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QPAL – Un solveur de problèmes d’optimisation
quadratique convexe, fondé sur une approche par lagrangien

augmenté

Version 0.6.1 (Mai, 2009)

Résumé : QPAL est un code destiné à minimiser une fonction quadratique convexe sous des
contraintes linéaires d’égalité et d’inégalité. L’algorithme implémenté utilise une technique de
lagrangien augmenté, qui relaxe les contraintes d’égalité et traite explicitement les bornes sur les
variables originales et d’écart. Les fonctions quadratiques générées sont minimisées sur les faces
activées par un algorithme de gradient conjugué tronqué, intrecoupé de phases de gradient projeté.
Lorsque la valeur optimale est finie, la convergence est linéaire à une vitesse qui peut être prescrite
par l’utilisateur. Les matrices peuvent être stockées dans des tructures denses ou creuses ; de plus le
hessien de la fonction à minimiser peut prendre la forme d’une matrice ℓ-BFGS directe ou inverse.
QPAL est écrit en Fortran-2003.

Mots-clés : convergence linéaire, gradient projeté, lagrangien augmenté, matrice ℓ-BFGS, ma-
trices dense et creuse, optimisation quadratique convexe.
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1 Presentation

1.1 Scope of the program

The semi-acronym Qpal (pronounce Q-pal) stands for Quadratic Programming with an Aug-
mented Lagrangian. Qpal can indeed solve a convex quadratic optimization problem with linear
constraints. The form of the problem considered by Qpal is the following

(QP)











min
(

f(x) := g⊤x + 1
2 x⊤Hx

)

l 6 (x, AIx) 6 u
AEx = e.

(1.1)

The function f in (1.1) is called the objective of the problem. Its Hessian H must be an n × n
positive semidefinite symmetric matrix (hence f is a convex function) and its gradient at the origin
is the vector g ∈ R

n. The notation l 6 (x, AIx) 6 u expresses in compact form bound constraints
on x and on AIx: AI is mI × n and the (n+mI)-dimensional vectors l and u satisfy l < u (i.e.,
li < ui for all indices i) and may have infinite components. Hence the inequality constraints read

li 6 xi 6 ui, for i = 1, . . . , n,

ln+i 6 (AIx)i 6 un+i, for i = 1, . . . , mI .

RT n° 0377



4 J. Ch. Gilbert

Finally, the equality constraints are expressed with an mE × n matrix AE and a vector e ∈ R
mE .

The matrix AE need not be surjective.
Since H can vanish, (1.1) can also model a linear optimization problem.
Qpal is flexible with respect to the memory representation of the matrices defining the problem.

Indeed the Hessian matrix H may be dense, or sparse, or may have a direct or inverse ℓ-BFGS
structure. The constraint Jacobians AI and AE may be dense or sparse. Sparse matrices are
represented by the row-column indices of the nonzero elements, as well as the values of these
elements.

It is convenient to denote by B := {1, . . . , n} the index set of the variables x and by AB = In

the identity matrix of order n. Then the inequality l 6 (x, AIx) 6 u reads in a similar manner
l 6 AB∪Ix 6 u. We also adopt the notation

m = n + mI + mE and A =





AB

AI

AE



 .

An inequality constraint with the index i ∈ B ∪ I is said to be active at x ∈ X if Aix = li or ui.
It is said to be inactive otherwise. The active set at x ∈ X is defined by

A(x) = {i ∈ B ∪ I : Aix = li or ui}.

The feasible set of (1.1) is denoted by

X = {x ∈ R
n : l 6 AB∪Ix 6 u, AEx = e}.

Qpal is written in ANSI Fortran 2003 (F03 for short), using double precision. The code uses
this feature of F03 that makes possible calling a subroutine with a structure argument having com-
ponents that are not yet allocated when the subroutine is called. Qpal compiles with gfortran [5],
version “4.4.0 20090321 (experimental)” or higher.

1.2 Detecting optimality

The Lagrangian of problem (1.1) is the function ℓ : R
n × R

n+2mI+mE → R defined at (x, λ) by

ℓ(x, λ) = g⊤x +
1

2
x⊤Hx

+ (λl
B∪I)

⊤(l − AB∪Ix) + (λu
B∪I)

⊤(AB∪Ix − u) + λ⊤

E(AEx − e),
(1.2)

in which λ = (λu
B∪I , λ

l
B∪I , λE).

Since problem (1.1) is convex, its optimality conditions read: x is a solution to (1.1) if and only
if there is a λ ∈ R

n+mI+mE such that


























g + Hx + A⊤λ = 0

l 6 AB∪Ix 6 u

(λ+
B∪I)

⊤(AB∪Ix − u) = 0

(λ−

B∪I)
⊤(AB∪Ix − l) = 0

AEx = e,

(1.3)

where λ+ := max(0, λ) and λ− := max(0,−λ), componentwise. In the table below, we have shown
the correspondence existing between the multipliers used in (1.2) and in (1.3):

multipliers in (1.2) multipliers in (1.3)

λu
B∪I λ+

B∪I

λl
B∪I λ−

B∪I

λu
B∪I − λl

B∪I λB∪I

λE λE

INRIA



QPAL – a convex quadratic optimization solver 5

1.3 Brief description of the method

In Qpal, problem (1.1) is transformed, using an auxiliary variable y ∈ R
mI , into

(QP’)















min g⊤x + 1
2 x⊤Hx

l 6 (x, y) 6 u
AIx = y
AEx = e.

(1.4)

Note that an auxiliary variable is only associated with the complex inequalities lI 6 AIx 6 uI ,
not with the bound constraints lB 6 x 6 uB. As we will now see, this choice has for consequence
that the two sets of inequalities are not treated in the same manner. The user of Qpal can
always declare the bound constraint lB 6 x 6 uB as being part of the complex inequalities by
enlarging the matrix AI with an identity matrix (the converse is not possible though), but this
is not recommended since the solver is more efficient on bound constraints than on general linear
inequality constraints.

