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1 Introduction

We consider the convex quadratic optimization problem that we write as follows

{

infx q(x)
l 6 Ax 6 u.

(1.1)

In that problem, the objective function

q : x ∈ R
n 7→ q(x) = gTx+

1

2
xTHx (1.2)
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is convex quadratic (the vector g ∈ R
n and the matrix H ∈ R

n×n is positive semidefinite)
and the constraints are defined by a matrix A ∈ R

m×n and bounds l and u ∈ R
m

that
must satisfy l < u (we have used the notation R := R∪{−∞,+∞}). The sign “T” denotes
transposition, so that uTv =

∑

i uivi is the Euclidean scalar product of the vectors u and v.
Because of the possible infinite value of the components of l and u, we feel it necessary to
give a precise definition of the frequently used interval

[l, u] := {y ∈ R
m : l 6 y 6 u}. (1.3)

Since H may vanish, the problem encompasses linear optimization. On the other hand,
linear equality constraints, like Bx = b, can be expressed in (1.1) by using two inequalities
Bx 6 b and −Bx 6 −b, so that the analysis below also covers problems with linear equality
constraints.

The augmented Lagrangian (AL) algorithm studied in this paper is defined by first
introducing an auxiliary vector of variables y ∈ R

m and by rewriting (1.1) as follows







inf(x,y) q(x)

Ax = y
l 6 y 6 u.

(1.4)

Given an augmentation parameter r > 0, the AL function ℓr : R
n ×R

m ×R
m → R is then

defined at (x, y, λ) ∈ R
n × R

m × R
m by

ℓr(x, y, λ) = q(x) + λT(Ax− y) +
r

2
‖Ax− y‖2, (1.5)

where here and below ‖ · ‖ denotes the ℓ2-norm. For r = 0, one recovers the usual La-
grangian function, relaxing the equality constraints of (1.4) thanks to the multiplier or
dual variable λ. The AL algorithm generates a sequence of dual variables {λk}k∈N ⊆ R

m

as follows. Knowing rk > 0 and λk ∈ R
m, the next dual iterate λk+1 is computed by

(xk+1, yk+1) ∈ argmin {ℓrk(x, y, λk) : (x, y) ∈ R
n × [l, u]} , (1.6)

λk+1 := λk + rk(Axk+1 − yk+1), (1.7)

where “argmin” denotes the solution set to the associated minimization problem. Next, rk
is updated by a rule that depends on the implementation and to which we pay much
attention in this paper. The quadratic optimization problem in (1.6) is called the AL
subproblem. The algorithm is presented with more details and is further discussed at the
end of this section.

This paper can be viewed as a continuation of the work initiated in [17; 2005], in which
the global linear convergence of the constraint norm to zero is established, when (1.1) is
feasible and bounded. Feasibility means that there is a point x ∈ R

n such that Ax ∈ [l, u]
or, equivalently, that R(A) ∩ [l, u] 6= ∅ (we denote the range space of the matrix A by
R(A) := {Ax : x ∈ R

n}). When feasibility occurs, boundedness means that the optimal
value of (1.1) is finite. For a quadratic problem like (1.1), these two conditions (feasibility
and boundedness) are equivalent to the existence of a solution [25; 1956]. More specifically,
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it was shown in [17] that when (1.1) has a solution

∀ β > 0, ∃L > 0, dist(λ0,SD) 6 β implies that

∀ k > 1, ‖Axk+1 − yk+1‖ 6
L
rk
‖Axk − yk‖, (1.8)

where SD denotes the necessarily nonempty set of optimal multipliers associated with
the equality constraints of (1.4) and the operator “dist” denotes the Euclidean distance.
Computationally, this result is interesting because it allows the AL algorithm to tune the
augmentation parameter rk on the basis of the examined behavior of the constraint norm
ratio ‖Axk+1 − yk+1‖/‖Axk − yk‖, from the very first iteration. In [27], rk is increased
if this ratio is larger than a desired rate of convergence (this rate is easier to prescribe
by the solver user than rk). Let us stress that it is the fact that the constraint norm
inequality in (1.8) is valid from the first iteration, not only asymptotically in an unknown
neighborhood of the unknown set SD, that makes this tuning possible. Now, when the
problem is infeasible, i.e., R(A) ∩ [l, u] = ∅, the constraint norm cannot, of course, tends
to zero and the just described rule for tuning rk makes the augmentation parameter blow
up. In that case, the algorithm could stop if rk exceeds some threshold like in [3], but one
understands that (i) it is difficult to specify a universal value for such a threshold, (ii) a
threshold may be difficult to determine for a particular problem by the user of the code,
and (iii) probably nothing can be said on the approximate solution obtained when the
threshold is exceeded.

