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Summary: In optimization in R* with m nonlinear equality constraints, we study the local
convergence of reduced quasi-NEwTON methods, in which the updated matrix is of order
n —m. Furthermore, we give necessary and sufficient conditions for superlinear conver-
genoce (in one step) and we introduce a device to globalize the local algorithm. It consists in
determining » step along an axc in order to decrease an exact penalty function and we give
conditions so thet asymptotically the step-size will be equal to one,
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1. Introduction

Let o be an open convex set in R2, f be a real-valued function on w and ¢ map w
to Rm, where m~n. We shall suppose that 7 and ¢ are functions of class C} with
y23,1.e. fand ¢ are supposed three times continuously differentiable with bounded
derivatives on w. We shall endow R» with its canonical basis and with the Euelid- -
ean scalar product. We are interested in algorithms for solving -the following
minimization problem with equality constraints: '

min {f(z) | z€ o, ¢{x)=0} . (1.1)

In addition to the smoothness of f and ¢, we shall assume that ¢ is'a submersion
on w, that is to say that the m Xn Jacobian matrix

Agy:=A(x) (1.2)

of partial derivatives of ¢ at z is supposed surjective for all @ in w. If w ig “large”

this is a very strong hypothesis, but it is usual to suppose that the gradients of the

constraints are linearly independent at a solution of (1.1) and, therefore, this

hypothesis is satisfied in & neighbourhood of a solution. Then, if z,, is & local mini-
mizer for problem (1.1), there exists a unique LacrAaNGE multiplier A, so that the
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first order optimality conditions are satisfied at x=w, and A=2,:

o(z)=0, '

{vf(x)+A;A=o, o (1)
where v f(x) is the vector of partial derivatives of f at . The quantity on the left
hand side of the second equation is the first derivative with respect to « of the
Lagrangian I(z, 2): = f(z) + ()T 4. The second order sufficient condition will also
be assumed: the n X n Hessian matrix L, of second derivatives with respect to
of 1 at (24, Ay) is supposed positive definite in the null space N(A,) of 4, =4 (xy)-
For further references, we gather these hypotheses under the name of

Assumption A:
® f, c are in C}(w) with »=3,
® ¢ is a submersion,
® (2, 1) satisfies (1.3) at a =2, and A=1,,
® T L,A=0 for all & in R? with A+0 and 4,k=0.

Quasi-Nrwron methods, also called variable metric or secant methods, are
methods for solving a system of nonlinear equations on R¥, say #(x,)=0. They
generate a sequence of points (xz) and a sequence of nonsingular matrices (J3) of
order N from the data of a point #;, and a nonsingular matrix J; by the formula:

Tpn =5 —J 5 Flaw) ,
where Jj is updated at each iteration according to the following scheme:
Jpr1=U(Tx, yx, o8)
;_Vzc1=F(='«'k+1)—F(xk) )
Ok =Tp41— Tk
The rule U is designed in order that Jg1 will satisfy the secant equation Jzop=
=y and then will improve the approximation by Jy of the Jacobian matrix
v F(x,) at the solution z,. These methods are particularly attractive because

second. order derivatives need not be calculated and because a superlinear rate of
convergence for (xx) can be obtained (see [16]), i.e.

”’”’””‘”—*”»0 a8 koo . (1.4)
flog — @l .

Such a method could be used for solving system (1.3), but matrices of order
n+m should be updated. The aim of this paper is to introduce and study quasi-
NewTon methods that require the update of matrices of order n—m only.

The Successive Quadratic Programming (SQP) method proposed by WrLson
[38] and Haw [28] improves the method described above with regard to the
order of the updated matrices. In this method 34 is obtained from z; by solving
a quadratic programme with linear constraints:

Jmin () - (@—20) 5 (@ —20)" L (523, L
|:uE Bt and  clxg) +o'(zg) - (x—ag) =0,
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where we Have used a dot to separate the linear operators f'(xz) and ¢'(xz) from
their argument (z— xx). The matrix Ly of order n is updated in order to approxi-
mate L,, the Hessian of the Lagrangian. Under assumption 4 and the non singu-
larity of Ly on N(d4y), the solution of (1.5) can be written in the form (see [20]):

wpa1 = 2 — Agelwr) — 25 (2 LnZz) ™ (9le) — Zi, Ledzelas)) , (1.6)

where A7 is any right inverse of A:=A4(xx), Z5 is any % X (n—m) matrix whose
columns form a basis of the tangent space N{4y) to the manifold My: = c1(c(xx))
at @ and g(wy) is the reduced gradient defined at x¢w by

glx):=Z; v flz)cRo-m, (1.7)

The first part ( —.Adzc(xz)) of the displacement in (1.6) is a restoration step, i.e.a

Newron-like step for solving c(x,)=0. It belongs to B(43) which is a complemen-

tary space to N(dg) in R». The second part of the displacement in (1.8) is a

minimization step belonging to the tangent space R(Z;}=N(A4y) to My at ay.
Let us consider for a while the case where the constraints are linear:

c(z):=Ax4+b=0, (1:8)

where 4 is an m Xn surjective matrix and b is a vector in R™, Ag in the nonlinear
cage, let us introduce Z-, an n X (n —m) injective matrix whose columns generate
N(4): AZ-=0. Suppose that the first iterate belongs to the plane of the con-
straints: ¢(z1)=0. Then, any point x satisfying the constraints (1.8) can be ex-
pressed by using a reduced variable « in R2~m (x=1; +Z~u) and the problem of
minimizing f subject to the constraints (1.8) is equivalent to that of minimizing
Du):=f (w1+Zu) on {u€R*™ | 21 +Z-ucw}:

min {O(u) | w€R2-", g +Z~ucw} . (1.9)
By considering the optimality equation v®(uy)=2"7 Vf (x1+Z~uy)=0, & quasi-

Newron method for solving problem (1.9) generates a sequence (ug) in Rz—m and
a sequence (G'g) of nonsingular matrices of order n —m. On the one hand, we have

Up1=Up —G;l v O(ug) .
By setting xp: =2 +Z-uy, we obtain
Wp =2 — LG g(m) (1.10)
where g(z): =277 vf(z) is the reduced gradient of f at a. On the other hand, G is
updated as follows:
(o1 =U(Gr, y5: 0k) ,
¥ =9(@r1) —g(zx) , (L.11)
&0y =qp—
in order to approximate v2®(u,), the Hessian of @ at u,, which is also the reduced
Hessian of f at a,:
2Ty 4
29 optimization 20 (1989) 4
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The conditions so that the sequence (uy) will converge superlinearly can be satis-
fied and because of the injectivity of Z-, the same conditions will assure the super-
linear convergence of the sequence (zg).

Algorithm (1.10)—(1/11) i8 a reduced quasi-NEWTON method because the order
of the updated matrices is n —m rather than n the SQP method. Our aim is to study
such methods in the case of nonlinear constraints. They are particularly well
adapted to problems with » large and #—m small. That situation appears for
example in the parametric identification of nonlinear sources in elliptic partial
differential equations. If a finite element method is used to discretize the state
equations (the constraints), m islarge, say of the order of 1000, whereas the number
n—m of identifiable parameters is usually small: 2 or 3 in the example given by
Brum, GineERT and TroORIS [3]. In that case, a reduced quasi-NuEwrToN method is
usable while the SQP methodis not because of the order of the matrices that should
be updated. Another advantage in developing reduced quasi-NEwron methods
comes from the fact that, under Assumption A, the projected Hessian ofthe Lagran-
gian is positive definite at the optimum. Therefore, positive definite quasi-
NewTON approximations of that operator can be generated, in particular by the
BFGS formula, which is at present widely believed to be the best update formula.
Thus, we see that reduced quasi-Newmon methods appear rather natural. So,
it is important to generalize algorithm (1.10)-(1.11) in case the constraints are
nonlinear.

This can be done by using the implicit function theorem in order to obtain a
reduced objective function:

Dlu)=f(¢(w))

where §: u€ Vo R*—~£(u)€ wc R? is a parametric representation of the regular
manifold ¢~1(0) around @, : = &(u,). We have ¢(&#))=0 for all % in the neighbour-
hood ¥V of u,. This is the basic idea of methods like the Generalized Reduced
Gradient (GRG) method (ABanir and CarpENTIER [1]). In fact, the parametric
representation &(u) is usually not known and this leads to several difficulties.
Because the method asks the generated sequence (xy) to be feasible (¢(xg)=0 for
all £), and because this cannot be achieved exactly in practice, some criterion has
to be introduced to decide when to stop the restoration steps, i.e. how well the
equality xp4:=E&(ug+) has to be realized (Muxar and Porak [33]). Another
difficulty appears when ay is far from z, and a step-size has o be introduced in
the wu-space in order to globalize the method. Indeed, every time a step-size is
tried, an infinite number of restoration steps have to be done: see [18], [21],
[33], [19].