The algorithm used by Qpal generates a sequence {λk}k>1 of multipliers associated with the
equality constraints of (QP’) in the following manner [3, 4] (we describe a typical iteration).

• At iteration k, the algorithm solves

min
l6(x,y)6u

ℓrk
(x, y, λk), (1.5)

where ℓr is the augmented Lagrangian (AL) defined for x ∈ R
n, y ∈ R

mI , and λ = (λI , λE) ∈
R

mE × R
mI by

ℓr(x, y, λI∪E) = g⊤x +
1

2
x⊤Hx + λ⊤

I (AIx − y) +
r

2
‖AIx − y‖2

2

+ λ⊤

E(AEx − e) +
r

2
‖AEx − e‖2

2.
(1.6)

The scalar r > 0 is called the augmentation parameter. The convex quadratic problem (1.5)
is a priori easier to solve than (QP) since it has only bound constraints. Note that the bound
constraints on x are treated explicitly in (1.5), while the complex inequalities lI 6 AIx 6

uI are relaxed into the AL. The minimization in (1.5) is done by a combination of various
algorithms: gradient projection, active set, and conjugate gradient. Under the sole assumption
that problem (1.1) has a solution, problem (1.5) has also a solution, say (xk+1, yk+1). This
solution is not necessary unique however.

• Then the multiplier λk is updated by the formula

λk+1 = λk + rk

(

AIxk+1 − yk+1

AExk+1 − e

)

. (1.7)

Even though (xk+1, yk+1) is not uniquely determined as a solution to (1.5), the constraint
value (factor of rk above) is independent of that solution, so that the multipliers λk are
unambiguously generated.

On entry in qpal solve, x and λ are supposed given: x is a primal variable that can be
reasonably initialized by the user and λ is a multiplier that can be adequately initialized in a
context like SQP. If one has no idea of the correct x and/or λ, one can just set x = P[l,u]0 (the
projection of 0 on the interval [l, u]) and/or λ = 0. The augmentation parameter r is set to some
positive value (actually 1), unless a positive value has been given on entry in qpal solve through
the argument options%r. When solving a sequence of similar QP’s, like in the SQP algorithm, the
value of r can be set to the one determined by qpal solve at the end of the previous run, which
is available in the output variable info%r.

RT n° 0377



6 J. Ch. Gilbert

1.4 The package

1.4.1 Description

The Qpal package is formed of the files and directories described below. In this description, PLAT
is the name of an environment variable that designates the platform for which Qpal has to be
compiled (see the description of the file make.a platform below and stage 2 of the installation
procedure in section 1.4.2 for the details).

• The files COPYRIGHT.* give the conditions of use of Qpal. You are supposed to agree with
these conditions to be authorized to use it. If this has not been done yet, send a filled in and
signed copy of the commitment letter COPYRIGHT.pdf to the author of the solver.

• The file README gives a short description of the package and tells how to use it.

• The directory bin is originally empty and will contain the binaries gathered in libraries, named
lib*.a, after compilation of Qpal:

– libblas.$PLAT.a contains the blas routines used in Qpal, those in the directory blas

(see below); this archive can be used if the compiler does not provide a blas library;
– liblapack.$PLAT.a contains the lapack routines used in Qpal, those in the directory
lapack (see below); this archive can be used if the compiler does not provide a lapack

library;
– libqpal.$PLAT.a contains the routines peculiar to Qpal, those in the directory src (see

below).

• The directory blas contains the blas [1] routines used in Qpal and a Makefile to com-
pile them. These compiled routines may be replaced by versions that have been tuned to a
particular platform, for example by using the option -lblas of the compiler, if any.

• The directory cuter contains all the files that are useful to install Qpal in CUTEr [2, 7]; see
how to proceed in the README file of the cuter directory.

• The directory doc contains this documentation in PDF (doc.pdf). It also contains the file
VERSIONS.txt that briefly describes the successive versions of the solver.

• The directory example gives an elementary example of convex quadratic optimization problem,
that is solved by Qpal. The goal of this example is to make concrete the way of encoding the
problem and to call the QP solver. The example is implemented using both dense and sparse
storage.

• The directory lapack contains the lapack routines used in Qpal and a Makefile to com-
pile them. These compiled routines may be replaced by versions that have been tuned to a
particular platform, for example by using the option -llapack of the compiler, if any.

• The directory libopt contains all the files that are useful to install Qpal in the Libopt

environment [6]; see how to proceed in the README file of the libopt directory.

• The file make.a platform is used by the Makefile’s of the package to compile various pro-
grams. You will probably need to adapt this file to your own platform, by redefining some of
its variables; more is said on this subject in stage 2 of section 1.4.2.

• The directory mod is originally empty and will contain, after compilation of Qpal, the mod-
ule descriptor qpal mod.$PLAT.mod of the qpal mod module. It provides, in particular, the
description of the public derived types discussed in section 2.1.

• The directory src contains the peculiar routines of the Qpal solver and a Makefile to compile
them.

INRIA



QPAL – a convex quadratic optimization solver 7

1.4.2 Installation

The installation of Qpal can be made by following the stages below.

1. Normally, the Qpal package is distributed as a tarball named

QPAL-xxx-distrib.tgz

where xxx stands for a version number. Place this tarball in a directory where you want to
keep Qpal. Decompress and untar it using

tar -zxvf QPAL-xxx-distrib.tgz

This creates the directory QPAL-xxx-distrib, which can be renamed. Let us call it the qpal

directory.

