
appor t

 techn ique

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
37

8-
-F

R
+

E
N

G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SQPpro – A solver of nonlinear optimization
problems, using an SQP approach

Version 0.5 (June 2009)

J. CharlesGilbert

N° 0378

19 décembre 2009

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

SQPpro – A solver of nonlinear optimization problems,

using an SQP approach

Version 0.5 (June 2009)

J. Charles Gilbert†

Thème NUM — Systèmes numériques
Projet Estime

Rapport technique n° 0378 — 19 décembre 2009 — 24 pages

Abstract: SQPpro is a piece of software that aims at solving a nonlinear optimization problem
with nonlinear equality and inequality constraints. The functions defining the problem must be at
least once differentiable. The implemented algorithm uses an SQP approach, which is a workable
version of the Newton and quasi-Newton methods. The quadratic optimization that has to be
solved at each iteration uses the solver QPAL. The constraint Jacobian matrices can be strored in
dense or sparse structures; in addition the Hessian of the Lagrangien can be approximated by the
BFGS (dense) or ℓ-BFGS (sparse) formula. SQPpro is written in Fortran-2003.

Key-words: BFGS and ℓ-BFGS updates, Newton and quasi-Newton methods, nonlinear opti-
mization, QPAL quadratic optimization solver, SQP algorithm.

† INRIA-Rocquencourt, team-project Estime, BP 105, F-78153 Le Chesnay Cedex (France); e-mail : Jean-

Charles.Gilbert@inria.fr.

SQPpro – Un solveur de problèmes d’optimisation non
linéaire, fondé sur l’approche SQP

Version 0.5 (Juin 2009)

Résumé : SQPpro est un code destiné à minimiser une fonction non linéaire sous des contraintes
non linéaires d’égalité et d’inégalité. Les fonctions définissant le problème doivent être au moins
différentiables. L’algorithme implémenté utilise l’approche SQP, qui est une version réalisable des
algorithmes de Newton et quasi-Newton. Le problème quadratique qui se pose à chaque itération
est résolu par le solveur QPAL. Les matrices jacobiennes des contraintes peuvent être stockées dans
des tructures denses ou creuses ; de plus le hessien du lagrangien peut être approché au moyen des
formules de BFGS (pleine) ou ℓ-BFGS (creuse). SQPpro est écrit en Fortran-2003.

Mots-clés : algorithme SQP, méthodes de Newton et de quasi-Newton, mises à jour de BFGS
et ℓ-BFGS, optimisation non linéaire, solveur de problème quadratique QPAL.

SQPpro – a nonlinear optimization solver 3

1 Presentation 3

1.1 Scope of the program . 3
1.2 Detecting optimality . 4
1.3 Brief description of the method . 4
1.4 The package . 5

1.4.1 Description . 5
1.4.2 Installation . 6

2 Usage 7

2.1 Data structures . 7
2.1.1 Data types . 7
2.1.2 Problem data . 9
2.1.3 Solver options . 11
2.1.4 Solver diagnostics . 13
2.1.5 User data . 15

2.2 Simulator . 15
2.3 Running the solver . 16

2.3.1 Memory allocation with sqppro allocate 16
2.3.2 Setting default options with sqppro default options 17
2.3.3 Solving the problem with sqppro solve 18
2.3.4 Calling sequence . 19

2.4 Fine tunings . 20
2.4.1 Setting the precision of the QP solver 20

3 Current limitations and perspectives 21

References 22

Index 22

1 Presentation

1.1 Scope of the program

SQPpro (pronounce S-Q-P-pro) has been designed to solve a general nonlinear optimization prob-
lem in x ∈ R

n of the form

(PEI)







min f(x)
l 6 (x, cI(x)) 6 u

cE(x) = 0,

(1.1)

where f : R
n → R is the objective of the problem, cI : R

n → R
mI is the inequality constraint

function, and cE : R
n → R

mE is the equality constraint function. These functions are supposed
smooth, possibly nonlinear and nonconvex. Smoothness means here that the functions must be
once differentiable; first derivatives are indeed used by the solver.

The notation l 6 (x, cI(x)) 6 u expresses in compact form bound constraints on x and on
cI(x). The bound vectors l and u ∈ R̄

n+mI can have components with infinite values ±∞ (the
corresponding bounds are ineffective in that case), but must satisfy l < u, meaning that li < ui for
all indices i. As a result, the inequality constraints cannot be used to model equality constraints
by taking identical lower and upper bounds; the constraint function cE must be used instead to
introduce equality constraints.

RT n° 0378

4 J. Ch. Gilbert

SQPpro is flexible with respect to the memory representation of the constraint Jacobian
matrices c′I(x) and c′E(x). Indeed, these may be dense or sparse. Sparse matrices are represented
by the row-column indices of the nonzero elements, as well as the values of these elements.

To be concise, it is convenient to denote by B := {1, . . . , n} the index set of the variables x

and by cB(x) ≡ x the identity on R
n. We also use the function c : R

n → R
m, m := n + mI + mE ,

defined at x ∈ R
n by

c(x) := (cB(x), cI(x), cE(x)) ∈ R
n × R

mI × R
mE .

The feasible set of problem (PEI) is denoted

X := {x ∈ R
n : l 6 cB∪I(x) 6 u, cE(x) = 0}.

A point x belonging to X , hence satisfying the constraints of problem (PEI) is said feasible.
SQPpro is written in ANSI Fortran 2003 (F03 for short), using double precision. The code

uses this feature of F03 that makes possible calling a subroutine with a structure argument having
components that are not yet allocated when the subroutine is called. SQPpro compiles with
gfortran [5], version “4.4.0 20090321 (experimental)” or higher.

1.2 Detecting optimality

The Lagrangian of problem (PEI) is the function ℓ : R
n × R

m → R defined at (x, λ) by

ℓ(x, λ) = f(x) + λ⊤c(x).

This one is useful to write the KKT optimality conditions of problem (PEI) (see [2] for instance).
If x is a solution to (PEI) and if the constraints are qualified at x, there exists a vector λ ∈ R

m

such that:






(a) ∇xℓ(x, λ) = 0
(b) l 6 (x, cI(x)) 6 u and cE(x) = 0
(c) ∀i ∈ B ∪ I : λ−

i (li − ci(x)) = λ+

i (ci(x) − ui) = 0,

(1.2)

where t+ := max(t, 0) and t− := max(−t, 0) for t ∈ R and ()+ and ()− act componentwise for
vectors. In (c), infinite bounds are replaced by large numbers of the same sign, so that λi must be
nonnegative when li = −∞ and ui is finite. The first condition refers to the proper optimality, the
second one to the feasibility, and the third one is known as the complementarity conditions. The
components of the vector λ in this equation are called the optimal KKT multipliers or the dual

solutions or the marginal costs.
The SQPpro solver cannot guarantee to find a local minimum of problem (PEI) (even less

a global minimum), but is designed to find a stationary point, which is a pair (x, λ) ∈ R
n × R

m

satisfying (1.2). Often, a stationary point is a solution to (PEI).