On the other hand, some non-feasible reduced quasi-NEwToN methods have
been developed recently. GaBay [20] has studied the following algorithm:

T =215 (1.12)
rii= — Azo(ar) (1.13)
= —ZiGyg(@e) , (1.14)
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where A3 is any right inverse of 4z, Z; is any nX (n—m) matrix whose columns-
form & basis of the tangent space N(4x), @k is & nongingular matrix of order (n —m)
and g(a) is the reduced gradient of f at ay. The tangent step #; in (1.12), tangent to
the manifold M, has the same structure as the displacement in (1.10) except for
the basis Z;, which changes here at each iteration. The restoration step rj in (1.12)
is introduced to improve the feasibility of the sequence. The displacement in (1.12)
can also be deduced from the displacement (1.6) of the SQP method by dropping
the last 1art of the minimization step and by considering G as an approximation
of the projected Hessian Z;TL(QZ;,;, Ax) Zg.

For their part, CormMaN and Cony [11] have studied the following algorithm :

Ty =g+ ra+io, : (1.15)
1w~ Age (@p+if) (1.16)
the=>ZyG7 g(ar) » {1.17)

where Z3 i3 an #X{n—m) matrix whose columns form an orthogonal basis of
N(Ay) and Aj is the PENROSE pseudo-inverse of Ay : Ay :=AN(AxA])L. The rele-
vant difference to algorithm (1.12)—(1.14) lies in the restoration step. Here, the
constraints are evaluated at z, +t,2G, after the tangent step, rather than at x; in
algorithm (1.12)—(1.14),

The study of algorithms (1.12)—(1.14) and (1.16)—(1.17) showed that when the
maitrices Gy are suitably updated and the initial point ; is close to z,, the sequence
{xx) generated by any of those algorithms converges to x, superlinéarly in two
steps, that is to say:

10511 —24])

l{wp—1 — 2l
This rate of convergence is not so good as the rate (1.4) obtained with reduced
quasi-NEwron methods when the constraints are linear or with the SQP method.
On the other hand, counter-examples have been given by Byrp [8] and Yuan
[39] for which both the methods of GaBay and CoLemMAN and Conw do not con-
verge better than with a two step superlinear rate of convergence. Therefore, the
question of the rate of convergence of reduced guasi-Newron methods seemed
closed, However, Bygp [7] and GiusErT [22] have shown (independently)
that the seciuence (@x+£) of Coveman and Conn’s algorithm converges super-
linearly in ohe step. A similar result has also been obtained by Hover [30] who
considers algorithm (1.16)—(1.17) when @ is the exact reduced Hessian of the
Lagrengian: Gy=23;" L{xy, Ax) Z; and Ay is & Lacranem multiplier estimate,
This fact makes this method competitive. Indeed, the quasi-NEwTON version of
Corrmaw and Conx’s algorithm (see [13]) needs two linearizations of the constraints
per iteration. Consequently, as mentioned by Byrp [7], it was thought that a
superlinear step was made in this algorithm for every four constraint Mneari-
zations. The convergence result of Byrp [7], Hover {30] and GirBERT [22]
shows however that one superlinear step is made for every two constraint

i

-0 B8 koo,
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linearizations. Furthermore, it can be shown (see [25]) that the use of an up-
date criterion allows linearization of the constraints only once per iteration.
Therefore, the method makes a superlinear step for each constraint lineari-
zation.

In this paper, we first show how algorithm (1.15)—(1.17) can be obtained from
a very general principle. If unconstrained optimization problems are related to
the solution of nonlinear equations (via the optimality condition f'(z,)=0), we
see from (1.3) that constrained optimization problems are closely related to the
solution of two coupled nonlinear equations:

c{xy,)=0in R», {1.18)

g(x,) =0 in Re~m {1.19)

The equation (1.19) expresses the vanishment of the reduced gradient defined in
(1.7) and is obtained by projecting the second equation of (1.3) on the tangent
space N(4,). A “decoupling”’ method for solving (1.18)—(1419) is introduced in
Section 2. At xp, the first part of the step of the method consists in doing a NewroN-
like displacement for solving (1.18). This leads to & point yx. Then, 34 is obtained
by doing & Newron-like displacement for solving (1.19) from the point

yr=ap— A c(@y) , : (1.20)

T =yr— Bglys) . (1.21)

In (1.20), 4 is a right inverse of ve(z,) and in (1.21), B i a right inverse of
vV §(x4). We shall show that only conditions on B} have to be imposed in order to
ensure the local quadratic convergence (in one step) of the process. In Section 4,
we apply this algorithm to constrained optimization, when g in (1.19) has the
special structure {1.7), and it takes the form of a reduced method. Its extension
to reduced quasi-NmwronN method is then easily done. This presentation. gives,
in our opinion, some ingight into method (1.15)—(1.17) and shows what the de-
grees of freedom are in the choice of the operators 4 in (1.16) and Z3 in (1.17). In
fact, Ay may be any right inverse of Ay (with a smoothness hypothesis of 47 =
= A(zp)~according to #z) and not necessarily the PENROSE pseudo-inverse and the
columns of Z; may form any basis of N(4;) and not necessarily an orthogonal
basis. This remark may be crucial in some applications like the one mentioned
above where the “partitioned framework” (see Section 3) occurs natirally. In
Section 5, we give & necessary and sufficient condition of superlinear convergence
of the method that iy weaker than the sufficient condition given by Byrn [7].

The globalization of the local method could then be done as in the paper by
Coremaw and Conw [12]. In Section 6, however, we examine another globalizing
technique essentially based on the ideas of Hawn [29] for the SQP method (see
also [14]). We introduce the following exact penalty function:

Ople) =f(z) +plle() , (1.22)
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where p is a large enough penalty parameter and ||-|l; is the I, norm on Rm. We
look {or z, by minimizing &, on w. The ides is then to obtain a descent direction
for @y at the current iterate from the displacements caloulated by the local algorithm
(1.20)—(1.21). Contrary to what happens with the SQP method, our total displace-
ment is not necessarily a descent direction for @, any more. So, we shall introduce
& descent are, being inspired in this way by the work of Ganay [20] for algorithm
(1.12)—(1.14) and Mavye and Porax[32] forthe SQP method, although in those
algorithms, the are was introduced for other reasons. A search on the are i done
in order lo decrease the penalty function &, with the help of an Armrio-like
criterion. This gives a theorem assuring the global convergence of the method.
Furthermore, under natural conditions, the “MaraTos effect” ig avoided ; the
step-size ie equal to one after a finite number of iterations, Therefore there is a
smooth transition from the global to the local method that does not prevent the
superlinear convergence from ocenrring.

If (»2) is & sequence in a normed space (&, [|-|lg) and («z) is & sequence of positive
numbers, we ghall eay that (s) is a big O of (xz) (we shall note v =0{az)) if the
sequence (|hy|pfox) is bounded and we shall say that (vg) is a small o of (o) (we
shall note »g=o(xy)) if the sequence (I7&lwlox) converges to zero, We shall say
that two positive real sequences (az) and (Fx) are equivalent (we shall note g~ fy)
if ax=0(f3) and fr=0(0z). We shall note #, the i-th component of a vector »
in &, If 4 iaa linear operator from (K, |+]) to (¥, li*lle), we shall note |lAlj:=
s=sup {|[drllp | |plz=1}. If 4 and B are two square matrices of the same order, we
shall note A= B when (B— 4) is positive semi definite.

This paper constitutes a revised version of a part of the INRIA report number
RR-482 in which some techniques for updating the reduced matrix have also
been investigated (see also [25]). A variant of the method is given in [23].

I

2. A Decoupling Method for Solving Two Nonlinear Coupled Equations

Let us consider the following coupled system of nonlinear equations:
F ESI:} =0 3
teie=o. %

where ' and @ are supposed smooth and map R” to. R™ and R2-m (m <n) respec-
tively. Let @, be a solution of (2.1) and let us denote by A4, the m X« Jacobian
matrix of ¥ at », and B, the (n—m)Xn Jacobian matrix of ¢ at Ty. We shall say
that w, is a reguler solution of (2.1) if the Jacobian matrix of the system (2.1),

¥ :
J,,::[B:], (2.2)

i8 nonsingular. This will be the case if and only if N(4,) NN (B4} ={0}. We would
like to define & Nwwron-like method for solving (2.1) without having to inverse
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the Jacobian J(2z) of (2.1) at 2. For that, let us suppose that z, is a regular solu-
tion. Then A4, and B, are surjective and we can introduce a right inverse 4, of
A, and a right inverse B of B,:
A*A;zjm; B*B;_—‘Inﬂn . (2.3)
Two algorithms using 4} and B can be considered and we introduce them with
the help of fixed point maps & and &,. Th'e firat one is

Zg+1 =E1(%x) (2.4)

bi(x) =z — A F(x)— B ((x) (2.5)
and the second one i

T =Ea(g) i = (P o D) (xr) (2.8)

O(x):=a— A F(z) , (2.7}

Ply):=y—~B;Hy) . (2.8)

These algorithms are somewhat “ideal”’. Indeed, the matrices 4, and B, are not
known and so neither are 4, and B. But they are simpler to study than their
implementable versions that will be introduced later.