2. The second stage deals with platform matters. To know the chosen compiler, linker and their
options, the Makefile’s of the Qpal package include a file named make.$PLAT, located in the
qpal directory. Here, PLAT is the name of an environment variable defined by a Unix/Linux
command similar to

setenv PLAT mach.os.comp

The string “mach.os.comp” above is arbitrary; the proposed form allows you to identify
the machine type “mach”, its operating system “os”, and the chosen compiler suite “comp”;
examples might be

setenv PLAT pc.linux.pgf90

setenv PLAT mac.osx.gcc

The file “make.a platform” in the qpal directory is an example of such a make.$PLAT file
and, now that the environment variable PLAT has been defined, you may want to adapt it to
your platform by first copying it

cp make.a platform make.$PLAT

and next adapting the following variables, which are the only ones used in the Qpal Makefile’s:

F03 = # name of the Fortran 2003 compiler

F03DBGFLAG = # option requiring generating code for debugging

F03FLAGS = # usual options to use with $(F03)

F03NOLD = # option preventing from making a load object

3. You are now ready to compile Qpal. Go into the directory src and type

make

As said above, this command places the Qpal libraries in the directory bin and module
descriptors in the directory mod. These can now be linked to a program that uses Qpal as a
convex quadratic solver.

2 Usage

We start in section 2.1 by specifying the data structures used by the Qpal solver, which is revealed
by its various Fortran types. In section 2.2, we describe the arguments of the subroutines or function
qpal allocate, qpal solve, qpal conv, and qpal deallocate, which are various tools making
possible to run and control of the solver. In section 2.2.6, we give the typical sequence of statements
that must precede a call to the solver.

RT n° 0377



8 J. Ch. Gilbert

2.1 Data structure

The Qpal solver is structured as a Fortran module, named qpal mod, with its private/public
derived type definitions, data, functions, and subroutines. The entry point to the solver is
qpal solve. The associated subroutine qpal solve gathers its arguments in structures (hav-
ing a given Fortran derived type), in order to make clearer the links between them and to make
easier passing them from one procedure to the other. The Qpal public derived types are described
below.

A structure with the qpal data type public derived type has allocatable components that are
allocated by the subroutine qpal allocate (section 2.2.1). This feature is a little peculiar since
the structure must be declared in the user space, while it is allocated by the solver subroutine
qpal allocate. The use of this F03 feature is motivated by the desire to discharge the user from
taking care of the boring, humdrum, and error-prone allocation instructions. You will be able to
use a qpal data type structure only after having called qpal allocate. Useless components are
not allocated by qpal allocate. Deallocation is realized by qpal deallocate (section 2.2.5).

We remind the reader that the value of the component c of a variable v of a given derived type
is specified by v%c.

2.1.1 Data types

Qpal can solve convex quadratic optimization problems having various data structures. The
matrices AI and AE defining the constraints can indeed be dense or sparse, while the Hessian H
of the objective can be dense, sparse, or can have an ℓ-BFGS structure. This section describes the
Fortran public derived types that have been defined to store these various data structures.

We start with the public derived type for storing sparse matrices.

type, public :: qpal_sparse_type

sequence

integer :: nnz

integer, allocatable :: i(:), j(:)

double precision, allocatable :: v(:)

end type qpal_sparse_type

With the keyword sequence, the components are stored in the specified order (otherwise, no
storage sequence is implied by the order of the component definitions). As a result, a structure
with a type identical to qpal sparse type (also with the keyword sequence) but with a different
type name will be correctly identified with a structure of type qpal sparse type.

Here is a description of the components.

• nnz: this integer specifies the number of nonzero elements of the matrix.
• i(:) and j(:): the integers i(k) and j(k), for k = 1, . . . , nnz, are the row and column indices

of the kth nonzero element of the matrix.
• v(:): the double precision value v(k), for k = 1, . . . , nnz, gives the value of the kth nonzero

element of the matrix.

We now introduce the public derived type named qpal hessian type, which describes the
memory representation of the Hessian H of the objective of problem (1.1). The Hessian can be
dense, sparse, or have a direct or inverse ℓ-BFGS representation.

INRIA



QPAL – a convex quadratic optimization solver 9

type, public :: qpal_hessian_type

integer :: id

double precision, allocatable :: dense(:,:)

type(qpal_sparse_type) :: sparse

type(lbfgs_dir_hessian_type) :: lbfgs_dir

type(lbfgs_inv_hessian_type) :: lbfgs_inv

end type qpal_hessian_type

Description of the components.

• id: this integer component specifies the Hessian identificator. The following 5 values can be
used, named by public parameters:

– missing informs Qpal that H = 0, so that the quadratic problem (1.1) is actually a linear
optimization problem;

– dense informs Qpal that H is a dense matrix that must be stored in the component dense,
which is a double precision array of dimension (n,n);

– sparse informs Qpal that H is a sparse matrix that must be stored in the component sparse,
which is a structure of type qpal sparse type;

– lbfgs dir informs Qpal that H is a direct ℓ-BFGS matrix that is stored in the data structure
lbfgs dir, as explained in the module modulopt lbfgs mod (the features of this module need
not be known by the user of Qpal);

– lbfgs inv informs Qpal that H is an inverse ℓ-BFGS matrix; this data structure is essen-
tially used for unconstrained problem, so that Qpal does not provide any code for dealing
with that case, in particular no data structure.

• dense: this allocatable double precision array is used to store the Hessian when id =
dense.

• sparse: this memory structure of type qpal sparse type is used to store a sparse Hessian when
id = sparse. Since a Hessian is a symmetric matrix, only the lower triangular part (with row
index i(k) 6 the column index j(k)) must be filled in and will be used (values v(k) with
i(k) > j(k) are ignored).

• lbfgs dir: this memory structure of type lbfgs dir hessian type is used to store a direct
ℓ-BFGS matrix, when id = lbfgs dir. The memory structure is defined in the module
modulopt lbfgs mod.