1.3 Brief description of the method

SQPpro implements a sequential quadratic programming algorithm, using an augmented La-
grangian approach for solving the osculating quadratic problems and linesearch for its globaliza-
tion. It is therefore a primal-dual algorithm, meaning that it generates the primal variables x and
the dual variables λ, independently.

One iteration of the SQP algorithm consists in solving the osculating quadratic problem (QP),
which at the current iterate (x, λ) ∈ R

n × R
m reads (we drop the dependence of the functions in

(x, λ) for more concision):










min
d∈Rn

g⊤d +
1

2
d⊤Md

l̃ 6 (d, AId) 6 ũ

cE + AEd = 0,

(1.3)

INRIA

SQPpro – a nonlinear optimization solver 5

where g stands fo the gradient ∇f(x), M is an approximation of the Hessian of the Lagrangian
L := ∇2

xxℓ(x, λ), AI := c′I(x), AE := c′E(x), l̃ = l − cB∪I(x), and ũ := u − cB∪I(x). It is classical
to impose the positive semi-definiteness of M (even though L does not have that property), in
order to avoid a QP that, otherwise, would be NP-hard. The osculating QP is then convex. In
SQPpro, the solution to this QP is obtained by the solver QPAL (version 0.6.1) [3, 6]. If (d, λQP)
is a primal-dual solution to (1.3), the new iterate (x+, λ+) is obtained by

x+ = x + α d and λ+ = λ + α (λQP − λ),

where α ∈]0, 1] is a stepsize determined by linesearch.
The approximation M ∈ R

n×n of the Hessian of the Lagrangian or its inverse (for unconstrained
problems) is a matrix updated by the BFGS or ℓ-BFGS formula. The Jacobian matrices AI and
AE can be stored in dense or sparse data structures.

The SQP algorithm is described in part III of [2], where other references can be found. The
combination of the SQP algorithm and the augmented Lagrangian approach for solving the os-
culating quadratic problems is described in [4], where it is also applied to a seismic reflection
tomography problem, and studied in [3],

1.4 The package

1.4.1 Description

The SQPpro package is formed of the files and directories described below. In this description,
$PLAT is the value of the environment variable that designates the platform for which the software
has to be compiled; see the description of the file make.a platform below and stage 2 of the
installation procedure in section 1.4.2.

• The files COPYRIGHT.* give the conditions of use of the software. You are supposed to agree
with these conditions to be authorized to use it. If this has not been done yet, send a filled in
and signed copy of the commitment letter COPYRIGHT.pdf to the author of the software.

• The directory bin is originally empty and will contain the binaries gathered in libraries, named
lib*.a, after compilation of SQPpro:

– libblas.$PLAT.a contains the blas routines used in SQPpro, those in the directory
blas of the QPAL solver; this archive can be used if the compiler does not provide a
blas library;

– liblapack.$PLAT.a contains the lapack routines used in SQPpro, those in the direc-
tory lapack of the QPAL solver; this archive can be used if the compiler does not provide
a lapack library;

– libqpal.$PLAT.a contains the routines peculiar to the QP solver QPAL [6], which is
used in SQPpro;

– libsqppro.$PLAT.a contains the routines peculiar to SQPpro, those in the directory
src (see below).

• The directory cuter contains all the files that are useful to install SQPpro in CUTEr [1, 8];
see how to proceed in the README file of the cuter directory.

• The directory doc contains several interesting files:

– VERSIONS.txt briefly describes the successive versions of the software;
– doc.pdf is this documentation in PDF;
– sqppro.spc is an example of specification file for the solver, containing explanations on

how to build such a file.

• The directory example gives elementary examples of nonlinear optimization problem, that are
solved by SQPpro. The goal of these examples is to make concrete the way of encoding the
problem and to call the SQP solver.

RT n° 0378

6 J. Ch. Gilbert

• The directory libopt contains all the files that are useful to install SQPpro in the Libopt

environment [7]; see how to proceed in the README file of the libopt directory.

• The file make.a platform is an example of make.$PLAT file that is used by the Makefile’s of
the package to compile various programs. You will probably need to adapt this file to your
own platform, by redefining some of its variables. Stage 2 in section 1.4.2 gives the details.

• The directory mod is originally empty and will contain, after compilation of SQPpro, the
following module descriptors:

– sqppro mod.$PLAT.mod for the sqppro mod module, which provides, in particular, the
description of the public derived types discussed in section 2.1.

• The directory src contains the peculiar routines of the SQPpro solver and a Makefile to
compile them.

1.4.2 Installation

The QP solver used by SQPpro is QPAL (version 0.6.1) [6]. The QPAL solver must therefore be
installed somewhere in your hierarchy before you can use SQPpro. Once this has been completed,
the installation of SQPpro can be done by following the stages given below.

1. Normally, the SQPpro package is distributed as a tarball named

SQPPRO-xxx-distrib.tar.gz

where xxx stands for a version number. Place this tarball in a directory where you want to
keep SQPpro. Decompress and untar it using

tar -zxvf SQPPRO-xxx-distrib.tar.gz

This creates the directory SQPPRO-xxx-distrib, which can be renamed. Below, we call it the
sqppro directory and denote it by

sqppro directory

2. The second stage deals with platform matters. To know the chosen compiler, linker and their
options, the Makefile’s of the SQPpro package include a file named make.$PLAT, located
in sqppro directory . Here, $PLAT is the value of an environment variable defined by a
Unix/Linux command similar to

setenv PLAT mach.os.comp

The string “mach.os.comp” above is arbitrary; the proposed form allows you to identify
the machine type “mach”, its operating system “os”, and the chosen compiler suite “comp”;
examples might be

setenv PLAT pc.linux.pgf90

setenv PLAT mac.osx.gcc

The file “make.a platform” in sqppro directory is an example of such a make.$PLAT file
and, now that the environment variable PLAT has been defined, you may want to adapt it to
your platform by first copying it

cp make.a platform make.$PLAT

and next adapting the following variables, which are the only ones used in the SQPpro
Makefile’s:

F03 = # name of the Fortran 2003 compiler

F03DBGFLAG = # option requiring generating code for debugging

F03FLAGS = # usual options to use with $(F03)

INRIA

SQPpro – a nonlinear optimization solver 7

F03MDIR = # option introducing a module directory

F03NOLD = # option preventing from making a load object

3. The third stage consists in specifying the location of the QPAL solver. This is done by making
in sqppro directory a symbolic link to the qpal directory, named qpal directory below:

cd sqppro directory

ln -s qpal directory qpal

4. You are now ready to compile the software. Go in the directory src and type

make

As said above, this command places object libraries in the directory bin and module descrip-
tors in the directory mod. These can now be linked to a program that uses SQPpro as a
nonlinear optimization solver. A good starting point could be to run the examples in the
directory exemple.

2 Usage

We start in section 2.1 by specifying the data structures of the SQPpro solver, the Fortran derived
types used to define the data exchanged with the solver. In section 2.2, we describe the problem
simulator that is expected by SQPpro, which is the part of the program that evaluates the value
of the functions defining problem (PEI) and their derivatives. The role and the arguments of the
subroutines sqppro allocate, sqppro default options, and sqppro solve, which are the three
entry points into the solver, are described in section 2.3. In section 2.3.4, we give the typical
sequence of statements that must precede a call to the solver.