The relations (2.3) do not determine the right inverses 4, and B completely.
Therefore, we. may try to choose them so that the sequences generated by algo-
rithms (2.4)—(2.5) and (2.6)—(2.8) will have a good local behaviour. The next two
propositions show that this is possible: we can get conditions on 4} and B in
order to have & (x,) =0 and &(x,) =0, which will ensure a quadratic ra,te of conver-
gence for both algorithms. We shall say that an #» row matrix is a basis of a given
subspace of R» if it is injective and if its columns form a basis of that subspace.

Proposition 2,1: Suppose that F and G are differentiable at 2, o regular solutwn
of (2.1). Then the following statements are equivalent:

(i) &(2y) =

(ii) R(A;):N( «) and R(B)=N(4,),

(iii) for any right inverse A7, of A, and any basis Z of N(A,), we have

A =T -Z (B, 2Z;)7 By) 47, (2.9)

By =Z(ByZ,)7 . (2.10)
Proof: First, we prove (i)«-(ii). Statement (i) is equivalent to

I=4 A+ BBy (2.11)

The right hand side of (2.11) is equal to [4,B.]J,. Then, (2.11) means that
[4,B;] is the inverse of J, and therefore is equivalent to I=J,[47B;], ie.
4, B, =0 and B, A, =0, which is equivalent to statement (ii) because the matrices
A, By, A, and B havefull rank. Next, we prove (ii)=(iii). Let Z; be any basis
of N(Ay): R(Z;)=N(A,) and Z, is injective. Because J, is nonsingular, B,Z;
is nownsingular., Indeed, if « in R#-» satisfies B,Z u=0, we have J,Z u=0
(becauge A,Z;=0), then Z u=0 because J, is nonsingular and « =0 because Z
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is injective. Then, by multiplying (2.11) to the right by Z, we get Z; = B;(B,Z;) :
and therefore (2.10). Formula (2.9) is obtained by multiplying (2.11) to the right
by any right inverse A“’ of 4, and by using (2.10), It remains to prove (ifi)=(ii).
It we take A=A in (2.9), we obtain B,A4_ =0 and so R(4 1) =N(B,) because
these spaces have the same dimension . Because A4, =0, (2.10) gives 4, B, =0
and 80 R(Z,)=N(4,) because these spaces have the same dimension n—m. u

Propouition 2.2: Suppose that F and G are differentiable at x.., a regular solution
of (2.1). Then, the following statements are equivalent.

(i) 5;(95*)=

(ii) B(B,)=N(d,},

(ili) for any basis Z;; of N(A,), we have By =Z (B, Z_)1.

Proof: The equivalence. (1 J<+(ii) comes from &y(zy)=(I—B.B,) (I-4;4,)
and that the'spaces N(d,)=R(I—-4;4,) and R(B;)=N (I —B;B,) have the
same dimension % —m. To prove that (i) implies (iii), let 7, be any basis of N(4,,).
By multiplying to the right both sides of

(I_B;B*) (I~A;A*)=

by Z7. we get Z_ =B, (B,Z,) and therefore (iii} because B,Z, is nonsingular
(see the proof of Proposition 2.1). From (iii), we get 4 +B5=0 by multiplying
to the left B =2Z.(B,Z,)! by 4, and 4,B;=0is equivalent to (11) because
R(B}) and ¥ (A :) h&ve the same dlmenSlon n—m., M

In statement (iii) of Proposition 2.1, we could equivalently have glven to By,
the role of 4,. We also see that the right inverses A7 and B, are completely deter-
mined by ermd ition (i} of Proposition 2.1 and r]u not dﬁpm]d on the choice of
Ay ahd Z, in-(it). Similarly, the right inverse B is completely determined by .
condition (i) of Proposition 2.2 and does not depend on the choice of Z;, in (iii).

From PIOPOSIthH 2.1, we see that 51(1*) 0 if and only if {4 B;] is the inverse
of Jy. This means that algorithm (2.4)~(2.5) is in fact the “ideal” (with J;*
rather than J(z)-') Nuwron method for solving (2.1) (see the displacement in

(2.6)), the method we wanted to avoid. On the other hand, Proposition 2.2 shows
tha‘ﬁ algorithm (2.6)—(2.8) needs fewer conditions to have a good local behaviour
than algorithm (2.4)—(2.5). The fact that no conditions are required on the right
inverse A, means that any solver of the first equation in (2.1) can be used in (2.7},
111dependently of the second equation of (2.1), whereas this is not true for the
solver B of the second equation of (2.1) that has to be adapted to the first equa-
tion.

The results of Propositions 2.1 and 2. 2 have a geometrical interpretation. In the
ideal NEwron method, (xp) will converge quadratically if the displacements:
(— 4, F(xx)) and (— B;&(xr)) belong to the tangent space at x, to the manifolds
defined respectively by the pre-image of 0 by ¥ and @. In method (2.6)—(2.8) only
the second step (— B, G(yx)) has to belong to the tangent space N (44); the first
step is arbitrary (apart from the fact that 47 has to be a right inverse of R

TTous droits de prugritts inballeciusle réearves Rapmouction. momsentabon intarotes 52

sane auborismlion {coga de la propesile inlelachusbal”



430 optimization 20 (1989) 4

3. A Change of Coordinates

Before applying the results of the previous section to constrained optimization,
let us give some examples of right inverses A of 4, and basis Z, of N(4,) that
are frequently used in practice. The formalism adopted here has been introduced
by GaBay [19].

Once the injective matrices 4} and Z, have been chosen, the columns of [4;Z7]
form 8 new basis of R#. Indeed, R(47)is a complementary space of N(d4) = B(Z7).
To make a change of coordinates in that new basis, it is convenient to introduce
the additional (n—m)Xn matrix Z, given by the following proposition.

Proposition 3.1: Let A, be an mXn (m<mn) surjective matrix, 4 be uny right
inverse of Ay and Z, be any basis of N(As). Then, there exists a unique (n—m)Xn
matric Ly such that

Z,A45=0, (3.1)
Tty =T pem . (3.2)

Fyrthermore, we have
' In=AZAc 7% . (3.3)"

Proof: Existence and unicity of the matrix Z, come from the nonsingularity
of [4;Z;] and (3.3) comes from the fact that [41Z1]" is the inverse of [4;Z;]. =

The relation (3.1) shows that N(Z;)= R(4;) (the matrices A, and Z; have full
rank) and (3.2) shows that Z is a right inverse of Z,. The equality (3.3) can be
used to introduce a change of coordinates. Indeed, by applying it to a vector & of
Rz, we see that A,& are the coordinates of & in R(A,)=N(Z;) and Z;& are the
coordinates of £ in R(Z,)=N(44).

A firgt choice of matrices A7 and Z, which is frequently made in constrained
optimization, defines what could be called the orthogonal framework: A, is the
Moore-PeNrOSE pseudo-inverse of 4, (see [2]) and Z; is an orthogonal basis
of N(4j) for the Buclidean scalar product. We have:

Az=AY(A AT, (3.4)
2B =Tnm
Then Z,=Z," is the unique matrix satisfying (3.1) and (3.2). We see that B(47)
is orthogonal to N(4,;). This framework has been adopted by Coreman and
Cowxy [11--13] and by Bygrp [7].

Another choice of matrices A, and Z can be made when a separation of varia-
bles occurs naturally, as in optimal control problems or in parameter identification
problems. This is also the natural framework to introduce the GRG method
(ABapI® and CarPENTIER [1]). It could be called the partitioned fraomework: Ay is
supposed to be partitioned in two submatrices

Ap=[CyDy,], ' (3.5)
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where the m X m matrix C, is nonsingular and D, has dimension m X (#—m). The
right inverse 47 is then taken as

—1 )
[0 ] (3.6)
and the basis of N(4
0‘1D
Z. = 3.7
’ [ ¥ p— ] ®.7)
Then Z; =[0I ;-] i8 the unique matrix satisfying (3.1) and (3.2). This framework

has been adopted by Hover [30].
In the following, we shall suppose that the choice of (43, Z;) is a smooth func-

tion of z:

Assumption B:
The function @ —(A4g, Z;, Zy) is bounded on w and is in O} Yw) with »=3.

