfied if λk − λ∗ = O(‖xk − x∗‖) and if the functions f ′′, c′′,
and Z− are Lipschitzian near x∗. This leaves a certain freedom for the choice
of the multiplier λk. For example, one can take λk = λLS(xk), the least-squares
multiplier defined by (14.24). It is easy to check that λLS(x∗) = λ∗, and thus
λLS(xk) − λ∗ = O(‖xk − x∗‖) if A− and f ′ are Lipschitzian near x∗. With
this value of the multiplier, Algorithm (14.40) becomes entirely primal, in the
sense that the algorithm only constructs the sequence {xk}, the multiplier
being reduced to an auxiliary vector, itself depending on xk.

The result given below is slightly weaker than theorem 14.5 stating the
convergence of {xk} in the primal variant of Newton’s algorithm. For that al-
gorithm, the sequence {xk} converges quadratically if λk−λ∗ = O(‖xk−x∗‖).



14.5 Reduced Hessian Algorithm 241

The proof of theorem 14.7 uses the notation O(·) as explained at the
end of § 13.5. At first, it may disconcert the reader. For example, the first
estimate obtained in the proof, namely (14.43), means that there exists a
positive constant C such that, if xk is in some neighborhood of x∗:

‖yk+1 − x∗ − (xk − x∗) + Z−
k H

−1
k Z−>

∗ L∗(xk − x∗)‖ ≤ C‖xk − x∗‖2.

The point xk is considered as an arbitrary point in that neighborhood and,
despite the presence of the iteration index k, there is no reference to a par-
ticular sequence. The estimate obtained at the end of the proof, namely
xk+2 − x∗ = O(‖xk − x∗‖2), implies that if x1 and x2 are in a sufficiently
small neighborhood of x∗, then x3 and x4 are in that neighborhood (because
for example ‖x3 − x∗‖ ≤ (C‖x1 − x∗‖)‖x1 − x∗‖ ≤ ‖x1 − x∗‖ if ‖x1 − x∗‖
is sufficiently small). Therefore, by induction, all the estimates can now be
applied to all the generated sequences. The interest of this notation is to
provide very concise proofs (for another example, see exercise 14.11).

Theorem 14.7 (convergence of the reduced Hessian algorithm). Sup-
pose that f and c are twice differentiable at a regular stationary point x∗ of
problem (PE) (this allows the use of the operators Z−(x) and A−(x) intro-
duced in § 14.2, for x near x∗) and that the reduced gradient g is differentiable
near x∗. Suppose also that c′, g′, Z− and A− are Lipschitzian near x∗, and
that the matrix Hk used in (14.40) satisfies Hk −H∗ = O(‖xk − x∗‖). Then,
there exists a neighborhood V of x∗ such that, when the first iterate x1 ∈ V ,
Algorithm (14.40) is well defined and generates a sequence {xk} converging
quadratically in two steps to x∗. Furthermore, the sequence {yk} converges
superlinearly to x∗ with the estimate

yk+1 − x∗ = O(‖xk−1 − x∗‖ ‖yk − x∗‖). (14.42)

Proof. Remark first that, when xk is close to x∗, by assumption, Hk is close
to H∗, which is nonsingular (x∗ is regular). Thus, Hk is nonsingular and the
iteration is well defined. Also {H−1

k } is bounded when xk remains in some
neighborhood of x∗.

Remembering that yk+1 = xk + tk and using g(x∗) = 0, (14.38), and the
Lipschitz continuity of g′, we have

yk+1 − x∗ = xk − x∗ − Z−
k H

−1
k gk

= xk − x∗ − Z−
k H

−1
k Z−>

∗ L∗(xk − x∗) (14.43)

+O(‖xk − x∗‖2).

But H−1
k −H−1

∗ = −H−1
k (Hk −H∗)H−1

∗ = O(‖xk − x∗‖), so that, with the
Lipschitz continuity of Z−, the following holds

yk+1 − x∗ = (I − Z−
∗ H

−1
∗ Z−>

∗ L∗)(xk − x∗) +O(‖xk − x∗‖2). (14.44)
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This implies in particular that yk+1−x∗ = O(‖xk−x∗‖). We also have xk+1 =
yk+1 − A−

k c(yk+1). Therefore, using successively c(x∗) = 0, the Lipschitz
continuity of c′ and A−, (14.14), (14.44), and (14.13), we obtain

xk+1 − x∗ = yk+1 − x∗ −A−
k A∗(yk+1 − x∗) +O(‖yk+1 − x∗‖2)

= yk+1 − x∗ −A−
∗ A∗(yk+1 − x∗) +O(‖xk − x∗‖ ‖yk+1 − x∗‖)

= Z−
∗ Z∗(yk+1 − x∗) +O(‖xk − x∗‖ ‖yk+1 − x∗‖) (14.45)

= Z−
∗ (Z∗ −H−1

∗ Z−>
∗ L∗)(xk − x∗) +O(‖xk − x∗‖2). (14.46)

The operator acting on (xk − x∗) in (14.46) is nonzero in general but its
square vanishes, because (Z∗ −H−1

∗ Z−>
∗ L∗)Z−

∗ = 0. From this observation,
we deduce the estimate

xk+2 − x∗ = O(‖xk − x∗‖2),

which shows the two-step quadratic convergence of the sequence {xk}.
Using (14.44), (14.45) (at the previous iteration), and observing that

(I − Z−
∗ H

−1
∗ Z−>

∗ L∗)Z
−
∗ = 0,

we obtain (14.42). The superlinear convergence of {yk} follows.

At this point it is reasonable to wonder why the convergence of the
sequence {yk} is not quadratic. Since Algorithm (14.40) uses the second
derivatives of f and c, it is legitimate to expect quadratic convergence.
The above proof clarifies this, indeed: the constraints are not linearized
at yk, but at the neighboring points xk−1 and xk . Then, passing from yk

to yk+1 involves the right inverse A−(xk−1) instead of A−(yk), which per-
turbs the speed of convergence. If the right inverse A−(yk+1) were used in
place of A−(xk), an O(‖yk+1 − x∗‖2) would appear in (14.45) instead of an
O(‖xk − x∗‖ ‖yk+1 − x∗‖) and quadratic convergence would ensue. Numer-
ically, it is not clear that the computing time of A(yk) and A−(yk) would
be balanced by the quadratic convergence thus recovered, which is why the
algorithm is often stated in the form (14.40).

Beware of the different behavior of the sequences {xk} and {yk}. Even
though they are generated by the same algorithm and both converge to the
same point x∗, the first one is slower than the second one. This may look sur-
prising, but examples do exist, in which the sequence {xk} does not converge
quadratically (see [63]).

Newton and Quasi-Newton Versions

We have already mentioned that the reduced Hessian method is a very attrac-
tive approach when n−m is much smaller than n. This is particularly true
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for their quasi-Newton versions. In these algorithms the (n−m) × (n−m)
reduced Hessian Hk = Z−(xk)>L(xk , λk)Z−(xk) is approximated by a ma-
trix updated by a quasi-Newton formula (see chapters 4.4 and 18). Only this
“small” matrix needs to be updated to collect all the necessary second-order
information on the problem that provides superlinear convergence. Further-
more, the small order of these updated matrices makes it possible to rapidly
obtain a good approximation of the reduced Hessian.

In the Newton version, Hk must be computed. The interest of the re-
duced Hessian method is then less clear. One way of computing Hk is to
evaluate first L(xk, λk)Z−(xk), by computing n−m directional derivatives
of the gradient of the Lagrangian along the columns of Z−(xk), and then
premultiplying the matrix thus obtained by Z−(xk)>. This computation is
conceivable, but the knowledge of L(xk, λk)Z−(xk) would allow the use of
Newton’s method, which does not require any other information on the Hes-
sian of the Lagrangian (see remark 1 on page 235); furthermore, Newton’s
method does not require a re-evaluation of the constraints after the tangent
step.

Another way of getting second-order information in the reduced Hessian
algorithm is to approximate Hk by computing the directional derivatives
of the reduced gradient g along the n−m columns of Z−(xk). Note that
H̃k := g′(xk)Z−(xk) is usually different from Hk, although, in view of for-
mula (14.38), g′(x∗)Z−

∗ does equal Z−>
∗ L∗Z−

∗ . Now H̃k satisfies the estimate
H̃k − H∗ = O(‖xk − x∗‖) (with sufficiently smooth data), so that theo-
rem 14.7 can be applied. Note also that H̃k is not necessarily a symmetric
matrix. This property depends in particular on the choice of the bases Z−:
if Z−(x) is computed by partitioning A(x) (i.e., using formula (14.15)), then
H̃k is symmetric; but in general it is not so when orthonormal bases are used
(see [149]).

14.6 A Comparison of the Algorithms

Table 14.1 and figure 14.4 compare the form and speed of convergence of
the three algorithms described in this chapter: Newton (14.6) with (14.5) or
(14.34)–(14.35), simplified Newton (14.41), and reduced Hessian (14.40).

In all algorithms, the longitudinal step (tangent to the manifold Mk) is
identical and is written

tk = −Z−
k H

−1
k gk.

When Hk is positive definite, this step is opposite to the gradient of f , seen
as a function defined on the manifold Mk equipped at xk with the scalar
product (Riemannian structure on Mk):

γxk
(Z−

xk
u, Z−

xk
v) = u>Hkv.
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Algorithms
Longitudinal
displacement

Transversal
displacement

Speed of
convergence

Newton tk − bA−
k ck quadratic

Simplified Newton tk −A−
k ck 2-step quadratic

Reduced Hessian tk −A−
k c(xk+tk) “almost” quadratic

Table 14.1. Comparison of local methods

M∗ M∗ M∗

tk
xk

tk
xk

x∗ x∗ x∗

dN

k

− bA−
k ck

xk

dN

k dN

k

−A−
k ck

−A−
k c(xk+tk)

tk

Fig. 14.4. Comparison of the Newton (dN

k ), simplified Newton, and reduced Hessian
steps

When Hk is set to Z−>
k LkZ

−
k and Hk is positive definite, tk can also be

viewed as the unique solution to the quadratic problem in t:

{
mint ∇f>

k t+ 1
2 t

>Lkt
Akt = 0,

This interpretation shows that tk does not depend on the choice of the basis
Z−

k , despite the use of this matrix in the formula above. The algorithms
presented in table 14.1 therefore only differ in the choice of the restoration
operator, A−

k or Â−
k , and in the points where the constraints are evaluated,

xk or xk+tk.
First let us compare the two forms of Newton’s method: standard (step

given by (14.34)), and simplified (step given by (14.41)). We see that the two
displacements have the same form, but the operator acting on ck = c(xk) is

Â−
k in the first case, and A−

k in the second (both are right inverses of Ak).

It has been observed (§ 14.2) that Â−
k only depends on the problem’s data

(see problem 14.19), while A−
k is the concern of the user of the algorithm.

Theorems 14.4 and 14.5 have shown that the choice Â−
k leads to quadrati-

cally convergent methods. On the other hand, it is easy to check that the
convergence of {xk} with (14.41) is only two-step quadratic when the right
inverse A−

k is arbitrary: one-step quadratic convergence is never guaranteed
(see exercise 14.11). Therefore Newton’s method is the most effective. Note
finally that one can view the simplified Newton method as an algorithm
neglecting the part Z−>

k LkA
−
k of Lk in the standard Newton method (see
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formula (14.33)). Newton’s algorithm gains in efficiency from getting more
information on the Hessian of the Lagrangian.

As for the reduced Hessian algorithm (14.40), it is very close to the sim-
plified Newton method (14.41). The algorithms differ in the point at which
the constraints are evaluated: xk + tk in (14.40) and xk in (14.41). The re-
duced Hessian method can thus be viewed as a technique to compensate a
possible bad choice of right inverse A−

k by a re-evaluation of the constraints
after the tangent step. As shown by theorem 14.7, this yields a good speed
of convergence for the sequence {xk + tk}, a property that is not shared with
the simplified Newton algorithm.

14.7 The Hanging Chain Project II

The goal of the second session is to implement one of the local algorithms
introduced in this chapter and to understand its behavior on the hanging
chain test problem presented in § 13.8 (we assume here that the main program
and the simulator have been written in Matlab). Various algorithms can be
implemented. Below, we concentrate our comments on the standard Newton
method described on page 221 in § 14.1, because it is this algorithm that is the
easiest to extend to inequality constrained problems. We shall gain experience
on its features, its efficiency, and shall reveal its weak points (some of them
will be fixed in the next chapters).

We refer the reader to figure 13.3 for the general flowchart of the program.
In this session, we start to write the optimization function sqp, which is
assumed to be in the file sqp.m. We want to have an implementation that
can be used to solve other optimization problems than the hanging chain test
problem. This is a good reason for using the mathematical notation of this
chapter inside sqp.m, not the language linked to the test problem. In our
implementation, the function sqp has the following form

function [x,lme,lmi,info] = ...

sqp (simul,x,lme,lmi,f,ce,ci,g,ae,ai,hl,options)

Some of the input or output arguments can be empty, depending on the pres-
ence of equality and/or inequality constraints; in particular, the variables in
connection with the inequality constraints can be ignored for the while. The
input arguments are the following: simul is a string giving the name of the
simulator (here ’chs’); x is the initial value of the primal variable x (posi-
tion of the joints); lme and lmi are the initial values of the multiplier λE and
λI associated with the equality and inequality constraints; f, ce, and ci are
the values of the objective function f to minimize (the energy) and of the
equality and inequality constraint functions cE and cI (lengths of the bars
and floor constraint) at the initial point x; g, ae, and ai are the values of
the gradient of f and the Jacobian matrices AE and AI of cE and cI at the
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initial point x; hl is the Hessian of the Lagrangian at the initial (x, λ) or an
approximation to it; and the structure options is aimed at tuning the behav-
ior of the solver. Standard options include upper bounds on the number of
iterations and simulations (options.iter and options.simul), the required
tolerances on the KKT conditions (options.tol(1:4), see below), the out-
put channel for printing (options.fout), etc. Other options will be discussed
in other sessions. The output arguments are as follows: x, lme, and lmi are
the final values of the primal and dual (multipliers) variables found by sqp;
and info is a structure providing various information on the course of the
optimization realized by the solver, telling in particular whether optimality
has been reached, up to the required precision specified by the options.tol

input argument, and in any case the reason why the solver has stopped.
We have already said on page 228 that the Newton algorithm aims at

finding a stationary point, i.e., a pair (x∗, λ∗) satisfying the optimality con-
ditions (13.1), not necessarily a local minimum. Therefore, it makes sense to
have a stopping criterion based on these conditions. In our code, we stop the
iterations as soon as, for some norms, the current iterate (x, λ) satisfies

‖∇f(x) +A(x)>λ‖ ≤ options.tol(1)

‖cE(x)‖ ≤ options.tol(2)

‖cI(x)+‖ ≤ options.tol(3)

max(‖λ−I ‖, ‖Λ>
I cI(x)‖) ≤ options.tol(4).

where t+ = max(0, t), t− = max(0,−t), and ΛI = Diag(λI ).
Writing the Matlab function sqp implementing the Newton algorithm of

page 221 is actually extremely simple. The core of the function is only a few
lines long. The time consuming operation is the one to solve the linear system
in step 2, but for a small problem this is straightforward. The easiest way of
doing this operation is to form the matrix K in (14.9) and to use the standard
linear solver of Matlab (see § 14.4 for other possibilities). Since hl and ae

are the variables containing respectively the Hessian of the Lagrangian and
the Jacobian of the equality constraints, steps 2 and 3 of the algorithm are
simply made up of

K = [hl ae’; ae zeros(me)];

d = -K\[g;ce];

x = x + d(1:n);

lme = d(n+1:n+me);

where me = mE is the number of equality constraints, n = n is the number
of variables, and the final values of x and lme are the updated iterates x+

and λ+.

Algorithmic Details, Errors to Avoid, Difficulties to Overcome

The solver sqp offers the user the possibility to set the initial value of x
and λ. This is interesting when it is desirable to restart the solver from a
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known approximate solution (recall that the method is primal-dual so that
both x and λ must be specified). More generally, requiring to initialize x is
sensible, since the user often knows an approximate solution to the problem.
This is less clear for λ, since the multipliers have sometimes a less direct
“physical” meaning or, perhaps, this meaning is known but the value of λ is
still difficult to determine. Therefore, it is sometimes wise to let the solver
choose the initial multiplier. For an equality constrained problem, one often
computes the initial λ as the solution to the linear least-squares problem

min
λ∈Rm

1

2
‖∇x`(x, λ)‖22. (14.47)

This is motivated by the fact that the gradient of the Lagrangian vanishes
at a solution. The convex quadratic problem above always has a solution
(theorem 19.1), which is the least-squares multiplier (14.24) when c′E(x) is
surjective.

The Newton algorithm is structured as an iteration loop, which contains
the piece of code given above. Of course the simulator simul must be called
at each iteration after having computed x+ and λ+, in order to update the
values of hl, ae, g, and ce and to check optimality.

Writing an optimization software is a special computer science activity in
the sense that the realized code has to control the convergence of a sequence.
In some cases, the sequence may diverge simply because the conditions of
convergence are not satisfied, not because of an error in the code. Since
convergence requires an unpredictable number of iterations, it is sometimes
difficult to tell on a particular case whether the behavior of the solver is
correct. To certify the correctness of the function sqp, a good idea is to
try it on problems with an increasing difficulty and to check the quadratic
convergence of the generated sequences, as explained below.

• Try first to start sqp at the solution to a trivial problem: for example,
the chain with 2 bars of length 5, with (a, b) = (6, 0), whose single joint
should be at position (3,−4). The solver should stop without making any
iteration, so that this test case checks only the validity of the stopping
criterion and the simulator.

• Try next to start sqp near the solution to an easy problem: for exam-
ple, the chain with 3 bars of length 5, with (a, b) = (11, 0), whose joints
should be at position (3,−4) and (8,−4). Convergence should be ob-
tained in very few iterations, if the initial nodes are at positions (2,−5)
and (9,−3). Our code converges in 5 iterations with options.tol(1:4)

set to 1.e-10.

The Newton algorithm of page 221 is known to converge quadratically if
the initial primal-dual iterate (x1, λ1) is sufficiently close to a regular sta-
tionary point (theorem 14.4). Checking that quadratic convergence actually
occurs is a good way of verifying that the implementation of both the al-
gorithm and the simulator has been done properly. The very definition of
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quadratic convergence of a sequence {zk} makes use of the limit point z∗ to
which it converges (see § 13.5). Since, in the course of the optimization, the
limit point z∗ := (x∗, λ∗) of the generated sequence {zk} := {(xk , λk)} is not
known, the definition cannot be directly applied. The idea is then to observe
the behavior of another sequence, whose limit point is zero (hence known!)
and that also converges quadratically. Below, we consider the following two
possibilities.

• For Newton’s method, a natural object to look at is the function of
which the algorithm tries to find a zero. For an equality constrained
optimization problem, it is the function z := (x, λ) ∈ R

n+m 7→ F (z) =
(∇x`(x, λ), c(x)) ∈ R

n+m. When z∗ := (x∗, λ∗) is a regular stationary
point (definition 14.2), F ′(z∗) is nonsingular and it is not difficult to
show that (zk−z∗) ∼ F (zk) in the sense of (13.11). Therefore F (zk)→ 0
quadratically in Newton’s algorithm.

• Another vector that tends to zero is the step sk := zk+1 − zk. By
lemma 13.5, {sk} also converges quadratically to zero in Newton’s
method.

Let us check quadratic convergence of our implementation on the following
test case.

Test case 1a: second hook at (a, b) = (1,−0.3), lengths of the bars: L =
(0.4, 0.3, 0.25, 0.2, 0.4), and initial positions of the chain joints: (0.2,−0.5),
(0.4,−0.6), (0.6,−0.8), and (0.8,−0.6).

The results obtained with test case 1a are shown in figure 14.5. Convergence

PSfrag replacements

0
1

2

2 3

4

4 5

6

8

10

12

Fig. 14.5. Test case 1a

with options.tol(1 : 4) = 10−10 is obtained in 6 iterations. The picture
on the left shows the initial position of the chain (thin solid bars), the 5
intermediate positions (dashed bars) and the final position (bold solid bars).
The picture on the right gives a plot of the ratios ‖F (zk+1)‖2/‖F (zk)‖22 and
‖sk+1‖2/‖sk‖22, for k = 1, . . . , 5. The boundedness of these ratios leaves no
doubt on the quadratic convergence of the sequence {zk} to its limit.
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Experimenting with the Newton Method

The test case 1a reveals the ideal behavior of Newton’s method: quadratic
convergence is obtained when the initial position of the chain is close to a reg-
ular solution. This solution is a strict local minimum (the smallest eigenvalue
of the reduced Hessian of the Lagrangian Z−>

∗ L∗Z−
∗ , for some orthonormal

basis Z−
∗ , is positive) and probably the global one.

Other solutions can be found by Newton’s method with the same data,
and those are not local minima. This is the case with the following two
starting points.

Test case 1b: identical to test case 1a, except that the initial positions of
the chain joints are (0.2, 0.5), (0.4, 0.6), (0.6, 0.8), and (0.8, 0.6).

Test case 1c: identical to test case 1a, except that the second hook at (a, b) =
(0.8,−0.3) and that the initial positions of the chain joints are (0.3, 0.3),
(0.5, 0.4), (0.3, 0.4), and (0.6, 0.3).

The resulting equilibria are shown in figure 14.6. The picture on the left

Fig. 14.6. Test cases 1b and 1c: a maximum (left) and a stationary point (right)

shows a local maximum (the largest eigenvalue of the reduced Hessian of the
Lagrangian is negative). The right hand side picture shows a stationary point
that is neither a minimum nor a maximum (the 3× 3 reduced Hessian of the
Lagrangian has two negative eigenvalues and a positive one).

The next two examples have been built to show cases without convergence.

Test case 1d: identical to test case 1a, except that the initial positions of
the chain joints are (0.2,−0.5), (0.4, 1.0), (0.6,−0.8), and (0.8,−0.6) (hence,
only the y-coordinate of the second joint has been modified).

Test case 2a: second hook at (a, b) = (2, 0), lengths of the bars: L = (1, 1),
and initial position of the chain joint: (1.5, −0.5).

The results are shown in figure 14.7. In the left picture, we have only plotted



250 14 Local Methods for Problems with Equality Constraints

Fig. 14.7. Test cases 1d, 2a, and 2b: non convergence in (x, λ) (left), non conver-
gence in λ (middle), and convergence in (x, λ) (right)

the position of the chain at the first 10 iterations, since apparently Newton’s
method does not converge. The generated sequence has a typical erratic be-
havior. By chance, one of these iterates may fall into the neighborhood of
convergence of a stationary point, but this does not occur during the first 50
iterations. The middle picture is more puzzling, since it looks as if the algo-
rithm converges. This is actually the case for the primal variables x (giving
the position of the chain), which converge to the single feasible joint (1, 0),
but the dual variables diverge (their norm blows up). This reflects the fact
that the optimal solution does not satisfy the KKT conditions (the Jacobian
of the equality constraint in not surjective at the solution and there is no
optimal multipliers); in fact, a weighty chain formed of two horizontal bars
is not physically possible. The situation is quite different for the similar test
case 2b below.