2.1 Data structures

The SQPpro solver is structured as a Fortran module, named sqppro mod, with its private/public
derived type definitions, data, functions, and subroutines. The entry point to the solver is
sqppro solve. The associated subroutine sqppro solve gathers its arguments in structures (hav-
ing a given Fortran derived type), in order to make clearer the links between them and to make
easier passing them from one procedure to the other. The public derived types used to define the
arguments are described below.

Theses public derived types have allocatable components that are allocated by the subroutine
sqppro allocate; see section 2.3.1. You will be able to use variables defined by these types only
after having called that subroutine. Useless components are not allocated.

We remind the reader that the value of the component c of a variable v of a given derived type
is given by v%c.

2.1.1 Data types

SQPpro can store the Jacobians of the inequality and equality constraints in dense or sparse
matrices. This section describes the Fortran public derived types that have been defined to store
these various data structures.

We start with the public derived type for storing sparse matrices.

type, public :: sqppro_sparse_type

RT n° 0378

8 J. Ch. Gilbert

sequence

integer :: nnz

integer, allocatable :: i(:), j(:)

double precision, allocatable :: v(:)

end type sqppro_sparse_type

With the keyword sequence, the components are stored in the specified order (otherwise, no
storage sequence is implied by the order of the component definitions). As a result, a structure
with a type identical to sqppro sparse type (also with the keyword sequence) but with a different
type name will be correctly identified with a structure of type sqppro sparse type.

Here is a description of the components.

• nnz: this integer specifies the number of nonzero elements of the matrix.
• i(:) and j(:): the integers i(k) and j(k), for k = 1, . . . , nnz, are the row and column indices

of the kth nonzero element of the matrix.
• v(:): the double precision value v(k), for k = 1, . . . , nnz, gives the value of the kth nonzero

element of the matrix.

We now introduce the public derived type named sqppro hessian type, which describes the
memory representation of the Hessian of the Lagrangian, knowing that this one can be a dense
BFGS matrix, a direct ℓ-BFGS matrix, or an inverse ℓ-BFGS matrix.

type, public :: sqppro_hessian_type

integer :: id

double precision, allocatable :: dense(:,:)

type(lbfgs_dir_hessian_type) :: lbfgs_dir

type(lbfgs_inv_hessian_type) :: lbfgs_inv

end type sqppro_hessian_type

Description of the components.

• id: this integer component specifies the Hessian identificator, which describes the type of
storage SQPpro has to provide for the Hessian of the Lagrangian. The following 3 values can
be used, named by public parameters:

– dense informs SQPpro that the Hessian of the Lagrangian must be stored in the component
dense;

– lbfgs dir informs SQPpro that the Hessian of the Lagrangian is a direct ℓ-BFGS matrix
that must be stored in the data structure lbfgs dir;

– lbfgs inv informs SQPpro that the Hessian of the Lagrangian is an inverse ℓ-BFGS matrix
that must be stored in the data structure lbfgs inv.

• dense: this allocatable double precision array of dimension (n,n) is used to store the
Hessian when id = dense.

• lbfgs dir: this memory structure of type lbfgs dir hessian type is used to store a direct
ℓ-BFGS matrix, when id = lbfgs dir. The memory structure is defined in the module
modulopt lbfgs mod.

• lbfgs inv: this memory structure of type lbfgs inv hessian type is used to store an in-
verse ℓ-BFGS matrix, when id = lbfgs inv. The memory structure is defined in the module
modulopt lbfgs mod.

INRIA

SQPpro – a nonlinear optimization solver 9

The next derived type is used to describe the memory representation of the inequality and
equality constraint Jacobians, c′I(x) and c′E(x) respectively. These Jacobians can be dense or
sparse.

type, public :: sqppro_constraint_type

integer :: id

double precision, allocatable :: dense(:,:)

type(sqppro_sparse_type) :: sparse

end type sqppro_constraint_type

Description of the components.

• id: this integer component specifies the constraint Jacobian identificator. The following 2
values can be used, named by public parameters:

– dense informs SQPpro that the jacobian is a dense matrix that must be stored in the
component dense;

– sparse informs SQPpro that the jacobian is a sparse matrix that must be stored in the
component sparse.

• dense: this allocatable double precision array of appropriate dimension is used to store
the constraint Jacobian when id = dense.

• sparse: this memory structure of type sqppro sparse type is used to store a sparse constraint
Jacobian when id = sparse.

2.1.2 Problem data

The public derived type sqppro data type must be used to define a structure whose aim is to
give data on problem (PEI) on entry in sqppro solve (section 2.3.3) and during the run at the
generated iterates. Its allocatable parts are allocated by sqppro allocate (section 2.3.1).

type, public :: sqppro_data_type

integer :: n, nb, mi, me

double precision :: f

double precision, pointer :: g(:)

type(sqppro_hessian_type) :: h

double precision, allocatable :: lb(:), ub(:)

double precision, allocatable :: li(:), ui(:), ci(:)

type(sqppro_constraint_type) :: ai

double precision, allocatable :: ce(:)

type(sqppro_constraint_type) :: ae

end type sqppro_data_type

Here are the components of this type.

• n, nb, mi, me: these integers give respectively the number n of variables, the number of bounded
variables (those with li > −inf and/or ui < inf, see the description of the sqppro options

type type in section 2.1.3 for the meaning of inf), the number mI of nonlinear inequality
constraints (those modelled by cI), and the number mE of equality constraints (those modelled
by cE).

RT n° 0378

10 J. Ch. Gilbert

• f: this double precision variable aims at receiving the value f(x) ∈ R of the objective f at a
given primal iterate x.

• g(:): this variable points to a double precision array used to store the gradient g(x) =
∇f(x) ∈ R

n of the objective of (PEI) at a given primal iterate x.

• h: this variable of sqppro hessian type type is aimed at receiving the approximation of the
Hessian of the Lagrangian at a given primal-dual iterate (x, λ).

• lb(:), ub(:): these allocatable double precision arrays are used to store the vectors lB and
uB ∈ R

n giving respectively the lower and upper bounds on the variables x.

• li(:), ui(:), ci(:), ai: these double precision arrays and sqppro constraint type vari-
able are related to the nonlinear inequality constraints. The lower and upper bounds lI ∈ R

mI

and uI ∈ R
mI are stored in li and ui, respectively. The other variables are aimed at receiving

the value at a given primal iterate x of the nonlinear inequality constraint function cI (in ci)
and of the Jacobian c′I(x) of cI (in ai). More precisely, assuming that I = {1, . . . , mI}, for i ∈ I

and j ∈ B, there hold

ci(i) = ci(x), li(i) = ln+i, ui(i) = un+i,

while a dense inequality constraint Jacobian is stored in

ai%dense(i,j) =
∂ci(x)

∂xj

and, if (c′I(x))ij is the kth element of a sparse inequality constraint Jacobian, it is stored by

ai%sparse%i(k)= i, ai%sparse%j(k)= j, ai%sparse%v(k) =
∂ci(x)

∂xj

.

