
The module M1QN3

Version 3.3 (October 2009)

Jean Charles Gilbert† and Claude Lemaréchal‡

1 Goal of the software 1

2 Description of the method 3

2.1 Brief description . 3
2.2 Algorithmic details . 4

3 Usage 5

3.1 The solver . 5
3.2 The simulator . 11

4 Implementation remarks 12

4.1 Calling sequence in direct communication 12
4.2 Calling sequence in reverse communication 13
4.3 More on some arguments 15
4.4 More on some output modes 15
4.5 Cold start and warm restart 16
4.6 Usage for very large scale problems 17

5 Frequently asked questions 19

5.1 Preconditioning the problem 19
5.2 Dealing with fixed variables 19

References 20

Index 20

1 Goal of the software

The module m1qn3 is a Fortran-77 software that can solve a large scale unconstrained
minimization problem of the form:

min {f(x) : x ∈ R
n},

where the function f : R
n → R is supposed to be smooth (continuously differen-

tiable). M1qn3 has solved problems with n as large as 108. The solver requires
evaluations of the function f and its gradient g, computed for a given inner product,

†INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France. Tel: (33) [0]1 39 63 55 24.
E-mail: Jean-Charles.Gilbert@inria.fr.

‡INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 Montbonnot, France. Tel: (33) [0]4 76 61
52 02. E-mail: Claude.Lemarechal@inria.fr.

1

denoted by 〈·, ·〉. The gradients are used to form a limited memory quasi-Newton
approximation of the Hessian of f . The decrease in f is enforced by the Wolfe
line-search.

The software can be used either with direct or reverse communication (these
terms are used throughout the presentation of the software; the reader not familiar
with this terminology can find clarification in sections 4.1 and 4.2).

In principle, m1qn3 is intended for problems with a large number n of variables,
but it can also be suitable for small or medium scale problems. The method used to
solve the problem is a limited memory (or variable-storage) quasi-Newton method.
This type of methods allows m1qn3 to take advantage of the storage that is declared
available in core memory. However, it cannot really be ascertained that, when
more storage is used, the algorithm becomes more efficient and the decrease in the
objective function f more effective (see section 4.3). The software has two scaling

modes: the Scalar Initial Scaling mode (or SIS mode) and the Diagonal Initial

Scaling mode (or DIS mode). The latter should normally give better results than
the former, but it requires one additional vector of storage.

The module m1qn3 includes of the following subroutines:

– m1qn3: main subroutine that has to be called and that calls m1qn3a after
having structured the available memory,

– m1qn3a: optimization subroutine,
– dd, dds: subroutines that compute the descent direction,
– mlis3, ecube: subroutines realizing the line-search,
– mupdts, ystbl: special subroutines for very large problems.

On his part, the user has to supply:

– a program that calls the optimization module m1qn3,
– (used only in direct communication) a subroutine, called the simulator , and

named simul by m1qn3, that computes the value of f and its gradient g (as-
sociated with the inner product 〈·, ·〉) at a given point,

– a subroutine, named prosca by m1qn3, that computes the inner product 〈u, v〉
of two vectors of u, v ∈ R

n,
– (used only in DIS mode) a subroutine, named ctonb by m1qn3, that gives the

coordinates y in an orthonormal basis (for the inner product prosca) of a
vector whose coordinates in the canonical basis of R

n are x,
– (used only in DIS mode) a subroutine, named ctcab by m1qn3, that does the

operation converse to ctonb: it gives the coordinates x in the canonical basis
of R

n of a vector whose coordinates in the orthonormal basis are y.

The standard distribution also provides the subroutines simul rc, euclid, ctonbe,
and ctcabe. The subroutine simul rc plays the role of simul in reverse communi-
cation (it is an empty subroutine). The subroutines euclid, ctonbe, and ctcabe

can play the role of prosca, ctonb, and ctcab inside m1qn3, when the Euclidean
(or dot) product is used to compute the gradient of f , i.e., when 〈u, v〉 = u⊤v.

2

2 Description of the method

2.1 Brief description

In SIS mode, m1qn3 is an implementation of an algorithm proposed by Nocedal [3],
while the DIS mode uses a diagonal preconditioner improving the algorithm. Both
scaling modes are based on the same principles, which we now describe.

At each iteration k, k ≥ 1, a descent direction dk of f at the current iterate xk

is determined. This direction has the form dk = −Wkgk, where Wk is the current
approximation of the inverse Hessian ∇2f(xk)

−1 of f at xk and gk := ∇f(xk) is
the gradient of f at xk, computed for the inner product 〈·, ·〉. Then, a step-size αk

is determined along the direction dk by a line-search procedure (mlis3). The next
iterate has the form: xk+1 = xk + αkdk.

When k ≥ m + 1, the approximation Wk of the inverse Hessian is obtained by
doing m updates of a positive definite diagonal matrix Dk, using the inverse BFGS
formula. For this, the following m pairs of vectors are used in order:

{(yi, si) : k − m ≤ i ≤ k − 1}, (2.1)

where si := xi+1 − xi is the step and yi := gi+1 − gi is the change in the gradient.
The matrix Wk is not stored in memory but instead the product Wkgk is formed
from the pairs (2.1) by an efficient appropriate algorithm. The integer parameter
m is determined by m1qn3 in order to use as much as possible the storage declared
available in core memory (see the meaning of the argument ndz in section 3).