This paper gives more properties on the AL algorithm when problem (1.1) is infeasible.
Since, the AL algorithm is equivalent to the proximal (point) algorithm on the dual func-
tion [48; 1973], the present contribution is related to the works describing the behavior of
the proximal method on monotone inclusion problems without solution [52, 7, 45, 58, 59;
1976-1987], but it goes a little further, by taking advantage of the special structure of
the quadratic optimization problem (1.1). In particular, the way the changing penalty
parameters rk intervene in the speed of convergence is highlighted.

One assumption is crucial for making the AL algorithm consistent for infeasible prob-
lems. Since [l, u] 6= ∅, it is always possible to find a shift s ∈ R

m such that the shifted
constraints l 6 Ax + s 6 u are feasible for some x ∈ R

n; let us call such an s a feasible
shift. The feasible shifts are clearly the vectors in the set

S := [l, u] +R(A). (1.9)

The fundamental assumption of this study is that for some shift s ∈ S (or any such feasible
shift, as this will be clarified by the comment after proposition 2.5), the shifted quadratic
optimization problem

{

infx q(x)
l 6 Ax+ s 6 u

(1.10)

has a solution. This assumption is essential in the present context because it is equivalent
to saying that each AL subproblem (1.6) has a solution whatever are (or, equivalently, for
some) λ ∈ R

m and r > 0 (see proposition 2.5 again), so that the AL algorithm is consistent
if and only if that fundamental assumption holds.
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Since S is a nonempty closed convex set (it is a convex polyhedron containing [l, u]),
there is also one and only one smallest shift s̄ ∈ S, which is the projection of zero on S:

s̄ := argmin
s∈S

‖s‖. (1.11)

Of course, s̄ = 0 if and only if problem (1.1) is feasible. Problem (1.10) with s = s̄ is called
in this paper the closest feasible problem. It reads

{

infx q(x)
l 6 Ax+ s̄ 6 u.

(1.12)

Computing s̄ is not easier than computing a solution to a feasible quadratic problem like
(1.1), so that this smallest feasible shift is not computed before running the AL algorithm.
We will see, however, that in the AL algorithm the following dual function subgradients

sk := yk −Axk (1.13)

converge globally linearly to s̄, in a way similar to (1.8) but with sk replaced by sk − s̄
in the second line (theorem 3.4). This result is partly due to the fact that s̄ is also the
smallest subgradient of the dual function δ associated with problem (1.1) (it will be shown
in proposition 2.9, indeed, that the set of all subgradients of δ, denoted R(∂δ), is identical
to S) and that the AL algorithm tries to find a multiplier λ such that ∂δ(λ) contains that
smallest subgradient s̄.

The minimum shift s̄ is not known when the AL algorithm is running, so that it is less
straightforward to use that new global linear convergence for updating the parameter rk,
than it was when s̄ = 0. We propose instead to use the differences s′k := sk+1 − sk, which
also converge globally linearly to zero (a known limit point this time!), provided rk is suffi-
ciently large. Finally, this analysis results (i) in a new update rule for rk, which maintains
bounded the generated sequence of augmentation parameters even for an infeasible prob-
lem, hence avoids introducing useless ill-conditionding (section 4.1) and which computes
the smallest feasible shift s̄ at a global linear speed and (ii) in a new stopping criterion
for the AL algorithm, which can detect that a solution to the closest feasible problem has
been obtained to the required precision. The new version of the AL algorithm for solving
the convex quadratic problem (1.1) is presented in section 4.2.

Another source of motivation for the present work, to add further to [17; 2005], is a
result on the minimization of a strictly convex quadratic function q subject to infeasible
linear equality constraints Bx = b (Fortin and Glowinski [24; 1982, remark 5.6, page 42]
and Glowinski and Le Tallec [30; 1989, remark 2.13, page 65] claim the result without
proof; see also [16; 2006, theorem 4.1] for a related result): the primal sequence generated
by the AL algorithm converges globally linearly to the solution to the weakly constrained
problem

{

infx q(x)
BT(Bx− b) = 0.

(1.14)

Therefore, this paper can also be viewed as an extension of the Fortin-Glowinski-LeTallec
result to the minimization of a convex function (strict convexity is no longer required)

4



subject to incompatible inequality constraints. Without strict convexity, however, the
convergence of the entire primal sequence is no longer ensured, so that the presented linear
convergence result is related to the constraint values, instead. Another contribution comes
from the impact of the values of the penalty parameters rk on the speed of convergence:
the larger the parameters are, the faster the convergence is; this is an expected property
of the AL algorithm.