• ce(:), ae: these double precision array and sqppro constraint type variable are aimed at
receiving the value at a given primal iterate x of the nonlinear equality constraint function cE

(in ce) and of the Jacobian c′E(x) of cE (in ae). More precisely, assuming that E = {1, . . . , mE},
for i ∈ E and j ∈ B, there hold

ce(i) = ci(x),

while a dense equality constraint Jacobian is stored in

ae%dense(i,j) =
∂ci(x)

∂xj

and, if (c′E(x))ij is the kth element of a sparse equality constraint Jacobian, it is stored by

ae%sparse%i(k)= i, ae%sparse%j(k)= j, ae%sparse%v(k) =
∂ci(x)

∂xj

.

The dimensions n, mi, and me are set by sqppro allocate, the constant components (inde-
pendent of the current iterates x) lb, ub, li, and ui are set by the user after having called
sqppro allocate (see section 2.3.4). The other components are filled in by the simulator (see
section 2.2).

As Fortran-2003 pointers, g, ai, and ae are just other names for variables used to describe the
corresponding data of the osculating quadratic problem (1.3); these variables are inherited from
variables allocated by the QP solver QPAL.

INRIA

SQPpro – a nonlinear optimization solver 11

2.1.3 Solver options

The public derived type sqppro options type is used to describe the options of the SQPpro

solver, i.e., those parameters that can be used to tune the behavior of the solver. A variable
of that type can receive the default options of the solver by calling sqppro default options

(section 2.3.2).

type, public :: sqppro options type

integer :: fout, plevel

integer :: max iter

integer :: qp max alit, qp max cgit, qp max hvpd, qp max avpd

character(len=3) :: qp norm

integer :: qp precision id

double precision :: qp tol glan, qp tol feas

double precision :: qp forcing factor

double precision :: qp feas decr factor

double precision :: kkt tol(3)

double precision :: inf, dxmin, dcmin

end type sqppro options type

The components of this type are gathered above by Fortran type and nature. For making their
localization faster, they are presented below in alphabetic order. Valid and default values are
indicated.

• dcmin: positive double precision variable that is used to detect active bounds on cI(x). To
this respect, there must also hold

∀i ∈ I : ui − li > 2 (dcmin).

This value also intervenes in the complementarity conditions.

Valid values: > 0. Default value: 10−10.

• dxmin: positive double precision variable that specifies the precision to which the primal
variables must be determined. If sqppro solve needs to make a step smaller than dxmin in the
infinity-norm to progress to optimality, it will stop. To this respect, a too small value for dxmin
will force the solver to work for nothing at the very end when rounding errors prevent making
any progress.

The value of dxmin is also used to detect active bounds on x. To this respect, there must also
hold

∀i ∈ B : ui − li > 2 (dxmin).

This value also intervenes in the complementarity conditions.

Valid values: > 0. Default value: 10−10.

• fout: integer variable that is taken as the channel number for the outputs, i.e., these are
written by:

write (fout,...) ...

Valid values: > 0. Default value: 6 (screen).

RT n° 0378

12 J. Ch. Gilbert

• inf: double precision variable specifying what is the infinite value for the bounds li and ui.
More precisely, if li 6 −inf (resp. ui > inf), the ith lower (resp. upper) bound is assumed to
be absent.

Valid values: > 0. Default value: huge(1.d0).

• kkt tol: double precision array of dimension 3, which provides the tolerances on the KKT
conditions (1.2) for detecting a solution (more precisely a stationary point). An iterate (x, λ) is
indeed considered to be a satisfactory approximate primal-dual solution to problem (PEI) if

info%kkt glan(x, λ) 6 kkt tol(1)

info%kkk feas(x) 6 kkt tol(2)

info%kkk cmpl(x, λ) 6 kkt tol(3),

where info%kkt glan(x, λ), info%kkk feas(x), and info%kkk cmpl(x, λ) have been defined by
(2.1), (2.2), and (2.3), respectively. Hence kkt tol(1) controls the proper optimality (1.2)-
(a), kkt tol(2) controls the feasibility (1.2)-(b), and kkt tol(3) controls the complementarity
(1.2)-(c).

Valid values: > 0. Default value: 10−6.

• max iter: integer variable specifying the maximal number of iterations allowed.

Valid values: > 0. Default value: ∞.

• plevel: integer variable that specifies the printing level of the solver, i.e., the amount of
information that is written on channel options%fout. The following values are meaningful:

= 0: nothing is printed; the only manner to be informed of the behavior of sqppro solve is
to look at the the argument info of the solver (see section 2.1.4 for the description of its
components);

> 1: error and warning messages (default);
> 2: initial setting and final status;
> 3: one line per iteration;
> 4: details on the iterations;
> 5: details on the step computation are written in a file named sqppro-qp.txt in the working

directory.

Valid values: > 0. Default value: 1.

• qp feas decr factor: double precision variable giving the desired decrease factor for the
constraint norm in the QP solver QPAL. A small value looks better but it forces QPAL to take a
large augmented Lagrangian parameter, inducing ill-conditioning. For a small easy problem, qp
feas decr factor can be chosen rather small. For a large scale ill-conditioned problem, choose
qp feas decr factor closer to 1.

Valid values:]0, 1[. Default value: 10−1.

• qp max alit: integer variable specifying the maximal number of augmented Lagrangian itera-
tions in any QPAL run.

Valid values: > 0. Default value: 50.

• qp max cgit: integer variable specifying the maximal number of conjugate gradient iterations
in any QPAL run.

Valid values: > 0. Default value: 10000.

• qp max hvpd: integer variable specifying the maximal number of Hessian-vector products in
any QPAL run.

Valid values: > 0. Default value: 10000.

INRIA

SQPpro – a nonlinear optimization solver 13

• qp max avpd: integer variable specifying the maximal number of Jacobian-vector products in
any QPAL run.

Valid values: > 0. Default value: 10000.

• qp norm: this string, made of at most 3 characters, specifies the type of vector norm ‖ · ‖QP that
must be used to check optimality of the QP (1.3):

– ’2’ or ’euc’ for the ℓ2 or Euclidean norm ‖v‖2 := (
∑

i v2
i)1/2,

– ’inf’ for the infinity or sup norm ‖v‖∞ := maxi |vi|.

Of course, for any vector v, ‖v‖∞ 6 ‖v‖2, so that for identical tolerances, the QP solver stops
more rapidly with the sup norm than with the Euclidean norm.

Valid values: ’2’, ’euc’, ’inf’. Default value: ’inf’.

• qp forcing factor: when qp precision id is set to variable, this double precision compo-
nent is used to control the precision on the direction computed by the QP solver. See section 2.4.1
for more information.

Valid values: (0, 1). Default value: 0.5.