Test case 2b: second hook at (a, b) = (0,−2), lengths of the bars: L = (1, 1),
and initial position of the chain joint: (0.5, −0.5).

The result is shown in the right hand side picture in figure 14.7: convergence
in both (x, λ) is obtained in 17 iterations.

We conclude with the following test case and let the reader guess whether
the position of the chain given in figure 14.8 is a local minimum.

Test case 3: second hook at (a, b) = (0,−1) and lengths of the bars: L = (0.5,
0.5, 2.0, 0.4, 0.4).

Notes

The operators A−, Z−, and Z defined in § 14.2 were introduced by Gabay
[137]. They have allowed us to use the same formalism for the optimal con-
trol and orthogonal settings. We have seen that convergence results need to
have a smooth map x 7→ (A−

x , Z
−
x , Zx). It is usually difficult to guarantee

this smoothness in a large region (for example there is no continuous basis
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Fig. 14.8. Test case 3: is this a stable static equilibrium position?

mapping x 7→ Z−
x on a sphere of even dimension). Even locally, standard

procedures such as the QR factorization presented in § 14.2 may compute a
noncontinuous basis mapping [83]. This issue has been examined by several
authors, who have proposed procedures for computing a smoothly varying
sequence of matrices Z−

k when approaching a solution: see [83, 157, 24, 68].
The connection between the symmetry of g′(x)Z−(x) and the choice of basis
of the tangent space is discussed in [149; § 3].

The accuracy of the computation of the Newton step by the reduced sys-
tem approach (see § 14.4) crucially depends on the choice of operators A−

and Z−. When these are obtained from the partitioning of A into
(
B N

)
,

with a nonsingular B, and from a Gaussian factorization of B, Fletcher and
Jonhson [129] recommend to use Gaussian elimination on the whole ma-
trix A> to get

A> =

(
L1

L2

)
U,

where L1 is unit lower triangular and U is upper triangular. The elements
of L1 and L2 can be guaranteed to be not bigger than 1 in absolute value
(e.g., because the elements of N> are taken into account in the choice of the
pivots). This approach provides well conditioned basis Z− and a solution to
the Newton system that is less sensitive to the ill-conditioning of A and that
of the reduced Hessian of the Lagrangian.

The presentation of the reduced Hessian method given in § 14.5 fol-
lows [145]. This algorithm, condensed in formula (14.40), was introduced
by Coleman and Conn [81], who proved convergence of the sequence {xk}.
Superlinear (or quadratic) convergence of the sequence {yk} was observed
independently by Hoyer [197], Gilbert [145], and Byrd [64]. The simplified
Newton method (14.41) has been studied by many authors: Murray and
Wright [271], Powell [292], Gabay [138], Nocedal and Overton [276], Byrd
and Nocedal [67], to mention a few. Newton’s method on the reduced system
(14.37) is considered by Goodman [177], who analyses its links with Newton’s
algorithm (14.5)–(14.6).
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Exercises

14.1. Nonconvergence with a step computed by (14.2). Consider the problem in
x = (x1, x2) ∈ R

2: 
minx −ax2

1 + 2x2

x2
1 + x2

2 = 1,

where a ∈ ]0, 1[. Show that the unique solution x∗ = (0,−1) to this problem
can be repulsive for an algorithm based on (14.2): for x on the constraint
manifold, arbitrary close to (but different from) the solution, and for a
stationary point d of (14.2), x + d is further from the solution than x.

14.2. Inertia of the matrix K in (14.9). The inertia i of a matrix is the triple
(n−, n0, n+) formed by the numbers of its negative, null, and positive eigen-
values respectively. Let K be the matrix defined in (14.9), where L is an
n×n symmetric matrix and A is an m×n surjective matrix (hence m ≤ n).
Show that

i(K) = i(Z−>
LZ

−) + (m, 0, m),

where the columns of Z− form a basis of N(A) (see [90, 72, 179, 244] for
related results).

[Hint : Prove the following claims and conclude: (i) n0(K) = n0(Z
−>LZ−);

(ii) there is no restriction in assuming that Z−>LZ− is nonsingular (use a
perturbation argument, for instance), which is supposed from now on; (iii)
i(K) = i(Z−>LZ−) + i(Σ), where

Σ :=

„
S Im

Im 0

«

for some m×m symmetric matrix S (use the matrix bA− defined by (14.21)
and Sylvester’s law of inertia: i(PKP>) = i(K) if P is nonsingular); (iv)
i(Σ) = (m, 0, m).]

14.3. Regular stationary points are isolated. Let (x∗, λ∗) be a regular stationary
point of problem (PE). Show that there is a neighborhood of (x∗, λ∗) in
R

n × R
m containing no other stationary point than (x∗, λ∗).

14.4. A view of the reduced Hessian of the Lagrangian. Let f : Ω → R and
c : Ω → R

m be twice differentiable functions defined in a neighborhood Ω

of a point x∗ ∈ R
n and denote `(x, λ) := f(x)+λ>c(x), for (x, λ) ∈ Ω×R

m,
and L∗ := ∇2

xx`(x∗, λ∗). Suppose that ∇x`(x∗, λ∗) = 0 for some λ∗ ∈ R
m (it

is not assumed that c(x∗) = 0) and that A∗ := c′(x∗) is surjective. Let Z−
∗

be an n× (n−m) matrix whose columns form a basis of N(A∗). Show that
one can find a twice differentiable parametric representation ϕ : U ⊂ R

n−m

→ Mx∗
⊂ R

n of the manifold Mx∗
:= {x ∈ Ω : c(x) = c(x∗)} around x∗

defined in a neighborhood U of 0, such that ϕ(0) = x∗, ∇(f ◦ ϕ)(0) = 0,
and ∇2(f ◦ ϕ)(0) = Z−>

∗ L∗Z
−
∗ is the reduced Hessian of the Lagrangian.

14.5. Right inverse and complementary subspace. Let A be an m × n surjective
matrix and S be a subspace of R

n, complementary to N(A) (i.e., N(A)∩S =
{0} and dimS = m). Show that there exists a unique right inverse A− of A

such that R(A−) = S.
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14.6. On the orthogonal decomposition. Let A be an m×n surjective matrix, A−

be a right inverse of A and Z− be a matrix whose columns form a basis
of N(A). Show that A−A + Z−Z−> = In if and only if A− = A>(AA>)−1

(i.e., A− is the unique right inverse of A whose range space is perpendicular
to N(A)) and Z−>Z− = In−m (i.e., the columns of Z− are orthonormal).

14.7. On the oblique right inverse. Let A be an m× n surjective matrix. Find an
n × n symmetric matrix M , that is positive definite in the null space of A,
such that the right inverse bA− of A defined by (14.20) is the one given by
formula (14.16). The same question to recover the right inverse given by
formula (14.17).

14.8. Quadratic convergence of {(xk, yk)} without linear convergence of {xk}. Let
y1 ∈ ]0, 1[ and consider the sequence {(xk, yk)}k≥1 ∈ R

2 generated by
yk+1 = y2

k, xk+1 = xk if k is odd and xk+1 = y2
k+1 if k is even. Show

that {(xk, yk)} converges quadratically to (0, 0), while {xk} does not even
converge linearly to 0.

14.9. Least-squares multiplier. Suppose that A(x) = c′(x) is surjective and let
A−(x) be a right inverse of A(x). Find a least-squares problem, to which
the least-squares multiplier λLS(x) = −A−(x)>∇f(x) is the solution.

[Hint : The least-squares problem has the form minλ∈Rm ‖M∇x`(x, λ)‖2, for
some nonsingular matrix M to be found.]

14.10. Quadratically convergent fixed point iterations. Let Ψ : R
n → R

n be a C1,1

map in the neighborhood of one of its fixed points x∗ (i.e., Ψ(x∗) = x∗).
Suppose that Ψ ′(x∗) = 0. Show that if x1 is sufficiently close to x∗, then
the sequence generated by xk+1 = Ψ(xk), for k ≥ 1, converges quadratically
to x∗.

14.11. Convergence of the simplified Newton method. Suppose that f and c are
twice differentiable at a regular stationary point x∗ of problem (PE) (this
allows the use of the operators Z−(x) and A−(x) introduced in § 14.2, for x

near x∗) and that the reduced gradient g is differentiable near x∗. Suppose
also that c′, g′, Z− and A− are Lipschitzian near x∗, and that the matrix
Hk used in the simplified Newton method (14.41) satisfies Hk − H∗ =
O(‖xk − x∗‖). Then, there exists a neighborhood V of x∗ such that, when
the first iterate x1 ∈ V , Algorithm (14.41) is well defined and generates a
sequence {xk} converging quadratically in two steps to x∗.

[Hint : Show that xk+1−x∗ = Z−
∗ (Z∗−H−1

∗ Z−>
∗ L∗)(xk−x∗)+O(‖xk−x∗‖2),

applying a technique similar to the one used in the proof of theorem 14.7,
and conclude.]





15 Local Methods for Problems with

Equality and Inequality Constraints

In this chapter, we consider the general minimization problem (PEI ), with
equality and inequality nonlinear constraints, which we recall in figure 15.1.
The notation used to describe this problem was given in the introduction,

(PEI)





minx f(x)
cE(x) = 0
cI(x) ≤ 0
x ∈ Ω

x∗

{x ∈ Ω : cE(x) = 0}

Fig. 15.1. Problem (PEI) and its feasible set

on page 193. As in chapter 14, we always suppose that cE is a submersion
(i.e., c′E(x) is surjective or onto for all x in the open set Ω); hence the set
c−1
E (0) := {x ∈ Ω : cE(x) = 0} is a submanifold of R

n. The feasible set of
(PEI ), denoted by

X := {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0},

is then the part of this manifold formed of the points also satisfying the
inequality constraints ci(x) ≤ 0 for all i ∈ I . The set delimited by the curves
of c−1

E (0) in figure 15.1 is a typical example of feasible set for problem (PEI).
We have put the solution x∗ on the boundary of this set, but nothing imposes
that this actually occurs. The solution could just as well be inside the curved
triangle without touching the solid lines. Finding a solution like the one in
figure 15.1 is usually more difficult than when there is no active inequality
constraints (and when this fact is known). An additional fearsome difficulty,
not present in problem (PE), is indeed linked to the determination of the
active constraints at the solution.

Let us recall the first-order optimality conditions of problem (PEI ): when
the constraints are qualified at a solution x∗ ∈ X , there exists a Lagrange
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multiplier vector λ∗ ∈ R
m such that

(KKT)





(a) ∇f(x∗) +A(x∗)>λ∗ = 0
(b) cE(x∗) = 0, cI(x∗) ≤ 0
(c) (λ∗)I ≥ 0
(d) (λ∗)>I cI(x∗) = 0.

(15.1)

This chapter is organized as follows. In § 15.1, the SQP algorithm is in-
troduced as a Newton-like approach to solve the KKT system (15.1). We
shall stress the fact that, in the presence of nonconvexity, the solution to
the osculating quadratic problem has to be selected with care. In § 15.2, we
give conditions ensuring primal-dual quadratic convergence. First, the case
when strict complementarity holds is examined. The active constraints at
the solution are shown to be identified by the osculating quadratic prob-
lem as soon as the primal-dual iterate is in some neighborhood of a regular
stationary point. The algorithm then reduces to Newton’s method for the
problem where the active constraints are considered as equality constraints,
so that the local convergence result of theorem 14.4 can be applied. Next, we
focus on the case without strict complementarity and show that quadratic
convergence still holds, although the active constraint are no longer necessar-
ily correctly identified by the osculating quadratic program. Necessary and
sufficient conditions for primal superlinear convergence are given in § 15.3.

15.1 The SQP Algorithm

Introduction of the Algorithm

The Sequential Quadratic Programming (SQP) algorithm is a form of New-
ton’s method to solve problem (PEI ) that is well adapted to computation.
We have seen in chapter 14 that, to introduce such an algorithm, it is a good
idea to start with the linearization of the optimality conditions and we follow
the same approach here. Let us linearize (15.1) at the current point (xk, λk),
denoting by (dk, µk) the change in the variables. This one solves the following
system of equalities and inequalities in the unknown (d, µ):





Lkd+A>
kµ = −∇x`k

(ck +Akd)
# = 0

(λk + µ)I ≥ 0
(λk + µ)>I (ck)I + (λk)>I (Akd)I = 0.

(15.2)

As before, we use the notation ck := c(xk), Ak := A(xk) := c′(xk),
∇x`k = ∇x`(xk, λk) and Lk := ∇2

xx`(xk, λk). The notation (·)# was defined
on page 194.

Because of its inequalities, (15.2) is not simple to solve. The key observa-
tion is that a good interpretation can be obtained if we add to the last equa-
tion the term (µ)>I (Akd)I . Compared with the others, this term is negligible
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when the steps µk and dk are small, which should be the case when the iter-
ates are close to a solution to (PEI ). Introducing the unknown λQP := λk +µ,
the modified system (15.2) can then be written





Lkd+A>
kλ

QP = −∇fk

(ck +Akd)
# = 0

(λQP)I ≥ 0
(λQP)>I (ck +Akd)I = 0.

(15.3)

A remarkable fact, easy to check, is that (15.3) is the optimality system of
the following osculating quadratic problem (QP)





mind ∇f(xk)>d+ 1
2d

>Lkd
cE(xk) +AE(xk)d = 0
cI(xk) +AI(xk)d ≤ 0.

(15.4)

This QP is easily obtained from (PEI ). Its constraints are those of (PEI),
linearized at xk . Its objective function is hybrid, with ∇f(xk) in the linear
part and the Hessian of the Lagrangian in its quadratic part. The osculating
quadratic problem (14.8), associated with the equality constrained problem
(PE), has made us familiar with the structure of (15.4).

We call Sequential Quadratic Programming (SQP) the algorithm generat-
ing a sequence {(xk, λk)} of approximations of (x∗, λ∗) by computing at each
iteration a primal-dual stationary point (dk , λ

QP

k ) of the quadratic problem
(15.4), and by setting xk+1 = xk + dk and λk+1 := λQP

k .

Sequential Quadratic Programming (SQP):

An initial iterate (x1, λ1) is given.
Compute c(x1), ∇f(x1), and A(x1).
Set k = 1.

1. Stop if the KKT conditions (15.1) holds at (x∗, λ∗) ≡ (xk, λk)
(optimality is reached).

2. Compute L(xk, λk) and find a primal-dual stationary point of
(15.4), i.e., a solution (dk , λ

QP

k ) to (15.3).
3. Set xk+1 := xk + dk and λk+1 := λQP

k .
4. Compute c(xk+1), ∇f(xk+1), and A(xk+1).
5. Increase k by 1 and go to 1.

This algorithm assumes that the QP (15.4) always has a solution or, equiv-
alently, that it is feasible and bounded (theorem 19.1). Adapted remedies
must be implemented when this does not happen, such as the elastic mode
of [156], which deals with infeasible linearized constraints.
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What is gained with this formulation of Newton’s method is that (15.4)
is simpler to solve than (15.2). In fact, various quadratic programming tech-
niques can be used to solve (15.4): active-set strategies, interior-point meth-
ods, dual approaches, etc. We also see that the combinatorial aspect of the
original problem, which lies in the determination of the active inequality con-
straints, is transferred to the QP (15.4), where it is simpler to deal with than
in the original nonlinear problem. However, the SQP algorithm has its own
cost, which should not be overlooked. Indeed, all constraints must be lin-
earized, including the inactive inequalities, which should play no role when
the iterates are close to a solution. If these are many, the algorithm may
loose some efficiency. Careful implementations use techniques to deal more
efficiently with this situation (see for example [324, 301]).

Discarding Parasitic Displacements

The implementation of the SQP algorithm and the analysis of its local con-
vergence are more complex than when only equality constraints are present.
In fact, the quadratic problem (15.4) may be infeasible (its feasible set may
be empty) or unbounded (the optimal value is −∞), or it may have mul-
tiple local solutions (a nonconvexity effect), even in the neighborhood of a
solution (x∗, λ∗) to (PEI ). This may happen even when (x∗, λ∗) enjoys nice
properties such as the second-order sufficient conditions of optimality, strict
complementarity, and constraint qualification. Here is an example.

Example 15.1. We want to minimize the logarithm of (1+x) for x restricted
to the interval [0, 3]. In canonical form, the problem is





minx log(1 + x)
−x ≤ 0
x− 3 ≤ 0.

The logarithm has been used to introduce nonconvexity in the problem, since
by the monotonicity of the logarithmic function, it is equivalent to minimize
(1+x) or log(1+x). It is easily checked that this problem has a unique primal-
dual solution (x∗, λ∗) = (0, (1, 0)), which satisfies the second-order sufficient
conditions of optimality, strict complementarity, and the constraint qualifica-
tion (LI-CQ). It is therefore a “good” solution. However, the osculating QP
(15.4) at this solution can be written





mind d− 1
2d

2

−d ≤ 0
−3 + d ≤ 0.

This problem has three primal-dual stationary points (d, λ): a local minimum
(0, (1, 0)), a maximum (1, (0, 0)) and a global minimum (3, (0, 2)). It would
be unbounded without the constraint x ≤ 3 in the original problem, which
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is inactive at the solution. Among these stationary points, only the first one
is suitable: it gives a zero displacement (which is to be expected from an
algorithm started at a solution!), and optimal multipliers. The other two
stationary points are parasitic.

The situation of this example can only occur if Lk is not positive definite.
Otherwise, problem (15.4) is strictly convex and therefore has a unique so-
lution as soon as the feasible set is nonempty. The convergence results given
in § 15.2 assume that the parasitic solutions to the QP, like those revealed in
the example, are discarded. Specifically, this is done by assuming that dk is
the minimum norm solution to the QP.

15.2 Primal-Dual Quadratic Convergence

We first analyze the well-posedness of the SQP algorithm and the conver-
gence of the generated primal-dual sequences, when the first iterate is chosen
in some neighborhood of a “regular” stationary point (a notion that is made
precise in the statement of theorem 15.2 below) that satisfies strict comple-
mentarity. At such a stationary point, (LI-CQ) holds.

Theorem 15.2 highlights an interesting property of the SQP algorithm: in
some neighborhood of a stationary point satisfying the assumptions above,
the active constraints of the osculating quadratic problem (15.4) are the same
as those of (PEI ). We have said that the identification of the active constraints
is a major difficulty when solving inequality constrained problems and that,
in the SQP algorithm, this difficulty is transferred to the osculating quadratic
problem (QP), where it is easier to deal with. The result below tells us more:
the active constraints of an osculating QP at one iteration are likely to be
the same at the next iteration, at least close to a regular stationary point.
Numerically, this means that, at least asymptotically, it is advantageous to
solve the osculating QP’s by algorithms that can take advantage of a good
guess of the active constraints. Then, the combinatorial problem of determin-
ing which are the active constraints at the solution no longer occurs during
the last iterations of the SQP algorithm.

Observe that, as this was already the case for equality constrained prob-
lems, the SQP algorithm may well generate a sequence that converges to
a stationary point of (PEI ) that is not a minimum point of the problem.
Observe indeed that, at any stationary point (x∗, λ∗) of (PEI ), (0, λ∗) is a
primal-dual solution to the quadratic problem, so that the SQP algorithm
suggests not leaving x∗. This is due to the fact that SQP has been designed
by linearizing the optimality conditions and therefore the algorithm makes
no distinction between minima, maxima, or other stationary points.

Theorem 15.2 (primal-dual quadratic convergence of the SQP al-
gorithm). Suppose that f and c are of class C2 in a neighborhood of a
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stationary point x∗ of (PEI ), with associated multiplier λ∗. Suppose also that
strict complementarity holds and that (x∗, (λ∗)E∪I0

∗
) is a regular stationary

point of the equality constrained problem

{
minx f(x)
ci(x) = 0, for i ∈ E ∪ I0

∗ ,
(15.5)

in the sense of definition 14.2. Consider the SQP algorithm, in which dk

is a minimum norm stationary point of the osculating quadratic problem
(15.4). Then there is a neighborhood V of (x∗, λ∗) such that, if the first iterate
(x1, λ1) ∈ V :

(i) the SQP algorithm is well defined and generates a sequence {(xk, λk)}
that converges superlinearly to (x∗, λ∗);

(ii) the active constraints of the osculating quadratic problem (15.4) are
those of problem (PEI );

(iii) if, in addition, f and c are of class C2,1 in a neighborhood of x∗, the
convergence of {(xk, λk)} is quadratic.

Proof. The idea of the proof is to show that, close to (x∗, λ∗), the selected
minimum norm stationary point of the osculating quadratic problem (15.4)
and the primal-dual Newton step for (15.5) are identical. The result then
follows from theorem 14.4.

Suppose that (x, λ) is close to (x∗, λ∗). Since (x∗, (λ∗)E∪I0
∗
) is a regular

stationary point of (15.5), c′E∪I0
∗

(x∗) is surjective and the quadratic program

in d̃ {
mind̃ ∇f(x)>d̃+ 1

2 d̃
>L(x, λ)d̃

ci(x) + c′i(x) · d̃ = 0, for i ∈ E ∪ I0
∗

(15.6)

has a unique primal-dual stationary point. We denoted it by (d̃, λ̃E∪I0
∗
) and

form with λ̃E∪I0
∗

a vector λ̃ ∈ R
m, by setting λ̃i = 0 for i ∈ I\I0

∗ .

Let us show that (d̃, λ̃) is a stationary point of the osculating quadratic
problem (15.4), if (x, λ) := (xk, λk) is in some neighborhood of (x∗, λ∗). We
only need to show that ci(x) + c′i(x) · d̃ ≤ 0 for i ∈ I\I0

∗ and λi ≥ 0 for
i ∈ I0

∗ . From theorem 14.4, (x + d̃, λ̃) is close to (x∗, λ∗), when (x, λ) is
close to (x∗, λ∗). Therefore, for i ∈ I0

∗ , λ̃i ≥ 0, since (λ∗)i > 0 by strict
complementarity. On the other hand, d̃ is small, so that ci(x) + c′i(x) · d̃ ≤ 0
for i ∈ I\I0

∗ . Hence (d̃, λ̃) is a stationary point of (15.4). We deduce from this
that, for (x, λ) close to (x∗, λ∗), the SQP algorithm is well defined and d is
small (it is a minimum norm stationary point and d̃ is small by theorem 14.4).

Let us now show that the pair (d, λQP) := (dk , λ
QP

k ) formed of the mini-

mum norm solution to the QP and its associated multiplier is in fact (d̃, λ̃), if
(x, λ) is in some neighborhood of (x∗, λ∗). From theorem 14.4, this will con-
clude the proof. For (x, λ) close to (x∗, λ∗) and i ∈ I\I0

∗ , ci(x)+ c′i(x) · d < 0,
so that λQP

i = 0 = λ̃i. Because of the uniqueness of the stationary point of
(15.6), it remains to show that ci(x) + c′i(x) · d = 0 for all i ∈ I0

∗ and (x, λ)
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close to (x∗, λ∗). If this is not the case, there would exist an index j ∈ I0
∗ and

a sequence (x, λ) → (x∗, λ∗), such that cj(x) + c′j(x) · d < 0. Then λQP

j = 0
and

∇f(x) + L(x, λ)d+
∑

i∈(E∪I0
∗
)\{j}

λQP

i ∇ci(x) = 0.