Notation

We denote by N := {0, 1, 2, . . .} the set of nonnegative integers, by [n1 :n2] := {n1, . . . ,
n2} = [n1, n2] ∩ N the set of integers between n1 ∈ N and n2 ∈ N, by R the set of real
numbers, and we set R+ := {t ∈ R : t > 0}, R− := −R+, and R := R ∪ {−∞,+∞}.

The notation and concepts of convex analysis that we employ are standard [46, 34, 6].
Let E be a finite dimensional vector space (below, E is some R

p). The asymptotic cone
of a nonempty closed convex set C ⊆ E is denoted by C∞ := {d ∈ E : C + d ⊆ C}. We
denote by IS the indicator function of a set S ⊆ E: IS(x) = 0 if x ∈ S, IS(x) = +∞ if
x /∈ S. The domain of a function f : E → R is defined and denoted by dom f := {x ∈ E :
f(x) < +∞} and its epigraph by epi f := {(x, α) ∈ E×R : f(x) 6 α}. As in [34], Conv(E)
is the set of functions f : E → R∪{+∞} that are convex (i.e., epi f is convex) and proper
(i.e., epi f 6= ∅); while Conv(E) is the subset of Conv(E) of those functions f that are also
closed (i.e., epi f is closed).

Suppose now that E is endowed with a scalar product denoted by 〈·, ·〉 (below, 〈·, ·〉 is
the standard Euclidean scalar product of some E = R

p). The normal cone to a convex
set C ⊆ E at x ∈ C is denoted by NC(x) := {ν ∈ E : 〈ν, y − x〉 6 0, for all y ∈ C}.
The Fenchel conjugate of f ∈ Conv(E) is the function f∗ ∈ Conv(E) defined at s ∈ E by
f∗(s) = sup{〈s, x〉 − f(x) : x ∈ E}. The biconjugate f∗∗ of f is the conjugate of f∗; its
value at x ∈ E is given by f∗∗(x) = sup{〈s, x〉 − f∗(s) : s ∈ E}; it is known that f∗∗ = f if
and only if f ∈ Conv(E). The subdifferential at x ∈ E of f ∈ Conv(E) is the set denoted
by ∂f(x) := {s ∈ E : f(x)+ f∗(s) = 〈s, x〉}; it is known that the multifunction x 7→ ∂f(x)
is monotone, i.e., 〈s2−s1, x2−x1〉 > 0 whenever for i = 1, 2, xi ∈ E, and si ∈ ∂f(xi). The
range space of ∂f is denoted by R(∂f) := ∪{∂f(x) : x ∈ E}. The orthogonal projector on
[l, u] is denoted by P[l,u].

The standard augmented Lagrangian algorithm

We conclude this introduction by setting forth precisely the classical AL algorithm that
is analyzed in this paper. The algorithm will be rewritten in section 4.2 in a version that
incorporates the results of this paper and only differs on the stopping criterion (step 3)
and on the way of updating the augmentation parameter (step 4). It is described below as
though computation were done in exact arithmetic.

Standard AL algorithm to solve (1.1)

Initialization: choose λ0 ∈ R
m and r0 > 0.

Repeat for k = 0, 1, 2, . . .
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1. If the feasible problem

min
(x,y)∈Rn×[l,u]

ℓrk(x, y, λk) (1.15)

has no solution, exit with a direction d ∈ R
n such that

gTd < 0, Hd = 0, and Ad ∈ [l, u]∞. (1.16)

Otherwise, denote a solution to (1.15) by (xk+1, yk+1).
2. Update the multiplier

λk+1 = λk + rk(Axk+1 − yk+1). (1.17)

3. Stop if
Axk+1 = yk+1. (1.18)

4. Choose a new augmentation parameter: rk+1 > 0.

This algorithm deserves some comments.

1. It is shown in proposition 2.5 below that if the AL subproblem (1.15) has no solution,
then the closest feasible QP is unbounded and the subproblem (1.15) has no solution,
whatever is λk ∈ R

m and rk > 0. Therefore this situation is detected at the very first
AL iteration.

2. The fact that a direction d ∈ R
n satisfying (1.16) can be found when the AL sub-

problem has no solution is a consequence of lemma 2.2 below; see remark 2.3 (iii).
Such a direction is useful when the QP solver is used within the SQP algorithm (see
part III in [5] and [29, 35], for instance).

3. The AL subproblem (1.15) may have many solutions (xk+1, λk+1). Despite that fact,
the next multiplier λk+1 is uniquely determined by (1.17). This is discussed after
lemma 2.4.