The user has the possibility to improve the conditioning of the problem by using
an adapted inner product 〈·, ·〉, the one realized by the subroutine prosca. Let us

denote by ‖ · ‖ := 〈·, ·〉1/2 the norm associated with that inner product. Let us
insist on the fact that this inner product must be the one used by the simulator to
compute the gradient g(x) of f at x. Indeed, for m1qn3, the derivative of f at x
along the direction h ∈ R

n is given by:

f ′(x) · h = 〈g(x), h〉.

The BFGS formula used by m1qn3 is adapted to this inner product (see section 2.2).
Very often, the Euclidean (or dot) inner product, defined by

〈x, y〉 := x⊤y =
n
∑

i=1

xiyi, (2.2)

is used. In that case, the gradient of f is formed of the partial derivatives ∂f/∂xi,
i = 1, . . . , n.

The way of computing the starting matrix Dk depends on and characterizes the
scaling mode of m1qn3. In the Scalar Initial Scaling (SIS) mode, Dk has the form
δk−1I, where I is the identity matrix and

δk−1 :=
〈yk−1, sk−1〉

‖yk−1‖2
(2.3)

3

aims at giving Wk a good scaling. In the Diagonal Initial Scaling (DIS) mode, Dk

is a diagonal matrix obtained from Dk−1 by using a diagonal update formula (see
section 2.2 for the details). The first update (to obtain D2) uses δ1I as starting
matrix. The notion of diagonal matrix is defined with respect to the given inner
product and the orthonormal basis (ei)1≤i≤n.

In DIS mode, an implicit reference is made to an orthonormal basis of R
n for

the inner product 〈·, ·〉. Let (ei)1≤i≤n denote this basis. If 〈x, y〉 = x⊤L⊤Ly with L
nonsingular and if (êi)1≤i≤n is the canonical basis of R

n, i.e., êi = (0, . . ., 0, 1, 0,
. . ., 0) with 1 in the ith position, you can take ei = L−1êi, for 1 ≤ i ≤ n. Luckily,
this basis needs not be stored, but you have to provide subroutines that give the
coordinates in the (ei)1≤i≤n basis of a vector whose coordinates in the (êi)1≤i≤n

basis are given (subroutine ctonb) and vice-versa (subroutine ctcab). With the
inner product and the orthonormal basis given above, ctonb must compute y := Lx
and ctcab must compute x := L−1y. If 〈·, ·〉 is the Euclidean inner product, ctonb
has just to copy x in y and ctcab will copy y in x.

If N and L denote respectively the number of iterations and the total number
of step-size trials done during a particular run, then the subroutine prosca is called
4 + 7N + L times in the two scaling modes and the subroutines ctonb and ctcab

are called respectively 3N and N times in DIS mode.

The methods and numerical results are given and discussed by Gilbert and Le-
maréchal [1]. See also the numerical experiments by Liu and Nocedal [2].

2.2 Algorithmic details

The BFGS formula used in the software updates a matrix W to Ŵ using two vectors
y and s in R

n by:

Ŵ =

(

I −
s ⊗ y

〈y, s〉

)

W

(

I −
y ⊗ s

〈y, s〉

)

+
s ⊗ s

〈y, s〉
.

In this formula, u ⊗ v is the linear operator that to d ∈ R
n associates 〈v, d〉u ∈ R

n.
This makes the formula adapted to the inner product 〈·, ·〉. We denote it by Ŵ =
bfgs(W,y, s).

When k ≥ m + 1, given the diagonal matrix Dk (its computation is discussed
below), the matrix Wk used to form the search direction dk = −Wkgk is obtained as
follows:

W 0
k := Dk,

W i+1
k := bfgs(W i

k, yk−m+i, sk−m+i), for 0 ≤ i ≤ m − 1,

Wk := W m
k .

Let us summarize this scheme by: Wk := bfgs
k−1
k−m(Dk). When 1 ≤ k ≤ m, the

matrix Wk depends on how the optimizer is tuned by imode(2). For a cold start
(imode(2) = 0), W1 = I and, for 2 ≤ k ≤ m, Wk is obtained by Wk := bfgs

k−1
1 (Dk).

For a warm restart (imode(2) = 1), Wk is obtained by: Wk := bfgs
k−1
k−m(Dk), in

which (yi, si) with index i ≤ 0 refers to a pair of a previous run, stored in the working
zone dz.

4

As mentioned in section 2.1, SIS and DIS modes differ by the way the diagonal
matrix Dk is computed. In SIS mode, Dk = δk−1I for k ≥ 2, while in DIS mode,
Dk is a diagonal matrix updated by the following formula:

D
(i)
k+1 =

(

〈Dkyk, yk〉

〈yk, sk〉D
(i)
k

+
〈yk, ei〉

2

〈yk, sk〉
−

〈Dkyk, yk〉〈sk, ei〉
2

〈yk, sk〉〈D
−1
k sk, sk〉(D

(i)
k)2

)−1

.

The subroutine m1qn3a uses the subroutine mlis3 from modulopt for the line-
search. The step-size αk is determined to satisfy the following two Wolfe’s conditions:

f(xk+αkdk) ≤ f(xk) + ω1αk〈gk, dk〉,

〈g(xk+αkdk), dk〉 ≥ ω2〈gk, dk〉.

It is necessary to have 0 < ω1 < 1/2 and ω1 < ω2 < 1. We took ω1 = 0.0001 and
ω2 = 0.9. These constants are set as parameter (rm1 for ω1 and rm2 for ω2) in
m1qn3a.

3 Usage

In the description of the subroutines below, an argument flagged with (I) means
that it is an input variable, which has to be initialized before calling m1qn3; an
argument flagged with (O) means that it is an output variable, which only has a
meaning on return from m1qn3; and an argument flagged with (IO) is an input-

output argument, which has to be initialized and that has a meaning after the call
to m1qn3. Arguments of the type (O) and (IO) are generally modified by m1qn3 and
therefore should not be Fortran-77 constants!