This agsumption is satisfied for 4, given by (3.4). With regard to Z, the ques-
tion is more delicate, although the assumption can be satisfied Jocally by projec-

tion'on N(4z) of a bagis Z,, of N(4,) (see [26], [9]).

4. A Reduced Quasil’%wmxv Method for Constrained Optimization

In this section, we apply the results of Section 2 to constrained optimization. The
first step consists in reducing the size of the optimality system (1.3). This can be
done because the second optimality condition can be expressed by n —m equations
rather than =, in fact, by the vanishment of the n —m coordinates of the orthogo-
nal projection of vf(x,) on N(4,). If Z, is any basis of N(4,), the orthogonal
projector on N{(A,) is Z (Z,7%;)~* Z;". Then, the second equation of (1.3) is pro-
jected on N{d4,) by multiplying it by Z.T. Using the definition (1.7) of the re-
duced gradient, the system (1.3) can be rewritten as follows:

[c(x‘k) =0 3

lg(24) =0 . (-1
In order to apply the previous results, we need to calculate the first derivative of
g at x,. This can be done as in [37]:

V)= v (Z5 (V@) + AfA) (@) =2 Ly . . (4.2)
The Jacobian matrix of (4.1),
A*
275,

is nonsingulat because of the surjectivity of 4, and the second order sufficient
condition which is equivalent to the positive definiteness of

Q=2 "7 . (4.3)
We shall note H,:=G;"1.
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Now, let us apply algorithm (2.4)—(2.6) to the system (4.1). Using statement
(iif) of Proposition 2.1 and (4.2), we get the following quadratically convergent
algorithm

tr =% — (I — L H, 27 L,) Azele) — ZH () (4.4)
where A is any right inverse of 4,, (playing the role of 43 in (2.9)) and Z; is any
basis of N(4,). This is exactly the “ideal” SQP method: see (1.6). See also
Goopmax [27] for a related result. We shall not go further with this method.

If we apply algorithm (2.6)~(2.8) to the system (4.1), we get, using statement
(iii) of Proposition 2.2 and (4.2):

Fr=wp— A c(wr) (4.5)

Tt =Fu— Ly Or g(TE) » (4.6)
where A is any right inverse of 4, and Z7 is any basis of N(4,,). The following

lemma is a consequence of Proposition 2.2. This result has also been obtained by
HovEr [30, Theorem 4.3] in the partitioned framework.

Lemma 4.1: Suppose that Assumptions A and B are satisfied and let ., be a solu-
tiom of (1.1). There exists a positive consiant C that depends only on f and ¢ such that
if xy 45 sufficiently close to xy, T 18 given by (4.6) and Ty is given by (4.6), we have

lx+1 — @4l = O [l — @yl (4.7)

From the quadratically convergent algorithm (4.5)—(4.6), a quasi-NEwrown
method ig easily introduced. In (4.8), G, is replaced by an approximation Gy and
Z, is replaced by Z(yy)~, which intervenes in the calculation of the reduced gra-
dient g(yz). If 4, in (4.5) is replaced by A(z)~, the constraints will have to be
linearized twice per iteration: at x) to calculate A(xy) and at yp to calculate the .
basis Z(yx)~. Since the constraints have to be linearized at ¥ to calculate the re-
duced gradient in (4.6), we avoid one linearization of the constraints by replacing
47 in (4.5) by A(yz—1)~ So we obtain the following local algorithm :

Yr=ap—Ayr-1)~ o(zx) , (4.8)
T =Ye—Z(Yr)~ 09 r) - (4.9)

We shall note Hy:=@;' and denote by 7 the restoration step and by # the
tangent step:

rei= —A(Yyr—)~ ofze) {4.10)

te:= —Zlyx)" Gg'glyn) - (4.11)
We shall also use the total displacements

dg:=rg+ip, (4.12)

ep =lp+rrs1 . (4.13)

In practice, the algorithm cannot start with (4.8) from a point @; without knowing
a point go. 8o, we shall suppose in the following that the algorithm starts with
(4.9) from = point ¥y in w.
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This is really the same type of algorithm as Coreman and Conn’s method (1.15)
—(1.17) if we exchange in (4.8)—(4.9) yx with @ and xy with 24 +1;. However,
our point of view shows that there is no reason to take a restoration step orthogo-
nal t0 N(A(yg-1)) in (4.10) or to calenlate an orthogonal basis Z(yz)~ of N(4(yz))
in (4.11). In particular, this validates the use of the partitioned framework (3.5)-~
(3.7) that occurs often in practice, see also [80]. We shall see that contrary tothe
sequence (yx} in (4.8)—(4.9), which does not usually converge supérlinearly in
one step (see the examples given by Byrp [8] and Yuaw [39]), the sequence (xz)
converges superlinearly as expected from the behaviour of the ideal algorithm
(4.5)—(4.8).

In fact, it is not essential to reduce the size of the optimality system before
applying algorithm (2.6)—(2.8). The same method (4.8)—(4.9) can be obtained
when the method is a,pplled to the optimality conditions (1 3), see [25]. In
this case, By =[L. 4] and

Be [ b L ]
~ 45T I=Lzedeh |
where A is any right inverse of 4, and Z; is any basis of N(4,,). Furthermore,
this derivation of the algorithm gives an iteration scheme for the LacrANGE
multipliers {(1z):

Awir=—Alyp)T flye) + Alyr)T Lelilyr)- Glolyr) (4.14)

where Ly is an approximation of L. Therefore, if Ly in (4.14) is correctly updated,
we shall also have Az —Ay=o0 (|Jxr—2,)); indeed, 1; does not intervene in the
iteration. Formula (4.14) simplifies the one obtained when quasi-Newron method
is applied to (1.3), which can be written (see [20]):

Anr= = A(wr) ™" (I - LaZ(wx)~ G5 Z{@n) ") (9 flar) — Lpd(wr)- clon)).

Algorithm (4.8)-(4.9) is a reduced quasi-NEWTON method because the only
matrix to update is the approximation G4 of G, and it is of order n —m. Unfortu-
nately, this is no longer the case when the sequence (1) is generated by (4.14)
gince Ly intervenes in the formula and Iy is of order n.

In the next two propositions, we study the local linear convergence of algorithm .

(4.8)—(4.9).

Lemma 4.2: Suppose that Assumptions A and B are satisfied. Then, there exist.
positive constunts 8, Cy, Cq and Cs that depend only on f, ¢ and w such that on the one
hand, IGrx—Gyl| =0 implies that Gy is nonsingular with |G| =Cs and on the other
hand,

lgr—1—2ufl=(14-C1) 8, ' (4.15)
llor— a4l =6, (4.16)
[Ge—Gull =6, (4.17)
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with 0<8=6 imply that yi and xx41 are well defined by (4.8)—(4.9) and satisfy
lye—agl = (1+C) 8, (4.18)
J‘CIJ;,;+1-—~$IJ*”§02($ Hwk—-x*ll i (419)

Proof: We shall denote by C; (i=1, 2, ...) any positive constant that depends
only on f, ¢ and . According to Assumptions A and B, there exists a positive con-
stant Cy such that

mex (JAW), 14), 121, lg' @) =C1 . (4.20)
for all y in w and
03X ([|Fe—Tull, [y —ull) = (1 + Ca) g — ], (4.21)

if ¥x_1 and @y are in w and Fy and g are calculated from wx; by (4.5) and (4.8)
respectively. Both inequalities in (4.21) are obtained from (4.5) and (4.8) by using
TAvroR’s expansion of ¢(xy). Let &, 9 and § be three fixed positive constants such
that

Blxy, e)cw, {4.22)
M =n , (4.23)
5q$, (4.24)
(14+Ci)d=<e, (4.25)

where B(x,, &) denotes the ball of radius ¢ centered at a,. These constants e, 7 and
¢ depend only on 7, ¢ end w. If Gy, satisfies |G, — G| =& then, by (4.24) and (4.23),
G is nonsingular and satisfies (see for example [36, Chap. II, Theorem 62]:

1
II|G”E1f|::;1—= «Cly (4.26)

——0
ki

This proves the first part of the Jemma.