4. Some implementations of the AL algorithm update λk with more flexibility than in
formula (1.17), for example by taking λk+1 = λk + ξkrk(Axk+1 − yk+1), with ξk in a
compact subset of the open interval ]0, 2[ (see for example [21; 2012, proposition 11]).
The compatibility of this flexibility with our analysis has not been explored.

5. The stopping criterion in step 3 is only valid if the QP (1.1) is feasible, since otherwise
Axk+1 = yk+1 ∈ [l, u] cannot be satisfied. The proposed stopping criterion is based
on the fact that, when the QP is feasible, a pair (xk+1, yk+1) satisfying (1.18) at this
stage of the algorithm is necessarily a solution to (1.4). This stopping criterion will be
modified for dealing with infeasible problems in the revised AL algorithm presented
in section 4.2.

6. The update of the augmentation parameter in step 4 largely depends on the imple-
mentation. The rule proposed in [17] will be adapted to infeasible problems in the
revised AL algorithm of section 4.2.
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The AL algorithm has a long history that cannot be retraced here. The minimum is
certainly to mention that it was introduced for equality constrained nonlinear optimization
problems by Hestenes and Powell [33, 42; 1969], and extended to inequality constrained
problems by Rockafellar, Buys, Arrow, Gould, and Howe [47, 11, 49, 1, 50; 1971-74]. More
recently, its properties when it solves more structured problems have been investigated:
linear optimization problems are considered in [41, 31; 1972-1992], quadratic optimization
problems in [18, 20, 19, 17, 16, 26; 1999-2008], SDP problems in [37, 38, 32, 61; 2004-2010],
and cone constrained optimization problems in [54; 2004].

2 Problem structure

2.1 On quadratic optimization

We quote in this section two results on a quadratic optimization problem, slightly more
general than (1.1), namely

inf
x∈X

q(x), (2.1)

where q is the quadratic function (1.2) and X is a convex polyhedron. This generality
simplifies the proof of proposition 2.2. Both results are useful in the subsequent analysis.
The first one recalls the famous characterization of the existence of a solution established
by Frank and Wolfe [25; 1956, appendix (i)], which does not require convexity. The second
one requires the convexity of the objective q (see remark 2.3 (ii)) and characterizes the
unboundedness of (1.1) in terms of the existence of a direction d that has interesting
theoretical and numerical properties.

We denote by val(P ) ∈ R := R ∪ {−∞,+∞} the optimal value of an optimization
problem (P ), with the convention that val(P ) = +∞ if (P ) is an infeasible minimization
problem. We say that a feasible minimization problem (P ) is unbounded if val(P ) = −∞
and bounded if val(P ) > −∞.

Lemma 2.1 (solvable QP) Consider problem (2.1) with a quadratic objective q and
a polyhedral feasible set X. Then this problem has a solution if and only if val((2.1)) ∈
R (i.e., problem (2.1) is feasible and bounded).

Lemma 2.2 (unbounded convex QP) Consider problem (2.1) with a convex
quadratic objective q and a nonempty polyhedral feasible set X. Then this problem
is unbounded if and only if there is a direction d ∈ R

n such that

gTd < 0, Hd = 0, and d ∈ X∞. (2.2)

Proof. [⇐] It is clear that the conditions (2.2) imply the unboundedness of the feasible
problem (1.1) since, given an arbitrary point x0 ∈ X 6= ∅, the points xk = x0 + kd with
k ∈ N are in X (definition of X∞) and q(xk) = q(x0) + k(gTd) → −∞ when k → ∞.
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[⇒] When the problem is unbounded, there is a sequence {xk} of feasible points
such that q(xk) → −∞. By the continuity of q, the sequence {xk} must be unbounded.
Extracting a subsequence if necessary, one can assume that xk/‖xk‖ converges to some
unit norm vector v. This one necessarily satisfies

gTv 6 0, Hv = 0, and v ∈ X∞. (2.3)

Indeed, the first condition is obtained by taking the limit in gTxk/‖xk‖ 6 q(xk)/‖xk‖
[since H < 0] 6 γ/‖xk‖ [since q(xk) 6 γ for some constant γ ∈ R]; the second condition
is obtained by taking the limit in q(xk)/‖xk‖2 6 γ/‖xk‖2, which yields vTHv 6 0 and
subsequently Hv = 0 by the positive semidefiniteness of H; and the third condition results
from xk ∈ X, ‖xk‖ → ∞, and xk/‖xk‖ → v, which imply that v ∈ X∞ [2; definition 2.1.2].