Since ∇f(x)+L(x, λ)d→ ∇f(x∗) (d is smaller than d̃, which converges to 0)
and c′E∪I0

∗

(x∗) is surjective, λQP

i for i ∈ (E ∪ I0
∗ )\{j} would converge to some

limit, λ̄i say. Taking the limit in the equation above would give

∇f(x∗) +
∑

i∈(E∪I0
∗
)\{j}

λ̄i∇ci(x∗) = 0.

Therefore, we would have found two different multipliers: λ̄ (we set λ̄i = 0
for i 6∈ (E ∪ I0

∗ )\{j}) and λ∗ (λ̄ 6= λ∗ since λ̄j = 0 and (λ∗)j > 0 by strict
complementarity). This would be in contradiction with the uniqueness of the
multiplier, which follows from the surjectivity of c′E∪I0

∗

(x∗).

It is clear from the proof of theorem 15.2 that it is not really necessary
to take for dk, a minimum norm stationary point of the osculating quadratic
problem (15.4), some dmin

k say. The result is still true if the SQP algorithm
ensures that dk → 0 when dmin

k → 0. For example, it would suffice to compute
a stationary point dk satisfying an estimate of the form ‖dk‖ ≤ C‖dmin

k ‖, for
some positive constant C.

Theorem 15.4 below considers the case when strict complementarity does
not hold, but assumes that (x∗, λ∗) satisfies the second order sufficient condi-
tions of optimality and linear independence of the active constraint gradients
(LI-CQ). The result is also local, in the sense that the first iterate (x1, λ1)
is supposed to be close enough to (x∗, λ∗). The proof of this result is more
difficult. This is because one can no longer use theorem 14.4 as in the pre-
ceding proof: the SQP step may be different from the Newton step on (15.5),
however close to (x∗, λ∗) the current iterate (x, λ) can be. In other words,
the property of local identification of the active constraints by the osculating
quadratic problem no longer holds when complementarity is not strict. Here
is an example.

Example 15.3. Consider the problem in x ∈ R:
{

minx x
2 + x4

x ≤ 0.

The solution is x∗ = 0 and λ∗ = 0, so that strict complementarity does
not hold. On the other hand, the constraint is qualified at x∗ in the sense
of (LI-CQ) and the second order sufficient conditions of optimality hold.
The osculating quadratic problem at x (it does not depend on λ since the
constraint is linear) is the problem in d ∈ R:
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{
mind (2x+ 4x3)d+ (1 + 6x2)d2

x+ d ≤ 0.

If x > 0, x + d = 0 and the solution is obtained in one step. But if x < 0,
x+ d = 4x3/(1+6x2) ∈ ]2x/3, 0[, so that the linearized constraint is inactive
and the SQP step is different from the Newton step on (15.5). In this case,
however, the convergence is cubic in x (also in (x, λ)): |x + d|/|x|3 ≤ 4.

The preceding example suggests that fast convergence can still be ob-
tained even without strict complementarity. This is confirmed by the follow-
ing theorem.

Theorem 15.4 (primal-dual quadratic convergence of the SQP al-
gorithm). Suppose that f and c are of class C2,1 in a neighborhood of a
local solution x∗ to (PEI). Suppose also that the constraint qualification (LI-
CQ) is satisfied at x∗ and denote by λ∗ the associated multiplier. Finally,
suppose that the second-order sufficient condition of optimality (13.8) is sat-
isfied. Consider the SQP algorithm, in which dk is a minimum norm sta-
tionary point of the osculating quadratic problem (15.4). Then there exists a
neighborhood V of (x∗, λ∗) such that, if the first iterate (x1, λ1) ∈ V , the SQP
algorithm is well defined and the sequence {(xk, λk)} converges quadratically
to (x∗, λ∗).

Proof. The following lemma is assumed (see [308]).

Lemma 15.5. Under the conditions of theorem 15.4, there exists a neighbor-
hood of (x∗, λ∗) such that (15.3) has a local solution and the local solution
(dk, λ

QP

k ) with dk of minimum norm satisfies:

‖dk‖+ ‖λQP

k − λ∗‖ ≤ C(‖xk − x∗‖+ ‖λk − λ∗‖).

From this lemma, the algorithm is well defined if (xk, λk) remains close to
(x∗, λ∗). This will result from the estimates obtained below.

Let us set
δk = ‖xk − x∗‖+ ‖λk − λ∗‖.

From lemma 15.5, we have

dk = O(δk) and λk+1 − λ∗ = O(δk), (15.7)

where dk is a minimum-norm solution to (15.4) and λk+1 = λQP

k is the as-
sociated multiplier. We deduce that, for i ∈ I\I0

∗ and δk small enough, we
have

ci(xk) + c′i(xk) · dk < 0.

Hence (λk+1)i = 0, and with the set of indices

J = E ∪ I0
∗ ,
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the optimality of dk is expressed by

Lkdk +AJ(xk)>(λk+1)J +∇fk = 0.

A Taylor expansion of the left-hand side, using ∇x`(x∗, λ∗) = 0, xk+1 =
xk + dk and (15.7), leads to

0 = ∇x`(xk , λ∗) + L(xk, λk)dk +AJ (xk)>(λk+1 − λ∗)J

= L∗(xk+1 − x∗) +AJ(x∗)
>(λk+1 − λ∗)J +O(δ2k). (15.8)

Expand likewise the constraints of the osculating quadratic problem: we have
for i ∈ J

ci(xk) + c′i(xk) · dk = c′i(x∗) · (xk+1 − x∗) + (γk)i, (15.9)

where (γk)i = O(δ2k).
From the assumption, AJ (x∗) is surjective, so we can find a vector

vk ∈ R
m such that

AJ (x∗)vk = (γk)J and vk = O(δ2k).

The last estimate can be obtained by taking a minimum-norm vk satisfying
the first equation. With the notation

wk = xk+1 − x∗ + vk,

(15.9) becomes for i ∈ J :

ci(xk) + c′i(xk) · dk = c′i(x∗) · wk. (15.10)

The complementarity conditions of the osculating quadratic problem can be
written

(λk+1)i(ci(xk) + c′i(xk) · dk) = 0, for all i ∈ I. (15.11)

Hence, if (λ∗)i > 0 and δk small enough, we have ci(xk) + c′i(xk) · dk = 0.
Then we obtain from (15.10)

{
c′i(x∗) · wk = 0 if i ∈ E ∪ I0+

∗
c′i(x∗) · wk ≤ 0 if i ∈ I00

∗ .
(15.12)

This shows that wk lies in the critical cone C∗, defined by (13.6). From the
second-order sufficiency condition, we then have for a constant C1 > 0:

C1‖wk‖2 ≤ w>
kL∗wk. (15.13)

Now compute w>
kL∗wk. From (15.8) and vk = O(δ2k),

w>
kL∗wk = −(λk+1 − λ∗)>JAJ(x∗)wk +O(‖wk‖δ2k) ≤ C2‖wk‖δ2k,

since (λk+1−λ∗)>JAJ(x∗)wk = 0 thanks to (15.11) and (15.12). With (15.13),
we then obtain
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C1‖wk‖ ≤ C2δ
2
k.

Since vk = O(δ2k), we deduce

xk+1 − x∗ = O(δ2k).

On the other hand, this estimate, (15.8) and the injectivity of AJ (x∗)> show
that

(λk+1 − λ∗)J = O(δ2k).

Since (λk+1)i = (λ∗)i = 0 for i ∈ I\I0
∗ , these last two estimates show the

quadratic convergence of the sequence {(xk, λk)}.

15.3 Primal Superlinear Convergence

Theorem 15.4 gives conditions for the quadratic convergence of {(xk, λk)}.
Actually, this implies neither quadratic nor superlinear convergence for {xk}
(see exercise 14.8). Nevertheless, the following result (theorem 15.7) shows
that, for the SQP algorithm using the Hessian of the Lagrangian in the
quadratic programs (15.4), the sequence {xk} converges superlinearly. This
result is interesting because it is often desirable to have fast convergence of
this sequence.

We consider for this an algorithm slightly more general than the one
described in § 15.1, which encompasses the quasi-Newton versions of the
method. We suppose that {xk} is generated by

xk+1 = xk + dk,

where dk is a stationary point of the quadratic problem
{

mind ∇f(xk)>d+ 1
2d

>Mkd
(c(xk) +A(xk)d)# = 0.

(15.14)

This is the same problem as (15.4), but the Hessian of the Lagrangian Lk is
replaced by a symmetric matrix Mk. Incidentally, note that the multiplier λk

is no longer explicitly used in the algorithm. Theorem 15.7 gives a necessary
and sufficient condition on Mk to guarantee superlinear convergence of {xk}.

The optimality conditions of (15.14) are (λQP

k is the multiplier associated
with the constraints):





(a) ∇fk +Mkdk +A>
kλ

QP

k = 0
(b) (ck +Akdk)# = 0
(c) (λQP

k )I ≥ 0
(d) (λQP

k )I(ck +Akdk)I = 0

(15.15)

We shall need the orthogonal projector onto the critical cone C∗ at a
solution x∗ to (PEI ) (see (13.6)). We denote this (nonlinear) projector by P∗.
It is well defined since C∗ is a nonempty closed convex set.
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Lemma 15.6. If λ ∈ R
m is such that λI00

∗
≥ 0 and λI\I0

∗
= 0, then

P∗A>
∗λ = 0.

Proof. Take λ ∈ R
m as in the terms of the lemma and h ∈ C∗. Then

(A∗h)E∪I0+
∗

= 0, (A∗h)I00
∗
≤ 0, and we have

(0−A>
∗ λ)

>(h− 0) = −λ>A∗h = −λ>I00
∗

(A∗h)I00
∗
≥ 0.

The characterization (13.12) of the projection yields the result.

Theorem 15.7 (primal superlinear convergence of the SQP algo-
rithm). Suppose that f and c are twice differentiable at x∗ ∈ Ω. Suppose also
that (x∗, λ∗) is a primal-dual solution to (PEI ) satisfying (LI-CQ) and the
second-order sufficient condition of optimality (13.8). Consider the sequence
{(x∗, λ∗)} generated by the recurrence xk+1 = xk + dk and λk+1 = λQP

k ,
where (dk, λ

QP

k ) is a primal-dual solution to (15.14). Suppose that {(xk, λk)}
converges to (x∗, λ∗). Then {xk} converges superlinearly if and only if

P∗(L∗ −Mk)dk = o(‖dk‖), (15.16)

where P∗ is the orthogonal projector onto the critical cone C∗.

Proof. Using (15.15)a, ∇x`(x∗, λ∗) = 0 and λk+1 → λ∗, we have

−Mkdk = ∇x`(xk, λk+1)

= ∇x`(x∗, λk+1) + L(x∗, λk+1)(xk − x∗) + o(‖xk − x∗‖)
= A>

∗ (λk+1 − λ∗) + L∗(xk − x∗) + o(‖xk − x∗‖).

Hence

(L∗ −Mk)dk = A>
∗ (λk+1 − λ∗) + L∗(xk+1 − x∗) + o(‖xk − x∗‖). (15.17)

To show that condition (15.16) is necessary, assume that xk+1 − x∗ =
o(‖xk − x∗‖). Then (15.17) gives

(L∗ −Mk)dk = A>
k (λk+1 − λ∗) + o(‖xk − x∗‖).

Project with P∗, which is Lipschitzian (see (13.15)), and observe that, from
(15.15)c and (15.15)d, (λk+1 − λ∗) satisfies for large k the conditions on λ of
lemma 15.6:

P∗(L∗ −Mk)dk = P∗A
>
∗ (λk+1 − λ∗) + o(‖xk − x∗‖) = o(‖xk − x∗‖).

Condition (15.16) follows, because (xk − x∗) ∼ dk by lemma 13.5.
Conversely, let us show that condition (15.16) is sufficient. For i ∈ J :=

E ∪ I0
∗ , we have

ci(xk) + c′i(xk) · dk = c′i(x∗) · (xk+1 − x∗) + (γk)i,
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where (γk)i = o(‖xk − x∗‖) + o(‖dk‖). Since AJ (x∗) is surjective, (γk)J =
AJ (x∗)vk, for some vk = o(‖xk − x∗‖) + o(‖dk‖). With the notation

wk := xk+1 − x∗ + vk,

there holds
ci(xk) + c′i(xk) · dk = c′i(x∗) · wk, for i ∈ J.

Now ci(xk) + c′i(xk) · dk = 0 for i ∈ E ∪ I0+
∗ and k large enough, so that

{
c′i(x∗) · wk = 0 if i ∈ E ∪ I0+

∗
c′i(x∗) · wk ≤ 0 if i ∈ I00

∗ .

This implies that wk ∈ C∗ for large k (see (13.6)) and that, for some constant
C1 > 0,

C1‖wk‖2 ≤ w>
kL∗wk, for large k. (15.18)

On the other hand, for i ∈ I00
∗ , from (15.15)d, we have 0 = (λk+1)i(ci(xk) +

c′i(xk) · dk) = (λk+1)i(c
′
i(x∗) · wk) and (λ∗)i = 0. While for i ∈ I\I0

∗ ,
(λk+1 − λ∗)i = 0. Therefore

(λk+1 − λ∗)>A∗wk = 0, for large k.

Now, with this equation, (15.17), vk = o(‖xk − x∗‖) + o(‖dk‖), the fact that
u>v ≤ u>P∗v, for all v ∈ R

n and all u ∈ C∗ (see (13.14)), and (15.16), we
find that

w>
kL∗wk = w>

kL∗(xk+1 − x∗) +O(‖wk‖ ‖vk‖)
= w>

k (L∗ −Mk)dk + o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖)
≤ w>

k P∗(L∗ −Mk)dk + o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖)
= o(‖wk‖ ‖xk − x∗‖) + o(‖wk‖ ‖dk‖).

With (15.18), wk = o(‖xk − x∗‖) + o(‖dk‖); hence

xk+1 − x∗ = o(‖xk − x∗‖) + o(‖dk‖).
The property xk+1 − x∗ = o(‖xk − x∗‖) follows easily.

When there are no inequality constraints, P∗ is the orthogonal projector
onto the null space N(A∗). It is then linear. Given a basis Z−

∗ of N(A∗), it
can be written

P∗ = Z−
∗ (Z−>

∗ Z−
∗ )−1Z−>

∗ .

Since Z−
∗ is injective and Z−>

∗ Z−
∗ is nonsingular, condition (15.16) can be

written

Z−>
∗ (L∗ −Mk)dk = o(‖dk‖) or (Z−>

∗ L∗ − Z−>
k Mk)dk = o(‖dk‖).

To write the last condition, we have supposed that Z−(·) is continuous at x∗
and that {Mk} is bounded. This shows that the important part of Mk is
Z−>

k Mk, which reminds us that only the part Z−>
k Lk of Lk plays a role in

the definition of the Newton direction for equality constrained problems (see
observation 1 on page 235).
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15.4 The Hanging Chain Project III

In this third session, we resume the project on the determination of the
static equilibrium position of a hanging chain, started in § 13.8 and developed
in § 14.7. Our present objective is to implement the local SQP algorithm,
presented on page 257, to be able to take into account the floor constraint.
The algorithm is quite similar to the Newton method implemented in the
second session. The main difference is that the solver of linear equations has
to be replaced by a solver of quadratic optimization problems. This simple
change will have several consequences that are discussed in this section.

It is a good idea to keep the work done in the second session and to use
mi = mI as a flag that makes the sqp function select the type of solver (linear
or quadratic), depending on the presence of inequality constraints. Solving a
linear system is indeed much simpler than solving a quadratic optimization
problem, so that the sqp function must be allowed to take advantage of the
absence of inequality constraints.

Modifications to Bring to the sqp Function

Most of the work has been done in the previous session. There are only two
modifications to bring to the function sqp.

The main change consists in substituting a quadratic optimization solver
(to solve (15.4)) for the linear solver previously used in sqp (see chapter 14).
Writing a solver of quadratic optimization problems is a difficult task. For-
tunately, in our case, the Matlab solver quadprog can be used, so that we
can concentrate on other aspects of the SQP algorithm. Quadprog first finds
an initial feasible point by solving a linear optimization problem and then
uses an active set method to find a solution to the quadratic problem. It can
detect infeasibility and unboundedness.

A second change deals with the determination of the initial dual solution
λ = (λE , λI). Since it is known that λI must be nonnegative, it is better now
to determine λ as a solution to the bound constrained least-squares problem

min
λ=(λE ,λI)∈R

m

λI≥0

1

2
‖∇x`(x, λ)‖22,

instead of using (14.47). This convex quadratic optimization problem always
has a solution (theorem 19.1). It can be solved by quadprog.

Checking the Correctness of the SQP Solver

There is little change to make an error on the part of the simulator dealing
with the inequality constraints, since these are very simple. Nevertheless, it
is better to check it and to verify the implementation of the quadratic solver.
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The same strategy as in the case with equality constrained problems can
be followed: trying to solve more and more difficult problems and check the
quadratic convergence of the generated sequence.

Let us check the quadratic convergence on the following variant of test
case 1a, in which we add a floor constraint.

Test case 1e: same data as for the test case 1a (namely second hook at
(a, b) = (1,−0.3) and bars of lengths L = (0.4, 0.3, 0.25, 0.2, 0.4)) with an
additional floor with parameters (g0, g1) = (−0.35,−0.2) (see the definition
of the floor in (13.25)). The initial positions of the chain joints are (0.1,−0.3),
(0.4,−0.5), (0.6,−0.4), and (0.7,−0.5).

The results obtained with test case 1e are shown in figure 15.2. Convergence

PSfrag replacements
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Fig. 15.2. Test case 1e

with options.tol(1 : 4) = 10−10 is again obtained in 6 iterations. The pic-
ture on the left uses the same conventions as before: the thin solid bars
represent the initial position of the chain, the dashed bars correspond to the
5 intermediate positions (hardly distinguishable), and the bold solid bars are
those of the final optimal position. This one is a local minimum (the multi-
pliers associated with the inequality constraints are positive and the critical
cone is reduced to {0}). The picture on the right gives a plot of the ratios
‖sk+1‖2/‖sk‖22, where sk = zk+1 − zk, for k = 1, . . . , 5. The boundedness of
these ratios shows without any doubt that the sequence {zk} = {(xk, λk)}
converges quadratically to its limit, as predicted by the theory (theorems 15.2
and 15.4).

Experimenting with the SQP Algorithm

A first observation, with unpleasant consequences, is that quadprog is aimed
at computing a local minimum of a quadratic problem, not an arbitrary
stationary point (note that finding a solution or a stationary point of a non-
convex quadratic problem is NP-hard, see [354] for example). Therefore, it
is quite frequent to find situations where quadprog fails to find a stationary
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point, as required by the SQP algorithm. For example, with test case 1f be-
low, which is test case 1e with the initial position of the chain given in test
case 1a, the first osculating quadratic problem is unbounded.

Test case 1f: same data as for the test case 1e; but the initial positions of
the chain joints are (0.2,−0.5), (0.4,−0.6), (0.6,−0.8), and (0.8,−0.6).

The unboundedness of an osculating quadratic problem can occur only when
its feasible set is unbounded and the Hessian of the Lagrangian L is not pos-
itive definite at the current iterate. Hence, taking a positive definite approxi-
mation of L cures the difficulty. This can be obtained by using a quasi-Newton
approximation of L; this technique is considered in chapter 18. Another possi-
bility is add to L a (not too large) positive diagonal matrix E, such that L+E
is positive definite (for example by using a modified Cholesky factorization
of L [154, 201]). Figure 15.3 shows the results obtained with this technique.

Fig. 15.3. Test case 1f

The optimal chain is actually a local minimum (the critical cone is reduced
to {0} and the energy is e = −0.489), different from the one obtained in
figure 15.2 (in which e = −0.518). Observe that, although the initial position
of the chain is not feasible for the floor constraint, the subsequent positions
are all feasible. This is due to the affinity of the floor constraint (see (13.25)
and exercise 15.1).

Another difficulty arises when the linearized constraints are incompati-
ble, leading to an infeasible osculating quadratic problem. This difficulty is
encountered at the first iteration with the initial chain given in test case 1g
below. Remedies for this kind of situations exist, see [351, 341, 156] and the
references thereof.

Test case 1g: same data as for the test case 1e; but the initial positions of
the chain joints are (0.1,−0.3), (0.3,−0.4), (0.6,−0.4), and (0.7,−0.4).
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Notes

The SQP algorithm, in a form equivalent to the one introduced in § 15.1 on
page 257, was first proposed by Wilson [359; 1963]. This author was mainly
concerned with the extension of the simplex method, first to quadratic pro-
gramming, and then to nonlinear convex optimization problems. The algo-
rithm was obtained by searching for a saddle point of a quadratic approxi-
mation of the Lagrangian in the primal and dual variables. No convergence
proof was given. See also the introduction of this part of the book, on page
191, for other references on the origin of the SQP algorithm.

The local quadratic convergence of theorem 15.2 is due to several authors;
see for example [307], in which various classes of algorithms are considered.
Theorem 15.4 is taken from [38]; further refinements can be found in [40].

The criterion (15.16) for superlinear convergence dates back to Dennis
and Moré [104], who introduced a similar condition to characterize the su-
perlinear convergence of sequences generated by quasi-Newton methods in
unconstrained optimization (see theorem 4.11). It was extended to problems
with equality constraints by Boggs, Tolle, and Wang [36], under a somewhat
strong assumption (linear convergence of the sequence {xk}). The possibility
of getting rid of this assumption has been observed by many authors. The
generalization to inequality constrained problems given in theorem 15.7 is
due to Bonnans [40], who uses a projector varying along the iterations; in
contrast, we use the projector P∗ onto the critical cone.

The local convergence of the SQP algorithm has been extended to dif-
ferent contexts, such as semi-infinite programming [180], infinite dimension
programming [3, 4, 5, 6, 219]. When (MF-CQ) holds, but not (LI-CQ), the
optimal multiplier may not be unique, so that the limit behavior of the mul-
tiplier sequence {λQP

k } is difficult to predict; this situation is analyzed in
[367, 183, 7, 8].

Exercise

15.1. Consider the SQP algorithm applied to problem (PEI) in which the ith
constraint, for some i ∈ E ∪ I (equality or inequality constraint), is affine
(i.e., ci(x+d) = ci(x) + c′i(x)·d for all x and d ∈ R

n). Let (x, λ) be the
current iterate and define x+ by x+ := x + αd, where d is a solution to the
osculating quadratic problem (15.4) (we drop the index k) and α ∈ ]0, 1].
Show that x+ is feasible for the ith constraint (i.e., ci(x+) = 0 if i ∈ E, or
ci(x+) ≤ 0 if i ∈ I) if either x is feasible for the ith constraint or if α = 1.