• qp precision id: this integer component specifies the QP precision identificator, which is used
to indicate the method that must be used to control the precision to which the QP’s (1.3) must
be solved at each iteration. The following 2 values can be used, named by public parameters:

– fixed requires from SQPpro that it imposes to the QP solver to solve the QP’s with a
precision that is identical at each iteration and that is specified by the qp tol glan and
qp tol feas components;

– variable requires from SQPpro that it imposes to the QP solver to solve the QP’s with
a precision that depends on the presision reached on the nonlinear problem (1.1) at the
current iteration, using the parameter qp forcing factor and ensuring nevertheless that
the computed direction be a descent direction of the merit function; this strategy is in the
spirit of the truncated Newton method .

See section 2.4.1 for more information.

Valid values: fixed, variable. Default value: fixed.

• qp tol glan, qp tol feas: when qp precision id is set to fixed, these double precision

components are used to specify the tolerances on the KKT conditions of the QP (1.3), using the
norm ‖ · ‖QP: qp tol glan refers to the norm of the gradient of the QP Lagrangian and qp tol

feas refers to the norm of the QP constraints.

Valid values: > 0. Default value: 10−6.

2.1.4 Solver diagnostics

The public derived type sqppro info type contains the information on the problem (PEI) returned
by the solver SQPpro.

type, public :: sqppro_info_type

integer :: nb, iter, nsim, info

double precision :: kkt_glan, kkt_feas, kkt_cmpl

end type sqppro_info_type

Here are the components of this type.

• nb: this integer variable contains the number of variables xi with a lower and/or an upper
bound (i.e., the number of i ∈ B with either li or ui finite).

RT n° 0378

14 J. Ch. Gilbert

• iter: this integer variable is the number of iterations performed by the solver.

• nsim: this integer variable is the number of times the simulator has been called.

• info: this integer variable is the return value of the solver, which specifies the reason why it
stopped. Here are the possible values:

= 0: the stopping criterion is verified.
= 1: failure in the initialization;
= 2: an argument is wrong;
= 5: maximal number of iterations has been reached;
= 6: maximal number of simulations has been reached;
= 7: stop required by the simulator;
= 9: too many stepsize trials in the linesearch;
= 10: the QP solver has computed a null step, although x is not optimal (strange);
= 20: maximal number of iterations has been reached in the QP solver;
= 21: maximal number of matrix-vector products has been reached in the QP solver;
= 22: nonconvex quadratic problem (1.3);
= 23: linesearch failure in the QP solver;
= 24: an infeasible QP has been encountered;
= 25: if feasible, the quadratic problem (1.3) is likely to be unbounded;
= 99: abnormal failure, call your guru.

More information can usually be obtained on a possible failure of the optimization by running
the solver with options%plevel > 0.

• kkt glan: double precision variable giving the ℓ∞-norm of the gradient of the Lagrangian at
the output primal-dual variable (x, λ):

info%kkt glan(x, λ) := ‖∇xℓ(x, λ)‖∞. (2.1)

This value can be viewed as an optimality measure.

• kkt feas: double precision variable giving the infinity norm of the constraint violation at the
final primal-dual variable (x, λ):

info%kkk feas(x) :=

∥

∥

∥

∥

(

max(0, l − cB∪I(x), cB∪I(x) − u)
cE(x)

)
∥

∥

∥

∥

∞

. (2.2)

The value of kkt feas can be viewed as a feasibility measure.

• kkt cmpl: double precision variable measuring the complementarity. It is defined as the
minimum of two measures, specifically by

info%kkk cmpl(x, λ) := ‖min(c1, c2)‖∞, (2.3)

where the components of the vectors c1 and c2 are defined for i ∈ B by (a similar definition is
used for i ∈ I):

c1(i) :=

{

λ−

i if |li − xi| > options%dxmin

λ+

i if |ui − xi| > options%dxmin

and
c2(i) := |li − xi|λ

−

i + |ui − xi|λ
+

i .

Hence, info%kkk cmpl takes, for each component, the best of two complementarity measures.
Expression c1 is based on the fact that if the ith lower [resp. upper] bound is inactive, the
associated multiplier should be nonnegative [resp. nonpositive], hence λ−

i [resp. λ+

i] should be
zero. Expression c2 is based on the fact that λ−

i (li − xi) and λ+

i (xi − ui) should be zero, see
(1.2–c).

INRIA

SQPpro – a nonlinear optimization solver 15

2.1.5 User data

The public derived type sqppro user type is used to allow the user to pass information to the
simulator through sqppro solve. This structure is not used by the solver; it is not manadged
either, meaning that its allocatable variables must be allocated by the user of the solver.

type, public :: sqppro_user_type

integer, allocatable :: izs(:)

real, allocatable :: rzs(:)

double precision, allocatable :: dzs(:)

end type sqppro_user_type

Here are the components of this type.

• izs: this integer array is dedicated to pass integer values to the simulator.

• rzs: this real array is dedicated to pass real values to the simulator.

• dzs: this double precision array is dedicated to pass double precision values to the simu-
lator.

2.2 Simulator

The simulator is the part of the program that evaluates the value of the functions defining problem
(PEI) and their derivatives. SQPpro get information on the problem to solve through direct

communication: the simulator receives a message from sqppro solve, which tells what has to be
computed, using the flag indic; then the simulator fills in parts of the structure data and uses
indic to tell sqppro solve whether the required computation has been reallized.

Here is the subroutine definition statement that is assumed by SQPpro.

subroutine simul (indic, x, data, user)

indic: integer variable organizing the communication between the solver sqppro solve and the
simulator simul.

• On entry, indic is used by sqppro solve to tell the simulator simul what it has to do.

= 1: The simulator can do anything except changing the value of x (doing nothing is also
fine). Typically it prints some information on the screen, in a file, or on a plotter. The
solver sqppro solve calls the simulator with this value of indic at each iteration, so
that the simulator can also count the iterations.

= 4: The simulator is asked to compute data%f = f(x), data%ci = cI(x), and data%ce =
cE(x) at a given point x, as well as the gradient data%g = ∇f(x) ∈ R

n, and the
Jacobian matrices data%ai = c′I(x) and data%ae = c′E(x) at a given point x.

• On return, it contains a message from the simulator to sqppro solve.

> 0: normal call; the required computation has been done.
= −1: by this value, the simulator tells the solver that it is impossible or undesirable

to do the calculation at the point x given by the solver. In that case, sqppro

solve backtracks along the search direction, until the computation can be done.

RT n° 0378

16 J. Ch. Gilbert

This feature can be used when implicit constraints are present, i.e., strict inequality
constraints or inequalities that are known to be inactive at the solution. By no way
this feature can handle inequality constraints that are active (satisfied with equality)
at the solution.

= −2: the simulator asks sqppro solve to stop, for example because some events that the
solver cannot understand (not in the field of optimization) has occurred.

x (I): double precision array of dimension n. It is the vector of primal variables x at which
the functions defining (PEI) have to be evaluated. The vector x cannot be modified by the
simulator.

user (I): this is the same variable as the one with the same name, given as argument of sqppro
solve. The solver sqppro solve does not touch it and transmits it to the simulator as an
argument of simul. See section 2.1.5 for a description of its components.