3.1 The solver

Here is the declaration of the solver m1qn3.

subroutine m1qn3 (simul, prosca, ctonb, ctcab, n, x, f, g,

dxmin, df1, epsg, normtype, impres, io,

imode, omode, niter, nsim, iz, dz, ndz,

reverse, indic, izs, rzs, dzs).

simul: In direct communication, simul is the name of the simulator inside m1qn3.
The simulator is the subroutine that computes the value of the function f and
the value of its gradient g at the current iterate. When m1qn3 needs these
values, it executes the instruction

call simul (...)

Hence the actual name of the simulator must be declared external in the
program calling m1qn3 and given as actual argument when calling m1qn3. For
example, if the actual name of the simulator is mysimul, m1qn3 will be called by

5

external mysimul

...

call m1qn3 (mysimul, ...)

See section 3.2, for more information on the simulator, in particular on its
arguments.

In reverse communication, a simulator is not needed, since the user can or-
ganize the computation of f and g in an arbitrary manner (this is one of the
advantage of reverse communication, see section 4.2). The empty subroutine
simul rc, provided in the standard distribution, should be used as actual argu-
ment in reverse communication (it is never used actually). The calling sequence
is then

external simul_rc

...

call m1qn3 (simul_rc, ...)

Section 4.2 tells you more on the use of reverse communication.

prosca: Calling name of the subroutine that computes the inner product 〈u, v〉 of
two vectors u and v of R

n. This subroutine is supposed to have the following
declaration statement:

subroutine prosca (n, u, v, ps, izs, rzs, dzs).

Its actual name has to be declared external in the program calling m1qn3. The
arguments n, izs, rzs and dzs have the same meaning as below. The arguments
u and v are two double precision arrays of dimension n. The inner product
of these vectors is supposed to be returned in the double precision variable
ps.

ctonb (used only in DIS mode): Calling name of the subroutine that gives the co-
ordinates (yi)1≤i≤n in the basis (ei)1≤i≤n of a vector whose coordinates in the
basis (êi)1≤i≤n are (xi)1≤i≤n (see section 2.1). This subroutine is supposed to
have the following declaration statement:

subroutine ctonb (n, x, y, izs, rzs, dzs).

Its actual name has to be declared external in the program calling m1qn3.
The arguments n, izs, rzs and dzs have the same meaning as below. The
arguments x and y are two double precision arrays of dimension n.

ctcab (used only in DIS mode): Calling name of the subroutine that does the op-
eration reverse to the one done by ctonb, so that calling ctonb and next ctcab
will not change the value of x: it gives the coordinates (xi)1≤i≤n in the basis
(êi)1≤i≤n of a vector whose coordinates in the basis (ei)1≤i≤n are (yi)1≤i≤n. It
is supposed to have the following declaration statement:

subroutine ctcab (n, y, x, izs, rzs, dzs).

6

Its actual name has to be declared external in the program calling m1qn3. The
arguments are similar to those of ctonb.

n (I): Positive integer variable. It gives the dimension n of the problem.

x (IO): Double precision array of dimension n. On entry, it is supposed to be
the value x1 of the initial point. On return, it is the value of the final point
calculated by m1qn3.

f (IO): Double precision variable. On entry, it is supposed to be the value of the
function f at the initial point x1. This value will be obtained by calling the
simulator simul before calling m1qn3. On return, it is the value of f at the final
point.

g (IO): Double precision array of dimension n. On entry, it is supposed to be the
value of the gradient of f at the initial point x1. This value will be obtained
by calling the simulator simul before calling m1qn3. On return with omode = 1
(see below), it is the value of the gradient of f at the final point. For other
output modes, the value of g is undetermined.

dxmin (I): Positive double precision variable. This argument gives the resolu-
tion in x for the l∞ norm: two points whose distance in the sup-norm is less
than dxmin will be considered as indistinguishable by the optimizer (in fact by
mlis3).

df1 (I): Positive double precision variable. This argument gives an estimation of
the expected decrease in f during the first iteration. See section 4.3 for more
details.

epsg (IO): Double precision variable, with value in]0, 1[on entry. On entry,
epsg gives the precision of the stopping criterion that is based on the norm of
the gradient. Indeed, the optimizer considers that the convergence has been
obtained at xk and stops with omode = 1, if

ǫk :=
|||gk|||

|||g1|||
< epsg,

where, g1 and gk are the gradients of f at the initial and current points respec-
tively and ||| · ||| is the norm specified by the argument normtype. If such is the
case, epsg = ǫk on return.

normtype (I): Variable of type character*3 that specifies the norm ||| · ||| that is
used to test optimality (see the argument epsg). It can be one of the following
strings:

– ‘two’ denotes the Euclidean or ℓ2 norm (|||v||| = (
∑

i v
2
i)

1/2),
– ‘sup’ denotes the sup or ℓ∞ norm (|||v||| = maxi |vi|),
– ‘dfn’ denotes the norm ‖ · ‖ associated with the scalar product defined in the

user-supplied subroutine prosca (|||v||| = 〈v, v〉1/2).

It is this norm that is used to print the gradient norms.

impres (I): Integer variable that controls the outputs on channel io.

= 0: No print.

≥ 1: Initial and final printouts, error messages.

7

≥ 3: One line of printout per iteration that gives: the index k of the iteration
going from the point xk to the point xk+1, the number of time the sim-
ulator has been called, the value f(xk) of the objective function and the
directional derivative 〈gk, dk〉.