16 Exact Penalization

16.1 Overview

The algorithms studied in chapters 14 and 15 generate converging sequences
if the first iterate is close enough to a regular stationary point (see theo-
rems 14.4, 14.5, 14.7, 15.2, and 15.4). Such an iterate is not necessarily at
hand, so it is important to have techniques that allow the algorithms to
force convergence, even when the starting point is far from a solution. This
is known as the globalization of a local algorithm. The term is a little am-
biguous, since it may suggest that it has a link with the search of global
minimizers of (PEI ). This is not at all the case (for an entry point on global
optimization, see [200]).

There are (at least) two classes of techniques to globalize a local algorithm:
line-search and trust-region; we shall only consider the line-search approach
in this survey. Both techniques use the same idea: the progress made from one
iterate xk to the next one xk+1 towards the solution is measured by means
of an auxiliary function, called the merit function (the novel notion of filter,
not discussed in this part, looks like a promising alternative; see [130] for
the original paper). In unconstrained optimization, “the” appropriate merit
function is of course the objective f itself. Here, the measure has to take
into account the two, usually contradictory, goals in (PEI ): minimizing f
and satisfying the constraints. Accordingly, the merit function has often the
following form

f(x) + p(x),

where p is a function penalizing the constraint violation: p is zero on the
feasible set and positive outside. Instead of merit functions, one also speaks
of penalty functions , although the latter term is usually employed when the
penalty function is minimized by algorithms for unconstrained optimization.
As we shall see, the approach presented here is more subtle: truly constrained
optimization algorithms are used (like those in chapters 14 and 15); the merit
function only intervenes as a tool for measuring the adequacy of the step com-
puted by the local methods. It is not used for computing the direction itself.
The main advantage is that the ill-conditioning encountered with penalty
methods is avoided, and the fast speed of convergence of the local methods
is ensured close to a solution.
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As many merit functions exist, a selection must be made. We shall only
study those that do not use the derivatives of f and c. These are the most
widely encountered in optimization codes and their numerical effectiveness
has been demonstrated. To start with, let us examine some common examples
of merit/penalty functions. We denote by ‖ · ‖2 the `2 norm and by ‖ · ‖

P
an

arbitrary norm.

(a) Quadratic penalization:

f(x) +
σ

2
‖c(x)#‖22. (16.1)

(b) Lagrangian:
f(x) + µ>c(x).

(c) Augmented Lagrangian (case I = ∅):

f(x) + µ>c(x) +
σ

2
‖c(x)‖22. (16.2)

Augmented Lagrangian (general case):

f(x) + µ>
EcE(x) +

σ

2
‖cE(x)‖22

+
∑

i∈I

(
µi max

(−µi

σ
, ci(x)

)
+
σ

2

[
max

(−µi

σ
, ci(x)

)]2)
.

(16.3)
(d) Nondifferentiable augmented function:

f(x) + σ‖c(x)#‖
P
.

These functions have quite different features. One important property
that distinguishes them is the exactness of the penalization, which is the
subject of the present chapter. The concept of exact penalization is sometimes
ambiguous – or at least varies from author to author. We adopt the following
definition.

A function Θ : Ω → R is called an exact penalty function at a local mini-
mum x∗ of (PEI ) if x∗ is a local minimum of Θ. The converse implication (x∗
is a local minimum of (PEI) whenever it minimizes Θ locally) is not generally
possible unless feasibility of x∗ is assumed. The example in figure 16.1 is an
illustration: x′∗ is a local minimum of the functions (a) or (d) with σ ≥ 0
but, being infeasible, it is not a solution to the minimization problem. The
reason why the concept of exactness is so important for globalizing the SQP
algorithm will be discussed in chapter 17.

Table 16.1 gives some properties of the merit functions (a)–(d). This de-
serves some comments.

• As far as the differentiability of Θσ is concerned, we assume that f and c
are of class C∞. We see that, in general, the presence of inequality con-
straints decreases the degree of differentiability of the merit functions.
In this respect, the Lagrangian (b) is an exception.
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{
minx 0
c(x) = 0

x∗ x′∗ x

c

0

Fig. 16.1. Exactness and feasibility

Function Differentiability Exactness
Conditions for

exactness
Threshold of σ

depends on

(a) C1 no

(b) C∞ yes
(PEI) convex

µ = λ∗

(c) C1 yes
µ = λ∗

σ large
2nd derivatives

(d) C0 yes σ large 1st derivatives

Table 16.1. Comparison of some merit functions

• We also see that only functions (b)–(d) can be exact. The quadratic
penalty function is hardly ever exact: if I = ∅, it is differentiable and
its gradient at a solution x∗ is ∇f(x∗), which is usually nonzero. As we
shall see in the following sections, the Lagrangian (b) is exact for convex
problems and the augmented Lagrangian (c) is exact for nonconvex
problems provided the penalty parameter σ is large enough.

• To be exact, both functions (b) and (c) need to have µ = λ∗. From
an algorithmic point of view, this means that the value of µ must be
continually modified in order to approximate the unknown optimal mul-
tiplier λ∗. Algorithms using the Lagrangians do not minimize the same
function at each iteration, which can raise convergence difficulties.

• Another shortcoming of (c) is that the threshold of σ, beyond which the
penalization becomes exact, involves the eigenvalues of the Hessian of
the Lagrangian. It is therefore not easily accessible to computation, and
certainly out of reach if the Hessian of the Lagrangian is not explicitly
computed, as in the quasi-Newton versions of the algorithms. Neverthe-
less, many algorithms use this function (for example, those described
in [85]).
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• Finally, the conditions for the exactness of function (d) are less restric-
tive and this is the main reason why this merit function is often used for
globalizing the SQP algorithm, as in chapter 17. We shall see in particu-
lar that the threshold of σ can easily be estimated during the iterations,
with the help of an estimate of the optimal multiplier. Function (d) is
nonsmooth, however.

In the rest of this chapter, we study some properties of the merit functions
(b)–(d), focusing on their exactness.

16.2 The Lagrangian

In this section, problem (PEI ) is assumed to be convex: f and the ci’s, i ∈ I ,
are convex, and cE is affine. In this case, the Lagrangian of the problem is
exact at a solution x∗, providing the multiplier is set to a dual solution λ∗.
Actually, proposition 16.1 below shows a little more than that: ` has a saddle-
point at (x∗, λ∗), a concept made precise in the next definition.

Let X and Y be two sets and let ϕ : X × Y → R be a function. We say
that (x∗, y∗) ∈ X × Y is a saddle-point of ϕ on X × Y when

ϕ(x∗, y) ≤ ϕ(x∗, y∗) ≤ ϕ(x, y∗), for all x ∈ X and y ∈ Y.
Thus, x 7→ ϕ(x, y∗) is minimal at x∗ and y 7→ ϕ(x∗, y) is maximal at y∗.

Recall that the Lagrangian of problem (PEI ) is the function

(x, µ) ∈ Ω × R
m 7→ `(x, µ) = f(x) + µ>c(x). (16.4)

If a feasible point x∗ minimizes `(·, µ), then 0 = ∇x`(x∗, µ), which indicates
that x∗ will be a solution to (PEI ) provided µ is a dual solution. The following
result shows that, for convex problems, the primal-dual solutions to (PEI )
are saddle-points of ` on Ω × {µ ∈ R

m : µI ≥ 0}. The way is then open to
computing primal-dual solutions to (PEI ) with algorithms computing saddle-
points. We shall not proceed in that way but it is useful to bear this point
of view in mind. In addition, this result shows that x 7→ `(x, λ∗) is an exact
penalty function for convex problems.

Proposition 16.1 (saddle-point of the Lagrangian). Suppose that prob-
lem (PEI ) is convex, that x∗ is a solution, and that f and c are differentiable
at x∗. Suppose also that there exists a multiplier λ∗ such that the optimality
conditions (KKT) are satisfied. Then (x∗, λ∗) is a saddle-point of the La-
grangian defined in (16.4) on Ω × {µ ∈ R

m : µI ≥ 0}.
Proof. Take µ ∈ {µ ∈ R

m : µI ≥ 0}. We have

`(x∗, µ) = f(x∗) + µ>
I cI(x∗) [because cE(x∗) = 0]

≤ f(x∗) [because µici(x∗) ≤ 0 for i ∈ I ]
= f(x∗) + λ>∗ c(x∗) [because cE(x∗) = 0 and (λ∗)>I cI(x∗) = 0]

= `(x∗, λ∗).
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On the other hand, since (λ∗)I ≥ 0 and (PEI ) is convex, the function
x ∈ Ω 7→ `(x, λ∗) is convex. According to the assumptions, this function is
differentiable at x∗ and, in view of the optimality conditions (KKT), we have
∇x`(x∗, λ∗) = 0. We deduce that this function is minimal at x∗: `(x∗, λ∗) ≤
`(x, λ∗), for all x ∈ Ω.

16.3 The Augmented Lagrangian

The Lagrangian (16.4) is not an exact penalty function if the problem is
nonconvex. For example, the nonconvex problem

{
minx log(x)
x ≥ 1

has the unique primal-dual solution (x∗, λ∗) = (1, 1) and its Lagrangian
`(x, λ∗) = log(x) + 1− x is concave with a maximum at x = 1.

The augmented Lagrangian `r obviates this shortcoming. In fact we shall
prove a local version of proposition 16.1: if µ = λ∗ and r is large enough,
`r(·, µ) has a strict local minimum at a strong solution to the optimization
problem (PEI ).

The augmented Lagrangian is best introduced by using a perturbation
technique as in duality theory, but this is beyond the scope of this review.
Here we follow a more intuitive approach, starting with the case where only
equality constraints are present. In this case, one takes

`r(x, µ) = f(x) + µ>
EcE(x) +

r

2
‖cE(x)‖22. (16.5)

This is the standard Lagrangian `, augmented by the term (r/2)‖cE(x)‖22.
This term penalizes the constraint violation and makes `r(·, µ) convex around
the point x∗ in a subspace complementary to the tangent space N(AE(x∗)).
This creates a basin around a strong solution to (PE), making the penaliza-
tion exact (this point of view is developed in exercise 16.2).

To deal with inequality constraints, we first transform (PEI ) by introduc-
ing slack variables s ∈ R

mI :





min(x,s) f(x)
cE(x) = 0
cI(x) + s = 0
s ≥ 0.

Next, this problem is approached by using the augmented Lagrangian asso-
ciated with its equality constraints:

min
x

min
s≥0

(
f(x) + µ>

EcE(x) +
r

2
‖cE(x)‖22 + µ>

I (cI (x)+s) +
r

2
‖cI(x)+s‖22

)
.
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The augmented Lagrangian associated with (PEI ) is the function of x and µ
defined by the minimal value of the optimization problem in s ≥ 0 above:

`r(x, µ) := min
s≥0

(
f(x) + µ>

EcE(x) +
r

2
‖cE(x)‖22

+ µ>
I (cI(x)+s) +

r

2
‖cI(x)+s‖22

)
.

Actually, the minimization in s can be carried out explicitly since the min-
imized function of s is quadratic with a positive diagonal Hessian. More
precisely, discarding terms independent of s, the objective can be written
r
2‖s+cI(x)+µI/r‖22, so that the minimizer is the projection of −cI(x)−µI/r
on the positive orthant, namely s = max(−cI(x) − µI/r, 0). Adding cI(x),
one finds

cI(x) + s = max

(−µI

r
, cI(x)

)
.

Substituting cI(x) + s by this value in the objective of the problem above
yields an explicit formula for the augmented Lagrangian. This is the function
`r : Ω × R

m → R, defined for (x, µ) ∈ Ω × R
m and r ∈ R

∗
+ := {t ∈ R :

t > 0} by

`r(x, µ) = f(x) + µ>c̃r(x, µ) +
r

2
‖c̃r(x, µ)‖22, (16.6)

where c̃r : Ω × R
m → R

m is defined by

(c̃r(x, µ))i =

{
ci(x) if i ∈ E
max

(−µi

r , ci(x)
)

if i ∈ I . (16.7)

The coefficient r is called the augmentation parameter. This augmented La-
grangian (16.6) has therefore a structure very similar to the one associated
with the equality constraint problem (PE), see (16.5), with cE substituted
by the non-differentiable function c̃r introduced above.

Despite the nonsmoothness of the max operator in (16.7), the augmented
Lagrangian is differentiable in x, provided that f and c have that property.
The easiest way of verifying this claim is to write the terms associated with
the inequalities in (16.6) as follows

µ>
I (c̃r(x, µ))I +

r

2
‖(c̃r(x, µ))I‖22 =

1

2r

∑

i∈I

(
max(0, µi + rci(x))

2 − µ2
i

)
.

This is a differentiable function of x, since max(0, ·) is squared. A straight-
forward computation then leads to

∇x`r(x, µ) = ∇f(x) + c′(x)>(µ+ rc̃r(x, µ)). (16.8)

Second differentiability in x is also ensured around a primal solution sat-
isfying some strong conditions. Let x∗ be a solution to (PEI) and let λ∗
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be a multiplier associated with x∗. Using the complementarity conditions
(λ∗)>I cI(x∗) = 0 and the nonnegativity of (λ∗)I , it is not difficult to see that,
for x close to x∗, there holds

`r(x, λ∗) = `(x, λ∗) +
r

2

∑

i∈E∪I0+
∗

ci(x)
2 +

r

2

∑

i∈I00
∗

(ci(x)
+)2. (16.9)

Because of the operator (·)+ in (16.9), `r(·, λ∗) may not be twice differentiable
at x∗. In the case of strict complementarity, however, I00

∗ = ∅ and the last
sum disappears, so that the augmented Lagrangian can be written (for x
close to x∗)

`r(x, λ∗) = `(x, λ∗) +
r

2

∑

i∈E∪I0
∗

ci(x)
2.

Locally, equality and active inequality constraints are then treated in the
same way and `r(·, λ∗) is smooth around x∗ (provided f and c are smooth).
The next proposition gathers these differentiability properties.

Proposition 16.2 (differentiability of the augmented Lagrangian). If
f and c are differentiable at x, then the augmented Lagrangian `r, defined by
(16.6), is differentiable at x and its gradient is given by (16.8). If (x∗, λ∗) is
a KKT point for (PEI) satisfying strict complementarity and if (f, cE∪I0

∗
) is

p times differentiable (with p ≥ 0 integer) in some neighborhood of x∗, then
the augmented Lagrangian is p times differentiable is some (possibly smaller)
neighborhood of x∗.

The next result gives conditions for (x∗, λ∗) to be a saddle-point of `r
on V × R

m, where V is a neighborhood of x∗ in Ω. Compared with propo-
sition 16.1, the result is local in x, but global in µ, and the minimum in x
is strict. As before, this result implies that, if r is large enough (but finite!),
`r(·, λ∗) is an exact penalty function for (PEI).

Proposition 16.3 (saddle-point of the augmented Lagrangian). Sup-
pose that f and cE∪I0

∗
are twice differentiable at a local minimum x∗ of (PEI )

at which the KKT conditions hold, and that the semi-strong second-order suf-
ficient condition of optimality (13.9) is satisfied for some multiplier λ∗. Then
there exist a neighborhood V of x∗ in Ω and a number r > 0 such that, for
all r ≥ r, (x∗, λ∗) is a saddle-point of `r on V ×R

m. More precisely, we have
for all (x, µ) ∈ (V \{x∗})× R

m:

`r(x∗, µ) ≤ `r(x∗, λ∗) < `r(x, λ∗). (16.10)

Proof. Let us first show that λ∗ maximizes `r(x∗, ·) for any r > 0. We have
for µ ∈ R

m:

`r(x∗, µ) = f(x∗) +
∑

i∈I
ci(x∗)≥−µi/r

(
µici(x∗) +

r

2
ci(x∗)

2
)
−

∑

i∈I
ci(x∗)<−µi/r

µ2
i

2r
.
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The maximum in µ can be obtained term by term. If ci(x∗) = 0, the maximum
in the right-hand side is f(x∗), obtained for all µi ≥ 0. If ci(x∗) < 0, this
maximum is again f(x∗), obtained for µi = 0. Since (λ∗)I satisfies these
conditions, we have

`r(x∗, µ) ≤ f(x∗) = `r(x∗, λ∗), for all µ ∈ R
m.

Let us now show the second statement, dealing with the strict local mini-
mality of x∗. Note that we need to prove the inequality on the right in (16.10)
for only a single value of r, r > 0 say, because then, this inequality will hold
for any r ≥ r and any x ∈ V (independent of r). Indeed, `r(x∗, λ∗) = f(x∗)
does not depend on r and, for fixed x, r 7→ `r(x, λ∗) is nondecreasing (this
is a clear consequence of the way the augmented Lagrangian was introduced,
just before the proposition).

We prove this by contradiction, assuming that there is a sequence of
positive numbers rk → ∞ and a sequence of points xk → x∗, with xk 6= x∗
such that, for k ≥ 1:

`rk
(xk , λ∗) ≤ `rk

(x∗, λ∗). (16.11)

Taking a subsequence if necessary, we have for k →∞:

xk − x∗
‖xk − x∗‖

→ d, with ‖d‖ = 1.

Hence, setting αk := ‖xk − x∗‖, we have

xk = x∗ + αkd+ o(αk).

Our aim now is to show that d is a critical direction. We do this by ap-
propriate expansions in the left-hand side of (16.11): second order expansion
of the Lagrangian and first order expansion of the constraints in both sums
of (16.9). To simplify the notation, we introduce L∗ = ∇2

xx`(x∗, λ∗). From
the smoothness of f and c and the optimality of (x∗, λ∗), we have

`(xk , λ∗) = `(x∗λ∗) +
α2

k

2
d>L∗d+ o(α2

k),

ci(xk) = αk c
′
i(x∗) · d+ o(αk), for i ∈ E ∪ I0

∗ .

Injecting these estimates in (16.11), using (16.9) and `rk
(x∗, λ∗) = `(x∗, λ∗),

provides

α2
k

2
d>L∗d+ o(α2

k) +
rk
2

∑

i∈E∪I0+
∗

(αkc
′
i(x∗) · d+ o(αk))

2

+
rk
2

∑

i∈I00
∗

(
[αkc

′
i(x∗) · d+ o(αk)]

+
)2

≤ 0. (16.12)

Dividing by α2
krk and taking the limit yield
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c′i(x∗) · d = 0, if i ∈ E ∪ I0+
∗

c′i(x∗) · d ≤ 0, if i ∈ I00
∗ .

Therefore d is a nonzero critical direction.
On the other hand, (16.12) also implies that

α2
k

2
d>L∗d+ o(α2

k) ≤ 0.

Dividing by α2
k and taking the limit show that d>L∗d ≤ 0, which contradicts

assumption (13.9) since d ∈ C∗\{0}.

In the previous result, the semi-strong second-order sufficient condition of
optimality (13.9) is assumed. If only the weak condition (13.8) holds, `r(·, λ∗)
may not have a local minimum at x∗, whatever the choice of λ∗ ∈ Λ∗ and
the value of r. An example is given in exercise 16.4.

16.4 Nondifferentiable Augmented Function

We now consider the following merit function for problem (PEI ):

Θσ(x) = f(x) + σ‖c(x)#‖
P
, (16.13)

which we call the nondifferentiable augmented function. In (16.13), σ > 0 is
called the penalty parameter, the operator (·)# was defined on page 194, and
‖·‖P is a norm, and is arbitrary for the moment. We denote by ‖·‖D the dual
norm of ‖ · ‖

P
, with respect to the Euclidean scalar product. It is defined by

‖v‖D = sup
‖u‖

P
=1

v>u.

We therefore have the generalized Cauchy-Schwarz inequality :

|u>v| ≤ ‖u‖
P
‖v‖

D
, for all u and v. (16.14)

See exercise 16.5 for some examples of dual norms.
Because of the norm ‖ · ‖

P
and of the operator (·)#, Θσ is usually non-

differentiable; but when f and c are smooth, Θσ has directional derivatives;
this is a consequence of lemma 13.1. It so happens that this differentiability
concept will be sufficient for our development.

Let v ∈ R
m be such that vI ≤ 0 and denote by Pv : R

m → R
m the

operator defined by Pvu = (·#)′(v;u), that is

(Pvu)i =





ui si i ∈ E
u+

i if i ∈ I and vi = 0
0 if i ∈ I and vi < 0.

This notation allows us to write concisely the directional derivative of Θσ at
a feasible point.
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Lemma 16.4. If f and c have a directional derivative at x in the direction
h ∈ R

n, then Θσ has also a directional derivative at x in the direction h. If,
in addition, x is feasible for (PEI ), we have

Θ′
σ(x;h) = f ′(x;h) + σ‖Pc(x)c

′(x;h)‖
P
.

Proof. The directional differentiability of Θσ = f + σ(‖ · ‖
P
◦ (·)# ◦ c) comes

from lemma 13.1, the assumptions on f and c, and the fact that (·)# and
‖ · ‖P are Lipschitzian and have directional derivatives.

If x is feasible, c(x)# = 0 and we have from lemma 13.1,

Θ′
σ(x;h) = f ′(x;h) + σ(‖ · ‖

P
)′(0; (c#)′(x;h)).

On the other hand,

(c#)′(x;h) = (·#)′(c(x); c′(x;h)) = Pc(x)c
′(x;h)

and

(‖ · ‖
P
)′(0; v) = lim

t→0+

1

t
(‖tv‖

P
− 0) = ‖v‖

P
.

The result follows.

Necessary Conditions of Exactness

In this subsection, we examine which conditions are implied by the fact that
a feasible point x∗ is a minimum point of Θσ . We quote three such properties
in proposition 16.5: x∗ is also a minimum point of (PEI), there exists a
multiplier λ∗ associated with x∗, and σ must be sufficiently large. The second
property shows that the exactness of Θσ plays a similar role as a constraint
qualification assumption, since it implies the existence of a dual solution.

For the third property mentioned above, we need an assumption on the
norm ‖ · ‖

P
used in Θσ . The norm ‖v‖

P
must decrease if one sets to zero

some of the I-components of v ∈ R
m:

ui =

{
vi if i ∈ E
0 or vi if i ∈ I =⇒ ‖u‖

P
≤ ‖v‖

P
. (16.15)

Clearly, `p norms, 1 ≤ p ≤ ∞, satisfy this property; but it is not necessarily
satisfied by an arbitrary norm (see exercise 17.1). Also, the claim on σ in
proposition 16.5 may not be correct if ‖ · ‖

P
does not satisfy (16.15) (see

exercise 16.6).

Proposition 16.5 (necessary conditions of exactness). If x∗ is feasible
for (PEI ) and Θσ has a local minimum (resp. strict local minimum) at x∗,
then x∗ is a local minimum (resp. strict local minimum) of (PEI ). If, in addi-
tion, f and c are Gâteaux differentiable at x∗, then there exists a multiplier λ∗
such that the necessary optimality conditions (KKT) hold. If, in addition, the
norm ‖ · ‖

P
satisfies (16.15) and (LI-CQ) holds at x∗, then σ ≥ ‖λ∗‖D

.
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Proof. If x∗ is a local minimum of Θσ , there exists a neighborhood V of x∗
such that

Θσ(x∗) ≤ Θσ(x), for all x ∈ V.
Since x∗ ∈ X and Θσ |X = f |X , we have

f(x∗) ≤ f(x), for all x ∈ V ∩X,

which shows that x∗ is a local minimum of (PEI ). The above inequality is
strict for x 6= x∗, if x∗ is a strict local minimum of Θσ .