We pursue by induction on the dimension of X (i.e., the dimension of its affine hull
aff X), taking inspiration from the proof of lemma 2.1 by Franck and Wolfe [25; 1956,
appendix (i)]. Let V be the vector subspace parallel to aff X and denote by w a vector
such that aff X = w + V . It is clear that v ∈ V .

r If dimX = 1, (2.2) is satisfied with d = v, since otherwise gTv would vanish by (2.3)
and, for any x ∈ X, q(x) would be the constant gTw + 1

2w
THw, contradicting the fact

that problem (1.1) is unbounded.

r Suppose now that the conditions in (2.2) hold when dimX < p for some p ∈ [2 : n]
and let us prove these conditions when dimX = p. If gTv < 0, (2.3) shows that (2.2)
is satisfied with d = v. Otherwise gTv = 0 and the function q is constant along the
direction v (same argument as in the first point). There are now two complementary
subcases to consider.

If x′k := xk − (vTxk)v ∈ X for a subsequence of indices K ⊆ N, then x′k ∈ X ′ :=
X ∩ {v}⊥ (since ‖v‖ = 1). Furthermore, q(x′k) = q(xk) → −∞, so that the quadratic
problem consisting of minimizing q on the convex polyhedron X ′ is unbounded. Since
dimX ′ < dimX = p, the induction assumption implies that there exists a direction d
such that gTd < 0, Hd = 0, and d ∈ (X ′)∞. Now, X ′ ⊆ X implies that (X ′)∞ ⊆ X∞,
so that (2.2) is proven with that d.

If x′k /∈ X for k larger than some index k1, then, for each k > k1, there is an αk ∈ R

such that x′′k := xk + αkv is on the boundary of X of (1.1). Since that boundary is
formed of a finite number of convex polyhedral sets Xi of dimension < p and since
q(x′′k) = q(xk) → −∞, one of these polyhedron, say Xj , must contain an unbounded
subsequence of {x′′k} that again satisfies q(x′′k) → −∞. The conclusion now follows, like
before, from the induction assumption since dimXj < p and X∞

j ⊆ X∞. ✷

If the convex polyhedron reads X := {x : Ax ∈ [l, u]}, like in problem (1.1), there holds
X∞ = {d : Ad ∈ [l, u]∞} and the conditions (2.2) becomes

gTd < 0, Hd = 0, and Ad ∈ [l, u]∞. (2.4)

A direction satisfying (2.4) is called in this paper an unboundedness direction or a direction
of unboundedness.
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Remarks 2.3 (i) Lemma 2.2 no longer holds if the feasible set is an arbitrary closed
convex set. For example inf{x1 : (x1, x2) ∈ X} = −∞ if X = {x ∈ R

2 : x2 > x21}, but
X∞ = R+{d}, where d = (0, 1), while gTd = 0.

(ii) Lemma 2.2 no longer holds if q is nonconvex. For example inf{−x2 : x ∈ R} = −∞
but g = 0 so that there is no direction d such that gTd < 0.

(iii) If we apply lemma 2.2 to the feasible problem (1.15) with rk ≡ r > 0 and λk ≡ λ,
we see that it has no solution (or, equivalently, problem (1.15) is unbounded) if and only
if there is a direction (dx, dy) ∈ R

n × R
m such that

[

g +Hx+ATλ+ rAT(Ax− y)
]T

dx −
[

λ+ r(Ax− y)
]T

dy < 0,
(

H + rATA −rAT

−rA rI

)(

dx
dy

)

= 0, and dy ∈ [l, u]∞.

These conditions are equivalent to (2.4) and (dx, dy) = (d,Ad), so that the directions of
unboundedness of problem (1.1) can be detected on problem (1.15) in step 1 of the AL
algorithm. ✷

2.2 The dual function

We introduce a Lagrangian of problem (1.4) by dualizing its equality constraints. It is the
function ℓ : Rn × R

m × R
m 7→ R defined at (x, y, λ) by

ℓ(x, y, λ) = q(x) + λT(Ax− y). (2.5)

The dual function δ : Rm → R associated with problem (1.4) is then defined at λ by

δ(λ) := − inf
(x,y)∈Rn×[l,u]

ℓ(x, y, λ). (2.6)

With the minus sign in front of the infimum, this function is convex, closed, and does not
take the value −∞. Therefore,

δ ∈ Conv(Rm) ⇐⇒ dom δ 6= ∅. (2.7)

For r > 0, the Moreau-Yosida regularization of the dual function δ [39, 34; 1965] is the
function δr : R

m → R defined at λ ∈ R
m by

δr(λ) = inf
µ∈Rm

(

δ(µ) +
1

2r
‖µ − λ‖2

)

. (2.8)