2.3 Running the solver

The SQPpro solver makes available three subroutines: sqppro allocate, sqppro default options,
and sqppro solve. The subroutine sqppro allocate must be used to allocate variables of a data
structure (section 2.3.1). The subroutine sqppro default options can be used to get the de-
fault options of the solver, before tuning these to a particular run (section 2.3.2). The subroutine
sqppro solve is used to solve a particular instance of problem (PEI) (section 2.3.3)

In the description of the subroutines, an argument flagged with (I) means that it is an input or
intent(in) variable, which has to be initialized before calling the subroutine; an argument flagged
with (O) means that it is an output or intent(out) variable, which has only a meaning on return
from the subroutine; and an argument flagged with (IO) is an input-output or intent(inout)

argument, which has to be initialized and has a meaning on return from the subroutine.

2.3.1 Memory allocation with sqppro allocate

The subroutine sqppro allocatemust be called before calling sqppro solve. Its role is to allocate
memory to the data structure of the dummy argument data, which is aimed at containing data
on problem (PEI). It is only after having called sqppro allocate that it will be possible to fill in
the variable data. This allocation depends on the type of approximation chosen for the Hessian
of the Lagrangian (variables h type and h mys); since this one can be specified by a specification
file, this file is read and scrutinized by sqppro allocate. The values of h type and h mys in that
file prevail on the values given on entry in sqppro allocate.

subroutine sqppro allocate (n, nb, mi, me, &

h type, h mys, ai id, ai nnz, ae id, ae nnz, &

fout, plevel, flag, data)

n, nb, mi, me (I): positive integer variables specifying the dimensions of the problem (PEI): n =
n, mi = mI , me = mE , and nb is the number of primal variables with a lower or an upper
bound (hence nb ∈ [0, n]). Actually, the latter must only be vaguely defined: if there is no
bound on x, set nb = 0, otherwise give nb an arbitrary positive (> 0) value. Indeed, sqppro
allocate only trusts the sign of nb to decide whether memory must be allocated for the
bounds on x, i.e., for the variables data%lb(1:n) and data%ub(1:n).

h type (I): integer variable specifying the Hessian type. In the current version, SQPpro can
only use approximations of the Hessian of the Lagrangian, either using the BFGS formula

INRIA

SQPpro – a nonlinear optimization solver 17

(for small problems, say less than a few hundred variables) or the ℓ-BFGS formula (for larger
problems). The type of approximation is decided by sqppro allocate and stored in a variable
in the sqppro mod module. The following values are possible:

• bfgs: a BFGS approximation of the Hessian of the Lagrangian is generated by the solver,

• lbfgs: an ℓ-BFGS approximation of the Hessian of the Lagrangian is generated by the
solver; the inverse formula is used if there is no constraint, in which case there is no need
to solve an osculating QP (faster); the direct formula is used if there are constraints.

The value of h type given in the specification file prevails on the one given in argument to
sqppro allocate.

h mys (I): positive integer variable. It is only used in case an ℓ-BFGS Hessian approximation is
declared with h type, to specify the number of pairs (yk, sk) that are used to form the Hessian
approximation.

ai id (I): integer variable. It identifies the type of memory space used to store the inequality
constraint Jacobian c′I(x) at a given point x. See the description of the id component of the
type sqppro constraint type in section 2.1.1 for the possible values of this variable, which
can be dense or sparse.

ai nnz (I): integer variable. It gives the number of nonzero elements in the inequality constraint
Jacobians c′I(·) in case this one is stored in a sparse structure (ai id has been set to sparse);
it is meaningless otherwise.

ae id (I): integer variable. It identifies the type of memory space used to store the equality
constraint Jacobian c′E(x) at a given point x. See the description of the id component of the
type sqppro constraint type in section 2.1.1 for the possible values of this variable, which
can be dense or sparse.

ae nnz (I): integer variable. It gives the number of nonzero elements in the equality constraint
Jacobians c′E(·) in case this one is stored in a sparse structure (ae id has been set to sparse);
it is meaningless otherwise.

fout (I): integer variable. This is the channel number for the written outputs in sqppro

allocate.

plevel (I): integer variable. It specifies the printing level of sqppro allocate. The following
values are meaningful:

6 0: silent mode;
> 0: error and warning messages are printed on channel fout.

flag (O): integer variable. It provides information on the allocation process. Possible values
are:

= 0: allocation done;
= 1: allocation was already done in a previous call to sqppro allocate;
= 2: QPAL allocation failed;
= 3: SQPpro allocation failed;
= 4: some of the allocations were already done; allocation is probably correct is the previous

allocated variables had the appropriate dimensions.

data (O): variable of type sqppro data type (see section 2.1.2). The useful allocatable compo-
nents of the variable are allocated by sqppro allocate.

2.3.2 Setting default options with sqppro default options

The subroutine sqppro default options can be called to set the default options in a structure
of sqppro options type type, named options below. This call is normally made before setting

RT n° 0378

18 J. Ch. Gilbert

the various component of options to values that are appropriate to the optimization problem to
solve. It allows the user not to have to set all the componentws in options, when the default ones
are appropriate.

The options determined by sqppro default options and possibly modified after having called
that subroutine are overwritten by sqppro solve with the options given in the specification file
named sqppro.spc in the working directory. An example of specification file is provided in

sqppro directory /doc/sqppro.spc

with enough comments to be self-explanatory.

subroutine sqppro default options (options)

options (O): variable of type sqppro options type (see section 2.1.3), which contains the default
options.

2.3.3 Solving the problem with sqppro solve

The solver of the SQPpro package is sqppro solve. The list of its arguments is rather short,
because these have been gathered in the structures data, info, options, and user. Here is the
subroutine definition statement.

subroutine sqppro solve (simul, x, lm, data, info, options, user)

simul: generic name of the user-supplied simulator: see section 2.2 for more details. This name
can be modified, but must be declared external in the subroutine calling sqppro solve.

x (IO): double precision array of dimension n. It is the vector of variables x = (x1, . . . , xn) to
optimize.

• On entry, it is an initial guess of the solution to (PEI). It is taken as starting point by
sqppro solve. This point need not be feasible.

• On return, when info%info = 0 (see section 2.1.4), it is the optimal solution x found by
sqppro solve.

lm (IO): double precision array of dimension n + mI + mE . It is the dual variable or KKT
multiplier associated with the constraints of (PEI). The first n components are associated
with the bounds on x; the next mI components are associated with the inequality constraints
lI 6 cI(x) 6 uI ; and the last mE components are associated with the equality constraints
cE(x) = 0. The multiplier λB∪I associated with the bound constraints is actually the difference

λB∪I := λu
B∪I − λl

B∪I

between the multiplier λu
B∪I associated with the upper bound and the multiplier λl

B∪I asso-
ciated with the lower bound. Since li < ui, either λu

i or λl
i vanishes, or both. Therefore, one

can recover λu
B∪I and λl

B∪I by

λu
B∪I = λ+

B∪I and λl
B∪I = λ−

B∪I .