Now suppose f and g are Gâteaux differentiable at x∗. Then Θσ has
directional derivatives at x∗ (lemma 16.4). Since x∗ is a local minimum of
Θσ , we have Θ′

σ(x∗;h) ≥ 0 for all h ∈ R
m. But x∗ is feasible; hence, by

lemma 16.4:

∇f(x∗)
>h+ σ‖Pc(x∗)(A(x∗)h)‖P

≥ 0, for all h ∈ R
m. (16.16)

We deduce
Pc(x∗)(A(x∗)h) = 0 =⇒ ∇f(x∗)

>h ≥ 0.

Thus, h = 0 solves the linear program





minh ∇f(x∗)>h
AE(x∗)h = 0,
AI0

∗
(x∗)h ≤ 0.

The constraints of this problem being qualified (by (A-CQ)), we deduce the
existence of a multiplier λ∗ ∈ R

m such that





∇f(x∗) +A(x∗)>λ∗ = 0
(λ∗)I0

∗
≥ 0

(λ∗)I\I0
∗

= 0.

Since x∗ is feasible, (KKT) holds with (x∗, λ∗).
Finally, suppose that the norm ‖ · ‖

P
satisfies (16.15) and that (LI-CQ)

holds. Take again (16.16) and use the first-order optimality condition to ob-
tain

λ>∗A(x∗)h ≤ σ‖Pc(x∗)A(x∗)h‖P
, for all h ∈ R

n.

Set J = E ∪ I0
∗ , and remember that (λ∗)i = 0 if i 6∈ J . For an arbitrary v

in R
m, we have λ>∗ v = (λ∗)>J vJ and, from (LI-CQ), we can find h ∈ R

n such
that AJ (x∗)h = vJ . We deduce that

λ>∗ v = (λ∗)
>
JAJ (x∗)h = λ>∗A(x∗)h ≤ σ‖Pc(x∗)A(x∗)h‖P

≤ σ‖v‖
P
,

where the last inequality uses property (16.15) of the norm. Then λ>
∗ v ≤

σ‖v‖
P
, and since v is arbitrary, we have ‖λ∗‖D

≤ σ.
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Sufficient Conditions of Exactness

In practice, we are more interested in having conditions that ensure the exact-
ness of Θσ and this is what we focus on now. We shall show that the necessary
condition obtained on σ in proposition 16.5 is sharp: if x∗ is a strong solution
to problem (PEI) with associated multiplier λ∗, x∗ also minimizes Θσ pro-
vided σ > ‖λ∗‖D

(the strict inequality is not needed for convex problems).
This result holds without any particular assumption on the norm ‖ · ‖

P
.

The necessary conditions of exactness of Θσ were obtained by expressing
the fact that, if x∗ minimizes Θσ , the directional derivative Θ′

σ(x∗;h) must
be nonnegative for all h ∈ R

n (see the proof of proposition 16.5). Now we
want to exhibit values of σ such that Θσ has a minimum at x∗. Function Θσ

is nondifferentiable and nonconvex. Therefore, it is not sufficient to show that
Θ′

σ(x∗;h) ≥ 0 for all h ∈ R
n in order to ensure its exactness. One cannot

impose Θ′
σ(x∗;h) > 0 for all h ∈ R

n either, since this may never occur for any
value of σ (for example, when E 6= ∅ and I = ∅, Θ′

σ(x∗;h) = 0 for any h in
the space tangent to the constraint manifold). Therefore, we shall use either
a technical detour (for convex problems) or a direct proof like the one of
proposition 16.3 (for nonconvex problems).

In proposition 16.7 below, we consider the case of convex problems and in
proposition 16.8 the case of nonconvex problems. To prove the exactness of
the nondifferentiable function Θσ for convex problems, we simply use the fact
that, if σ is large enough, Θσ is above the differentiable Lagrangian (16.4)
(lemma 16.6), which is known to be exact at x∗ (proposition 16.1). Observe
that lemma 16.6 does not assume convexity.

Lemma 16.6. If σ ≥ ‖λ‖
D

and λI ≥ 0, then `(·, λ) ≤ Θσ(·) on R
n.

Proof. First observe that λI ≥ 0 implies λ>I cI(x) ≤ λ>I cI(x)
+. Then, for all

x ∈ R
n,

`(x, λ) ≤ f(x) + λ>c(x)# ≤ f(x) + ‖λ‖
D
‖c(x)#‖

P
≤ Θσ(x).

Proposition 16.7 (sufficient conditions of exactness, convex prob-
lems). Suppose that problem (PEI) is convex and that f and c are differen-
tiable at a solution x∗ to (PEI ) with an associated multiplier λ∗. Then Θσ

has a global minimum at x∗ as soon as σ ≥ ‖λ∗‖D .

Proof. According to proposition 16.1, `(·, λ∗) is minimized by x∗ and, by
lemma 16.6, it is dominated by Θσ (σ ≥ ‖λ∗‖D

and (λ∗)I ≥ 0). Therefore

Θσ(x∗) = f(x∗)

= `(x∗, λ∗)

≤ `(x, λ∗), for all x ∈ R
n

≤ Θσ(x), for all x ∈ R
n.
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The same technical detour could be used for highlighting sufficient condi-
tions of exactness of Θσ for nonconvex problems: if σ > ‖λ∗‖D

, Θσ is above
the augmented Lagrangian (16.6) in some neighborhood of x∗, so that the
exactness of Θσ follows that of the augmented Lagrangian (proposition 16.3).
This strategy is proposed in exercise 16.7. The direct proof given below has
the advantage of being valid even when only the weak second order suffi-
cient condition of optimality (13.8) holds at x∗ (in contrast, the semi-strong
condition (13.9) is assumed in proposition 16.3 and exercise 16.7).

Proposition 16.8 (sufficient conditions of exactness). Suppose that f
and cE∪I0

∗
are twice differentiable at a local minimum x∗ of (PEI ) at which

the KKT conditions hold, that the weak second-order sufficient condition of
optimality (13.8) is satisfied, and that

σ > sup
λ∗∈Λ∗

‖λ∗‖D ,

where Λ∗ is the nonempty set of multipliers associated with x∗. Then Θσ has
a strict local minimum at x∗.

Proof. We prove the result by contradiction, assuming that x∗ is not a strict
minimum of Θσ . Then, there exists a sequence {xk} such that xk 6= x∗,
xk → x∗ and

Θσ(xk) ≤ Θσ(x∗), ∀k ≥ 1. (16.17)

Since the sequence {(xk − x∗)/‖xk − x∗‖} is bounded (here ‖ · ‖ denotes an
arbitrary norm), it has a subsequence such that (xk − x∗)/‖xk − x∗‖ → d,
where ‖d‖ = 1. Denoting αk = ‖xk − x∗‖, one has

xk = x∗ + αkd+ o(αk).

Because Θσ is Lipschitzian in a neighborhood of x∗:

Θσ(xk) = Θσ(x∗ + αkd) + o(αk).

Now (16.17) shows that Θ′
σ(x∗; d) ≤ 0. Then, from lemma 16.4, one can write

f ′(x∗) · d+ σ‖Pc(x∗)(c
′(x∗) · d)‖P

≤ 0. (16.18)

This certainly implies that

f ′(x∗) · d ≤ 0. (16.19)

On the other hand, from the assumptions, there is an optimal multi-
plier λ∗ such that σ > ‖λ∗‖D

. Using the first order optimality conditions,
including the nonnegativity of (λ∗)I and the complementarity conditions
(λ∗)>I cI(x∗) = 0, one has
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−f ′(x∗) · d = λ>∗ (c′(x∗) · d)
≤ λ>∗Pc(x∗)(c

′(x∗) · d)
≤ ‖λ∗‖D

‖Pc(x∗)(c
′(x∗) · d)‖P

.

Then (16.18) and σ > ‖λ∗‖D
imply that Pc(x∗)(c

′(x∗) · d) = 0, i.e.,

{
c′i(x∗) · d = 0 for i ∈ E
c′i(x∗) · d ≤ 0 for i ∈ I0

∗ .

These and (16.19) show that d is a nonzero critical direction.
Now, let λ∗ be the multiplier depending on d, determined by the weak

second-order sufficient condition of optimality (13.8). According to theo-
rem 13.4, one has

d>∇2
xx`(x∗, λ∗)d > 0.

The following Taylor expansion (use ∇x`(x∗, λ∗) = 0)

`(xk, λ∗) = `(x∗, λ∗) +
α2

k

2
d>∇2

xx`(x∗, λ∗)d+ o(α2
k)

allows us to see that, for k large enough,

`(xk , λ∗) > `(x∗, λ∗). (16.20)

Then, for large indices k, there holds

Θσ(xk) ≤ Θσ(x∗) [by (16.17)]

= f(x∗)

= `(x∗, λ∗)

< `(xk , λ∗) [by (16.20)]

≤ Θσ(xk) [by lemma 16.6 and σ ≥ ‖λ∗‖D
],

which is the expected contradiction.

Notes

The augmented Lagrangian (16.2) for equality constrained problems was first
proposed by Arrow and Solow [14; 1958]. Hestenes [191; 1969] and Powell [288;
1969] both used this function to introduce the so-called method of multipliers,
which has popularized this type of penalization. The augmented Lagrangian
(16.3) or (16.6), adapted to inequality constrained problems, was proposed by
Rockafellar [310, 311; 1971-74] and Buys [62; 1972]. It was further extended
to constraints of the form c(x) ∈ K, where c is a vector-valued function and
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K is a closed convex cone, by Shapiro and Sun [330; 2004]. This penalty func-
tion is usually no more than continuously differentiable, even if the problem
data are infinitely differentiable. Many developments have been carried out
to overcome this drawback, proposing augmentation terms with a different
structure (for entry points see [17, 16; 1999-2000], which deal with primal
penalty functions, and [109, 110, 111; 1999-2001], which consider primal-dual
penalty functions). Surveys on the augmented Lagrangian can be found in
[26, 169].

The exact penalty function (16.13) goes back at least to Eremin [119; 1966]
and Zangwill [374; 1967]. Its connection with problem (PEI) has been studied
by many authors, see Pietrzykowski [284], Charalambous [74], Ioffe [198],
Han and Mangasarian [186], Bertsekas [26], Fletcher [126], Bonnans [39, 41],
Facchinei [120], Burke [60], Pshenichnyj [301], Bonnans and Shapiro [50], and
the references therein.

Exercises

16.1. Finsler’s lemma [123] and its limit case [9]. Let M be an n × n symmet-
ric matrix that is positive definite on the null space of a matrix A (i.e.,
u>Mu > 0 for all nonzero u ∈ N(A)). Show that there exists an r0 ∈ R

such that, for all r ≥ r0, M + rA>A is positive definite.

[Hint : Use an argument by contradiction.]

Suppose now that the symmetric matrix M is only positive semidefinite
on the null space of A (i.e., u>Mu ≥ 0 for all u ∈ N(A)). Show that the
following claims are equivalent: (i) v ∈ N(A) and v>Mv = 0 imply that
Mv = 0, and (ii) there exists an r0 ∈ R such that, for all r ≥ r0, M +rA>A

is positive semidefinite. Find a matrix M that is positive semidefinite on
the null space of A, for which these properties (i) and (ii) are not satisfied.

[Hint : For (i) ⇒ (ii), use with care an argument by contradiction.]

Consequence: If M is nonsingular and positive semidefinite (but not positive
definite) on the null space of A, it cannot enjoy property (ii) (since (i) does
not hold).

16.2. Augmented Lagrangian for equality constrained problems. Consider problem
(PE) with functions f and c of class C2 and the associated augmented
Lagrangian `r(x, λ) = f(x) + λ>c(x) + r

2
‖c(x)‖2

2. By a direct computation
of ∇x`r(x∗, λ∗) and ∇2

xx`r(x∗, λ∗), show that, if r is large enough, `r(·, λ∗)
has a strict local minimum at a point x∗ satisfying (SC2).

[Hint : Use Finsler’s lemma (exercise 16.1).]

16.3. Fletcher’s exact penalty function [124]. Consider problem (PE), in which f

and c are smooth, and c is a submersion. Denote by A−(x) a right inverse
of the constraint Jacobian A(x) := c′(x) and assume that A− is a smooth
function of x. Let λLS(x) := −A−(x)>∇f(x) be the associated least-squares
multiplier. For r ∈ R, consider the function ϕr : R

n → R defined by
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ϕr(x) = f(x) + λ
LS(x)>c(x) +

r

2
‖c(x)‖2

2. (16.21)

Let (x∗, λ∗) be a pair satisfying the second-order sufficient conditions of
optimality (SC2) of problem (PE). Show that there exists an r0 ∈ R, such
that for r ≥ r0, ϕr has a strict local minimum at x∗.

[Hint : Prove the following claims, in which A∗ := A(x∗), A−
∗ := A−(x∗),

and L∗ := ∇2
xx`(x∗, λ∗), and conclude: (i) λLS(x∗) = λ∗; (ii) ∇ϕr(x∗) = 0;

(iii) (λLS)′(x∗) = −A−>
∗ L∗ and ∇2ϕr(x∗) = L∗− (A>

∗A−>
∗ L∗ +L∗A

−
∗ A∗)+

rA>
∗ A∗; (iv) ∇2ϕr(x∗) is positive definite if r is large enough.]

16.4. Counter-example for proposition 16.3. Consider the problem in R
3:

8
>><
>>:

minx x3

x3 ≥ (x1 + x2)(x1 − x2)
x3 ≥ (x2 + 3x1)(2x2 − x1)
x3 ≥ (2x2 + x1)(x2 − 3x1).

Show that: (i) x∗ = 0 is the unique solution to the problem and that the
associated multiplier set is Λ∗ = {λ ∈ R

3
+ : λ1 +λ2 +λ3 = 1}; (ii) the weak

second order sufficient condition of optimality (13.8) is satisfied, but not
the semi-strong ones (13.9); (iii) for any λ∗ ∈ Λ∗ and r ≥ 0, the augmented
Lagrangian (16.6) has not a minimum at x∗.

Consequence: When the semi-strong second order sufficient conditions of
optimality (13.9) do not hold at x∗, the augmented Lagrangian `r(·, λ∗)
function may not have a local minimum at x∗, for any λ∗ ∈ Λ∗ and r ≥ 0.

16.5. Dual norms. (i) The `p norm on R
n is defined by

‖u‖p :=

8
>>><
>>>:

 
nX

i=1

|ui|p
! 1

p

if 1 ≤ p < ∞

max
1≤i≤n

|ui| if p = ∞.

Show that the dual norm of ‖ · ‖p is the norm ‖ · ‖p′ , where p′ is uniquely
defined by

1

p
+

1

p′
= 1.

(ii) Let Q be a symmetric positive definite matrix and define the norm

‖u‖P = (u>Qu)
1
2 . Show that its dual norm is given by ‖v‖D = (v>Q−1v)

1
2 .

16.6. Counter-example for proposition 16.5. Consider the problem

min


1

2
‖x‖2

2 : x ∈ R
2
, x1 ≤ 0, x2 + 1 ≤ 0

ff
.

Show that the unique primal-dual solution to this problem is x∗ = (0,−1)
and λ∗ = (0, 1). Show that x 7→ ‖x‖P = (x2

1 + x2
2 +

√
3x1x2)

1/2 is a norm
that does not satisfy (16.15), and that ‖λ∗‖D = 2. Show that Θσ(x) =
1

2
‖x‖2

2 + σ‖(x1, x2 + 1)+‖P has a minimum at x∗ when σ ≥ 1.

Consequence: The exactness of Θσ does not imply σ ≥ ‖λ∗‖D if the norm
‖ · ‖P does not satisfy (16.15).
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16.7. A variant of proposition 16.8. (i) Let x∗ be feasible for (PEI) and λ ∈ R
m

be such that λI ≥ 0 and λ>
I cI (x∗) = 0; let r > 0 and σ > ‖λ‖D . Show that

there exists a neighborhood V of x∗ in Ω such that for all x ∈ V , there
holds `r(x, λ) ≤ Θσ(x).

(ii) Suppose that f and cE∪I0
∗

are twice differentiable at a local minimum
x∗ of (PEI) at which the KKT conditions hold, that the semi-strong second-
order sufficient condition of optimality (13.9) holds for some optimal mul-
tiplier λ∗, and that σ > ‖λ∗‖D . Show, using (i), that Θσ has a strict local
minimum at x∗.

16.8. `1 penalty function. Suppose that f and cE∪I0
∗

are twice differentiable at
a local minimum x∗ of (PEI) at which the KKT conditions hold and that
the weak second-order sufficient condition of optimality (13.8) is satisfied.
Positive scalars σi (i ∈ E ∪ I) are given and the following penalty function
is considered:

Θ
1
σ(x) = f(x) +

X

i∈E

σi|ci(x)| +
X

i∈I

σici(x)+.

Show that, if σi > |(λ∗)i|, for i ∈ E ∪ I and all optimal multiplier λ∗, then
x∗ is a strict local minimum of Θ1

σ.

[Hint : Use the norm v 7→ ‖v‖P :=
P

i
σi|vi| and proposition 16.8.]

Remark: The `1-penalty function offers a natural way of controlling the
magnitude of penalty parameters σi, when one such parameter is associated
with each constraint.

16.9. Nondifferentiable augmented Lagrangian ([37] for equality constrained prob-
lems; [41] for an alternative to (16.22)). Suppose that f and cE∪I0

∗
are twice

differentiable at a local minimum x∗ of (PEI) at which the KKT conditions
hold. Let be given µ ∈ R

m and σ ∈ R+. Suppose one of the following:

(i) either the weak second-order sufficient condition of optimality (13.8)
is satisfied and σ > sup{‖λ∗ − µ‖D : λ∗ ∈ Λ∗},

(ii) or the semi-strong second-order sufficient condition of optimality
(13.9) holds for some optimal multiplier λ∗ and σ > ‖µ − λ∗‖D .

Then Θµ,σ : R
n → R defined by

Θµ,σ(x) := f(x) + µ
>
c(x)# + σ‖c(x)#‖P (16.22)

has a strict local minimum at x∗.

[Hint : Under assumptions (i) use a technique similar to the one in the proof
of proposition 16.8; under assumptions (ii) follow the same strategy as in
exercise 16.7.]





17 Globalization by Line-Search

There is no guarantee that the local algorithms in chapters 14 and 15 will
converge when they are started at a point x1 far from a solution x∗ to problem
(PE) or (PEI ). They can generate erratic sequences, which may by chance
enter the neighborhood of a solution and then converge to it; but most often,
the sequences will not converge. There exist several ways of damping this
uncoordinated behavior and modifying the computation of the iterates so as
to force their convergence. Two classes of techniques can be distinguished
among them: line-search and trust-region. The former is presented in this
chapter.

In methods with line-search, the iterates are generated by the recurrence

xk+1 = xk + αkdk,

where dk is a direction in R
n and αk > 0 is a stepsize, computed by a line-

search technique (see chapter 3), whose aim is to decrease a merit function.
In this chapter, we consider algorithms in which dk solves or approximately
solves the osculating quadratic program (14.8)/(15.4) of the Newton/SQP
algorithm in chapters 14/15 and the merit function is the function Θσ in
chapter 16. For convenience, we recall the definition of Θσ :

Θσ(x) = f(x) + σ‖c(x)#‖
P
, (17.1)

where ‖ · ‖P denotes an arbitrary norm and the notation (·)# was introduced
on page 194. Properties of function Θσ are studied in chapter 16; remember
that this function is usually nondifferentiable.

Let us stress the originality of this approach, which uses the solution to
the osculating quadratic program to minimize Θσ . If dk were an arbitrary
descent direction of the nondifferentiable merit function Θσ , for example
the steepest-descent direction, the resulting algorithm would not necessarily
converge (see § 9.2.1). We shall show, however, that the difficulty coming from
nonsmoothness does not occur if the search direction dk solves the osculating
quadratic problem (15.4). As for the stepsize, the value αk = 1 is preferred,
in order to preserve the quadratic convergence of the local method. We shall
see that the unit stepsize is actually accepted when xk is close to a strong
solution to (PEI ), provided some modifications of the search direction or the
merit function are made. Therefore, the final algorithm can also be viewed as
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a quadratically convergent method for minimizing the structured nonsmooth
function Θσ , a speed of convergence that cannot be obtained with general
purpose nondifferentiable algorithms like those presented in part II of this
book.

The concept of exactness plays an important part in the success of the
approach we have just outlined. Without this property, it might indeed have
been necessary to adapt σ continually to make the solution dk to the quadratic
problem a descent direction of the merit function Θσ . This is illustrated for
an equality constraint problem in figure 17.1 (a single constraint and two

PSfrag replacements
x̄σ

x̄σ

x̄σ

xkxkxk

Fig. 17.1. Importance of exactness: σ too small (l), giving descent (m), giving
exactness (r)

variables). The figure provides three pictures showing the level curves of Θσ

for three increasing values of σ (x̄σ is the minimizer of Θσ). They also show
the constraint manifold (the bold curve at the bottom) and the Newton
direction at xk (the arrow). We assume that the current iterate xk is close
to x∗ (hence the figure gives greatly enlarged views) and that the multiplier λk

is also close to λ∗, so that the Newton direction dk points towards x∗ (this
is a consequence of the quadratic convergence result in chapter 14). We can
see that dk is an ascent direction of Θσ if σ is not large enough (left-hand
picture). In this case, there is no hope in finding a positive stepsize αk along dk

that provides a decrease in Θσ . In the middle picture, σ is large enough to
make dk a descent direction of Θσ , although not large enough to make Θσ

exact at x∗. In the right-hand picture, the penalty parameter σ is large enough
to have x̄σ = x∗ (exactness of Θσ) and this gives dk a greater chance of being
a descent direction of Θσ . As we shall see, other conditions must also be
satisfied. Observe finally that the nondifferentiability of Θσ manifests itself
in the pictures by the lack of smoothness of its level curves when they cross
the constraint manifold.

To get descent property of dk, it will be necessary to increase σ at some
iterations, but the exactness property of Θσ for a finite value of σ will allow
the algorithm to do this finitely often. This is a very desirable property,
which makes the proof of convergence possible. As soon as σ is fixed, Θσ
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plays the role of an immutable reference, which is able to appreciate the
progress towards the solution, whatever may happen to the iterates.

This chapter describes and analyzes two classes of algorithms. Line-search
SQP algorithms (§ 17.1) are based on the SQP direction of chapter 15 and
use line-search on Θσ to enforce its convergence. We derive conditions that
ensure the descent property of the SQP direction on Θσ and study the global
convergence of the algorithm. This analysis assumes the strict convexity of
the osculating quadratic program defining the SQP direction (as well as its
feasibility), which may require not using the Hessian of the Lagrangian, but
a positive definite approximation thereof (chapter 18 explains how to gener-
ate quasi-Newton approximations). The truncated SQP algorithm of § 17.2 is
presented as a line-search method that can use the exact Hessian of the La-
grangian (although we restrict the analysis to equality constrained problems).
In this case, it is the way to solve the quadratic program approximately (dis-
carding tangent negative curvature information) that allows the algorithm to
generate descent directions of the merit function Θσ . The so-called Maratos
effect (nonadmissibility of the unit stepsize asymptotically) is discussed in
§ 17.3, and the most common remedies for this phenomenon are described.