A fundamental tool to study the properties of the AL algorithm is the following beautiful
result by Rockafellar [48; 1973], which is particularized below to the present context; this
result is indeed also valid for general convex optimization problems.
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Lemma 2.4 (AL and proximality) Suppose that the dual function δ defined by
(2.6) is in Conv(Rm) and let r > 0. Then δr(λ) defined by (2.8) verifies

δr(λ) = − inf
(x,y)∈Rn×[l,u]

ℓr(x, y, λ), (2.9)

where ℓr is the augmented Lagrangian defined in (1.5). Furthermore, the unique solu-
tion λ+ to the problem in the right hand side of (2.8) is linked to an arbitrary solution
(x+, y+) to the problem in the right hand side of (2.9) by

λ+ = λ+ r(Ax+ − y+) and y+ −Ax+ ∈ ∂δ(λ+).

The unique solution λ+ to the problem in the right hand side of (2.8) is called the proximal
point of λ associated with δ and r > 0 and is denoted in this paper by

proxδ,r(λ) := argmin
µ∈Rm

(

δ(µ) +
1

2r
‖µ − λ‖2

)

. (2.10)

Hence, according to lemma 2.4, the multipliers λk generated by the AL algorithm satisfy

λk+1 = proxδ,rk(λk) and sk+1 ∈ ∂δ(λk+1), (2.11)

where sk is defined by (1.13). As a result, the multiplier λk+1 computed by the AL
algorithm is uniquely determined, although the AL subproblem in (1.6) may have several
solutions (xk+1, yk+1). These facts alone show the importance of the dual function in the
analysis of the AL algorithm.

To be comprehensive and clear up any ambiguity, we feel it necessary to restate and
prove proposition 3.3 from [17] in the present context, in which problem (1.1) may have
no solution (infeasibility or unboundedness); in places, we use a different argument (i.e.,
lemma 2.2), which makes the proof shorter. The proposition establishes a link between
properties of three different objects: the nonemptiness of the dual function domain, the
solvability of the feasible shifted quadratic problems, and the solvability of the AL sub-
problems.

Proposition 2.5 (three expressions of the AL subproblem solvability) Let
be given s ∈ S := [l, u]+R(A), λ ∈ R

m, and r > 0. Then the following three properties
are equivalent:

(i) dom δ 6= ∅,
(ii) the feasible shifted quadratic problem (1.10) has a solution,
(iii) the augmented Lagrangian subproblem in (2.9) has a solution.

Proof. [(i) ⇒ (iii)] Since dom δ 6= ∅, δ ∈ Conv(Rm) by (2.7), so that the optimal value
δr(λ) of the problem in the right hand side of (2.8) is finite. By lemma 2.4, the optimal
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value of problem in (2.9) is also finite. As a feasible bounded convex quadratic problem,
the problem in (2.9) must have a solution (lemma 2.1).

[(iii) ⇒ (ii)] We proceed by contradiction. Suppose that the feasible problem (1.10)
has no solution. Then this problem is unbounded (lemma 2.1) and there is a direction
d ∈ R

n such that (2.4) holds (lemma 2.2 and [l − s, u− s]∞ = [l, u]∞). Now, by applying
lemma 2.2 to problem (1.15), we see that the existence of such a direction d implies that
problem (1.15) has no solution (remark 2.3 (iii)).

[(ii) ⇒ (i)] Let (x, (λ
l
, λ

u
)) be a primal-dual solution to the feasible shifted prob-

lem (1.10), where λ
l

[resp. λ
u
] is the multiplier associated with the lower [resp. upper]

bound. Then ((x,Ax+ s), (λ
l
, λ

u
)) is a primal-dual solution to the optimization problem

in (2.6) with λ = λ
u − λ

l
. Hence δ 6≡ +∞. ✷

Since s ∈ S, λ ∈ R
m, and r > 0 are common to all the conditions (i)–(iii) of propo-

sition 2.5 and since condition (i) does not depend on that data, once a shifted quadratic
problem (1.10) has a solution for some s ∈ S, it has a solution for any s ∈ S. For the
same reason, once an augmented Lagrangian subproblem in (2.9) has a solution for some
λ ∈ R

m and r > 0, it has a solution whatever are λ ∈ R
m and r > 0. Note also that

the result no longer holds when r = 0: for exemple (i) may not imply (iii) when r = 0
(dom δ 6= ∅ does not necessarily imply that dom δ = R

m).
We can now precise the general assumption made throughout this paper in the form of

three equivalent properties. This equivalence is a consequence of proposition 2.5.