For the second part, let us suppose that inequalities (4.15)-(4.17) are satisfied
with § in 10, 6]. According to (4.15), (4.26) and (4.22), ¥k belongs to w and accord-
' ing to (4.16), (4.25) and (4.22), 2 belongs to w. Therefore y; is well defined by
{4.8) and we have (4.21). This inequality and H.Iﬂ} show (4,18), Now, according
to (4.21), (4.16), (4.25) and (4.22), yx and §j. belong to w. S0, Fp.1 and zp4y are well
defined by (4.6) and (4.9) respectively. From (4.26), (4.23), (4.17) and & -G;l=
=G (G —Gr) G, we deduce:

63"~ G =AM G — G| = Cand = 0,6 :
Let C; be the constant given by Lemma 4.1. Then, TAYLOR expansions give easily
the following inequalities:

ka1 — 2ol Z[|@r41 — Tpaal -+ |Err1 — 2l 5

[wet1—Fpaall = Co lyr — Fall + O llyx — 24P + C4088 flyx — 4] ,

e~ Full = Cs g1 — el rr — ]

Tous dnails o grogdssd nislscksls faisnsts. Reprodichon. regressnlalion nlardites sens-sulonsalon (sodi de - propistd ntellectuelle)”



J. CH. GrueERT: A Reduced Quasi-NEwron Method 435

By combining these inequalities with (4. 7), (4.15), (4.16) and (4.21), we get (4. 19)-
w1th Co=05+0CsCo (1 +C1)+ 07 (1 +C1)2+0Cs (1 +C1). m )
" Theorem 4. 3: Suppose that Assumptions A and B are satisfied. Then, there exists
« positive constant C' thet depends only on f, ¢ and o such that if » is a real number
wn J0, 1[ and f
lro — 4| = Cx : (4.27)
Gx—Gul=Cx  for all subscripts k | (4.28)

then algomthm (4.8)—(4.9) generates from yy a sequence (wy) in w that converges line-
arly to z, and
i1 — gl S [l — 2] (4.29)
Jor all subscripts k.
Proof: Let 8, 0, Cy and Cs be the positive constants given by Lemma 4.2.

Then, if G, satisfies |1 —G,||=6, we have ”G’,cq” =0};. By expanding ¢g(yz—;)
about x, (with (4.2)), (4.9) shows that for k=1, we have

llen — zull = (1 + Ca) flyp—r —wull , (4.30)
where C4 is & positive constant that depends only on f, ¢ and w. Then, the theorem
can be proved with C:=min (§, 1/C3)/(1+Cy). Indeed, if (4.27) and (4.28) are
satisfied, we see, with the help of (4.30), that (4.15)—(4.17) are satisfied for k=1
and §:=(1+Cy) Cx=4:

lvo—ayl|=Cu=6=(1+0C1) &

ler — 2| = (14 Ca) lyo— 2f| =8,

1G1 ~ Gl =Cn =4 .

We can then apply Lemma 4.2 and because Cod=x, (4.19) shows that (4.29) is
satisfied for £=1. The fact that » is less than 1, (4.28) and (4.18) for k=1 show

that (4.15)—(4.17) are still satisfied for £=2. So we can conclude by mductlon =
The next proposition gives some useful estimates and equivalences.

Proposition 4.4: Suppose that Assumptions A and B are satisfied. Let (Gy) be g
sequence of nonsingular matrices of order n—m. Let- (wp) in o and (yr) n o be the
sequences generated by algorithm (4.8)—(4.9) startmg from a point yo in w. If ( (x)
and (yr) converge to a solution x, of (1.1), we have

"= = A dy (Ws—e) +o (o —a4ll) (4.31)

Yp— @y =Liyglg (Tp—x) +0 ([Jzp—yl)) - (4.32)
If moreover (Gi) and (G%") are bounded, we have

(lal] ~ llee— 4l (4.33)

llell ~ Ny — 2l - (4.34)

Proof: From the definition (4.10) of 74, the expansion of c(x) about 2y, and the
convergence of (yx), we get (4.31). Then, using identities (3.3) and (4.31) on yzp=

autsricaiion (cods do e popnald mjelackuabs ]
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=%y +7x, We obtain (4.32). Next, using the boundedness of (G3') and (4.2), we
see that iy = 7,052 Ly (yx—%4)+o0 (|lyr—a4). Finally, with (4.12), (4.31)
and (4.32), this gives

dp= — (AL A, + 267 04 Zy) (e — ) +0 (Jop—24) -

This estimate shows that dy =0 (|jzg —2,])). To prove the xy —x, =0(||dg), we only

bave to show that the operator in square brackets is nonsingular with bounded

inverse. If this were not the case, there would exist a subsequence K of subscripts
. and & sequence (& | k¢ K) in R» such that:

I€xl|=1 for £ in K, (4.35)
(A4, + 265G 2,) Ex—~0  for kin K . (4.36)

By multiplying (4.36) by 4, (resp. Z,), we would obtain 4,&—~0 (resp.
G‘EIG*Z*:S;C -0, from which we would deduce Z,&; ~0 because of the boundedness
of (G%) and the nonsingularity of @). Finally, with (8.3), we would have &;--0,
which would contradict (4.85). So, (4.33) is proved. The proof of (4.34} is similar
and is based on the estimate '

er= — (A7 A4 + 2,052, L) (e —2y) +o (lyx—ayl) . =

b. Conditions for Superlinear Convergence

Theorem 4.3 has an immediate corollary, which states that if in addition to (4.28),
the sequence (G%) converges to G, then (z;) converges to , superlinearly (see for
example the argument in the proof of corollary 3.6 in Haw [28]). However, this
assumption on (Gy) is usually not satisfied when these matrices are generated by
quasi-NgwTowN formulas. Assuming that (z;) converges to z,, the next theorem
gives necessary and sufficient conditions on (Gz) to have the superlinear conver-
gence of (xz). It is the analogue of Theorem 2.2 of DENNIs and MorE [15], valid
for quasi-Newron methods in optimization without constraints.

Theorem 5.1: Suppose that Assumptions A and B are satisfied and that (yz) and
(xr) are generated in w from a point yo by algorithm (4.8)—(4.9) with o sequence (Gy)
of nonsingular matrices. Suppose that (xg) and (yi) converge to x,. Then, the follow-
ng statements are equivalent:

(1) (zr) converges superlinearly,

(1) gyr+) =0 (s —24ll) , . g

(ifi) (@x—Gy) Z(yx) te=0 ([ve—ul]).

Proof: The estimate (4.32) shows that

Yi—a=0 (lr—al) (5.1)
Using A(yg) — A, =0 (|yx—4l), tx ~0 (because ¢y =541 — y&), (4.32) and 4,7, =
=0, we get:

Ay (Fpa1—2y) (5.2)

=Ay (Yr—25) +AYr) s +0 (g —24l)) =0 ([ — @]} -
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According to (3.3), it remains to estimate Z, (wg41 —2). This will depend on the
quality of the tangent step .
Let us first prove the equivalence (i)<(ii). With (4.2) and (4.32), we have

9(r1) =25 Ly (Yrar —%y) +0 (g — 2ll) = @iy (@ps1 — )
+0 (lern—ogll) -
Then, (ii) is clear from (i), If (ii) is satisfied, this estimate and the nonsingularity
of G, give -
Zy (p1 —24) =0 ([Rp41—24l]) +0 (e —wy]) -
This estimate, (5.2) and identity (8.3) show (i);
Now, let ug show that in any of the situations (i), (ii) or (iii), we have

£ =0 (flwr—all) - (5.3)
This estimate is clear when (@4') is bounded, but we do not suppose this here,
Writing Zp= (2g+1—24)— (yx —2,) and using (5.1), we see that (5.3) is clearly
satisfied when (i) is true and therefore when (ii) is true. When (iii) is satisfied, we
have '
GrLilyr) b =Crli(yr) tr+0 (lop —24l)) = —glyr) +0 (jwe —2y) -

Then expanding g(yx) about @, and using (6.1) and the nonsingularity of @,,, we
© pet

Z(yr) 1 =0 (g —24l)) -
But #p=Z(yz)~ Z(yx) ti, therefore (5.3) is still satisfied.

Now, from (5.1) and (5.8), it follows that zz+ — 2y =Yk — Ty + =0 (lar—2),
Yrr1— Y= (Yr11 — 24) — (Y — 24) =0 ([@r11 —24]) +O ([2r —24))) =0 (ljex — 24l]) and,
with (4.31) and (5.2),

TE+1=0 (|]a:;~~x*|[) . (54)

Let us now prove the equivalence (ii)«(iii). Expanding g(yz+) about y; and
using (4.2), (5.3) and (5.4), we have :

9(yen) =glyr) + 25 Lyte + o (lap—ay)) .