17.1 Line-Search SQP Algorithms

The quadratic program (QP) considered in this section is slightly more gen-
eral than (15.4): the Hessian of the Lagrangian L(xk, λk) is replaced by some
n × n symmetric matrix Mk. This allows us to include the Newton and the
quasi-Newton versions of SQP in the same framework. On the other hand,
the descent property of the QP solution and convergence of the line-search
SQP algorithm often require the positive definiteness of Mk. The osculating
quadratic problem in d becomes:





mind ∇f(xk)>d+ 1
2d

>Mkd
cE(xk) +AE(xk)d = 0
cI(xk) +AI(xk)d ≤ 0.

(17.2)

A stationary point dk of this QP satisfies, for some multiplier λQP

k ∈ R
m, the

optimality conditions:





(a) ∇fk +Mkdk +A>
kλ

QP

k = 0
(b) (ck +Akdk)# = 0
(c) (λQP

k )I ≥ 0
(d) (λQP

k )>I (ck +Akdk)I = 0.

(17.3)

For short, we have set ∇fk = ∇f(xk), ck = c(xk), and Ak = A(xk) = c′(xk).
Let us now outline the line-search SQP algorithm that uses Θσ as a merit

function. The description includes references to numerical techniques, whose
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sense will be clarified further in the section. The analysis of this algorithm is
the subject of this section.

Line-search SQP:

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute f(x1), c(x1), ∇f(x1), and A1 := c′(x1).
Set k = 1.

1. Stop if the KKT conditions (13.1) holds at (x∗, λ∗) ≡ (xk, λk)
(optimality is reached).

2. Compute a symmetric matrix Mk, approximating the Hessian of
the Lagrangian, and find a primal-dual stationary point (dk, λ

QP

k )
of the quadratic problem (17.2) (i.e., a solution to the optimality
conditions (17.3)), which is assumed to be feasible.

3. Adapt σk if necessary (the update rule must satisfy (17.9) to ensure
convergence, but a rule similar to the one on page 295 is often
used).

4. Choose αk > 0 along dk so as to obtain a “sufficient” de-
crease in Θσk

(for example, use the line-search technique given
on page 296).

5. Set xk+1 := xk + αkdk and update λk → λk+1.
6. Compute ∇f(xk+1) and Ak+1 := c′(xk+1).
7. Increase k by 1 and go to 1.

This algorithm does not specify how to update the dual variables λk. Some
authors do a line-search on λ with the help of a primal-dual merit function,
which therefore involves λ-values. Others compute λk+1 from xk+1 as in the
primal algorithm of § 14.3. Another possibility is also to take

λk+1 := λk + αk(λQP

k − λk), (17.4)

where αk is the stepsize used for the primal variables. It has already been said
that the role of λk is less important than that of xk, because it intervenes in
the algorithm only through the matrix Mk (for example the Hessian of the
Lagrangian) in (17.2). The few requirements on the way the new multiplier
is determined reflects in some way this fact.

General assumptions for this section. We assume throughout this sec-
tion that f and c are differentiable in an open set containing the segments
[xk, xk+1] that link the successive iterates. We also assume that the quadratic
problem (17.2) is always feasible (i.e., its constraints are compatible).

In practice, the last assumption on the feasibility of (17.2) is far from al-
ways being satisfied at each iteration. Therefore, carefully written codes
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use techniques and heuristics for dealing with infeasible quadratic programs.
For more computational efficiency, it is also often better to have a different
penalty factor associated with each constraint, as in exercise 16.8. For sim-
plicity, we keep a merit function with a single penalty parameter σ, knowing
that an extension is possible without difficulty.

Decrease in Θσ Along dk

The merit function Θσ decreases from xk along dk if dk is a descent direction
of Θσ at xk (we saw in lemma 16.4 that Θσ has directional derivatives),
meaning that

Θ′
σ(xk ; dk) < 0.

We focus on this issue in this subsection.
The next proposition identifies three conditions that make dk a descent

direction of Θσ : σ is large enough, Mk is positive definite, and xk is not
a stationary point of (PEI ). Such a result is useful for the quasi-Newton
versions of SQP, where the positive definiteness of Mk is preserved. To hold,
the result needs the following assumption on the norm ‖ · ‖

P
used in Θσ :

v 7→ ‖v#‖
P

is convex. (17.5)

This hypothesis is weaker than (16.15) (see exercise 17.1).

Proposition 17.1 (descent property). If (dk, λ
QP

k ) satisfies the optimality
conditions (17.3) and if ‖ · ‖

P
satisfies (17.5), then

Θ′
σ(xk; dk) ≤ ∇f>

k dk − σ‖c#k ‖P = −d>kMkdk + (λQP

k )>ck − σ‖c#k ‖P . (17.6)

If, in addition, σ ≥ ‖λQP

k ‖D
, we have

Θ′
σ(xk ; dk) ≤ −d>kMkdk .

Hence Θ′
σ(xk ; dk) < 0, if σ ≥ ‖λQP

k ‖D
, if Mk is positive definite, and if xk is

not a stationary point of problem (PEI).

Proof. Since a norm has directional derivatives and is Lipschitzian (like any
convex function), the function v → ‖v#‖P has directional derivatives. From
(17.5) and (17.3)b, we have for t ∈ ]0, 1[:

‖(ck + tAkdk)#‖
P

= ‖[(1− t)ck + t(ck +Akdk)]#‖
P

≤ (1− t)‖c#k ‖P + t‖(ck +Akdk)#‖P

= (1− t)‖c#k ‖P
.

Therefore

(‖ ·# ‖
P
)′(ck;Akdk) = lim

t→0+

1

t
(‖(ck + tAkdk)#‖

P
− ‖c#k ‖P

) ≤ −‖c#k ‖P
.
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Then, with (17.3)a, (17.3)b and (17.3)d, we prove (17.6):

Θ′
σ(xk ; dk) ≤ ∇f>

k dk − σ‖c#k ‖P

= −d>kMkdk − (λQP

k )>Akdk − σ‖c#k ‖P

= −d>kMkdk + (λQP

k )>ck − σ‖c#k ‖P
.

If σ ≥ ‖λQP

k ‖D
, using (17.3)c and the generalized Cauchy-Schwarz inequality

(16.14), we have

(λQP

k )>ck − σ‖c#k ‖P
≤ (λQP

k )>c#k − σ‖c
#
k ‖P

≤ (‖λQP

k ‖D
− σ)‖c#k ‖P

≤ 0.

Now, the second inequality of the proposition is obtained from (17.6). If
Θ′

σ(xk ; dk) = 0 and Mk is positive definite, then dk = 0. From (17.3), it
follows that xk is stationary, with λQP

k as its associated multiplier.

Note that equality holds in (17.6) if there are only equality constraints
(see the proof of lemma 17.4 below), but this is not necessarily the case when
I 6= ∅ (this is the subject of exercise 17.2). Therefore, algorithms requiring
the computation of Θ′

σk
(xk; dk) often use the negative upper bound given by

the right-hand side of (17.6):

∆k := ∇f>
k dk − σk‖c#k ‖P

= −d>kMkdk + (λQP

k )>ck − σk‖c#k ‖P
. (17.7)

We have indexed σ by k, since its value will have to be modified at some
iterations.

Update of the Penalty Parameter σk

A consequence of proposition 17.1 is that when xk is nonstationary, when
Mk is positive definite, and when σk satisfies

σk > ‖λQP

k ‖D
, (17.8)

then ∆k < 0 and the solution dk to the osculating quadratic problem is a
descent direction of Θσk

at xk, meaning that Θ′
σk

(xk ; dk) < 0. Inequality
(17.8) reminds us of the exactness condition σ > ‖λ∗‖D

found for Θσ in
chapter 16 and is therefore natural: by maintaining (17.8) at each iteration,
the algorithm ensures the exactness of Θσ at convergence (σk = σ for large k
and λQP

k → λ∗).
To maintain (17.8) at each iteration, it is necessary to modify σk some-

times (the evolution of λQP

k cannot be known when the algorithm is started).
Global convergence will show that this inequality has to be imposed with
some safeguard, given by the positive constant σ̄ below. To keep some gen-
erality, we shall just specify the properties that an adequate adaptation rule
for σk must enjoy:
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(a) σk ≥ ‖λQP

k ‖D
+ σ̄, for all k ≥ 1,

(b) there exists an index k1 such that:
if k ≥ k1 and σk−1 ≥ ‖λQP

k ‖D
+ σ̄, then σk = σk−1,

(c) if {σk} is bounded, σk is modified finitely often.

(17.9)

Property (a) means that a little more than (17.8) must hold at each iteration.
With (b), we assume that, after finitely many steps, σk−1 is modified only
when necessary, to obtain (a). Finally, (c) requires that each modification
of σk is significant, so as to stabilize the sequence {σk}: asymptotically, the
merit function should no longer depend on the iteration index.

It can be checked that the following rule, proposed by Mayne and Po-
lak [250], satisfies these properties (the constant 1.5 is given to be specific;
actually, any constant > 1 is appropriate):

if σk−1 ≥ ‖λQP

k ‖D + σ̄
then σk = σk−1

else σk = max(1.5σk−1, ‖λQP

k ‖D
+ σ̄).

Having a large parameter σk is harmless for the theoretical convergence, but
can be disastrous in practice; so it must sometimes be decreased. In this case,
the properties in (17.9) may no longer be satisfied and convergence may no
longer be guaranteed. Nevertheless, an update rule like the one below is often
used (the constants 1.1 and 1.5 can be replaced by any constant > 1):

Update rule for σk:

if σk−1 ≥ 1.1 (‖λQP

k ‖D
+ σ̄),

then σk = (σk−1 + ‖λQP

k ‖D
+ σ̄)/2;

else if σk−1 ≥ ‖λQP

k ‖D + σ̄,
then σk = σk−1.
else σk = max(1.5σk−1, ‖λQP

k ‖D
+ σ̄);

In this rule, when the previous penalty factor σk−1 exceeds 1.1 times the
minimal threshold ‖λQP

k ‖D
+ σ̄, the new factor σk is set to the arithmetic

mean of this threshold and of σk−1.
It is often better to use a different penalty factor for each constraint

(in particular, when the constraints have very different orders of magnitude).
This is done by taking as a penalty function Θσ(x) = f(x)+‖Sc(x)#‖P , where
S = Diag(σ1, . . . , σn). The case of the `1 norm is considered in exercise 16.8.

Line-Search

The determination of the stepsize αk > 0 along dk, forcing the decrease
in Θσk

, must be done in a precise manner (see § 3 for unconstrained problems).
We shall enforce satisfaction of the following Armijo condition [12]: ω being
a fixed constant in ]0, 1

2 [, one determines α > 0 such that



296 17 Globalization by Line-Search

xk + αdk ∈ Ω and Θσk
(xk + αdk) ≤ Θσk

(xk) + ωα∆k. (17.10)

The requirement ω < 1
2 comes from the necessity of having asymptotic admis-

sibility of the unit stepsize (see § 17.3); it is essential neither for consistency
of (17.10) nor for global convergence (ω ∈ ]0, 1[ would be sufficient). The
value of ∆k in (17.10) should ideally be Θ′

σk
(xk , dk), but since this direc-

tional derivative is not easy to compute, we take the negative upper bound
given by (17.7).

Since Θ′
σk

(xk; dk) ≤ ∆k < 0 and ω < 1, one can easily verify that it is
possible to find αk > 0 satisfying (17.10). However, this Armijo condition
does not eliminate unduly small αk’s, which might impair convergence of
the iterates to a stationary point. This explains the following line-search
algorithm. A constant β ∈ ]0, 1

2 ] is chosen.

Backtracking line-search:

Set i = 0, αk,0 = 1.

1. If (17.10) is satisfied with α = αk,0, set αk = α and exit.
2. Choose αk,i+1 ∈ [βαk,i, (1− β)αk,i].
3. Increase i by 1 and go to 1.

Taking for example β = 1
2 , the stepsize selected by this algorithm is the first

element encountered in the list {1, 1
2 ,

1
4 ,

1
8 , · · · } satisfying (17.10). Taking the

first of these stepsizes does prevent α from being too small. The determination
of αk,i+1 in the interval [βαk,i, (1−β)αk,i] should be done using interpolation
formulas.

Global Convergence with Positive Definite Hessian
Approximations

In this subsection, we analyze the global convergence of the line-search SQP
algorithm given on page 292, when σk is adapted by a rule satisfying prop-
erties (17.9), the stepsize αk is determined by the line-search algorithm on
page 296, and the matrices Mk used in the osculating quadratic program
(17.2) are maintained positive definite, in such a way that

{Mk} and {M−1
k } are bounded. (17.11)

This is a strong assumption. For example, it is not known whether it is satis-
fied in the quasi-Newton versions of SQP. Besides, if Mk = L(xk, λk), positive
definiteness is not guaranteed. We shall, however, accept this assumption,
which allows a simple convergence proof.

Theorem 17.2 (global convergence of the line-search SQP algo-
rithm). Suppose that f and c are of class C1,1 in Ω and that ‖ ·# ‖

P
is
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convex. Consider the line-search SQP algorithm on page 292, using symmet-
ric positive definite matrices Mk satisfying (17.11) and an update rule of σk

satisfying (17.9). Then, starting the algorithm at a point x1 ∈ Ω, one of the
following situations occurs:

(i) the sequence {σk} is unbounded, in which case {λQP

k } is also unbounded;
(ii) there exists an index k2 such that σk = σ for k ≥ k2, and at least one

of the following situations occurs:

(a) Θσ(xk)→ −∞,
(b) dist(xk , Ω

c)→ 0,

(c) ∇x`(xk, λ
QP

k )→ 0, c#k → 0, (λQP

k )I ≥ 0 and (λQP

k )>I (ck)I → 0.

Proof. If {σk} is unbounded, we see from rule (17.9)b that {λQP

k : σk 6= σk−1}
is unbounded. If {σk} is bounded, rule (17.9)c shows that there exists an
index k2 such that σk = σ for all k ≥ k2. It remains to show that one of the
situations (ii-a), (ii-b), or (ii-c) occurs. For this, we suppose that (ii-a) and
(ii-b) do not hold and show (ii-c).

Each iteration after k2 forces the decrease in the same function Θσ . Since
Θσ(xk) ≥ C > −∞, Armijo’s condition (17.10) shows that

αk∆k → 0.

Then, if we show αk ≥ α > 0, the result (ii-c) will follow. Indeed, from
∆k → 0, (17.6) and (17.9)a, we deduce

d>kMkdk → 0 and c#k → 0.

Because Mk is positive definite and has a bounded inverse, dk → 0. Then,
from (17.3)a and the boundedness of Mk, we see that ∇x`(xk , λ

QP

k )→ 0. On
the other hand, (17.3)c shows that (λQP

k )I ≥ 0. Finally, ∆k = ∇f>
k dk −

σ‖c#k ‖P
→ 0 and c#k → 0 imply that ∇f>

k dk → 0 and, using (17.3)a,
(λQP

k )>Akdk → 0. Hence, from (17.3)d and (17.3)b,

(λQP

k )>I (ck)I = −(λQP

k )>I (Akdk)I

= (λQP

k )>E(Akdk)E + o(1)

= −(λQP

k )>E(ck)E + o(1)

= o(1),

because {λQP

k } is bounded and (ck)E → 0.
Therefore, it remains to prove that αk ≥ α > 0, for all k and some

constant α. We can consider the indices k of K := {k ≥ k2 : αk < 1}.
Then from the rule determining the stepsize, αk ∈ [βᾱk, (1− β)ᾱk] for some
ᾱk ∈ ]0, 1] satisfying

αk + ᾱkdk 6∈ Ω or Θσ(xk + ᾱkdk) > Θσ(xk) + ωᾱk∆k.
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For large k, the first condition is impossible because dk → 0 would then imply
that dist(xk , Ω

c)→ 0. Hence, for large k ∈ K, we have

Θσ(xk + ᾱkdk) > Θσ(xk) + ωᾱk∆k. (17.12)

Let us expand the left-hand side of (17.12). Using the smoothness of f and c,
ᾱk ≤ 1, the convexity of ‖ ·# ‖

P
(hence its Lipschitz continuity), (17.3)b, and

finally (17.6)–(17.7), we have successively

f(xk + ᾱkdk) = fk + ᾱk∇f>
k dk +O(ᾱ2

k‖dk‖2)
c(xk + ᾱkdk) = ck + ᾱkAkdk +O(ᾱ2

k‖dk‖2)
= (1− ᾱk)ck + ᾱk(ck +Akdk) +O(ᾱ2

k‖dk‖2)
‖c(xk + ᾱkdk)#‖

P
≤ (1− ᾱk)‖c#k ‖P

+ ᾱk‖(ck +Akdk)#‖
P

+O(ᾱ2
k‖dk‖2)

= (1− ᾱk)‖c#k ‖P +O(ᾱ2
k‖dk‖2)

Θσ(xk + ᾱkdk) ≤ Θσ(xk) + ᾱk∆k + C1ᾱ
2
k‖dk‖2.

Then (17.12) yields

−(1− ω)ᾱk∆k ≤ C1ᾱ
2
k‖dk‖2.

But ∆k = −d>kMkdk +(λQP

k )>ck−σ‖c#k ‖P
≤ −d>kMkdk ≤ −C2‖dk‖2 (bound-

edness of {M−1
k }), so that we deduce from the above inequality:

ᾱk ≥ (C2/C1)(1− ω) > 0,

because ω < 1. The positive lower bound on αk can therefore be taken as
α := β(C2/C1)(1− ω). This concludes the proof.

Among the situations described in theorem 17.2, only situation (ii-c) is
satisfactory. In this case, every cluster point of {(xk, λ

QP

k )} satisfies the op-
timality conditions (KKT). Unfortunately, any of the other situations may
occur. For example, (i) may occur in the example in figure 16.1 when {xk}
converges to x′∗, a point where λ∗ is not defined. Situation (ii-a) will occur if,
outside of the feasible set, f decreases more rapidly than ‖c(·)#‖P increases,
and if x1 is taken far enough from the feasible set; the example

min{−x2 : x = 0},

with ‖ · ‖
P

= | · |, is such. Finally, situation (ii-b) occurs if Ω contains no
stationary point.

17.2 Truncated SQP

In this section, we consider another globalization technique of the Newton
algorithm to solve the problem with only equality constraints:
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(PE)

{
minx f(x)
c(x) = 0.

The local algorithm was introduced in § 14.1 and we refer the reader to § 14.4
(in the subsection entitled “The reduced system approach”) for the notation.
In contrast to the approach used in the previous section, we do not replace
here the Hessian of the Lagrangian by a positive definite approximation. This
was useful to ensure the well-posedness of the osculating quadratic program
and the decrease in Θσ along the computed direction. Instead, we describe an
algorithm that directly exploits the curvature of the problem (i.e., the second
derivatives of f and c) gathered in the Hessian of the Lagrangian, even in the
presence of nonconvexity.

Here also, the computed direction will be a descent direction of the merit
function Θσ , which allows global convergence. Therefore, it must differ from
Newton’s direction, but the modification only needs to be done at points
where the reduced Hessian of the Lagrangian is not positive definite. This
form of weak nonconvexity can therefore be detected by the algorithm, which
is a nice feature. The idea is similar to the truncated Newton algorithm
in unconstrained optimization (see § 6.4): the truncated conjugate gradient
(CG) algorithm is used to solve, sometimes approximately, the reduced linear
system (see (14.32))

Hkuk = vk, (17.13)

where

Hk := Z−>
k LkZ

−
k and vk := −gk + Z−>

k LkA
−
k ck. (17.14)

Note that the reduced Hessian of the Lagrangian Hk is symmetric but may
be indefinite. By the truncated CG, the algorithm aims at collecting only the
“positive definite part” of Hk. This is obtained by stopping the CG iterations
certainly before a conjugate direction w is a negative curvature direction for
Hk (more precisely, before w>Hkw becomes less than an appropriate positive
threshold). Let us denote by ũk the approximate solution to (17.13) computed
by the truncated CG algorithm. We shall show that the search direction

dk = −A−
k ck + Z−

k ũk (17.15)

is then a descent direction of Θσ provided σ is larger than an easily com-
putable threshold. Another interesting property of this approach is that, since
Hk is positive definite around a strong solution to (PE), the CG iterations can
be pursued up to completion close to such a solution, so that local quadratic
convergence is not prevented.

Let us look at this in more detail.

Truncated CG Iterations

The truncated conjugate gradient (TCG) algorithm to solve (17.13) is pre-
sented below. For clarity, we drop the index k of the Newton algorithm and
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denote by i the CG iteration index (in superscript). For i = 0, . . . , j, Al-
gorithm TCG generates iterates ui, approximating the solution to (17.13),
residuals ri := Hui − v, and conjugate directions wi. The algorithm can be
stopped at any iteration (global convergence of the truncated SQP method
will not be affected by this), but it must certainly be interrupted at uj if
the next conjugate direction wj is a quasi-negative curvature direction for H .
This means that the following inequality does not hold with i = j:

(wi)>Hwi ≥ ν‖wi‖22. (17.16)

The threshold ν > 0 is assumed to be independent of the index k, although
an actual implementation would use a more sophisticated rule for setting
this parameter, allowing small values when approaching a solution. Hence,
Algorithm TCG simply discards quasi-negative directions. It is in this way
that nonconvexity is dealt with.

Algorithm TCG for (17.13):

1. Choose ν > 0. Set u0 = 0 and r0 = −v, where v is defined by
(17.14).

2. For i = 0, 1, . . . do the following:
2.1. If desired or if ri = 0, stop to iterate and go to step 3 with

j = i.
2.2. Compute a new conjugate direction:

wi =

{
−ri if i = 0

−ri + ‖ri‖2

‖ri−1‖2 w
i−1 if i ≥ 1.

2.3. Compute pi = Hwi.
2.4. If (17.16) does not hold, go to step 3 with j = i.
2.5. Compute the new iterate ui+1 = ui+tiwi and the new residual

ri+1 = ri + tipi, with the stepsize

ti =
‖ri‖2

(wi)>pi
.

3. Take as the approximate solution to (17.13):

ũ =

{
v if j = 0
uj if j ≥ 1.

Observe that, since the first iterate of Algorithm TCG is u0 = 0, the first CG
direction is w0 = −r0 = v, the right-hand side of (17.13). This is important
for the analysis that follows. Another key point is that the directions wi are
conjugate: wi1Hwi2 = 0 for i1 6= i2. Note finally that Algorithm TCG chooses
to output the approximate solution uj currently obtained when j ≥ 1 (it is
different from zero), but ũ = w0 = v when j = 0 (u0 = 0 in this case).
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Lemma 17.3. The vector ũ computed by Algorithm TCG has the form

ũ = Jv, (17.17)

where J is the identity matrix when j = 0 and

J =

j−1∑

i=0

wi(wi)>

(wi)>Hwi
(17.18)

when j ≥ 1. Furthermore ‖J‖2 ≤ max
(
1, j

ν

)
.