≥ 4: Printouts from mlis3 during the line-search: see the write-up on mlis3 in
modulopt library.

≥ 5: Some more printouts at the end of iteration k: information on the matrix
update (the factor δk for the SIS mode, see (2.3); the fitting factor and
the look of the diagonal initial scaling matrix Dk for the DIS mode), the
value ǫk+1 of the stopping criterion, and the angle between −gk and the
search direction dk.

io (I): Integer variable that will be taken as the channel number for the outputs,
i.e., outputs are written by:

write (io,...) ...

imode (I): Integer array of dimension 3 that specifies the input mode of m1qn3 and
tunes its behavior. The following values are meaningful.

imode(1) determines the scaling mode of m1qn3.

M1qn3 will run in DIS mode if imode(1) = 0, meaning that the matrix
Wk is formed by updating m times a dynamically updated diagonal matrix
Dk.

M1qn3 will run in SIS mode if imode(1) = 1, meaning that the matrix
Wk is formed by updating m times a variable multiple of the identity
matrix.

The DIS mode is generally more efficient than the SIS mode and is
recommended.

imode(2) specifies the starting mode of m1qn3.

A cold start is performed if imode(2) = 0: the first descent direction
is then −g1. If you have not stored the appropriate information in iz and
dz in a previous run, set imode(2) to 0.

A warm start is performed if imode(2) = 1: the first descent direction
is −W1g1, where W1 is the matrix formed from the (y, s) pairs (and the
diagonal matrix, in DIS mode) stored in the double precision working
zone dz. The integer working zone iz helps m1qn3 decoding the infor-
mation in dz. This option can only be used if the appropriate data has
been stored in iz and dz in a previous run.

See section 4.5 for more details.

imode(3) specifies in direct communication when the simulator has to be called
with indic = 1 or, similarly in reverse communication, when m1qn3 re-
turns to the calling subroutine with indic = 1. As explained in section 3.2,
when called with indic = 1, the simulator can do anything but changing
the value of its arguments n, x, f , and g (a similar rule must be respected
by the calling program in reverse communication). The simulator can take
this opportunity to do any regular computation, printout, or plot.

When imode(3) = 0, the simulator is never called with indic =

8

1. When imode(3) > 0, the simulator is called with indic = 1 every
imode(3) iteration(s), starting at iteration 1. Hence, when imode(3) = 1,
the simulator is called every iteration, which is a way for the simulator of
being informed when a new iteration starts (recall that there may be an
unpredicted number of simulations per iteration).

omode (O): Integer variable that specifies the output mode of m1qn3. The following
values are meaningful.

= 0: The simulator asks to stop by returning the value indic = 0.

= 1: This is the normal way of stopping for m1qn3: the test on the gradient
is satisfied (see the meaning of epsg).

= 2: One of the input arguments is not well initialized. This can be:

– n ≤ 0, niter ≤ 0, nsim ≤ 0, dxmin ≤ 0.0 or epsg 6∈]0, 1[,
– ndz < 5n + 1 (in SIS mode) or ndz < 6n + 1 (in DIS mode): not

enough storage in memory,
– the contents of iz is not correct for a warm restart,
– the starting point is almost optimal (the norm of the initial gradient

is less than 10−20).

= 3: The line-search is blocked on tmax = 1020 (see section 4.4 and the
documentation on mlis3 in modulopt library).

= 4: The maximal number of iterations is reached.

= 5: The maximal number of simulations is reached.

= 6: Stop on dxmin during the line-search (see section 4.4).

= 7: Either 〈g, d〉 is nonnegative or 〈y, s〉 is nonpositive (see section 4.4).

For additional information and comments, see section 4.

niter (IO): Positive integer variable. On entry, it gives the maximal number of
iterations accepted. On return, niter is equal to the number of iterations really
done.

nsim (IO): Positive integer variable. On entry, it gives the maximal number of
simulations accepted. On return, nsim is equal to the number of simulations
really done.

iz (IO): Integer array of dimension 5. It is the address of a working array for
m1qn3.

dz (IO): Double precision array of dimension ndz. It is the address of a working
array for m1qn3.

ndz (I): Positive integer variable. It gives the dimension of the working area dz

(see also section 4.3).

In SIS mode, m1qn3 needs a working area formed of at least 3 vectors of
dimension n (dk, gk and an auxiliary vector) and it needs for each update one
scalar and two vectors: y〈y, s〉−1/2 and s〈y, s〉−1/2 (see section 2.1). Therefore,
if m is the desired number of updates for forming the matrix Wk, it is necessary
to have:

ndz ≥ 3n + m(2n + 1).

9

In fact, the number m of updates is determined by m1qn3, which takes

m =

⌊

ndz− 3n

2n + 1

⌋

, (3.1)

where, ⌊·⌋ refers to the floor operator (⌊x⌋ = i, when i ≤ x < i + 1 and i ∈ N).
This number has to be greater than or equal to 1. Therefore, if ndz is less than
5n + 1, m1qn3 stops with omode = 2.

On the other hand, in DIS mode, m1qn3 needs an additional vector of di-
mension n for storing Dk. So, take ndz ≥ 4n + m(2n + 1) and m ≥ 1. Then,
m1qn3 will set:

m =

⌊

ndz− 4n

2n + 1

⌋

. (3.2)

The above computation of m from ndz is irrelevant when m1qn3 is used as
described in section 4.6.

reverse (IO): Integer variable that is used to specify whether direct or reverse
communication is desired and, in the latter case, to communicate with the
call loop (see section 4.2 and figure 4.2 for the program flow chart on reverse
communication).