• lbfgs inv: this memory structure of type lbfgs inv hessian type is used to store an in-
verse ℓ-BFGS matrix, when id = lbfgs inv. The memory structure is defined in the module
modulopt lbfgs mod.

The next derived type is used to describe the memory representation of the inequality and
equality constraint Jacobians, AI and AE respectively. These Jacobians can be dense or sparse.

type, public :: qpal_constraint_type

integer :: id

double precision, allocatable :: dense(:,:)

type(qpal_sparse_type) :: sparse

end type qpal_constraint_type

RT n° 0377



10 J. Ch. Gilbert

Description of the components.

• id: this integer component specifies the constraint Jacobian identificator. The following 2
values can be used, named by public parameters:

– dense informs Qpal that the Jacobian is a dense matrix that must be stored in the component
dense;

– sparse informs Qpal that the jacobian is a sparse matrix that must be stored in the com-
ponent sparse.

• dense: this allocatable double precision array of appropriate dimension is used to store
the constraint Jacobian when id = dense.

• sparse: this memory structure of type qpal sparse type is used to store a sparse constraint
Jacobian when id = sparse.

2.1.2 Problem data

The public derived type qpal data type must be used to declare and store the data of prob-
lem (1.1). Its allocatable components are allocated by qpal allocate (section 2.2.1); only the
useful variables for the considered problem are allocated.

type, public :: qpal_data_type

integer :: n, nb, mi, me

double precision, allocatable :: g(:)

type(qpal_hessian_type) :: h

double precision, allocatable :: lb(:), ub(:)

type(qpal_constraint_type) :: ai

double precision, allocatable :: li(:), ui(:)

type(qpal_constraint_type) :: ae

double precision, allocatable :: e(:)

end type qpal_data_type

Here are the components of this type.

• n, nb, mi, me: these integers give respectively the number n of variables, the number of variables
with a finite lower or upper bound, the number mI of inequality constraints, and the number mE

of equality constraints.

• g(:): this allocatable double precision array of dimension n is used to store the vector g ∈ R
n

giving the linear part of the objective of problem (1.1).

• h: this data structure is used to store the Hessian H of the objective of problem (1.1), using the
type qpal hessian type previously defined.

• lb(:), ub(:): these allocatable double precision arrays of dimension n are used to store the
vectors lB and uB ∈ R

n giving respectively the lower and upper bounds on the variables x.

• ai: this data structure is used to store the Jacobian AI of the inequality constraints of prob-
lem (1.1), using the type qpal constraint type previously defined.

• li(:), ui(:): these allocatable double precision arrays of dimension mi are used to store the
vectors lI and uI ∈ R

mI , giving respectively the lower and upper bounds on AIx.

• ae: this data structure is used to store the Jacobian AE of the equality constraints of prob-
lem (1.1), using the type qpal constraint type previously defined.

INRIA



QPAL – a convex quadratic optimization solver 11

• e(:): this allocatable double precision array of dimension me is used to store the vector e ∈
R

mE , giving the RHS of the equality constraints.

2.1.3 Solver options

The public derived type qpal options type is used to describe the options of the Qpal solver,
i.e., those parameters that can be used to tune the behavior of the solver.

type, public :: qpal_options_type

integer :: iout, verb, iter, cgit, hvpd, avpd

character(len=3) :: optimality_norm

double precision :: glan_abs, feas_abs, mpos_abs

double precision :: inf, dxmin, dcmin

double precision :: r, dcrt, infs

end type qpal_options_type

The components of this type are gathered above by Fortran type and nature. For making their
localization faster, they are presented below in alphabetic order. Valid and default values are
indicated.

• avpd: integer variable specifying the maximal number of constraint-vector products (AIv and
AEv) allowed.

Valid value: > 0. Default value: 1000.

• cgit: integer variable specifying the maximal number of conjugate gradient (CG) iterations
allowed.

Valid value: > 0. Default value: 1000.

• dcmin: positive double precision variable that is used to detect active bounds with index i ∈ I.
To this respect, there must also hold

∀i ∈ I : ui − li > 2 (dcmin).

Valid values: > 0. Default value: 10−10.

• dcrt: double precision variable giving the desired decrease factor for the constraint norm.
A small value looks better but it forces Qpal to take a large AL parameter r, inducing ill-
conditioning. Qpal will not try to decrease the constraint norm by a factor smaller than dcrt.
For a small easy problem, dcrt can be chosen rather small. For a large scale ill-conditioned
problem, choose dcrt close to 1.

Valid values: ]0, 1[. Default value: 10−1.

• dxmin: positive double precision variable that is used to detect active bounds with index i ∈ B.
To this respect, there must also hold

∀i ∈ B : ui − li > 2 (dxmin).

Valid values: > 0. Default value: 10−10.

• feas abs: double precision variable specifying the required accuracy on the constraint norm
(see the component optimality norm for the definition of the norm ‖ · ‖). Knowing that the
bound constraints on x are satisfied along the iterations, hence at the final point, only the
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feasibility with respect to the constraints B ∪ I are considered. If the solver stops at x with
info%flag = 0, there hold

max
(

‖[lI − AIx]+ + [AIx − uI ]
+‖, ‖AEx − e)‖

)

6 feas abs. (2.1)

Valid value: > 0. Default value: 10−8.

• glan abs: double precision variable specifying the required absolute accuracy on the gradient
of the Lagrangian norm (see the component optimality norm for the definition of the norm ‖·‖).
If the solver stops at (x, λ) with info%flag = 0, there holds

‖∇xℓ(x, λ)‖ 6 glan abs. (2.2)

Valid value: > 0. Default value: 10−8.

• hvpd: integer variable specifying the maximal number of Hessian-vector products (Hv) allowed.

Valid value: > 0. Default value: 1000.