Proof. If i = 0, u = v and the result follows. Otherwise Algorithm TCG
generates conjugate directions w0, . . . , wj−1. By orthogonality of ri and
wi−1, by the fact that the algorithm starts with u0 = 0, and by conjugacy of
the directions wi, one has for 1 ≤ i ≤ j:

‖ri‖2 = −(wi)>ri

= −(wi)>(Hui − v)

= −(wi)>H

(
i−1∑

l=0

tlwl

)
+ (wi)>v

= (wi)>v.

Also, ‖r0‖2 = (w0)>v. Therefore

ũ =

j−1∑

i=0

tiwi =

j−1∑

i=0

(wi)>v

(wi)>Hwi
wi =

(
j−1∑

i=0

wi(wi)>

(wi)>Hwi

)
v.

This proves (17.18).
The upper bound on ‖J‖2 comes from the fact that ‖vv>‖2 = ‖v‖22 and

(17.16).

Note that, when j ≥ 1, the matrix J is positive semi-definite with rank j.
In view of (17.13) and (17.17), this matrix appears as a kind of “pseudo-
inverse of the positive definite part” of H .

Descent Property

In the next lemma, we give conditions ensuring that the direction dk given by
(17.15) is a descent direction of Θσk

. For this, it is convenient to give another
expression of dk by introducing the following right inverse of Ak:

Ã−
k := (I − Z−

k JkZ
−>
k Lk)A−

k . (17.19)
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This is the right inverse Â−
k in (14.33), in which H−1

k has been substituted
by its approximation Jk. Then

dk = r̃k + t̃k, (17.20)

where
r̃k = −Ã−

k ck and t̃k = −Z−
k Jkgk.

We also use the multiplier associated with Ã−
k :

λ̃k = −Ã−>
k ∇fk. (17.21)

How to compute this multiplier efficiently is dealt with in the next subsection.

Lemma 17.4 (descent property). Suppose that f and c are differentiable
at xk. Let dk be given by (17.15), where ũk is the approximate solution to
(17.13) computed by Algorithm TCG. Then Θσk

has a directional derivative
in the direction dk, whose value is given by

Θ′
σk

(xk ; dk) = −g>k Jgk + λ̃>k ck − σk‖ck‖P
. (17.22)

It is negative if xk is nonstationary and σk > ‖λ̃k‖D
.

Proof. Since a norm is Lipschitz continuous and has directional deriva-
tives, ‖ · ‖

P
◦ c has directional derivatives (see lemma 13.1). Using the fact

that dk satisfies the linearized constraints (i.e., Akdk = −ck), one has
(‖ · ‖

P
◦ c)′(xk ; dk) = (‖ · ‖

P
)′(ck;−ck) = −‖ck‖P

. Therefore

Θ′
σk

(xk; dk) = ∇f>
k dk − σk‖ck‖P .

Using (17.20) and (17.21), we get (17.22).
Suppose now that σk > ‖λ̃k‖D

. Since λ̃>k ck ≤ ‖λ̃k‖D
‖ck‖P

, we obtain

Θ′
σk

(xk; dk) ≤ −g>k Jkgk + (‖λ̃k‖D
− σk)‖ck‖P

≤ 0.

If Θ′
σk

(xk; dk) = 0, it follows that ck = 0 and g>k Jkgk = 0. If the number of CG
iterations jk = 0, then Jk = I , hence gk = 0 and xk is stationary. It remains to
show that jk cannot be ≥ 1 when Θ′

σk
(xk; dk) = 0. If jk ≥ 1, one would have

vk 6= 0 (see step 2.1 of Algorithm TCG) and therefore gk 6= 0 (since ck = 0).
But with the structure of Jk and the fact that w0

k = vk = −gk when ck = 0,
one would have g>k Jkgk ≥ (g>kw

0
k)2/((w0

k)>Hkw
0
k) = ‖gk‖4/(g>kHgk) > 0,

which would contradict the fact that g>k Jkgk = 0.
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Computation of λ̃k

Let us drop the index k. From (17.21) and (17.19), the definition of λ̃ involves
the matrix J :

λ̃ = −A−>(∇f − LZ−Jg).

We do not want to store this matrix, however. In fact, to compute λ̃, one has
to evaluate ū = Jg, which is the approximate solution to

Hū = g, (17.23)

obtained by using the same conjugate directions wi and the same products
pi = Hwi, i = 0, . . . , j−1, as those used to compute the approximate solu-
tion ũ to (17.13) by Algorithm TCG. The computation of ũ and ū can be
made in parallel, hence avoiding the need to store the conjugate directions wi

(or J) or the need to compute twice the Hessian-vector products pi = Hwi.
This is what Algorithm TCG2 below does. Its outputs are ũ and ū.

Algorithm TCG2 for (17.13) and (17.23):

1. Choose ν > 0. Set u0 = 0, r0 = −v, ū0 = 0, and r̄0 = −g, where
v is defined by (17.14).

2. For i = 0, 1, . . . do the following:
2.1. If desired or if ri = 0, stop to iterate and go to step 3 with

j = i.
2.2. Compute a new conjugate direction:

wi =

{
−ri if i = 0

−ri + ‖ri‖2

‖ri−1‖2 w
i−1 if i ≥ 1.

2.3. Compute pi = Hwi.
2.4. If (17.16) does not hold, go to step 3 with j = i.
2.5. Compute the new iterates ui+1 = ui + tiwi and ūi+1 = ūi +

t̄iwi and the new residuals ri+1 = ri+tipi and r̄i+1 = r̄i+t̄ipi,
with the stepsizes

ti =
‖ri‖2

(wi)>pi
and t̄i = − (r̄i)>wi

(wi)>pi
.

3. Take as the approximate solution to (17.13) and (17.23):

ũ =

{
v if j = 0
uj if j ≥ 1

and ū =

{
g if j = 0
ūj if j ≥ 1.

It may occur that the linear system (17.23) is solved before (17.13). In this
case, the stepsizes t̄i vanish and ūi is no longer modified. It is easy to verify
that λ̃ is obtained from ū by:
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λ̃ = −A−>(∇f − LZ−ū). (17.24)

Indeed, since ū0 = 0, one has for 1 ≤ i ≤ j:

(wi)>r̄i = (wi)>(Hūi − g) = (wi)>H

(
i−1∑

l=0

t̄lwl

)
− (wi)>g = −(wi)>g.

Hence

ū =

j−1∑

i=0

t̄iwi =

j−1∑

i=0

(wi)>g

(wi)>Hwi
wi = Jg.

The Truncated SQP Algorithm and its Global Convergence

The truncated SQP algorithm to solve problem (PE) generates a sequence
{xk}k≥1 by the recurrence

xk+1 = xk + αkdk,

where the direction dk ∈ R
n is determined by (17.15), with ũk computed by

Algorithm TCG2, and the stepsize αk > 0 is determined by a line-search on
the merit function Θσk

.
According to lemma 17.4, dk is a descent direction of Θσk

provided xk is
nonstationary and σk > ‖λ̃k‖D

. This requires a modification of σk at some
iterations and we assume that a rule respecting conditions similar to (17.9)
is adopted: for some fixed constant σ̄ > 0, the following holds





(a) σk ≥ ‖λ̃k‖D
+ σ̄, for all k ≥ 1,

(b) there exists an index k1 such that:

if k ≥ k1 and σk−1 ≥ ‖λ̃k‖D
+ σ̄, then σk = σk−1,

(c) if {σk} is bounded, σk is modified finitely often.

(17.25)

Since at a nonstationary iterate xk , dk is a descent direction of Θσk
, one can

determine a stepsize αk > 0 such that the following Armijo inequality holds

Θσk
(xk + αkdk) ≤ Θσk

(xk) + ωαkΘ
′
σk

(xk; dk), (17.26)

where ω is a constant chosen in ]0, 1
2 [. As in the line-search SQP algorithm

on page 292, the stepsize is determined in step 4 below by backtracking.
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We can now summarize the overall TSQP algorithm to solve the equality
constrained problem (PE).

Algorithm TSQP:

Choose an initial iterate (x1, λ1) ∈ R
n × R

m.
Compute f(x1), c(x1), ∇f(x1), and A(x1).
Set the constants ν > 0 (quasi-negative curvature threshold), ω ∈

]0, 1
2 [ (slope modifier in the Armijo condition), σ̄ > 0 (penalty

parameter threshold), and β ∈ ]0, 1
2 ] (backtracking safeguard pa-

rameter).
Set k = 1.

1. Stopping test : Stop if ck = 0 and gk = 0.
2. Step computation:

• Compute the restoration step rk = −A−
k ck.

• Compute the reduced gradient gk = Z−>
k ∇fk and the right-hand

side of (17.13) vk = −gk − Z−>
k Lkrk.

• Run Algorithm TCG2 to compute ũk and ūk.
• Compute the full step dk = rk +Z−

k ũk and the multiplier λ̃k by
(17.24).

3. Penalty parameter setting : Update σk such that (17.25) holds.
4. Backtracking line-search:

• Set α = 1.
• While α does not satisfy Armijo’s inequality (17.26), pick a new

stepsize α in [βα, (1−β)α].
• Set αk = α.

5. New iterates : Set xk+1 = xk + αkdk and λk+1 = λLS

k+1.
6. Increase k by 1 and go to 1.

Before proving the global convergence of this algorithm, let us make some
observations. In a practical algorithm, the stopping test in step 1 would be
replaced by a condition checking that ck and gk are sufficiently small. In
practice, in step 4, the new stepsize chosen in the interval [βα, (1−β)α] during
the line-search should be obtained by interpolation. In step 5, we have set
the new multiplier λk+1 to the least-squares multiplier

λLS

k := −A−>
k ∇fk.

This makes Algorithm TSQP close to the primal version of Newton’s al-
gorithm analyzed in theorem 14.5. Another possibility would have been to
choose λk+1 = λ̃k. Observe however that, even if the CG iterations of Algo-

rithm TCG2 solve (17.13) and (17.23) exactly, λ̃k 6= λQP

k (in this case λ̃k = λ̂k

given by (14.36), compare with (14.35)), so that with that choice of λk+1,
Algorithm TSQP does not reduce to Newton’s algorithm in a neighborhood
of a strong solution.



306 17 Globalization by Line-Search

Theorem 17.5 (global convergence of the line-search truncated SQP
algorithm). Suppose that the functions f and c are twice continuously dif-
ferentiable with Lipschitz continuous first derivatives. Suppose also that the
sequences {∇fk}, {Lk}, {A−

k }, and {Z−
k } generated by Algorithm TSQP are

bounded. Then the sequence of penalty parameters {σk} is stationary for
sufficiently large k: σk = σ. If furthermore {Θσ(xk)} is bounded below, the
sequences {ck} and {gk} converge to 0.

Proof. We denote by C1, C2, . . . positive constants, independent of k. We can
assume that ‖ck‖+ ‖gk‖ > 0 for all k ≥ 1, because otherwise the conclusion
is clear.

Note first, that the assumptions imply the boundedness of {λ̃k} (use
(17.24), the boundedness of {A−

k }, {∇fk}, {Lk}, {Z−
k }, and that of {Jk}

given by lemma 17.3). Then by (17.25)b, {σk} is also bounded, hence sta-
tionary for large enough k (use (17.25)c). From Armijo’s inequality (17.26),
Θσ(xk) is decreasing. It is also bounded below (by assumption), hence it
converges. This implies that αkΘ

′
σ(xk ; dk) tends to 0, or equivalently (use

lemma 17.4 and (17.25)a)

αkg
>
k Jkgk → 0 and αkck → 0. (17.27)

Let us now show that {αk} is bounded away from 0. From the line-
search (step 4), when αk < 1, there is a stepsize αk ∈ ]0, 1] such that
αk ∈ [βαk, (1−β)αk] and

Θσ(xk + αkdk) > Θσ(xk) + ωαkΘ
′
σ(xk; dk).

Using the smoothness of f and c and the fact that dk satisfies the linearized
constraints, one has successively

f(xk + αkdk) = f(xk) + αkf
′(xk) · dk +O(α2

k‖dk‖2),
c(xk + αkdk) = (1− αk)c(xk) +O(α2

k‖dk‖2),
Θσ(xk + αkdk) ≤ Θσ(xk) + αkΘ

′
σ(xk ; dk) + C1αk

2‖dk‖2.

Therefore (ω − 1)Θ′
σ(xk; dk) < C1αk‖dk‖2 or

g>k Jkgk + ‖ck‖P < C2αk‖dk‖2, (17.28)

where C2 = C1/((1−ω) min(1, σ̄)). With the boundedness of {A−
k }, {Z−

k },
{Lk}, and {Jk}, we have dk = O(‖J1/2

k vk‖ + ‖ck‖P ) and, due to the form

of vk, dk = O(‖J1/2
k gk‖+ ‖ck‖P

). Then, inequality (17.28) becomes

g>k Jkgk + ‖ck‖P
< C3αk(g>k Jkgk + ‖ck‖2P ).

From (17.27), αkck → 0 and therefore for large k

g>k Jkgk < C3αkg
>
k Jkgk.
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This inequality shows that g>k Jkgk 6= 0 when αk < 1 and k is large enough
and that {αk} is bounded away from zero. Since αk ≥ βαk, {αk} is also
bounded away from zero.

From (17.27)
g>k Jkgk → 0 and ck → 0. (17.29)

It remains to show that gk → 0. Assume the opposite: there is a constant
γ > 0 and subsequence K such that ‖gk‖ ≥ γ for k ∈ K. Using the first term
of the expression (17.18) of Jk when jk ≥ 1, w0

k = vk, and the boundedness
of {Hk}, one can write

g>k Jkgk ≥ min

(
‖gk‖22,

(g>k vk)2

v>kHkvk

)
≥ min

(
γ2, C4

(g>k vk)2

‖vk‖2
)
.

The numerator can be bounded below as follows:

(g>k vk)2 = [−‖gk‖2 +O(‖gk‖ ‖ck‖)]2
= ‖gk‖4 +O(‖gk‖3 ‖ck‖) +O(‖gk‖2 ‖ck‖2)

≥ 1

2
‖gk‖4 − C5‖gk‖2 ‖ck‖2

≥ ‖gk‖2(
1

2
γ2 − C5‖ck‖2),

which is positive for large k in K. For the denominator, we use the upper
bound:

‖vk‖2 ≤ 2‖gk‖2 + C6‖ck‖2 ≤ ‖gk‖2(2 + C6‖ck‖2/γ2).

Therefore for large k in K:

g>k Jkgk ≥ min

(
γ2,

1
2γ

2 − C5‖ck‖2
2 + C6‖ck‖2/γ2

)
.

This is in contradiction with (17.29).

17.3 From Global to Local

In this section, we analyze conditions under which the line-search algorithms
of the present chapter can transform themselves into the “local” algorithms
of chapter 14. In view of the quadratic convergence of the local methods,
this “mutation” is highly desirable. Because the direction generated by the
local algorithm is used as a descent direction of some merit function, this
transformation will occur if the line-search accepts the unit stepsize during
the last iterations. This property is referred to as the asymptotic admissibility
of the unit stepsize. We shall see that it is not guaranteed without certain
modifications of the algorithms, which are therefore crucial for their efficiency.
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For simplicity, we assume in this section that the problem has only equal-
ity constraints:

(PE)

{
minx f(x)
c(x) = 0.

Since our study is asymptotic, assuming convergence of the sequence {(xk,
λk)} to a primal-dual solution (x∗, λ∗), this simplification amounts to assum-
ing that the active constraints are identified after finitely many iterations,
in which case problem (PEI) reduces locally to a problem with only equality
constraints (theorem 15.2 tells us something about this).

The Maratos Effect

The merit function Θσ introduced in § 16.4 and defined by

Θσ(x) = f(x) + σ‖c(x)‖
P

does not necessarily accept unit stepsizes asymptotically. This is known as the
Maratos effect. We mean by this that when dk solves the quadratic problem

{
mind ∇f(xk)>d+ 1

2d
>Mkd

c(xk) +A(xk)d = 0,
(17.30)

we may have
Θσ(xk + dk) > Θσ(xk), (17.31)

however close to (x∗, L∗) the current pair (xk,Mk) may be.
The following counter-example demonstrates this fact. There, the con-

sidered iterate xk is on the constraint manifold: c(xk) = 0. We have seen
in proposition 17.1 that, if σk ≥ ‖λQP

k ‖D
and Mk is positive definite, Θσk

decreases along the Newton direction dk, which means that, for small step-
sizes, the decrease in f along dk compensates the increase in ‖c‖

P
. In the

counter-example, this compensation not longer holds for stepsizes close to 1.

Counter-example 17.6. Consider the problem on R
2

{
minx −x1 + τ(x2

1 + x2
2 − 1)

x2
1 + x2

2 − 1 = 0,

where τ ∈ R. Its unique solution is x∗ = (1, 0) and the associated multiplier
is λ∗ = 1

2 − τ . The Hessian of the Lagrangian at the solution is L∗ = I .
Suppose now that the step d at x is given by the osculating quadratic

problem, defined at a feasible point x with the matrix M = L∗ = I :

{
mind −d1 + 1

2‖d‖22
x>d = 0.

Its solution for x = (cos θ, sin θ) lying on the constraint is
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d =

(
sin2 θ

− sin θ cos θ

)

and c(x + αd) = α2 sin2 θ. Hence, if ‖ · ‖
P

= | · |,

Θσ(x) = − cos θ

Θσ(x+ αd) = − cos θ − α sin2 θ + (τ + σ)α2 sin2 θ.

Then Θσ(x + d) > Θσ(x) whenever τ + σ > 1 (and θ 6= 0). Because σ ≥
|λ∗| ≡ | 12 − τ | is needed to have an exact penalty, Θσ increases for a unit
stepsize if τ > 3

4 .
Figure 17.2 shows the level curves of Θσ around the solution for τ = 1 and

σ = 0.6, as well as the Newton step d from an x on the constraint manifold
(the bold curve), rather close to the solution (1, 0). One clearly observes that
Θσ(x+ d) > Θσ(x).
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Fig. 17.2. Example with a Maratos effect

This phenomenon somehow reveals a discrepancy between Θσ and the
osculating quadratic problem used to compute dk. Since this model is good
(it yields local quadratic convergence), the blame must be put on the merit
function, or on the way in which it is used. In the rest of this section, we ana-
lyze different remedies for the Maratos effect and prove that they are effective
close to a solution. The Maratos effect can also occur far from a solution and
it is then more difficult to deal with. The first remedy consists in modifying
the step dk by adding to it a small displacement, called a second order cor-
rection, that does not prevent quadratic convergence. Another possibility is
to modify the merit function, which is considered next.
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Modification of the Step: Second Order Correction

Example 17.6 has shown that there are situations in which, even close to the
solution, the increase in ‖c(·)‖P from xk to xk + dk is not compensated by
a decrease in f , resulting finally in an increase in Θσ . The remedy for the
Maratos effect presented in this subsection consists in adding to dk a small
correcting step ek ∈ R

n, whose aim is to decrease ‖c(·)‖
P
. This additional

step is defined by
ek = −A−

k c(xk+dk), (17.32)

where A−
k is some right inverse of the Jacobian matrix Ak = c′(xk), which is

assumed to be surjective. Hence, ek is a constraint-restoration step at xk +dk.
Figure 17.3 shows the second order correction for counter-example 17.6: the
small step e from x+ d to x+ d+ e.
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Fig. 17.3. Second order correction

One speaks of second-order correction because c(xk+dk) = O(‖dk‖2) and
therefore ek = O(‖dk‖2) is of order 2 in dk. This modification of dk preserves a
possible quadratic convergence since, assuming xk +dk−x∗ = O(‖xk−x∗‖2),
we have

xk + dk + ek − x∗ = (xk + dk − x∗) + ek = O(‖xk − x∗‖2),

owing to the preceding estimate of ek and to the fact that dk ∼ (xk − x∗)
(lemma 13.5).

Because ek is computed by evaluating c at a point different from xk ,
it cannot be guaranteed that dk + ek is a descent direction of Θσk

at xk .
Therefore, a line-search along this direction may be impossible. The least
expensive approach is then to determine a stepsize αk > 0 along the arc
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α 7→ pk(α) = xk + αdk + α2ek.

It has the descent direction dk as a tangent at α = 0 and visits xk + dk + ek

for α = 1. The stepsize αk can be computed in the same way as along dk,
forcing at each iteration the inequality

Θσk
(xk+αkdk+α2

kek) ≤ Θσk
(xk) + ωαkΘ

′
σk

(xk; dk), (17.33)

for some αk ∈ ]0, 1]. It is easy to verify that this inequality can always be
satisfied, provided dk is a descent direction of Θσk

at xk.
In the next proposition, we give conditions under which the unit stepsize

αk = 1 is accepted in (17.33) when xk is near a strong solution to (PE). Part
of these conditions is related to the matrix Mk, which must satisfy (17.34).
This condition is of the form tk ≥ o(‖dk‖2), for some real numbers tk, which
means that there must exist a sequence of real numbers {sk}, such that
tk ≥ sk and sk = o(‖dk‖2) when k → ∞. Observe that this condition is
satisfied when Mk is “large enough”. This is not surprising, since then the
tangent step is small (see remark 2 on page 235) and the total step dk is
close to the restoration step, along which the unit stepsize is known to be
accepted by the norm of the constraints (see exercise 17.4). Observe also that
condition (17.34) is satisfied when Mk is the Hessian of the Lagrangian (with
convergent multipliers), which corresponds to Newton’s method.

Proposition 17.7 (admissibility of the unit step-size with a second
order correction). Suppose that f and c are of class C2 in a neighborhood
of a solution x∗ to (PE) satisfying the second-order sufficient conditions of
optimality and at which A∗ = c′(x∗) is surjective. Let {xk} be a sequence
converging to x∗, let dk satisfy the first-order optimality conditions of the
osculating quadratic problem (17.30), and let ek be defined by (17.32). Suppose
also that

• {A−
k } is bounded and dk → 0,

• the matrix Mk used in the osculating quadratic problem (17.30) over-
estimates the Hessian of the augmented Lagrangian Lr

∗ := L∗ + rA>
∗A∗,

in the sense that
d>k (Mk − Lr

∗)dk ≥ o(‖dk‖2), (17.34)

where r ≥ 0 is such that Lr
∗ is positive definite (such an r always exists

under the assumptions already stated, see exercise 16.1),

• the penalty parameter σk used in Θσk
satisfies

‖λQP

k ‖D ≤ σk ≤ σ̂, (17.35)

where λQP

k is a multiplier associated with the constraints of (17.30) and σ̂
is a constant.