On entry in m1qn3, reverse

< 0: implies that m1qn3 will stop immediately using the instruction stop, to
prevent entering an infinite call loop in reverse communication, due to
the fact that the calling program has not left the call loop when m1qn3

returns a negative value,
= 0: indicates that m1qn3 has to work in direct communication,
= 1: indicates that m1qn3 has to work in reverse communication.

On return from m1qn3 in reverse communication, reverse

< 0: when m1qn3 has terminated, in which case the call loop must be inter-
rupted,

= 1: the call loop must be pursued.

See sections 4.1 and 4.2 for more details.

indic (IO) In reverse communication, m1qn3 returns to the calling program each
time it needs information on the problem (function/gradient values). The call-
ing program must then compute what is required by m1qn3 (sometimes using a
simulator, like in direct communication) and call back the solver in what can be
viewed as a call loop (see section 4.2 and figure 4.2 for the program flow chart on
reverse communication). The parameter indic normalizes the communication
between m1qn3 and the part of the program computing function and gradient.

On entry in m1qn3, the calling program can send a message to m1qn3, using the
following values of indic:

< 0: the computation of f and g required by m1qn3 on its last return was not
possible at the given x; in that case, m1qn3 divides the step-size by 10,
before calling the simulator again; this feature can be used when implicit
constraints are present, i.e., strict inequality constraints or inequalities
that are known to be inactive at the solution; by no way this feature can

10

handle inequality constraints that are active (satisfied with equality) at
the solution;

= 0: m1qn3 has to stop, for example because some events that m1qn3 cannot
understand (not in the field of optimization) has occurred;

> 0: the required computation has been done.

On return from m1qn3, the optimization solver sends a message depending on
the values of indic:

= 1: means that the calling program can do anything except changing the
values of indic, n, x, f, and g; this value of indic is used by m1qn3

every imode(3) iteration(s), when imode(3) > 0, and never, when
imode(3) = 0;

= 4: means that the calling program has to compute f and g, to put them
in f and g, and to call back m1qn3.

Note that these values of indic have the same meanings as those used in the
communication with the simulator (see section 3.2).

izs (I), rzs (I), dzs (I) (used only in direct communication): Addresses of inte-
ger, real, and double precision working areas respectively. M1qn3 does not
use them but passes their addresses to the subroutines simul, prosca, ctonb,
and ctcab so that they can be used in these subroutines.

3.2 The simulator

In direct communication, the simulator is the subroutine that computes the value
of the function f and the value of its gradient g at a given arbitrary point x. M1qn3
assumes that the subroutine is defined by the following statement:

subroutine simul (indic, n, x, f, g, izs, rzs, dzs).

The name simul of that subroutine can be changed. Its actual name must be
declared external in the program calling m1qn3 and must be given as the first
argument of m1qn3 (see section 3.1). Here is a description of the arguments of the
simulator.

indic (IO) integer value that monitors the communication between m1qn3 and the
simulator.

On entry, m1qn3 sends a message to the simulator by using one of the following
values of indic:

= 1: means that the simulator can do anything except changing the val-
ues of indic, n, x, f, and g; this value of indic is used by m1qn3

every imode(3) iteration(s), when imode(3) > 0, and never, when
imode(3) = 0;

= 4: means that the simulator has to compute f and g, and to put their
values in f and g, respectively.

On return, the simulator can send a message to m1qn3 by using one of the
following values of indic:

11

< 0: the computation of f and g required by m1qn3 on its last return was not
possible at the given x; in that case, m1qn3 divides the step-size by 10,
before calling the simulator again; this feature can be used when implicit
constraints are present, i.e., strict inequality constraints or inequalities
that are known to be inactive at the solution; by no way this feature can
handle inequality constraints that are active (satisfied with equality) at
the solution;

= 0: m1qn3 has to stop, for example because some events that m1qn3 cannot
understand (not in the field of optimization) has occurred;

> 0: the required computation has been done.

x (I): double precision array of dimension n; it is the value of the current iterate
(when indic = 1 on entry) or the point x at which f and g have to be computed
(when indic = 4 on entry);

f (O): double precision variable that will receive the computed value of f(x)
when indic = 4 on entry.

g (O): double precision array of dimension n that will receive the computed value
of g(x) when indic = 4 on entry.

izs, rzs, dzs addresses of integer, real, and double precision working areas
respectively defined in the program calling m1qn3, which does not use them.

4 Implementation remarks

4.1 Calling sequence in direct communication

With a direct communication protocol, the relevant part of the code using m1qn3 as
an optimization tool must be organized as in the flow chart of figure 4.1. In this

indicoptimization
loop

calling procedure
(first part)

m1qn3

calling procedure
(second part)

simulator

Figure 4.1: Direct communication flow chart

12

scheme, the user program calls m1qn3 with reverse = 0 and recovers the lead only
when the optimization routine has completed its job. On the other hand, each time
m1qn3 needs information on the problem to solve, it calls the simulator subroutine.
In figure 4.1, for clarity, we have represented by dashed blue boxes the parts of the
program that have to be written by the user of the optimization software; the single
red box represents m1qn3.

The instructions preceding the call to m1qn3 will include the following items:

1. the declaration in external of the following names: the name of the simulator
(named simul by m1qn3), the name of the subroutine doing the inner product
(named prosca by m1qn3) and the name of the subroutines doing the change
of basis (named ctonb and ctcab by m1qn3);

2. the calculation of the starting point x1;

3. the call to the simulator to compute f and g at x1;

4. the calculation of df1 and initialization of dxmin, epsg, impres, io, imode,
niter, nsim, ndz, and reverse (set to 0);

5. the reading of values for iz and part of dz from the appropriate area or device,
if a warm restart is performed (imode(2) = 1);

6. the call to m1qn3.