• inf: double precision variable. This is the value used by Qpal to detect inexistent bounds
on the variables or in the inequality constraints. In other words, if after having defined inf,
you set ub(i) [resp. lb(i)] (these are components of a variable of type qpal data type) to a
value > inf [resp. 6 -inf], Qpal will consider that the ith variable is not subject to an upper
bound [resp. to a lower bound]. The same value and rule are used to locate bounds on AIx. As
a result, it is recommended to use a large value.

Valid value: > 0. Default value: huge(1.d0).

• infs: double precision variable specifying what is an infinite stepsize. If such a stepsize
along the current search direction leads to a decrease in the objective f without encountering a
bound, the direction is considered to be a direction of unboundedness and the solver stops with
info%flag = 2.

Valid value: > 0. Default value: 1020.

• iout: integer variable that is taken as the channel number for the written outputs. These are
indeed written by

write (iout,...) ...

Valid value: > 0. Default value: 6.

• iter: integer variable specifying the maximal number of AL iterations allowed.

Valid value: > 0. Default value: 100.

• mpos abs: double precision variable giving the required accuracy on the multiplier positivity.
If the solver stops with info%flag = 0, there holds

λl
> −mpos abs and λu

> −mpos abs.

Valid value: > 0. Default value: 10−8.

• optimality norm: this string, made of at most 3 characters, specifies the type of vector norm
‖ · ‖ that must be used to check optimality:

– ’2’ or ’euc’ for the ℓ2 or Euclidean norm ‖v‖2 := (
∑

i v2
i )1/2,

– ’inf’ for the infinity or sup norm ‖v‖∞ := maxi |vi|.
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Of course, for any vector v, ‖v‖∞ 6 ‖v‖2, so that for identical tolerances, the solver stops more
rapidly with the sup norm than with the Euclidean norm.

Valid values: ’2’, ’euc’, ’inf’. Default value: ’inf’.

• r: double precision variable giving the initial value of the AL parameter r. This value is
increased by Qpal if the decrease in the constraint norm is not fast enough (compared to dcrt).

Valid value: > 0. Default value: 1.

• verb: integer variable that specifies the verbosity level of the solver, i.e., the amount of infor-
mation that is written on channel iout. The following values are meaningful:

= 0: nothing is written;
= 1: in addition to the initial and final outputs, the solver writes one line at each AL iteration;
= 2: one more line for each gradient projection (GP), descent projection (DP), and conjugate

gradient (CG) phase;
= 3: more details are given, including those from the GP-AS-CG inner algorithm;
> 4: additional possibly long lists of numbers are written.

Valid value: > 0. Default value: 0.

2.1.4 Solver diagnostics

The public derived type qpal info type must be used to define the variable getting information
on the problem and its possible solution, on return from the solver. Its allocatable components
are allocated by qpal allocate (section 2.2.1) and qpal solve; only the useful variables for the
considered problem are allocated.

type, public :: qpal_info_type

integer :: flag, iter, hvpd, avpd

double precision :: f, glan, feas, r, estl

double precision, allocatable :: glag(:), aix(:), aex(:)

double precision, allocatable :: dx(:), dy(:), res_bie(:)

end type qpal_info_type

The components of this type are gathered above by Fortran type and nature. For making their
localization faster, they are presented below in alphabetic order. A variable that is said non
available below has no memory allocated for it; hence do not use it if you want to avoid a bus
error.

• aex: double precision array of dimension mE . It gives AExf , the equality constraint value at
the final point xf .

Not available if mE = 0.

• aix: double precision array of dimension mI . It gives AIxf , the inequality constraint value
at the final point xf .

Not available if mI = 0.

• avpd: integer variable. It gives the number of matrix-vector products, with the constraint
matrices AE and AI , realized during the run.

• dx: double precision array of dimension n. In case info%flag = 2 (unbounded problem), it
gives a direction in x along which problem (1.1) is unbounded, when it is feasible.
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Not available if info%flag 6= 2.

• dy: double precision array of dimension mI . In case info%flag = 2 (unbounded problem), it
gives AIdx, where dx is given by info%dx.

Not available if info%flag 6= 2.

• est: double precision variable. It is known from [3] that there is a positive constant L such
that the ℓ2 norm of the constraints decreases at least by the factor min(L/r, 1) at each iteration.
The value of estl provides a lower estimate of L.

• f: double precision variable. It gives the value f(xf ) of the quadratic objective at the final
point xf .

• feas: double precision variable. It gives the value of the left hand side of (2.1) at the final
point xf found by the solver, measuring the realized accuracy on the constraints. The norm ‖ · ‖
is the one specified by the option optimality norm on entry in Qpal.

• flag: integer variable that specifies the return status of Qpal. The following values are pos-
sible:

= 0: a solution is found up to the required accuracy;
= 1: erroneous argument (possibly unallocated variables or trivially inconsistent constraints);
= 2: the QP is likely to be either unbounded or infeasible; in the latter case, a shift of the

constraint bounds to make it feasible would also make it unbounded;
= 3: maximum iterations reached (iter or cgit counters);
= 4: maximum matrix-vector products reached (hvpd or avpd counters);
= 5: H is not positive semidefinite;
= 6: failure in linesearch;
= 7: diagonal preconditioning is required but the Hessian of the AL is not positive definite;
= 8: impossible to minimize the AL function on the current active face and the AL parameter

r cannot be decreased;
= 9: something wrong in the linear algebra subroutines;

= 99: something wrong, contact your guru.

• glag: double precision array of dimension n. It gives ∇xℓ(xf , λf ), the gradient with respect
to x of the Lagrangian ℓ at the final primal-dual pair (xf , λf ).

• glan: double precision variable. It gives the norm of the gradient of the Lagrangian, ‖∇xℓ(xf , λf )‖,
at the final primal-dual pair (xf , λf ). The norm ‖ · ‖ is the one specified by the option
optimality norm on entry in Qpal.