Then, for ω < 1
2 and large enough k, there holds

Θσk
(xk+dk+ek) ≤ Θσk

(xk) + ωΘ′
σk

(xk ; dk).
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Proof. Despite the nondifferentiability of Θσk
, one can obtain an expansion of

Θσk
(xk+dk+ek) with a precision of order o(‖dk‖2). This one follows from an

expansion of f(xk+dk+ek) and c(xk+dk+ek) about xk. Using the smoothness
assumptions on f and c, the constraint in (17.30), the definition of ek in
(17.32), the boundedness of {A−

k }, and the optimality of (x∗, λ∗), we have
successively

c(xk+dk) = ck +Akdk +
1

2
c′′(x∗) · d2

k + o(‖dk‖2),

=
1

2
c′′(x∗) · d2

k + o(‖dk‖2),
ek = O(‖c(xk+dk)‖)

= O(‖dk‖2),
c(xk+dk+ek) = c(xk+dk) +Akek + o(‖ek‖)

= o(‖dk‖2),
−A−>

k ∇fk = λ∗ −A−>
k (∇fk +A>

kλ∗)

= λ∗ + o(1),

∇f>
k ek = −(A−>

k ∇fk)>c(xk+dk)

= λ>∗ c(xk+dk) + o(‖dk‖2)

=
1

2
λ>∗
(
c′′(x∗) · d2

k

)
+ o(‖dk‖2),

f(xk+dk+ek) = fk +∇f>
k (dk + ek) +

1

2
d>k∇2f(x∗)dk + o(‖dk‖2)

= fk +∇f>
k dk +

1

2
d>kL∗dk + o(‖dk‖2).

With these estimates, the boundedness of {σk}, and the fact that, when
there are only equality constraints, the directional derivative of Θσk

in the
direction dk can be written Θ′

σk
(xk; dk) = ∇f>

k dk − σk‖ck‖P
(see the proof

of lemma 17.4), one gets

Θσk
(xk+dk+ek)−Θσk

(xk)− ωΘ′
σk

(xk ; dk)

= ∇f>
k dk +

1

2
d>kL∗dk − σk‖ck‖P

− ωΘ′
σk

(xk ; dk) + o(‖dk‖2)

= (1− ω)Θ′
σk

(xk ; dk) +
1

2
d>kL∗dk + o(‖dk‖2). (17.36)

We have to show that the right-hand side of (17.36) is nonpositive asymp-
totically.

Using the optimality conditions of (17.30), the Cauchy-Schwarz inequality
(16.14), and the bounds in (17.35), the directional derivative Θ′

σk
(xk ; dk) =

∇f>
k dk − σk‖ck‖P

can also be written

Θ′
σk

(xk; dk) = −d>kMkdk + (λQP

k )>ck − σk‖ck‖P
≤ −d>kMkdk. (17.37)
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Since d>kL∗dk ≤ d>kL
r
∗dk for a nonnegative r, (17.36) becomes with (17.37)

and (17.34):

Θσk
(xk+dk+ek)−Θσk

(xk)− ωΘ′
σk

(xk; dk)

≤
(

1

2
− ω

)
(−d>kMkdk)− 1

2
d>k (Mk − Lr

∗)dk + o(‖dk‖2)

≤
(

1

2
− ω

)
(−d>kMkdk) + o(‖dk‖2).

For large k, the right-hand side is nonpositive since, by (17.34) and the pos-
itive definiteness of Lr

∗, d
>
kMkdk ≥ d>kL

r
∗dk + o(‖dk‖2) ≥ C‖dk‖2, for some

positive constant C and large k.

The result of proposition 17.7 has many variants. It is usually easy to
prove them by adapting the arguments used in the proof above (basically by
cleverly combining Taylor expansions of an appropriate order). For example,
one can avoid using the Hessian of the augmented Lagrangian by replacing
condition (17.34) by

d>kP
>
∗ (Mk − L∗)P∗dk ≥ o(‖dk‖2) + o(‖ck‖),

where P∗ denotes a projection operator on N(A∗). The proof of this claim
has been left as an exercise.

Computing the correction step ek can be time-consuming for some appli-
cations, since this requires a new evaluation of the constraints at xk + dk.
When xk is far from a solution, this step can also be very large, perturb-
ing uselessly the SQP step dk. Therefore meticulous implementations of the
line-search SQP algorithm usually have a test for deciding whether ek must
be computed and the arc-search detailed above must be substituted for the
less expensive line-search. Counter-example 17.6 has shown that the Maratos
effect occurs when xk is on the constraint manifold. On the other hand,
truncation of the unit stepsize is unlikely to occur in the neighborhood of a
solution when the transversal part of the step prevails. To see this, observe
that when c has its values in R

n, the unit stepsize is accepted along Newton’s
direction to solve c(x) = 0 when one uses x 7→ ‖c(x)‖P as a merit function
(see exercise 17.4). These observations suggest that there may be a danger
of small stepsize only when the restoration step is small with respect to the
tangent step. The next proposition confirms this viewpoint. It shows that
the unit stepsize is accepted asymptotically for the iterations satisfying the
inequality

‖rk‖ ≥ CME‖tk‖, (17.38)

where CME is a positive constant and ‖ · ‖ is an arbitrary norm. To write this
inequality, we have decomposed the full step dk into dk = rk + tk, where the
restoration step is written rk = −A−

k ck, for some right inverse A−
k of Ak, and

the tangent step tk ∈ R(Z−
k ) satisfies ∇f>

k tk ≤ 0.
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Proposition 17.8 (admissibility of the unit step-size at restoration
prevailing iterations). Suppose that f and c are of class C1 in a neigh-
borhood of a stationary point x∗ of (PE). Let {xk} be a sequence converg-
ing to x∗ and dk = rk + tk, where rk = −A−

k c(xk) and tk ∈ R(Z−
k )

satisfies ∇f(xk)>tk ≤ 0. Suppose that {A−
k } and {σk} are bounded, that

σk ≥ ‖A−>
k ∇f(xk)‖

D
+ σ̄ for some constant σ̄ > 0, and that ω < 1. Then, for

large indices k for which (17.38) holds with a positive constant CME, one has

Θσk
(xk+dk) ≤ Θσk

(xk) + ωΘ′
σk

(xk ; dk).

Proof. Here, as we shall see, first-order expansions are sufficient. Using the
fact that dk = O(‖rk‖) for the considered indices, one has

f(xk+dk) = fk +∇f>
k dk + o(‖rk‖)

c(xk+dk) = ck +Akdk + o(‖rk‖)
= o(‖rk‖).

Therefore, using Θ′
σk

(xk; dk) = ∇f>
k dk − σk‖ck‖P (see the proof of lemma

17.4), ∇f>
k tk ≤ 0, ω < 1, ∇f>

k rk ≤ ‖A−>
k ∇fk‖D

‖ck‖P
, and rk = O(‖ck‖P

):

Θσk
(xk+dk)−Θσk

(xk)− ωΘ′
σk

(xk; dk)

= (1− ω)∇f>
k dk − (1− ω)σk‖ck‖P + o(‖rk‖)

≤ (1− ω)
(
‖A−>

k ∇fk‖D
− σk

)
‖ck‖P

+ o(‖rk‖)
≤ −(1− ω)σ̄‖ck‖P

+ o(‖ck‖P
),

which is negative for large k.

A consequence of this result is that, optimization codes implementing
the second order correction often decide to compute ek and to do an arc-
search, only at iterations where (17.38) does not hold. The constant CME is
determined by heuristics.

Modification of the Merit Function:
Nondifferentiable Augmented Lagrangian

Another way of getting the asymptotic admissibility of the unit stepsize is to
change the merit function. Remember that dk is obtained by minimizing a
quadratic model of the Lagrangian subject to linearized constraints. Hence,
taking

`µ,σ(x) = f(x) + µ>c(x) + σ‖c(x)‖
P

as a merit function should be convenient, insofar as µ is close enough to λ∗
and σ is small enough. The validity of this intuition is confirmed by proposi-
tion 17.9 below.
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Beforehand, observe that the problem
{

minx f(x) + µ>c(x)
c(x) = 0, x ∈ Ω

is clearly equivalent to (PE). Now, let x∗ be a solution to (PE), with asso-
ciated multiplier λ∗. Then x∗ is still a solution to the problem above, with
associated multiplier λ∗ − µ. Therefore, the results of § 16.4 imply that `µ,σ

is exact if
σ > ‖λ∗ − µ‖D

.

On the other hand, one easily computes

`′µ,σ(xk; dk) = −d>kMkdk + (λQP

k − µ)>ck − σ‖ck‖P ,

which is therefore negative if Mk is positive definite and

σ ≥ ‖λQP

k − µ‖D
.

Figure 17.4 shows the level curves of `µ,σ for counter-example 17.6, with

PSfrag replacements
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Fig. 17.4. Nondifferentiable augmented Lagrangian

τ = 1, µ = −0.55, and σ = 0.1.

Proposition 17.9 (admissibility of the unit step-size with a nondif-
ferentiable augmented Lagrangian). Suppose that f and c are of class
C2 in a neighborhood of a solution x∗ to (PE), satisfying the second-order suf-
ficient conditions of optimality. Let {xk} be a sequence converging to x∗, and
dk be a stationary point of the osculating quadratic problem (17.30). In this
last problem, suppose that the matrix Mk over-estimates Lr

∗ = L∗ + rA>
∗A∗

in the sense that
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d>k (Mk − Lr
∗)dk ≥ o(‖dk‖2), (17.39)

where r ≥ 0 is such that Lr
∗ is positive definite (such an r always exists under

the assumptions already stated, see exercise 16.1). Assume also that dk → 0,
that ω < 1

2 , and that σk ≥ ‖λQP

k − µk‖D
. Then there exists ε > 0 such that,

if ‖µk − λ∗‖ ≤ ε and 0 ≤ σk ≤ ε, we have for large enough k

`µk,σk
(xk+dk) ≤ `µk,σk

(xk) + ω`′µk,σk
(xk; dk).

Proof. The following expansions are easily obtained:

f(xk+dk) = fk +∇f>
k dk +

1

2
d>k∇2f(x∗)dk + o(‖dk‖2).

c(xk+dk) =
1

2
c′′(x∗) · d2

k + o(‖dk‖2).

We can then write

`µk,σk
(xk+dk)− `µk,σk

(xk)− ω`′µk,σk
(xk ; dk)

= ∇f>
k dk +

1

2
d>k∇2f(x∗)dk +

1

2
µ>

k c
′′(x∗) · d2

k − µ>
k ck − σk‖ck‖P

− ω`′µk,σk
(xk ; dk) +O(σk‖dk‖2) + o(‖dk‖2)

= (1− ω)`′µk ,σk
(xk ; dk) +

1

2
d>kL∗dk

+O((‖µk − λ∗‖D
+ σk)‖dk‖2) + o(‖dk‖2)

≤ (1− ω)`′µk ,σk
(xk ; dk) +

1

2
d>kL

r
∗dk + C1ε‖dk‖2 + o(‖dk‖2)

≤
(

1

2
− ω

)
`′µk,σk

(xk; dk)− 1

2
d>k (Mk − Lr

∗)dk + C1ε‖dk‖2 + o(‖dk‖2)

≤ −C2

(
1

2
− ω

)
‖dk‖2 + C1ε‖dk‖2 + o(‖dk‖2)

≤ 0,

if k is large enough and ε > 0 is small enough. We have used the uniform
positive definiteness of Mk, which comes from the positive definiteness of Lr

∗
and from (17.39).

We refer the reader to the original paper [37] and to [146, 10] for exam-
ples of use of the nondifferentiable augmented Lagrangian in implementable
algorithms.

17.4 The Hanging Chain Project IV

This is the fourth session dealing with the problem of finding the static equi-
librium of chain made of rigid bars that stays above a given tilted floor. The
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problem was introduced in § 13.8 and developed in §§ 14.7 and 15.4. We now
consider the implementation of the globalization technique presented in this
chapter. This will provide more robustness to the SQP solver and will give it
a tendency to avoid the stationary points that are not local minima.

We propose to use the merit function (17.1) in which ‖ · ‖
P

is the `1 norm
‖v‖1 :=

∑m
i=1 |vi|:

Θσ(x) = f(x) + σ‖c(x)#‖1. (17.40)

This norm satisfies the assumption (17.5) required by proposition 17.1 (see
exercise 17.1). The dual norm of the `1 norm is the `∞ norm ‖w‖∞ :=
max1≤i≤m |wi| (see exercise 16.5).

We assume that the osculating quadratic program has the form (17.2),
with a matrix Mk that is symmetric positive definite. This property of Mk

is important in order to get a primal solution dk to (17.2) that is a descent
direction of the exact merit function Θσ defined by (17.40) (see proposi-
tion 17.1). Since the Hessian of the Lagrangian Lk := ∇2

xx`(xk, λk) is not
necessarily positive definite, we propose to take for Mk a modification of Lk

obtained by adding to it a small positive diagonal matrix (using, for example,
a modified Cholesky factorization [154, 201]). Using a positive definite quasi-
Newton approximation to Lk is another possibility that will be examined in
chapter 18.

Modifications to Bring to the sqp Function

It is interesting to keep the possibility of using the algorithms defined in the
previous sessions by introducing flags. In our code, we use options.imode

(1:2), which has the following meanings:

• imode(1): 0 (Mk is a quasi-Newton approximation to Lk), 1 (Mk = Lk),
2 (Mk = Lk +Ek, where Ek is a small positive diagonal matrix that makes
Mk positive definite),

• imode(2): 0 (with line-search), 1 (with unit stepsize).

If we compare the local SQP algorithm on page 257, implemented in the
previous sessions, and the version with line-search on page 292, we see that
we essentially have to add the steps 3, 4, and 5 of the latter algorithm to the
sqp function.

• The determination of the penalty parameter σk in step 3 can be done by
the update rule of page 295. At the first iteration, we take σ1 = ‖λQP

1 ‖D
+σ̄

and set the constant σ̄ to max(
√
eps, ‖λQP

1 ‖D/100).

• The determination of a stepsize αk along dk in step 4 can be done like
in the backtracking line-search of page 296, with β = 0.1 and αk,i+1

determined by interpolation, i.e., as the minimizer of the quadratic func-
tion α 7→ ξ(α) satisfying ξ(0) = Θσk

(xk), ξ′(0) = ∆k, and ξ(αk,i) =
Θσk

(xk + αk,idk).
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• We set the new multiplier λk+1 by (17.4).

It is better not to limit the number of stepsize trials in the line-search,
since this number, which is most often 1, can be large at some difficult itera-
tion. However, the line-search algorithm may cycle when there is an error in
the simulator or when rounding errors occur at the end of a minimization.
Therefore, some arrangements have to be implemented to prevent this cy-
cling. In our code, the line-search is interrupted when the norm of the step
αk,i‖dk‖∞ to get improvement in the merit function becomes smaller than a
prescribed value options.dxmin given on entry in the solver.

It is important to take care over the output printed by the code, since
it provides meaningful information on the course of the optimization. Here
is the text, in connection with the line-search, that our code prints at each
iteration.

iter 11, simul 14, merit -1.47914e+00, slope -7.59338e-02

Armijo’s line-search

1.0000e+00 8.47489e-01 8.47489e-01

1.0000e-01 1.49986e-03 1.49986e-02

4.1753e-02 -1.60114e-03 -3.83479e-02

The value of ∆k defined by (17.7), which approximates Θ′
σk

(xk ; dk), is given
after the keyword slope, and should always be negative. Each line of the
table below the phrase “Armijo’s line-search” corresponds to a stepsize
trial: αk,i is in the first column, Θσk

(xk +αk,idk)−Θσk
(xk) in the second, and

(Θσk
(xk +αk,idk)−Θσk

(xk))/αk,i in the last one. We see in the first column
that the unit stepsize αk,1 = 1 is tried first and that it is determined next by
interpolation with the safeguard β = 0.1. The last column is useful to detect
a possible inconsistency in the simulator (or in the sqp function). If dk is not
a descent direction of the merit function Θσk

(it should be a descent direction
if Mk is positive definite and if nothing is wrong in the simulator and in the
sqp function, see proposition 17.1), there is a large number of stepsize trials
αk,i tending to zero. Then, the value in the last column should tend to ∆k

(this is actually certainly correct if there is no inequality constraint, since
then ∆k = Θ′

σk
(xk ; dk), see the comment after proposition 17.1).

Question: Tell why the last value in the third column of the table after
the phrase “Armijo’s line-search” above is often approximately half that
of ∆k (like here: 3.83479/7.59338' 0.505).

Experimenting with the SQP Algorithm

The first observation is good news: line-search really helps to force conver-
gence. For example, test case 1d (page 249), which diverges without line-
search, now converges to the global minimum. Figure 17.5 shows the result
with the usual convention: the thin solid bars represent the initial position of
the chain, the dashed bars correspond to the intermediate positions, and the
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Fig. 17.5. Test case 1d with line-search

bold solid bars are those of the final optimal position. For clarity, we have
not represented all the intermediate positions of the 10 iterations required to
get convergence, but 1 out of 2.

The second observation is that line-search helps the SQP algorithm to
avoid stationary points that are not local minima. For example if we apply the
present algorithm with line-search to test case 1b (page 249), the generated
sequence now converges to the global minimum of the problem, not to the
global maximum as before. The left picture in figure 17.6 shows the result (1

Fig. 17.6. Test cases 1b (left) and 1c (right) with line-search

iteration out of 3). The same phenomenon occurs with test case 1c (page 249),
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whose convergence to the global minimum is shown in the right hand side
picture of figure 17.6.

A third observation: the convergence is smoother with line-search. This is
not a very precise concept, but we mean by this that the behavior of the gen-
erated sequence is less erratic. Consider for example test case 1f (page 269).
The result is shown in figure 17.7. If we compare with figure 15.3, we see that

Fig. 17.7. Test case 1f with line-search

the second iterate is now closer the the initial one: the stepsize is actually
less than 1 (α1 = 0.1) only at the first iteration. This additional function
evaluation is beneficial since the total number of function evaluations is less
than the one without line-search (10 instead of 11, not a major improvement,
admittedly).

Notes

The use of the exact penalty function (17.1) to globalize the SQP algorithm
was proposed by Pshenichnyj (see for example [302]), Han [185; 1977] (with
the `1 norm), and others. The TSQP algorithm described in § 17.2 is taken
from [75; 2003]. Another way of dealing with nonconvex problems is to modify
the Hessian of the Lagrangian, using a modified Cholesky factorization (see
for example [133] and the references therein).

The “effect” described in § 17.3 was discovered by Maratos [247; 1978] and
counter-example 17.6 is adapted from [73]. Second-order correction strate-
gies were proposed by Boggs, Tolle, and Wang [36], Coleman and Conn [82],
Fletcher [127], Gabay [138], Mayne and Polak [250]. The use of the non-
differentiable augmented Lagrangian was proposed by Bonnans [37]. Note
that Fletcher’s exact penalty function (16.21) also accepts the unit stepsize
asymptotically, but it involves first derivatives, so that its use may lead to
expensive algorithms if a number of different stepsizes are required during
the line-search or to algorithmic remedies for avoiding expensive operations;
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see [299, 33, 34]. Other approaches include the “watchdog” technique [73]
and the nonmonotone line-search [281, 46].

To conclude this chapter let us briefly mention and/or review other contri-
butions dealing with the use of second derivatives within SQP, techniques for
solving the QP, and algorithmic modifications for tackling large-scale prob-
lems: Betts and Frank [29] add a positive multiple of the identity matrix
to the full Hessian of the Lagrangian when the factorization of the KKT
matrix reveals nonpositive definiteness of the reduced Hessian of the La-
grangian; Bonnans and Launay [45]; Murray and Prieto [270]; Gill, Murray,
and Saunders [155]; Leibfritz and Sachs [225]; Facchinei and Lucidi [121];
Boggs, Kearsley, and Tolle [32, 31] propose solving the QP by an interior
point method that can be prematurely halted by a pseudo-trust-region con-
straint, although their method uses line-search for its globalization; Sargent
and Ding [321] also use an interior point method to solve the QP inexactly
within a line-search approach, but discard the Hessian of the Lagrangian if
it fails to yield a descent direction of the merit function; Byrd, Gilbert, and
Nocedal [65] combine SQP with an interior point approach on the nonlinear
problem and use trust regions for the globalization.

Exercises

17.1. Norm assumptions. Let ‖ · ‖ be an arbitrary norm on R
m and consider the

following properties (the operators | · | and (·)+ act componentwise; the
statements are valid for all u and v ∈ R

m when this makes sense):

(i) ‖ |u| ‖ = ‖u‖;
(ii) |u| ≤ |v| =⇒ ‖u‖ ≤ ‖v‖;

(iii) ui = vi or 0 =⇒ ‖u‖ ≤ ‖v‖;
(iv) 0 ≤ u ≤ v =⇒ ‖u‖ ≤ ‖v‖;
(v) u ≤ v =⇒ ‖u+‖ ≤ ‖v+‖;

(vi) v 7→ ‖v+‖ is convex.

Show that (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi), but that none of the
other implications holds in general. Show that (vi) may not hold for an
arbitrary norm.

Remark: These implications show that assumptions (16.15) and (17.5) on
the norm ‖ · ‖P are satisfied with the `p norms, 1 ≤ p ≤ ∞, since `p norms
satisfy (i). They also show that (16.15) is more restrictive than (17.5).

17.2. On the directional derivative of Θσ. Find a one-dimensional example, in
which Θ′

σ(x; d) < ∇f(x)>d − σ‖c(x)#‖P , where d is the solution to the
osculating quadratic problem (17.2) (hence the inequality in (17.6) may be
strict).

[Hint : Equality holds if I = ∅.]
17.3. Descent direction for the exact penalization of the Lagrangian. Consider the

exact penalty function Θµ,σ : R
n → R defined for µ ∈ R

m and σ > 0 by
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Θµ,σ(x) := f(x) + µ
>
c(x)# + σ‖c(x)#‖P ,

where the norm ‖ · ‖P satisfies (17.5) (see also exercise 16.9). Let (dk, λQP

k )
satisfy the optimality conditions (17.3). Show that dk is a descent direction
of Θµ,σ at xk, provided xk is not a stationary point of (PEI), Mk is positive
definite, σ ≥ ‖λQP

k − µ‖D , and µI ≥ 0.

17.4. Admissibility of the unit stepsize for Newton’s method. Consider the problem
of finding a root x∗ of the equation F (x) = 0, where F : R

n → R
n is a

smooth function. Newton’s method consists in updating x by x+ = x + d,
where d solves F ′(x)d = −F (x) (see § 13.7). Let ‖ · ‖ be an arbitrary norm
and consider ϕ(x) = ‖F (x)‖ as a merit function for this problem. Suppose
that F ′(x∗) is nonsingular. Show that, for any constant ω ∈ ]0, 1[, there is
a neighborhood V of x∗, such that if x ∈ V , ϕ(x + d) ≤ ϕ(x) + ωϕ′(x; d).
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142. J. Gauvin. Lecons de Programmation Mathématique. Éditions de l’École
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233. C. Lemaréchal and C. Sagastizábal. An approach to variable metric bundle
methods. In J. Henry and J-P. Yvon, editors, Systems Modelling and Opti-
mization, number 197 in Lecture Notes in Control and Information Sciences,
pages 144–162. Springer Verlag, 1994.
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235. C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau-Yosida
regularization: theoretical preliminaries. SIAM Journal on Optimization,
7(2):367–385, 1997.
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256. R. Mifflin and C. Sagastizábal. Primal-Dual Gradient Structured Functions:
second-order results; links to epi-derivatives and partly smooth functions.
SIAM Journal on Optimization, 13(4):1174–1194, 2003.
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