Assumption 2.6 The following equivalent properties hold:

dom δ 6= ∅ [this is equivalent to δ ∈ Conv(Rm)], (2.12)

∃ s ∈ R
m : (1.10) has a solution, (2.13)

∀ s ∈ S : (1.10) has a solution. (2.14)

In this paper, we are interested in infeasible problems of the form (1.1). The following
proposition gives an expression of feasibility in terms of the dual function (2.6), which is
instructive to understand how the AL behaves in case it tries to solve an infeasible problem
(see the comment after the proof).

Proposition 2.7 (feasibility and dual function) Suppose that assumption 2.6
holds. Then, the following two properties are equivalent:

(i) problem (1.1) is feasible,
(ii) the dual function δ is bounded below,
(iii) δ∗(0) < +∞.

Proof. [(i) ⇒ (ii)] When problem (1.1) is feasible, there is some x0 such that y0 := Ax0 ∈
[l, u]. It follows from the definition (2.6) of δ that, for any λ ∈ R

m, δ(λ) > −ℓ(x0, y0, λ) =
−q(x0); hence δ is bounded below by −q(x0) ∈ R.

11



[(ii) ⇒ (i)] Since dom δ 6= ∅ by (2.12), δ(λ) ∈ R for some λ ∈ R
m. On the other hand,

since s̄ defined by (1.11) is the projection of 0 on S := [l, u] +R(A), there holds

∀(x, y) ∈ R
n × [l, u] : (y −Ax)Ts̄ > ‖s̄‖2.

Then, for all t > 0:

δ(λ− ts̄) = − inf
(x,y)∈Rn×[l,u]

[

q(x) + (λ− ts̄)T(Ax− y)
]

6 δ(λ) − t‖s̄‖2.

Since δ is bounded below, there must hold s̄ = 0, i.e., problem (1.1) is feasible.
[(ii) ⇔ (iii)] The equivalence comes from the fact that δ∗(0) = − infλ∈Rm δ(λ). ✷

From proposition 2.7, from the proximal interpretation of the AL algorithm given
by lemma 2.4, and from the properties of the proximal algorithm, one readily deduces
that, for an infeasible problem (1.1) and for a sequence of augmentation parameter rk
satifying

∑

k>0 rk = ∞, the sequence {λk} generated by the AL algorithm is unbounded
and δ(λk) → −∞. This observation gives a first picture on the behavior of the AL algorithm
when it is used to solve an infeasible problem. More can be said.

The next two propositions aim at highlighting the link between the set S of feasible
shifts and the range of the dual function subdifferential, denoted R(∂δ). These results
are “almost valid” for general convex problems, using similar arguments, but with nuances
whose description goes beyond the scope of this paper. To avoid making the presentation
too cumbersome, we have preferred staying in the domain of convex quadratic optimization,
although several arguments are also valid for more general convex problems. In the case
of convex quadratic problems,

S = R(∂δ), (2.15)

provided assumption 2.6 holds. This identity is surprising, since S only depends on the
objects defining the constraint set (here A, l, and u), while δ also depends on the quadratic
objective q. The validity of this identity for a general convex problem is briefly discussed
after proposition 2.9 below.

We prove (2.15) by means of the value function v : Rm → R of problem (1.1), which is
defined at s ∈ R

m by

v(s) := inf {q(x) : Ax+ s ∈ [l, u], x ∈ R
n}. (2.16)

The prominent role we give to v in getting (2.15) comes from the fact that, on the one
hand, it has a link with S through the identity

dom v = S,

which is easily verified by using the expression (1.9) of S. On the other hand, the value
function has also a link with the dual function. Indeed, in convex optimization, it is known
and easy to see that the dual function (2.6) can be introduced from the value function by

δ = v∗, (2.17)
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where v∗ denotes the conjugate function of v for the Euclidean scalar product; see [51;
theorem 7] or just use the definitions of v, δ, and the conjugate. For a convex quadratic
optimization problem satisfying assumption 2.6, the link between v with δ can be rein-
forced. Taking the conjugate of both sides of (2.17), one gets δ∗ = v∗∗. We show in
proposition 2.8 below that δ∗ = v or, equivalently, that v ∈ Conv(Rm). As highlighted
by the proof, this identity rests on the fact that v(s) is obviously the optimal value of
the shifted quadratic optimization problem (1.10), that δ∗(s) is the optimal value of the
Lagrangian dual of the same problem, and that there is no duality gap. In other words,
the identity δ∗ = v is a compact way of expressing that, whatever is s ∈ R

m, problem
(1.10) and its dual present no duality gap (provided assumption 2.6 holds).