If there is no constraint (no bounds on x, mI = 0, and mE = 0) and lm is an allocated array,
it may not be allocated (in gfortran); sqppro solve will not use it.

INRIA

SQPpro – a nonlinear optimization solver 19

• On entry, lm is an initial guess of the dual solution to (PEI). This vector can just be
initialized to zero, when one has no idea of the dual solution (this is often the case).

• On return, when info%info = 0 (see section 2.1.4), lm is the vector of optimal multipliers

λ found by sqppro solve.

data (IO): this is a variable of Fortran-2003 type sqppro data type, a derived public type that is
defined in the module sqppro mod. It must be used to give data on problem (PEI) on entry in
sqppro solve and during the run at the generated iterates. See section 2.1.2 for a description
of its components.

info (O): this is a variable of Fortran-2003 type sqppro info type, a derived public type that
is defined in the module sqppro mod. The components of info contain information on prob-
lem (PEI) and on the course of the run. See section 2.1.4 for a description of its components.

options (I): this is a variable of Fortran-2003 type sqppro options type, a derived public type
that is defined in the module sqppro mod. The components of options are used to tune the
behavior of the solver, by giving them a particular value before calling sqppro solve. See
section 2.1.3 for a description of its components.

user (I): this is a variable of Fortran-2003 type sqppro user type, a derived public type that is
defined in the module sqppro mod. The components of user are neither used nor modified by
sqppro solve. They are considered as user variables and are transmitted to the simulator.
See section 2.1.5 for a description of its components.

2.3.4 Calling sequence

We summarize below the structure of a program that uses sqppro solve to solve a nonlinear
optimization problem. We assume for simplicity that all the instructions are in the same program
unit.

1. Specification of the use of the SQPpro module sqppro mod:

use sqppro_mod

If some of the public parameters of sqppro mod, like bfgs or lbfgs, are in conflict with your
own variables, you can rename them. For example to rename bfgs into sqppro bfgs and
lbfgs into sqppro lbfgs, write instead

use sqppro_mod, sqppro_bfgs => bfgs, &

sqppro_lbfgs => lbfgs

2. Declare the variables n, nb, mi, me, h type, h mys, fout, plevel, flag, and data, and set
them (except data, which has non-allocated components). Then allocate the useful allocatable
components of data by

call sqppro_allocate (n,nb,mi,me,h_type,h_mys,fout,plevel,flag,data)

The parameter flag should be nonzero on return from sqppro allocate. See section 2.3.1
for more information.

3. You can now fill in the constant array components of the variable data (see section 2.1.2 for
a descritption of its components), namely

data%lb = ...

data%ub = ...

data%li = ...

data%ui = ...

RT n° 0378

20 J. Ch. Gilbert

These will not be modified by sqppro solve. Note that data%n, data%nb, data%mi, and
data%me are set in sqppro allocate with the corresponding values given to its arguments.

4. Declare the variable user (this is an argument of the solver sqppro solve and the simulator,
see sections 2.1.5, 2.2, and 2.3.3). Set it if this is appropriate, i.e., if values must be transmitted
to the simulator through the SQPpro solver.

5. Declare and initialize the primal variable x = x ∈ R
n and the constraint multiplier lm = λ ∈

R
n+mI+mE .

6. It is asked to call the simulator simul (section 2.2), before calling the solver sqppro solve,
in order to fill in the variable components of data:

indic = 4

call simul (indic, x, data, user)

The variable indic should be > 0 on return from this simulation.

7. Set in options the options of the solver that should not have the default value given by
sqppro allocate:

call sqppro_default_options (options)

options%plevel = 5

...

The options that have been set in the specification file sqppro.spc in the working directory
(if any) will prevail on those set here.

8. The solver sqppro solve can now be called:

call sqppro_solve (simul, x, lm, data, info, options, user)

See section 2.3.3 for the details.

2.4 Fine tunings

2.4.1 Setting the precision of the QP solver

The QP solver QPAL [6] used by SQPpro at each iteration implements an iterative process that
cannot solve the QP’s (1.3) with an arbitrary precision (because of rounding errors). How to
specify the precision to which the QP’s must be solved is a delicate task, which is monitored by
various options that we now discuss (see section 2.1.3 for the list of the possible options). A fine
tuning of these options is crucial for getting the best of the SQPpro solver on difficult problems.

There are actually two ways of controlling the precision of the QP solver; they are selected by
the QP precision identificator option

qp_precision_id

Either qp precision id = fixed (a parameter provided by the sqppro mod module), in which
case the QP’s are solved with a fixed specified precision at each SQP iteration, or qp precision

id = variable (another parameter provided by the sqppro mod module), in which case the QP’s
are solved with a precision that depends on the SQP iteration. Note that in both cases, SQPpro

may require a possibly more important precision for the QP solution than the one specified by the
options described here, in order to ensure that the computed direction is a descent direction of
the merit function; when the option plevel is > 4, this situation is indicated in the output by the
phrase

INRIA

SQPpro – a nonlinear optimization solver 21

QP solve (with more stringent accuracy)

if such a more precise direction cannot be found by the QP solver, SQPpro stops mentioning that
the QP solver failed. We now discuss the two possibilities specifiable by the option qp precision

id.
Using fixed precision (qp precision id = fixed) is probably adequate for small problems or

problems for which a rather crude solution is searched. In this case, the following two options are
used for controlling the QP precision:

• qp tol glan specifies the absolute precision in the norm of the gradient of the QP Lagrangian
(the used norm is specified by the option qp norm);

• qp tol feas; specifies the absolute precision in the norm of the QP feasibility (the used norm
is specified by the option qp norm).

Using variable precision (qp precision id = variable) is often more appropriate for large-
scale problems, since this option usually yields a faster run (because the QP’s are solved inexactly
when the iterates are far from a solution) and makes it possible to get the best precision on the
solution of the nonlinear problem (1.1). In the variable precision case, the following two options
are used for controlling the QP precision:

• qp forcing factor must be set to a number in the open interval (0, 1); the QP solution is
more precise when that number is closer to zero, but the precision is set relatively to the one
obtained on the nonlinear problem (1.1) at the current iteration, so that the QP solution is
required to be more precise when the iterate (xk, λk) approaches the primal-dual solution to
the nonlinear problem;

• qp tol glan specifies the absolute precision in the norm of the gradient of the QP Lagrangian
(the used norm is specified by the option qp norm); this value is necessary with the current
version of the QPAL solver, which uses an augmented Lagrangian (AL) approach and must
minimize completely (i.e., up to the precision given by qp tol glan) the QP Lagrangian at
each AL iteration.

The solution offered in SQPpro 0.5 is not completely satisfactory, however, since the best way of
controlling the precision of the solution computed by QPAL has not been completely clarified. In
particular, it is still necessary to specify with the option qp tol glan the precision to which the AL
must be minimized at each QPAL iteration. A too small value may lead to failure because the AL
cannot be minimized at the required precision and a too large value may lead to the impossibility
to satisfy the QP constraints.

3 Current limitations and perspectives

We list below the limitations of the software SQPpro we are aware of. The list is not comprehen-
sive.