4.2 Calling sequence in reverse communication

With a reverse communication protocol, the relevant part of the code using m1qn3 as
an optimization tool must be organized as in the flow chart of figure 4.2. Here also,

driver

calling subroutine
(first part)

calling subroutine
(second part)

call
loop

optimization
loop

simulator

m1qn3

indic

indic
reverse

Figure 4.2: Reverse communication flow chart

the dashed blue boxes represent the parts of the program that have to be written by
the user of the optimization software, while the single red box represents the m1qn3

solver. In this scheme, the user program must contain a call loop, in a part of the

13

program sometimes called the driver. At each turn of this loop, m1qn3 is called and
is asked to do a single iteration. Once the optimization routine needs information
on the problem, it returns to the calling program, requiring the computation of the
function and gradient by setting indic = 4 (and reverse = 1). Then the user
program computes f and g, loops, and calls back m1qn3, using also indic to inform
the optimizer on the realization of the required computation or to ask it to stop1.
When the run is finished (for some reason specified by omode), m1qn3 returns with
reverse = −1, in which case the call loop must be interrupted (if m1qn3 is called
back with reverse < 0, the solver abruptly stops using the instruction stop to
avoid a possible infinite loop).

The two main advantages of reverse communication are that there is no need to
write a simulator and that it is easier to call m1qn3 from a language different from
Fortran-77.

The instructions preceding the driver include the following items:

1. the declaration in external of the following names: the name of the empty
simulator simul rc, the name of the subroutine doing the inner product
(named prosca by m1qn3) and the name of the subroutines doing the change
of basis (named ctonb and ctcab by m1qn3);

2. the calculation of the starting point x1;

3. the computation of f and g at x1;

4. the calculation of df1 and initialization of dxmin, epsg, impres, io, imode,
niter, nsim, and ndz;

5. the reading of values for iz and part of dz from the appropriate area or device,
if a warm restart is performed (imode(2) = 1);

6. setting reverse = 1 to indicate that reverse commnunication is required.

In Fortran-77, the call loop in the driver can be written as follows:

external simul_rc, ...

...

reverse = 1

1 continue

call m1qn3 (simul_rc,...,x,f,g,...,reverse,indic,...)

if (reverse.lt.0) goto 2

call simul (indic,n,x,f,g)

goto 1

2 continue

Above, we have assumed that the computation of f and g can be done in a subroutine
called simul.

1When the user decides to stop the iterations, he/she could bypass an additional call to m1qn3

with indic = 0. This, however, will spoil a subsequent call to m1qn3 (for a cold start or a warm
restart). It is therefore unadvisable.

14

4.3 More on some arguments

The value of df1 is used to obtain an estimate of the step-size at the first iteration,
which is taken equal to 2(df1)/‖g1‖

2. A good value for df1 can be the total decrease
in f up to its minimum or some fraction of this value. As a rule, a too large value
is not dangerous: the step-size is reduced by mlis3 in a few internal iterations. On
the other hand, an excessively small value of df1 could, due to rounding error, force
m1qn3 to stop with omode = 6 at the first iteration.

If the storage is sufficiently large, it is a good idea to choose ndz large enough to
have a large number m of updates: see Formulæ (3.1) and (3.2). It seems reasonable
to take m ≥ 2. However, numerical experiments (see [1] and [2]) have shown that it
is difficult to take full advantage of a large number of updates, especially since the
cpu time is increasing with m. A good compromise should be obtained by taking
m between 5 and 10.

4.4 More on some output modes

The output mode omode = 3 is very unlikely. On the one hand, the matrix Wk is
usually well scaled when the updates start with the identity matrix multiplied by
the factor given by (2.3). And, on the other hand, as soon as the number of updates
is larger than 2 or 3 and k ≥ m, the BFGS updates also scale Wk. Therefore, the
unit step-size is usually accepted by mlis3.

The output mode omode = 6 can have various origins.

• It can come from a mistake in the calculation of the gradient. This is likely to be
the case when the solver stops with that output mode after very few iterations.

• If the number of step-size trials at the last iteration is small, this can mean that
dxmin has been chosen too large. In that case, decreasing dxmin should have
the clear effect of increasing the number of iterations.

• It can also come from rounding error in the simulator. The precision on the op-
timal solution that can be reached by the solver depends indeed on the precision
of the simulator (the amount of rounding errors made in the computation).

It is worth noting that an inaccurate gradient may lead to a direction of search dk

that is no longer a descent direction of f at xk. Indeed, m1qn3 allows itself to build
search directions dk making with −gk an angle close to 90◦. This fact is essential
to have good convergence properties. Now, if the gradient is roughly calculated,
the angle between the true negative-gradient and dk could be larger than 90◦, in
which case dk will not be a descent direction and an output with omode = 6 will
occur. Therefore, it is important to compute the gradient carefully; in particular,
a finite-difference gradient is likely to yield less precise solution than a calculated
gradient.

The output mode omode = 7 is very unlikely. It can only be due to rounding
error.

15

4.5 Cold start and warm restart

By setting the input variable imode appropriately, you can get a cold start (imode(2)
= 0) or a warm restart (imode(2) = 1) of m1qn3. A cold start of the optimizer is the
usual way of using it. For example, the first time you use m1qn3, you can only call it
with imode(2) = 0. Now, when several optimization runs are done sequentially for
similar problems, it can be useful to use the information stored in the pairs (y, s)
and possibly in the preconditioning diagonal matrix D of a previous run to improve
the efficiency of the first iterations of the current run. This is what we mean by
doing a warm restart.