Bub g{yr) = ~GrZyr) ty and ty=Z(yx)Z(yr) ts =2 Z(yr) te+o0 (g —24). So, we
obtain
g(yra)= — (Qu—Gy) Z{yx) tx+0 (Jop —x4]) -

The equivalence (ii)<(iii) follows. H ‘

In statement (ii) of Theorem 5.1, g{yz4) could be replaced by g(xg4a), but the
reduced gradient is not evaluated at a4y in the algorithm. Statement (iii) iy equi-
valent to

(Hie— H.,) glye) =0 (s —l),

which is based on the gap between the inverse of the reduced Hessians. Statement
(iii} can also be replaced by many other equivalent estimates. For example,
(G ~GQy) Zy (2p—24) =0 (o —2,))). The advantage of (iii) is that it does not re-

“Tous droits de propriété inteliectuelle réservés. Reproduclinn, représantalinn interdites sans autorisation (code de la propriété intellectuelle)”,



438 optimization 20 (1989) 4

quire the boundedness of the sequences (Gy) or (G3!). If this boundedness is as-
sumed, Proposition 4.4 shows that the estimates can be made in relation to [|dy|
rather than [z, — 2,/

Condition (4.28) and condition (iii) of Theorem 5.1 show the advantage of re-
duced quasi-Nezwron methods over the SQP method with regard to the approxi-
mation of the Hessian of the Lagrangian.. Indeed, a necessary and: sufficient
condition for the SQP method to generate superlinearly convergent sequences is

that
2.7 (Ly—Ly) (e —4) =0 (e —24ll) »

where L is the updated approximation of L. This famous result can be found in
[4] and [34]. Therefore, in the SQP method, the (n—m)Xn matrix Z.'L, has
to be correctly approximated and not only the projected Hessian of the
Lagrangian Z,"L,Z7 as in reduced methods.

As a final remark, let us mention that, if we suppose that the equivalence (4.34)
holds, the sufficient condition given by Byrd [7] can be written

(Gr—Gy) Zlyr) ts=0 ([lyx—24l) (5.5)
and is therefore stronger than condition (iii) of Theorem 5.1. However, this
estimate (5.5) is satisfied in practice with the update schemes currently proposed :
Coremax and Conn [13, Theorem 3.6] proved it for their algorithm and it is
proved in [22] that

(Gx—CG4) Z(yr) tx=o(][¢xl]) - (5.6)

(which implies (5.5)) for both of the algorithms proposed. But those schemes are
not completely satisfactory and condition (iii) of Theorem 5.1 may become useful
in other circumstances. We shall see in the next section that, for the globalizing
technigue proposed, the strongest condition (5.6) allows avoidance of the MArATOS
effect, i.e. allows the unit step-size to be accepted asymptotically.

6. Globalization of the Algerithm

In order to globalize the local algorithm (4.8)—(4.9), we introduce a step-size gg.
For that, we consider the following exact penalty function

Op(@)=Fflx) +plle@z , (6.1)

where p is a positive penalty parameter and || -] is the {;-norm on R7. Other norms
than the /;-norm can be used in (6.1): see [6]. If p iz taken to be greater
than ||Al. (here it is the dual norm of the one used in (6.1) that is relevant), the
feasible minimizers of (1.1) and (6.1) are the same (see [17], for example). It is
therefore natural to look for w, by minimizing ®p. For this, we need to cal-
culate descent directions of this non-differentiable function. On that point,
a crucial observation has been made by Hax [29]: the displacement dg®f of the
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SQP method is & descent direction of @, at 2y (under some hypotheses). Therefore
a better approximation a1 of the solution ,, will be obtained by taking -

Tra1 =Tk + s,

whers g gives the step-size and is obtained from some rule using @, as a “‘merit”’
function. ' "

Let us try to use the same globalizing technigue for our algorithm. Is there any
descent direction of @, among the displacements 7z, &, dx, and e given by (4.10)—
(4.18)% Theinconvenience of 7 and therefore of dy and ey is that this displacement
iz calculated by using two different points yz—1 and xy that can be far from each
other when xj i far from 2. So, it is difficult to'see when these directions are de-
scent directions for ;. On the other hand, #; uses only the point v in its definition
and if G is positive definite, it is certainly a descent direction of @, at y;. Indeed,
this displacement is tangent to c-1(c(yz)) at yx and f'(ys) - & is negative. Therefore
at the first order, the first term of the right hand side of (6.1) will decrease while
the second term will remain constant. These remarks lead us to define a descent
arc of @, at yz, tangent to byt

yile)=Ye +ote +0%7%a, a>1. (6.2)
Let us note that search arcs have already been proposed by Maywe and Porax
[82] to cope with the MaraTos effect in the SQP method (see further} and by -
GaBAY [20] also to avoid the MaraTos effect in algorithm (1.12)—(1.14).

This globalizing technique based on the arc (6.2) gives priority to the minimiza-
tion step #; and this is due to the asymmetry of the local method (4.8)—(4.9).
This priority can be harmful in certain circumstances but it can be suppressed by
adding a restoration step to the local method (see [23]).

The point g, is then obtained from y; by selecting a particular value gy of p:

Y1t =Yrlox) « (6.3)
The step-size pz will be determined here so that the following Armrigo-like oriterion
will be satisfied : :

gelo, 1L, (6.4)

o =p%, : (6.5)
where /g is the smallest non-negative integer such that

On(ys(B%)) = Oplyx) + B%af (yr) « tr— "% (p —|A(yn).) lle(walls - (6.6)

In this inequality, « is a real number chosen in ]0, 1/2[ for reasons that will be
clear at the end of this section. The exponent (al) of g in the last term of (6.6)
takes into account the curvature of the search path (6.2). The vector A(yy) is an
approximation at y; of the LacrancE multiplier A,. It is defined by

My)i=—A(y)T viy). (6.7)

It is just the first term of (4.14). So, usually, (A(yx)) will not converge superlinearly.
30 optimization 20 (1989) 4 - .
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‘We shall define again
Ty =Y+ . (6.8)

Now, we have to examine in what conditions inequality (6.6) can be realized
with & large enough /. This is the subject of the following lemma.

Lemma 6.1: Suppose that Assumptions A and B are satisfied and that o point y,
is given tn o such that Xp and Tpsa +rr+1 will also be in w. Suppose that o is in
10, 1[ and that there exist positive constunts p,  and h such that

p+IMYl-=p =7, ' (6.9)
Ml =G =h1 .

Then the rule (6.4)—(6.6) allows determination of a positive step-size gx. If, moreover,
M is ¢ positive constant such that

eyl =M, (6.10)

then, there exists a positive real g that depends only on f, ¢, p, P, h, o, § and M such
that N - a
ox=p=>0.

Proof: We shall denote by O (i=1,2,...) any p;:rs_it.ive conatant, Using
c'(yz) « i=0, TAYLOR’S theorem gives
lle(@r+1) = clyr)ll = Calltal® , (6.11)
where O depends only on ¢. Using (6.11) and 0 <g =1 and applying again TAYLOR’S
theorem, we get -
f e+ gt + 0%rw) =f(yn) +of () - tr+o%elyr)’ Mye)

+ p@Cbltx|[2 + O3 llotx + 0% w+11% 5 (6.12)
lle (g + otx+ 0%rraa)|= (1 — %) [le(yx)l
+ 000 ||tx]2 + Callote + 0" gaall? (6.13)

where (3, (3 and Cy depend only on f and ¢. Supposing g in 10, 1], we get from
{6.12) and (6.13):

' Op (yr-+ gt +01) SOp(yx) +of (yx) - t5— 0 (2~ Al le(wrlh
+0s (g®+ %) litll® + Cog® |Iraal? (6.14)

where Cs and Cg depend only on f, ¢ and . From the definition (4.10) of 7g41 and
(6.11), we have

e+l = Colle(yz)llL + Cslléeli? » (6.15)

where (7 and Cg depend only on c.
Now, let us suppose that (6.6) is not true for a given p=p"in 10, 1]. Then, with
(6.9), (6.14) and (6.16), we get '

o (1—a} (—Flyr) - tx) +o® (1—a) pllolya)ilh = Cs (@*+¢®) [ul?
-+ Cep?rpa|l® -
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But —f'(ys) « te=glys)” G5 glyr) =hllglyel? and ||t =Collg(yx)l| where Cy depends
only on ¢ and %, Then, with (6.15), the last inequality becomes

ollgwn)l2 + elle(y)|h = Co (0% + 02 llg(ym)lIE+ Crae®ic(y)li 5 (6.16) .
where (9 and ¢4 depend only on f, ¢, P, b, h and «. This inequality shows that
p cannot be arbitrarily smallif [lg(y)ll +le( we)lh+0 (ifllg) +Hles)lli =0, o =g'=1
clearly satisfies (6.6) because then #;=0, ry3=0 and therefore yi(o)=yx).
Tndeed, otherwise letting ¢ convergé to 0 in (6.16) previously devided by g, we
would obtain g{yx)=0 and then dividing (6.18) by ¢® and taklng the limit on p
would give c(yx)=0. This proves the first part of the lemma.