• hvpd: integer variable. It gives the number of Hessian-vector products realized during the run.

• iter: integer variable. It gives the number of AL iterations realized during the run.

• r: double precision variable. It is the final value of the AL parameter r.

• res bie: double precision vector of dimension n + mI + mE . It provides the final constraint
residual :

res bie(1:n) = max(0, lB − x, x − uB)

res bie(n+1:n+mi) = max(0, lI − AIx, AIx − uI)

res bie(n+mi+1:n+mi+me) = AEx − e.

2.2 Running the solver

The Qpal solver makes available four subroutines (qpal allocate, qpal default options, qpal
solve, qpal deallocate) and a function (qpal conv). The subroutine qpal allocate can be used
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to allocate variables of a data and an information structure (section 2.2.1). The subroutine qpal

default options can be used to get the default options of the solver, before tuning these to a
particular run (section 2.2.2). The subroutine qpal solve is used to solve a particular instance
of problem (1.1) (section 2.2.3). The function qpal conv is provided to adapt the inside stopping
criterion of the solver (section 2.2.4). Finally, the subroutine qpal deallocate can be used to free
the memory allocated by qpal allocate and qpal solve (section 2.2.5).

In the description of the subroutines/functions, an argument flagged with (I) means that it is an
input or intent(in) variable, which has to be initialized before calling the subroutine/function;
an argument flagged with (O) means that it is an output or intent(out) variable, which has
only a meaning on return from the subroutine/function; and an argument flagged with (IO) is an
input-output or intent(inout) argument, which has to be initialized and has a meaning on return
from the subroutine/function.

2.2.1 Data allocation with qpal allocate

It is recommended to call the subroutine qpal allocate before calling qpal solve. Its role is to
allocate the allocatable components of the following two arguments: data, which is a structure
containing the data of the quadratic problem to solve (see section 2.1.2), and info, which is a
structure that will contain information on the run after having called the solver (see section 2.1.4).
This allocation can be done without calling qpal allocate, but it is probably better to let a
procedure do the job. After having called qpal allocate, you will be able to fill in the data

structure with the problem data; note that the scalar quantities of this structure (dimensions,
matrix type identificators, and numbers of nonzero elements if this is relevant) are set by qpal

allocate, so that you only have to take care of the array components. On the other hand, the
info structure will be fill in by the QP solver qpal solve, so that there is no reason to modify
that structure.

subroutine qpal allocate (n, nb, mi, me, &

h id, h nnz, h mys, h scale, h cold, &

ai id, ai nnz, ae id, ae nnz, &

fout, plevel, prest, flag, data, info)

n, nb, mi, me (I): positive integer variables. They define the dimensions n = n, mi = mI , and
me = mE of problem (1.1), as well as the number nb of bounds on the primal variables x. The
latter must only be vaguely defined: if there is no bound on x, set nb = 0, otherwise give nb

an arbitrary positive (> 0) value. Indeed, qpal allocate only trusts the sign of nb to decide
whether memory must be allocated for the bounds on x, i.e., for the variables data%lb(1:n)
and data%ub(1:n). The other dimensions must be set with care, since they directly intervene
in the allocation of variables in the structure data and are used as the dimensions of the
problem in the solver qpal solve (section 2.2.3).

h id (I): integer variable. It identifies the type of memory space used to store the Hessian
H of the objective of problem (1.1). See the description of the id component of the type
qpal hessian type in section 2.1.1 for the possible values of this variable, which can be
missing, dense, sparse, lbfgs dir, or lbfgs inv.

h nnz (I): integer variable. It gives the number of nonzero elements in the lower triangular part
of the Hessian H in case this one is stored in a sparse structure (h id has been set to sparse);
it is meaningless otherwise.

h mys (I): positive integer variable. It is used, in case an ℓ-BFGS Hessian is declared with h id,
to specify the number of pairs (yk, sk) that are used to form the Hessian approximation; it is
meaningless otherwise.
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h scale (I): integer variable that determines the type of scaling that will be used in the ℓ-BFGS
Hessian matrix (if h id has been set to lbfgs dir or lbfgs inv). This one can be set to the
public values lbfgs scal scaling (matrix scaled by a scalar) or lbfgs diag scaling (matrix
scaled by a diagonal matrix).

h cold (I): logical variable that tells the ℓ-BFGS initialization procedure whether the ℓ-BFGS
Hessian matrix will be used from scratch (set cold to .true.) or a warm restart will be done
(set cold to .false.). This is only useful when h id has been set to lbfgs dir or lbfgs

inv.
ai id (I): integer variable. It identifies the type of memory space used to store the Jacobian AI

of the inequality constraint of problem (1.1). See the description of the id component of the
type qpal constraint type in section 2.1.1 for the possible values of this variable, which can
be dense or sparse.

ai nnz (I): integer variable. It gives the number of nonzero elements in the matrix AI in case this
one is stored in a sparse structure (ai id has been set to sparse); it is meaningless otherwise.

ae id (I): integer variable. It identifies the type of memory space used to store the Jacobian AE

of the equality constraint of problem (1.1). See the description of the id component of the
type qpal constraint type in section 2.1.1 for the possible values of this variable, which can
be dense or sparse.

ae nnz (I): integer variable. It gives the number of nonzero elements in the matrix AE in case
this one is stored in a sparse structure (ae id has been set to sparse); it is meaningless
otherwise.

fout (I): integer variable. This is the channel number for the written outputs in qpal allocate.
plevel (I): integer variable. It specifies the verbosity level of qpal allocate. The following

values are meaningful:
6 0: silent mode;
> 0: error and warning messages are printed on channel fout.

prestr (I): character string of arbitrary length that will precede the lines printed by Qpal (if
any).

flag (O): integer variable. It provides information on the success of the allocations. Possible
values are:
= 0: allocations done;
= 1: some allocation failed.

data (O): variable of type qpal data type (see section 2.1.2). The usefull allocatable components
of the variable are allocated by qpal allocate.

info (O): variable of type qpal info type (see section 2.1.4). The usefull allocatable components
of the variable are allocated by qpal allocate.