All the information needed by m1qn3 to build the preconditioner Wk is contained
in the working zones iz and dz. As we have just said, normally, the relevant infor-
mation is placed in these vectors by a previous call to m1qn3. This can be done in
the same run of a main program (sequence of calls to m1qn3) or by storing the data
on an auxiliary device between two runs. Note that the 5 integers in iz are crucial
for a correct warm restart, but that only a part of the elements in dz are meaningful
to this respect, namely the first 2nm elements in SIS mode and the first n(2m + 1)
elements in DIS mode.

For example, the following piece of program

epsg = 1.e-4

imode(1) = 0

imode(2) = 0

niter = 100

nsim = 100

call m1qn3 (mysimul,euclid,ctonbe,ctcabe,n,x,f,g,dxmin,

df1,epsg,normtype,impres,io,imode,omode,niter,

nsim,iz,dz,ndz,reverse,indic,izs,rzs,dzs)

will generate the same iterates as the next piece of program, where the optimization
phase is split in two parts, 5 iterations for the first call and 95 for the second, which
starts at the situation reached by the first call (imode(2) = 1):

epsg = 1.e-4

imode(1) = 0

imode(2) = 0

niter = 5

nsim = 100

call m1qn3 (mysimul,euclid,ctonbe,ctcabe,n,x,f,g,dxmin,

df1,epsg,normtype,impres,io,imode,omode,niter,

nsim,iz,dz,ndz,reverse,indic,izs,rzs,dzs)

epsg = 1.e-4/epsg

imode(2) = 1

niter = 95

nsim = 100

call m1qn3 (mysimul,euclid,ctonbe,ctcabe,n,x,f,g,dxmin,

df1,epsg,normtype,impres,io,imode,omode,niter,

16

nsim,iz,dz,ndz,reverse,indic,izs,rzs,dzs)

In case of reverse communication, the statement reverse = 1 must be inserted
before the second call to m1qn3.

Observe that, for the second run, the required relative gradient norm, specified
by epsg, has been adapted to the one obtained at the end of the first run (we
assume there that epsg 6= 0 at the end of the first run), so that the two runs (with
and without a warm restart) will stop at the same iteration. Now, if the iterates
generated in the two runs are identical, it is normal, however, to get non identical
printouts since the relative gradients differ.

Note that, in the last case, we have made no restrictions on the number m of
updates. In particular, if m > 5, the number of pairs stored in dz by the first call
is less than the number of updates. M1qn3 can manage this situation correctly. On
the other hand, it is imperative that the run of m1qn3 filling the vectors iz and dz

should be done with the same number of updates and the same scaling mode (SIS
or DIS mode) as the current run. Otherwise, m1qn3 terminates with omode = 2 and
the error message:

inconsistent warm restart

4.6 Usage for very large scale problems

Some dispositions have been taken so that, if you have experience with the code and
understand what it does, you can adapt it to the optimization of very large scale
problems. The idea is to allow you to store yourself the pairs (2.1) on an auxiliary
memory (for instance on a disk or any other device) instead of keeping them in
core memory. To achieve this goal, you have to write and use new versions of the
subroutines mupdts and ystbl (dystbl in double precision), which are provided in
the standard distribution. There are two reasons why we do not make this usage of
m1qn3 more friendly. First, it is definitely non standard and it should be useful only
in case of a huge number of variables. Secondly, the communication with external
device is, in any case, installation dependent, which requires writing appropriate
subroutines for this.

Here are the declaration statements of the two subroutines:

subroutine mupdts (sscale, inmemo, n, m, ndz),

subroutine ystbl (store, ybar, sbar, n, j).

In mupdts, sscale, n and ndz are input arguments and inmemo and m are output
arguments. In ystbl, store, n and j are input arguments and ybar and sbar are
input/output arguments. The rest of this section describes what these subroutines
should look like.

17

In the standard distribution, subroutine mupdts computes the number m of up-
dates from formula (3.1) (if sscale = .true., i.e., SIS mode) or (3.2) (if sscale =
.false., i.e., DIS mode) and informs the optimizer that the pairs (2.1) are to be
stored in core memory (inmemo = .true.). If you want to store yourself the pairs
(2.1), the length ndz of the working area dz will be at least 6n + m, when calling
m1qn3. Note that in this case, the number of updates can no longer be deduced from
the value of ndz. Therefore, your version of mupdts will set the value of m and will
set inmemo = .false..

Subroutine ystbl is device dependent and will be written accordingly. Its role is
to store (when store = .true.) or to fetch (when store = .false.) a pair of vectors
(y, s) in or from a certain logical position j in an auxiliary memory containing m
(= number of updates specified by the subroutine mupdts) such positions. Position
j will always be between 1 and m, inclusive. A pair is always stored before being
fetched. If a pair has been stored at position j, m1qn3 expects that a fetch with the
same index j will correspond to the same pair. There is however no link between
the logical position specified by the index j and the index i of the pair (yi, si). Note
that subroutine ystbl is not used when inmemo = .true..