For the second part, let us suppose that rule (6.4)—(6.6) gives a step-size g
smaller than 1. Then (6.8) is not satisfied with p=gs/f and we have inequality
(6.16) for this p. Using (6.10), we obtain:

orllg (a2 + eflle(mlh = Cragy, (exllg(wa)2 + ezlo@ulls)
where b:=min (1, a— 1) and C4s depends only on f, ¢, D, P o L, B,k and M, Because

oullgr)|2+ 6%c(yx)L+0 (otherwise gr==1), the last mequa,hty proves the second
part of the lemma with p=C7; 2t m

Inequality (6.9) shows that the penalty parameter p has to be large enough to
ensure the decrease of @, along the arc (6.2) and that its lower bound depends on
the current point k. So, sometimes it will be necessary to update the penalty
parameter, which we shall denote by py. We shall suppose that the adapting rule
of p will satisfy the following three conditions:

pre=E[A ).+, for every k ; (6.17)
there exists a subscript X such that for every % greater than X,
(Pe-12|Ayp)ll.+p) implies that pr=pi ; ' (6.18)
(px) is bounded if and only if py, is modified finitely often . (6.19)

In (6.17) and (6.18), P is & given positive constant. Condition (6.18) means that

eventually (for 4= K) ), px 18 modified only if it is ‘necessary to have (6.17). So
(pr | k= K) is an increasing sequence. An example of an adapting rule satisfying
these conditions is given by MavNe and Porax [32]:

if praz|Myell.-+p
then pr:=pr,
else py:=max (3pr-1, Ayl +P) »
where ¢ is a given constant greater than 1.
We are now able to state the algorithm that globalizes the local method (4.8)—
(4.9).
Algorithin RQN:
1. Choose'a convergence tolerance =0, f€10, 1[, €10, 1/2[ and a>1.

2. Choose 3 in.w and a symmetric positive definite matrix Gp of order n—m.
80
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3. Let £:=0,
4. Repeat:
4.1, Linearize the constraints at y;: choose & right inverse A(yx)~ of ve(ys)
and a basis Z(yz)~ of N( Va(yk)) according to assump’mon B.
4.2. Bvaluate Mys): = — Alye)™ v f(yx) and glys): =2(yx)™" v f(ye).
4.3: If k=1 then evaluate the symmetric posmve defmlte matrix @ by updating

Gy-1.
4.4. Tangent step: evaluate fp:= ~Z(ys)~ O3 g(yi) and Tp1: =y +tp
4.5, Restoration step: evaluate ¢(wy+y) and rk+1 = —Ayg) e(@p+1).

4.6. If [lg(yr)|| +llc(zr41)]| <€ then stop.
4.7, Adapt py according to (6.17)—(6.19).
4.8, Search & point x4 from gy along the arc (6.2) in arder to decrease the pen-

alty function (6.1) (with » =pg)} with the help 6f the rule (6.3)—(6.6).
4.9. Next iteration: set k:=k+1.
In the partitioned framework (see Section 3), only one linear system has to be
solved at the step 4.2. Indeed, if A(yx)=[Clyz) D(yx)], Ayx) is obtained by solving

Clyr)" Myw)= — vaf(ye) » 3

where v;f(yx) is the vector formed by the first m components of v f(yx). Then
9(yw)=D(yx)" Ayzx)+ v of(ys), where vaf( yx) is the veetor formed by the last #—m
components of v f(yz). .

The important question of the update of the matrices (G'x), which is mentioned
at step 4.3 of Algérithm RQN, has been investigated by Cormmaw and Cony [13]
and by Giuemrr [22], [26]. See NoompaL and Overrton [34] for algorithm
(1.12)-(1.14). G441 is obtained from G by the BFGS formula using two vectors yh

and oz in Rr—m:

Glc”ko'lcak VivE
(Fosr =p— /2
7he1 =0 e TTos " (6.20)
Therefore, Gy, satisfies the secant equation: .
Ye=Gr10% . , (6.21)

The point now is to choose adequately the vectors v, and oy so that Q. will
approximate G :=2;"L,Z;. This form of @, and formula (4.2) suggest taking vz
as the difference of two reduced gradients. A first possible choice consistsin taking;

Ye=g{®rn) —g¥s) , (6.22)
or=—G3'g(ys) - (6.23)

Then, if we suppose that (yx) and (z) épnverge to 2, TAYLOR’S theorem gives:
ye=Gyor+o(|og]) . S (824)

This relation and (6.21) show that y; and o4 are correctly chosen. Unfortunately,
this choice needs an additional linearization of the constraints at 2541 in order to
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calculate the reduced gradient at this point. This may be avoided by taking:

ve=g(yrn)—glyz), - (6.25)

o= — kG5 9(Yx) - (6.26)
But in this case, (6.24) will not be necessarily satisfied any more, which means
that updating G by formula (6.20) would deteriorate the matrix. Therefore, an
update criterion of the form

lokr1ll = peadlowtsl , (6:27)
where (uz) is an appropriate sequence converging, to zero, has to be introduced.
When (8.27) is satisfied, it is not too difficult to show that the estimate (6.24) is
still valid with y; and oy given by (6.25) and (6.26), The crucial point is now to
choose correctly the sequence (uy) so that when (6.27) is not satisfied the super-
linear rate of convergence of (xx) can be preserved. A good choice for k18

se=ullep— |l »
where u is a small enough constant and (k— —) is the subscript of the lagt but one
iteration at which (6.27) was satisfied, i.e. at which Gk__ was updated by formula,

(6.20).
The update scheme at step 4.3 of Algorithm RQN is expected to genemte & se-
quence of nonsmgular matrices G satisfying

Rl =Qpt=h11, (6.28)

for some positive constant k. This property is really not easy to obtain. However,

using the same type of arguments that are used in unconstrained optimization, it
can be proved either in a local framework (when (9, Gp) is supposed to be close

to (@4, Oy} and gx=1) or when it is assumed that (zx) and (yz) converge to «, with

kZ’ log — &y ]| < 4+ and kZ’ Yo —Zylf< + oo .
=0 =

See [25].
‘The next theorem gives some global convergence result for Algorithm RQN
under hypothesis (6.28). ‘ . |
Theorem 6.2: Suppose that Assumptions. A and B are satisfied and that f is bound-
- ed from below on w. Let (xx), (yx) ond (Gr) be the sequences generated by Algorithm
RQN with o in 10, 1[. Suppose that (xx) and {(yz) are in w and that the motrices Gy, are
nonsingular and satisfy (6.18) with « positive constant b independent of k. Then,
either (py) is unbounded and (yx | pr+pr-1) has no accumulation point in w, or (pz)' .
i8 bounded and

g+t ~0 . (62)
Proof: Buppose first that (pg) is unbounded and let I§.be the subsequence of
the subscripts k=K (K given in (6. 18)) for- Whlch PreEPi-1. By (6. 18)

Pr-1 '<IM(JL Hou +.p ’
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for k in K. Because (py | £=K) is an increasing sequence, we see from this ine-
quality that ||A(yg)|l —o> for k—eo in . Therefore (yx | pr+pr-1) has no accumu-
lation point in @ (here, we use the continuity of y ~a(y) and therefore, the sur-
jectivity of wefy) and assumption B are strongly invoked).

Now, let us suppose that (pg) is bounded, From (6.19), py is constant when &
is grent enough, Let us say that pp=p for k=K. So, at ench iteration the same
penalty function @, decrenses. The function [ being bounded from below, we get

plle(ys)lh = Oplyr,) —int f, for k=K. dl
Therefore, (||e(yz)1) is bounded and we can apply Lemma 6.1, ‘which states the
existence of a positive lower bound g for the sequence (o). From (6.28), we get

(—7'(yx) - tx) =hllg(ys)|2 and then, with (6.17), (6.6) can be written
eolglgn)IP +ople(ella =Oplyr) — Oplypn), for k=Fy.