2.2.2 Setting default options with qpal default options

The subroutine qpal default options can be called to set the default options in a structure of
qpal options type type. This call is normally made before setting the various component of the
structure to values that are appropriate to the quadratic problem to solve. It allows the user not
to have to set all the options, when the default ones are appropriate.

subroutine qpal default options (options)

options (O): variable of type qpal options type (see section 2.1.3).
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2.2.3 Solving the problem with qpal solve

The solver of the Qpal package is qpal solve. Here is the subroutine definition statement.

subroutine qpal solve (x, lm, data, info, options)

x (IO): double precision array of dimension n. It is the vector of variables x to optimize.

• On entry, it is an initial guess of the solution to (QP). It is taken as starting point by Qpal.
This point need not be feasible.

• On return, when info%flag = 0, it is the optimal solution xf found by Qpal.

lm (IO): double precision array of dimension n + mI + mE . It is the dual variable or KKT
multiplier associated with the constraints of (QP). The first n components are associated
with the bounds on x. The next mI components are associated with the inequality constraints
lI 6 AIx 6 uI . The last mE components are associated with the equality constraints AEx = e.
The multiplier λB∪I associated with the bound constraints is actually the difference

λB∪I := λu
B∪I − λl

B∪I

between the multiplier λu
B∪I associated with the upper bound and the multiplier λl

B∪I asso-
ciated with the lower bound. Since li < ui, either λu

i or λl
i vanishes, or both. Therefore, one

can recover λu
B∪I and λl

B∪I by

λu
B∪I = λ+

B∪I and λl
B∪I = λ−

B∪I ,

where t+ := max(t, 0) and t− := max(−t, 0) for t ∈ R and ()+ and ()− act componentwise for
vectors.

• On entry, it is an initial guess of the dual solution to (QP). Qpal uses this vector to initialize
the AL iterations (1.7).

• On return, when info%flag = 0, it is the vector of optimal dual variables λf found by the
optimizer.

data (I): variable of type qpal data type (see section 2.1.2) that contains the data of prob-
lem (1.1).

info (O): this is a variable of type qpal info type, whose components are described in sec-
tion 2.1.4. It is used to get information on the problem and its possible solution, on return
from the solver.

options (I): this is a variable of type qpal options type, whose components are described in
section 2.1.3. It is used to tune the behavior of the solver.

2.2.4 Convergence control with qpal conv

Qpal has its own convergence test, which uses the tolerances glan abs, feas abs, and mpos abs

described in section 2.1.3. One may not be satisfied with this way of verifying convergence or one
may want to add conditions. Qpal has anticipated this possible opinion by providing a mechanism
that allows the user to modify the convergence criterion, which we now discuss.

Each time Qpal observes that its convergence tests are satisfied, it calls the logical function
qpal conv described below. If this one returns .true. (this is the case for the function in
the standard distribution), the solver interrupts its iterative process and declares convergence;
otherwise the iterations are pursued until another convergence test occurs. As a result, the user
can modify the stopping criterion by writing a new function qpal conv (not the one in the standard
distribution) as follows.
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• If a more stringent criterion is desired, the additional conditions can simply be implemented
in the new function qpal conv.

• If a completely different stopping criterion is desired, it suffices to implement this criterion in
the new function qpal conv and to set the tolerances glan abs, feas abs, and mpos abs to
a large number on entry into qpal solve. Then the internal stopping criterion will always be
satisfied and the one in qpal conv will decide when to stop the iterations.

The compiled version of the function qpal conv in the standard distribution is in the archive
bin/libqpal.$PLAT.a. There is no reason to recompile this archive with the new function qpal

conv but to introduce its compiled version qpal conv.o in the link command, as in

$(F03) -o main ... main.o qpal conv.o .../bin/libqpal.$PLAT.a ...

Since the new version of qpal conv.o is in the command line the one in the archive bin/libqpal.$PLAT.a
will not be selected at link time. Another possibility is to remove the default version of qpal conv.o

from the archive bin/libqpal.$PLAT.a, using

ar -d bin/libqpal.$PLAT.a qpal conv.o

and then to provide a new version of qpal conv.o at link time.
Here is the definition statement of the logical function qpal conv.

logical function qpal conv (data, x, lm, aix, aex, glag, qp inf, qp out)

qpal conv (O): logical output value. Set it to .true. is the primal-dual variables (x, lm) are
appropriate; to .false. otherwise.

data (I): variable of type qpal data type (see section 2.1.2) that contains the data of prob-
lem (1.1).

x (I): double precision array of dimension n. It is the value of the vector of variables x to
optimize at the time the function is called by Qpal.

lm (I): double precision array of dimension n + mI + mE . It is the value of the dual variable
or KKT multiplier associated with the constraints of problem (1.1) at the time the function
is called by Qpal. The first n components are associated with the bounds on x. The next
mI components are associated with the inequality constraints lI 6 AIx 6 uI . The last
mE components are associated with the equality constraints AEx = e. The multiplier λB∪I

associated with the bound constraints can be viewed as the difference

λB∪I := λu
B∪I − λl

B∪I

between the multiplier λu
B∪I associated with the upper bound and the multiplier λl

B∪I associ-
ated with the lower bound.

aix (I): double precision array of dimension mI . It gives the value of the product AIx at the
time the function is called by Qpal.

aex (I): double precision array of dimension mE . It gives the value of the product AEx at the
time the function is called by Qpal.

glag (I): double precision array of dimension n. It gives the value of the gradient of the La-
grangian at the time the function is called by Qpal.

qp inf (I): double precision variable used to detect an infinite bound in the QP.
qp iout (I): integer variable specifying the output channel used by QPAL for printing.
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2.2.5 Deallocation with qpal deallocate

The subroutine qpal allocate allocates memory for storing the data of problem (1.1) and another
one to store the solver diagnostics. This memory allocation depends on the dimensions of the
problem (n, mI , and mE). The subroutine qpal deallocate can be used to deallocate these
variables.