Just as an example, suppose that you want to take care yourself of the storage
of the pairs (2.1) and to use the core memory as auxiliary memory. Suppose also
that m = 10 updates are desired. Then subroutine mupdts should look like this:

subroutine mupdts (sscale,inmemo,n,m,ndz)

logical sscale,inmemo

integer n,m,ndz

m = 10

inmemo = .false.

return

end

On the other hand, if n = 1000 and if the 10 pairs of vectors (y, s) are stored in the
arrays yarray and sarray, then subroutine ystbl should look like this:

subroutine ystbl (store,ybar,sbar,n,j)

c

logical store

integer n,j

double precision ybar(n),sbar(n)

c

integer i

double precision yarray,sarray

common /ysarray/yarray(1000,10),sarray(1000,10)

c

if (store) then

do i = 1,n

yarray(i,j) = ybar(i)

sarray(i,j) = sbar(i)

end do

18

else

do i = 1,n

ybar(i) = yarray(i,j)

sbar(i) = sarray(i,j)

end do

end if

c

return

end

This subroutine stores (when store = .true.) or fetches (when store = .false.)
a pair of vectors (y, s) = (ybar, sbar) of dimension n at or from position j in the
“auxiliary” memory represented by the common block /ysarray/. Variables store, n
and j are input variables and ybar and sbar are input/output variables, depending
on the value of store.

For a warm restart (imode(2) = 1, see section 4.5), you need to give m1qn3

correct values in the 5 locations of iz and, for the DIS mode, in the first n locations
in dz, which is the normal place for the diagonal preconditioner (for the SIS mode,
the values in dz are irrelevant). Appropriate saves will be done accordingly at the
end of the previous run.

5 Frequently asked questions

5.1 Preconditioning the problem

5.2 Dealing with fixed variables

Suppose that I have a simulator for an optimization problem defined in the variables

x = (x1, . . . , xn) and that I want to solve the same problem, but now with some of

the variables fixed. How can I proceed?

We see two possibilities. Below, we have denoted by simul the name of the original
simulator, defined in all the variables x1, . . . , xn.

1. A solution that always works is to write a cover simulator, say simul cover,
which is called by m1qn3 and that calls the original simulator simul.

To be specific, if nfree is the number of free variables and if their indices in
{1, . . . , n} are given by free(i), for i = 1, . . . , nfree, the cover simulator can
look like below.

subroutine simul_cover

& (indic, nfree, xfree, f, gfree, izs, rzs, dzs)

...

do i = 1,nfree

x(free(i)) = xfree(i)

end do

19

call simul (indic, n, x, f, g, izs, rzs, dzs)

do i = 1,nfree

gfree(i) = g(free(i))

end do

return

end

2. If the inner product used to compute the gradient (specified by the subroutine
prosca) is the Euclidean inner product (2.2), then one can proceed by zeroing
the components of the gradient corresponding to the fixed variables. Then, m1qn3
will not modified the fixed variables and the free variables will be modified like in
solution 1. This technique is valid in both scaling modes of m1qn3 (imode(1) = 0
or 1). Be careful with a warm restart (imode(2) = 1): the (y, s) pairs stored
during the previous run must have been obtained with the same fixed variables.

To be more specific, if nfixed is the number of fixed variables and if their indices
in {1, . . . , n} are given by fixed(i), for i = 1, . . . , nfixed, the modifications to
bring to the original simulator simul could be as below.

subroutine simul (indic, n, x, f, g, izs, rzs, dzs)

...

do i = 1,nfixed

g(fixed(i)) = 0.d0

end do

return

end

References

[1] J.Ch. Gilbert, C. Lemaréchal (1989). Some numerical experiments with variable
storage quasi-Newton algorithms. Mathematical Programming, 45, 407-435. 4,
15

[2] D.C. Liu, J. Nocedal (1989). On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45, 503-528. 4, 15

[3] J. Nocedal (1980). Updating quasi-Newton matrices with limited storage. Math-

ematics of Computation, 35/151, 773-782. 3

Index

argument

ctcab, 6

ctonb, 6

df1, 7

dxmin, 7

dz, 9

dzs, 11, 12

epsg, 7

f, 7, 12

g, 7, 12

20

imode, 8

impres, 7
inmemo, 18
io, 8
iz, 9
izs, 11, 12

m, 18
n, 7
ndz, 9, 18
niter, 9
normtype, 7

nsim, 9
omode, 9
prosca, 6
reverse, 10

rzs, 11, 12
simul, 5
sscale, 18
store, 18
x, 7, 12

BFGS formula, 3, 4

call loop, 10, 13, 14
cold start, 4, 8, 16–17

communication
direct, 5, 10, 12–13
reverse, 6, 10, 13–14

DIS, see scaling mode

fixed variable, 19–20
frequently asked questions (FAQ), 19–20

I (input argument), 5

inner product, 1–4
Euclidean, 3, 20
prosca, 6, 13, 14

IO (input-output argument), 5

norm, 3, 7

O (output argument), 5

scaling mode, 2, 3, 8
diagonal initial scaling (DIS), 2, 4

scalar initial scaling (SIS), 2, 3

simulator, 5, 11, 11–12

SIS, see scaling mode
stop, 10
subroutine

ctcab, 2, 4, 6–7

ctcabe, 2
ctonb, 2, 4, 6

ctonbe, 2
dd, 2
dds, 2
ecube, 2
euclid, 2
m1qn3a, 2
mlis3, 2
mupdts, 2, 17–19

prosca, 2
simul, 2, 11, 20
simul cover, 19
simul rc, 2, 6
ystbl, 2, 17–19

warm restart, 4, 8, 9, 13, 14, 16–17, 19,
20

21

	Goal of the software
	Description of the method
	Brief description
	Algorithmic details

	Usage
	The solver
	The simulator

	Implementation remarks
	Calling sequence in direct communication
	Calling sequence in reverse communication
	More on some arguments
	More on some output modes
	Cold start and warm restart
	Usage for very large scale problems

	Frequently asked questions
	Preconditioning the problem
	Dealing with fixed variables

	References
	Index