But (@,(yx)) converges (a decreasing bounded from below sequence). Therefore,
taking the limit on & in this inequality shows that ||g(y)| and [le{yz)|l1 converge to
zero. Wl

The last problem we tackle concerns the admissibility of the unit step-size.
When gz=1 is accepted by (6.8), Algorithm RQN proceeds like the local method
(4.8)—(4.9) and superlinear convergence of () will oecur when the redoced
Hesgian @, is correctly approached by @y (see Theorem 5.1, statement (iii}). It s
known that this admissibility property is not satisfied when the BQP method is
globalized with the penslty function (6.1) and the technique deseribed at the
beginning of this section. This has heen called the "Mararos effect’’ of the SQP
method (see Mamraros [31]) and several remedies have been proposed to over-
come this drawback: see [20], [10], [32] and [5]. This inconvenience is not
shared with our algorithm. In fact, when c(yz)=0, which is a favourable
situation for the appearance of the MagraTos effect, the total displacement
ex =1y -+ry41 18 exactly the same as that of the SQP method with the MAY~E and
Porax’s correction. :

Let (xz) in w, (yz) in o and {Gx) be the sequences generated by Algorithm RQN
and suppose that (yx) converges to a solution z, of (1.1). Let KK be a subsequence
of subscripts. We are interested in finding conditions under which gz will be equal
to 1 for all but finitely many subscripts & in the subsequence K. The following
four properties will be meaningful: *

(Gr—~Gll=M for kin K, (6.30)
(@ —Gy) Zyde=o(litsll) for kin K, (6.31)
tp=0(||rp+l]) for %in K, (6.32)
or<1 and fp=o(|rgl)) for kin K . (6.33)

Properties (6.30) and (6.31) concern the approximation of the reduced Hessian
@, by Gx. Property (6.30) is very strong when J/ is small and is usually not satis-
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fied when second order derivatives are not calculated. Property (6.31) recalls
condition (iii) of Theorem 6.1, which is when (@) and (G3*) are pounded:

(G —Cy) Zop=0(|dill) - (6.34)
Therefore, (6.31) is usually stronger than (6.34) and, in fact, is satisfied by some
subsequences of subscripts when (@) is updated by the BFGS formula (see the
digcussion following the proof of Theorem 5.1). Property (6.32) cancerns the com-
parison of the tangent step and the restoration step.

The next theorem shows that for the subsequences K for which (6.30) with M/
small enough or (6.31) or (6.32) is satisfied, the rule (6.8)—(6.6) will give gz=1
for all but finitely many % in K. Therefore, the unit step-size will be admissible
either when @, is correctly approximated by G (properties (6.30) and (6.31)) or
when #; is of the same order of magnitude as 7541 (property (6.32)).

Property (6.33) is more particular. In concrete algorithms uging the update
scheme (6.20), (6.25) and (6.26) with the update criterion (6.27), neither of the
properties (6.31)—(6.88) is satisfied for the entire sequence. These properties are
satisfied only for subsequences . The result-obtained in Theorem 6.3 with pro-
perty (6.33) is then used to f)rove that only property (6.31) or (6.32) may oceur in
the considered algorithm (see [26]).

Theorem 6.3: Suppose that Assumptions A and B are satisfied. Let (zz), (yx) and
{Gr) be the sequences generated by Algorithm RQN with o in 10, 1/2]. Suppose thot
(zr) and (yy) are in w, that (yi) converges to x,, and that the matrices Gy, are nonsingu-
lar and satisfy (6.28) with a positive constant h independent of k. Let IS be o subse- .
quenice of subscripts. Then, '

(i) there extsts a positive constant M that depends only on o, o. and h such that if

(6.80) is satisfied with M <M then pr=1 for all but finitely many k in K,

{ii) 4f {6.81) or (6.32) is satisfied then pr=1 for all but finitely many & in K,

(iii) ¢f (6.33) is satisfied, then rra =o(|rell [ltel]) for & in K.

Proof: Since (yz) converges, Proposition 6.2 shows that (p;) is bounded and by
{(6.19), py is modified finitely often. 8o we can suppose that pg=p for all £ By
TavyLor’s theorem, we expand Op (yx +tx+75+1) at the second order in ¢; and the
first order in rg1. First, note that because (yz) converges to x, and (G;l) is bound-
ed, (xx) converges to #,. Then, we have

olenia) = olys) +5 () B+l ' (6:35)
We also have
f (ye+ex)=Flyr) +F (ve) - te+olwen)” Ays) +-§—f"(x*) B
+o({ltxl[2) + ol rall)
and using the estimate (6.85), we get
f (rtex)=Flyn) +F ) - s +clye)" Myz)
2 Lyt - o(|6s?) o) (6.36)
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On the other hand, expanding ¢ (yx +ez) about. y we obtain

6 (i -+ ex) =lys) —olans) +3 ' (58) B -+O(l1F) +ollrwal)
and using again (6.35), we get :

¢ (yp+er)=o([ill®) + ollraenll) . (6.37)
Let us define

dr:=f(ys) - te~ (P~ IMyall) Iyl ,
which ig-negative by (6.28) and (6.17). Finally, (6.36) and (6.37) give

Oy (v +ex) = @p(ya)+ﬁk+*tTL*h+0 (a2} + o llrgall) -

Bub =2, Ztn+0(jtz])) and the boundedness of (Gy) allows us to write g{yx)=
= —GpZdr +0(|jtx]))- Therefore,using f'(yx) I = mg(Jk)Tleg(Jk) AL R
+0(|[tx][2), we obtain

Op (Yr+ex)— @p(?/k) —ady

g(;_a) Ax—3 27 (@u—04) Zyty-tolltelt) +ollrill) (6.38)

Using this inequality we now prove the theorem. Suppose that the step-size
px is different from 1 for infinitely many % in a subsequence IS, say for k¢ K'c K.
Then, according to ArRmIz0’s rule (8.4)—(6.8), the left hand side of (6.38) is positive
and we have for k¢ lK':

T (O —Gi) Zats 4 o(f) +ollrmaall}

1
— A= ——
Using the inequality Cyltz)]=llg(yx)|l (where Cy is a positive constant that depends
only on ¢ and &), property (6.28), inequality (6.17), the definition (4.10) of 744 and
(6.35), we can obtain a lower bound for the left hand side:

HORleelP -+ Plety )l
1
1—2a
Now, if one of the properties (6.30) with M < :=(1--20) AC%/)Z,J? or (6.31) or
(6.82) is verified for k¢ K, this inequality leads to

l12411% +lle(@ M = oll¢al) +o(lle(y)1) »

for k¢ I§’, which shows that K’ cannot be 1nf1n1te This proves statements (i) and
{ii) of the theorem.

It remains to prove (111) With (6 33), 1nequahty (6.39) is valid for k€ K. And as
tr=o0(|lrz]]), it implies for ke K:-

Ealf? +lle (Ml = olllrall [xl]) +- o (liEli?) +olle(y)ll) .

(1T (G —Gy) e+ 0(tal1®) +o{lelys)]h) - (6.39)

= —
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from which we deduce

Eal2 -+ llewmlle = o7zl 1)) . (

Then, this estimate, the definition of 751 and (6.35) give

T =0([lral] l1E&]) - o([Belf?) -

Therefore, using ¢x=o(||rl]), we get the estimate in (iii). m

7.-Conclusion

In this paper, we have studied the local and global convergence of a variable
metric algorithm for equality constrained optimization in which the order of the
updated matrices is #—m. This reduced method can be seen as making a link
between GRG-like methods which are feasible methods (¢(xy)=0 for all k) with
reduced matrices (of order n—m) and the SQP method, which is an unfeasible
method with full matrices (of order n) The studied algorithm is indeed an unfea-
sible method with reduced matrices. The algorithm inherits also the good proper-
ties of both methods (reduced metrics, superlinear convergence and unfeasibility)
and shows, in particular, that locally only one restoration step is necessary to
obtain the superlinear convergence of GRG-liké methods when the reduced
matrices are correctly approximated. ' :

The global convergence is obtained by HaN’s technique to globalize the SQP
method. The /; penalty function is used as a merit function and is decreased along
an arc-shaped search path, Conditions for the asymptotic admissibility of the
unit step-size are given that turn out to be satisfied in practice.

An important facet of the method has not been tackled here and is reported
elsewhere (GirBERT [25]). This concerns the update of the reduced matrices
@ This one is based on & secant equation using the change in the reduced gradient
g. The fact that the gradient of ¢ at 2, (see (4.2)) is not equal to G, (and caniiot be
equal because Vg(w,) is an (n—m) X n matrix while @, is of order n-m) leads to -
an alternative. Either the reduced gradient is evaluated twice per iteration, at yz
and x4, or it is evaluated only once per iteration, at yx. In the first case, the chan-
g6 g{xx+1) —g(yr) is used in the secant equation and the matrices Gy are updated

at each iteration but with the inconvenience of having to linearize the constraints
twice per iteration: see CoremaN and Conw [18] and Girserr [25]. In the
second case, the change g(yx+1)—¢(yx) is used in the secant equation but usually
the matrices G4 can no longer be updated at each iteration. An update criterion
has to be introduced in order to decide when an update is appropriate. Despite
this, the superlinéar convergence can be achieved either in a local framework (see
[84] for algorithm (1.12)—(1.14)) or in a global framework (see [25]) for Alg'é;‘jthm
RQN of Section 6).
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