• The solver cannot deal with incompatible linearized constraints in the osculating tangent
problem (1.3). This is intended to be fixed by shifting. The use of the Byrd-Omojokun trust
region globalization technique also gives a solution to this difficulty.

• The solver can be used several times in the same program, provided the dimensions of the
problems to solve are identical.

• Remedies to the Maratos effect have not been implemented yet.

• A true truncated Newton algorithm must still be implemented. This would require that
the QPAL solver could provide a solution with a prescribed precision with respect to the
Lagrangian gradient norm and to feasibility.

RT n° 0378

22 J. Ch. Gilbert

The following features are intended to be implemented in a near future. The list is not compre-
hensive.

• Updated Cholesky factorizations for solving linear systems (presently a conjugate gradient
solver is used).

• Reverse or socket communication.

• Globalization by trust regions.

• Possibility to use second derivatives.

• Parallelisation of the loops with OpenMP directives [9].

References

[1] I. Bongartz, A.R. Conn, N.I.M. Gould, Ph.L. Toint (1995). CUTE: Constrained and unconstrained
testing environment. ACM Transactions on Mathematical Software, 21, 123–160. 5

[2] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, C. Sagastizábal (2006). Numerical Optimization – Theo-

retical and Practical Aspects (second edition). Universitext. Springer Verlag, Berlin. 4, 5

[3] F. Delbos, J.Ch. Gilbert (2005). Global linear convergence of an augmented Lagrangian algorithm for
solving convex quadratic optimization problems. Journal of Convex Analysis, 12, 45–69. 5

[4] F. Delbos, J.Ch. Gilbert, R. Glowinski, D. Sinoquet (2006). Constrained optimization in seismic
reflection tomography: a Gauss-Newton augmented Lagrangian approach. Geophysical Journal Inter-

national, 164, 670–684. 5

[5] Gfortran. http://gcc.gnu.org/wiki/GFortran. 4

[6] J.Ch. Gilbert (2009). QPAL – A solver of convex quadratic optimization problems, using an augmented
Lagrangian approach – Version 0.6.1. Rapport Technique 0377, INRIA, BP 105, 78153 Le Chesnay,
France.
http://www-rocq.inria.fr/estime/modulopt/optimization-routines/qpal/qpal.html. 5, 6, 20

[7] J.Ch. Gilbert, X. Jonsson (2008). LIBOPT – An environment for testing solvers on heterogeneous
collections of problems. Submitted to ACM Transactions on Mathematical Software. 6

[8] N.I.M. Gould, D. Orban, Ph.L. Toint (2003). CUTEr (and SifDec), a Constrained and Uncon-
strained Testing Environment, revisited. ACM Transactions on Mathematical Software, 29, 373–394.
http://hsl.rl.ac.uk/cuter-www/interfaces.html . 5

[9] OpenMP Architecture Review Board (2008). OpenMP Application Program Interface.
http://www.openmp.org/mp-documents/spec30.pdf . 22

Index

‖ · ‖QP (QP optimality norm), 13

bfgs, see public parameter
bin, see directory

complementarity, 4, 12
constraint

bound, 3
equality, 3
implicit, 16
inequality, 3

constraint Jacobian
identificator, 9

COPYRIGHT, 5

CUTEr, 5
cuter, see directory

dense, see matrix
dense, see public parameter
direct communication, 15
directory

bin, 5
cuter, 5
doc, 5
example, 5
libopt, 6
mod, 6
qpal, 7

INRIA

http://gcc.gnu.org/wiki/GFortran
http://www-rocq.inria.fr/estime/modulopt/optimization-routines/qpal/qpal.html
http://hsl.rl.ac.uk/cuter-www/interfaces.html
http://www.openmp.org/mp-documents/spec30.pdf

SQPpro – a nonlinear optimization solver 23

qpal directory , 7
sqppro directory , 6, 18
src, 6

doc, see directory

example, see directory

feasibility, 4, 12
feasible

point, 4, 18
set, 4

file
sqppro-qp.txt, 12
sqppro.spc, see specification file

fixed, see public parameter
Fortran 2003, 4

gfortran, 4

Hessian
identificator, 8

Hessian type, 16

KKT conditions
tolerances, 12, 13

lbfgs, see public parameter
lbfgs dir, see public parameter
lbfgs inv, see public parameter
Libopt, 6
libopt, see directory

matrix
dense, 4
sparse, 4

mod, see directory
module

sqppro mod, 7, 19
multiplier, 4, 19

norm, see ‖ · ‖QP

objective, 3
optimality (proper), 4, 12
optimality conditions, 4
option

dcmin, 11
dxmin, 11
fout, 11
inf, 12
kkt tol, 12
max iter, 12
plevel, 12
qp feas decr factor, 12
qp forcing factor, 13, 21

qp max alit, 12
qp max avpd, 13

qp max cgit, 12
qp max hvpd, 12
qp norm, 13, 21
qp precision id, 13, 20

qp tol feas, 13, 21

qp tol glan, 13, 21, 21

osculating quadratic problem, 4

primal-dual algorithm, 4
problem

osculating quadratic –, 4
(PEI), 3

public derived type
sqppro constraint type, 9
sqppro data type, 9–10
sqppro hessian type, 8–9
sqppro info type, 13–14
sqppro options type, 11–13
sqppro sparse type, 7–8
sqppro user type, 15

public parameter
bfgs, 17
dense, 8, 9
fixed, 13
lbfgs, 17
lbfgs dir, 8
lbfgs inv, 8
sparse, 9
variable, 13

public subroutine
sqppro default options, 17–18, 20
sqppro allocate, 16–17, 19
sqppro solve, 18–19, 20

QP
fixed precision, 13, 21

precision identificator, 13, 20

variable precision, 13, 21

qpal, see directory
qpal directory , see directory

sequence, 8
simul, see subroutine
simulator, see also subroutine simul, 10, 14, 15
solution, 4
sparse, see matrix
sparse, see public parameter
specification file, 5, 16, 18

sqppro-qp.txt, see file
sqppro.spc, see specification file
sqppro allocate, see public subroutine
sqppro constraint type, see public derived type
sqppro data type, see public derived type
sqppro default options, see public subroutine
sqppro directory , see directory
sqppro hessian type, see public derived type

RT n° 0378

24 J. Ch. Gilbert

sqppro info type, see public derived type
sqppro mod, see module
sqppro options type, see public derived type
sqppro solve, see public subroutine
sqppro sparse type, see public derived type
sqppro user type, see public derived type
src, see directory

stationary point, 4
subroutine

simul, 15–16

truncated Newton method, 13

variable, see public parameter

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

	Presentation
	Scope of the program
	Detecting optimality
	Brief description of the method
	The package
	Description
	Installation

	Usage
	Data structures
	Data types
	Problem data
	Solver options
	Solver diagnostics
	User data

	Simulator
	Running the solver
	Memory allocation with sqppro_allocate
	Setting default options with sqppro_default_options
	Solving the problem with sqppro_solve
	Calling sequence

	Fine tunings
	Setting the precision of the QP solver

	Current limitations and perspectives
	References
	Index