Here is the definition statement of the subroutine qpal deallocate.

subroutine qpal deallocate (data, info, fout, plevel, flag)

data (IO): variable of type qpal data type (see section 2.1.2) that contains the data of prob-
lem (1.1) and was previously used as argument of qpal allocate and qpal solve. Its allo-
cated components are deallocated by qpal deallocate.

info (IO): variable of type qpal info type (see section 2.1.4) that contains information on prob-
lem (1.1) and was previously used as argument of qpal solve. Its allocated components are
deallocated by qpal deallocate.

fout (I): integer variable. This is the channel number for the written outputs in qpal deallocate.
plevel (I): integer variable. It specifies the verbosity level of qpal deallocate. The following

values are meaningful:
= 0: silent mode;
> 0: error and warning messages are printed on channel fout.

flag (O): integer variable. It provides information on the success of the deallocations. Possible
values are:
= 0: deallocations done;
= 1: some problem with a deallocation.

2.2.6 Calling sequence

We summarize below the structure of a program that uses qpal solve to solve a convex quadratic
optimization problem. We assume for simplicity that all the instructions are in the same program
unit.

1. Specification of the use of the Qpal module qpal mod:

use qpal_mod

If the name of some of the public types, parameters, or procedures of qpal mod are in conflict
with your own variables, you can rename them. For example, to rename the Qpal public
parameter dense (resp. sparse) into qpal dense (resp. qpal sparse), write instead

use qpal_mod, qpal_dense => dense, &

qpal_sparse => sparse

2. Declare the variables n, nb, mi, me, h id, h nnz, h mys, h scale, h cold, ai id, ai nnz, ae id,
ae nnz, fout, plevel, prest, flag, data, and info, set those that are relevant to the current
run (except data and info). Then allocate the relevant allocated components of the data

and info structures by

call qpal_allocate (n, nb, mi, me, &

h_id, h_nnz, h_mys, h_scale, h_cold, &

ai_id, ai_nnz, ae_id, ae_nnz, &

fout, plevel, prest, flag, data, info)
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The flag argument should be zero on return from qpal allocate. See section 2.2.1 for more
information.

3. After execution of qpal allocate, the allocatable components of the variable data have been
allocated and you can fill in them:

data%g = ...

data%lb = ...

data%ub = ...

...

4. Before calling the solver qpal solve, you still have to give an initial value to the primal-
dual variables (of course these must have been declared in the calling subroutine/function as
double precision vectors with the respective dimensions n and n+mi+me):

x = ...

lm = ...

You also have to set in a structure here called options, whose type is qpal options type

(section 2.1.3), the options of the solver that should not have the default value set by qpal

default options (section 2.2.2):

call qpal_default_options (options)

options%avpd = ...

options%cgit = ...

...

Of particular importance are of course the variables options%glan abs, options%feas abs,
and options%mpos abs specifying the stopping criterion.

5. You can now call qpal solve (section 2.2.3):

call qpal_solve (x, lm, data, info, options)

The primal-dual solution found by qpal solve is in (x, lm) and the information qpal solve

gives on its run is in the argument info (section 2.1.4).

6. If the structures data and info allocated by qpal allocate are no longer useful, you may
want to deallocate them by using qpal deallocate (section 2.2.5):

call qpal_deallocate (data, info, fout, plevel, flag)

3 Current limitations and perspectives

We list below the limitations of Qpal we are aware of, together with planned improvements. The
list is certainly not exhaustive.

1. There is no projection stage along the last direction found by the conjugate gradient.

2. The augmented parameter r is only increased.

3. The code cannot detect constraint incompatibility. For the while this is reflected by an
augmentation parameter r that blows up.

4. Positive semi-definite linear systems are currently solved by a preconditioned conjugate gra-
dient algorithm. We plan to offer the possibility to solve linear systems by updated Cholesky
factorizations.
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5. The parallelisation of the loops could be done with OpenMP directives [8].
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missing, see public parameter
mod, see directory
module

qpal mod, 8

objective, 3
option

avpd, 11
cgit, 11
dcmin, 11
dcrt, 11
dxmin, 11
feas abs, 11
glan abs, 12
hvpd, 12
inf, 12
infs, 12
iout, 12
iter, 12
mpos abs, 12
optimality norm, 12
r, 13
verb, 13

precs, see subroutine
public derived type

qpal constraint type, 9–10
qpal data type, 10–11
qpal hessian type, 8–9
qpal info type, 13–14
qpal options type, 11–13
qpal sparse type, 8

public parameter
dense, 9, 10
lbfgs dir, 9
lbfgs inv, 9
missing, 9
sparse, 9, 10

public subroutine
qpal default options, 16
qpal allocate, 15–16, 19
qpal deallocate, 19, 20
qpal solve, 17, 20

qpal, see directory
qpal allocate, see public subroutine
qpal constraint type, see public derived type
qpal conv, see function
qpal data type, see public derived type
qpal deallocate, see public subroutine
qpal default options, see public subroutine
qpal hessian type, see public derived type
qpal info type, see public derived type
qpal mod, see module
qpal options type, see public derived type
qpal solve, see public subroutine
qpal sparse type, see public derived type

sequence, 8
sparse, see public parameter
src, see directory
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