The next result is certainly not original but, by lack of reference, we give it a proof since
it will be helpful in proving proposition 2.9 below. The result is related to theorem 11.42
and example 11.43 in [53], although there finiteness of one of the primal or dual optimal
values is assumed, which is not the case here (both optimal values may be +∞). The proof
makes use of an auxiliary vector of variables y ∈ R

m in the shifted quadratic optimization
problem (1.10), which then reads







infx,y q(x)
Ax+ s = y
l 6 y 6 u.

(2.18)

Proposition 2.8 (no duality gap) If assumption 2.6 holds, then δ∗ = v ∈
Conv(Rm).

Proof. By assumption (2.12), δ ∈ Conv(Rm), so that δ∗ ∈ Conv(Rm) [46; theorem 12.2].
It remains to prove that δ∗ = v. We consider two mutually exclusive cases, v(s) ∈ R and
v(s) = +∞, one of which must occur (since by assumption 2.6, v(s) > −∞).

r If v(s) ∈ R, then problem (2.18) has a solution (x, y) ∈ R
n × [l, u] (lemma 2.1). That

problem also has an optimal multiplier λ associated with the affine constraint Ax+s = y.
Then, the pair ((x, y), λ) is a saddle-point of the Lagrangian ((x, y), λ) 7→ q(x)+λT(Ax+
s− y) on (Rn × [l, u]) × R

m, which implies that there is no duality gap:

inf
(x,y)∈Rn×[l,u]

sup
λ∈Rm

(

q(x) + λT(Ax+ s− y)
)

= sup
λ∈Rm

inf
(x,y)∈Rn×[l,u]

(

q(x) + λT(Ax+ s− y)
)

.

The left hand side is clearly v(s). The right hand side also reads

sup
λ∈Rm

[

sTλ+ inf
(x,y)∈Rn×[l,u]

(

q(x) + λT(Ax− y)
)

]

= sup
λ∈Rm

[

sTλ− δ(λ)
]

= δ∗(s).

We have shown that δ∗(s) = v(s) when v(s) is finite.
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r If v(s) = +∞, problem (2.18) is infeasible. Since the dual function of that problem
is λ 7→ δ(λ) − sTλ, the contrapositive of the implication (iii) ⇒ (i) of proposition 2.7
shows that its conjugate at zero, namely δ∗(s), has the value +∞. ✷

Note that when assumption 2.6 does not hold, then δ ≡ +∞ and δ∗ ≡ −∞, while
v(s) = +∞ when s /∈ S; therefore δ∗ 6= v on the complementary set of S, which may be
nonempty (both δ∗ and v take the value −∞ on S).

We now show the identity S = R(∂δ) in (2.15), together with some equivalences, when
assumption 2.6 holds. These equivalences, giving various expressions of the fact that λ is
a dual solution to problem (2.18), are standard and will be useful below.

Proposition 2.9 (dual subdifferential and feasible shifts) Suppose that as-
sumption 2.6 holds. Let s and λ ∈ R

m. Then, the following properties are equivalent

(i) s ∈ ∂δ(λ),
(ii) λ ∈ ∂v(s),
(iii) s ∈ S and any solution to problem (2.18) minimizes the Lagrangian ℓ(·, ·, λ) on

R
n × [l, u],

(iv) there is a feasible pair for problem (2.18) that minimizes the Lagrangian ℓ(·, ·, λ)
on R

n × [l, u].

In addition, S = R(∂δ) holds.

Proof. Before proving the equivalences, let us recall that δ ∈ Conv(Rm) by (2.12), so
that

s ∈ ∂δ(λ) ⇐⇒ δ(λ) + δ∗(s) = sTλ. (2.19)

[(i) ⇔ (ii)] Since δ ∈ Conv(Rm) by (2.12), s ∈ ∂δ(λ) if and only if λ ∈ ∂δ∗(s) [46;
theorem 23.5]. By proposition 2.8, the property s ∈ ∂δ(λ) is equivalent to λ ∈ ∂v(s).

[(i), (ii) ⇒ (iii)] Let s ∈ ∂δ(λ). By (ii), s ∈ dom v = S. Now, let (xs, ys) be an
arbitrary solution to (2.18). Then

ℓ(xs, ys, λ) = q(xs)− sTλ [Axs + s = ys]

= v(s)− sTλ [definition of v]

= δ∗(s)− sTλ [proposition 2.8]

= −δ(λ) [(2.19) and s ∈ ∂δ(λ)]

= inf
(x,y)∈Rn×[l,u]

ℓ(x, y, λ) [definition of δ in (2.6)].

This shows the minimality property of (xs, ys).
[(iii) ⇒ (iv)] This is a clear consequence of the fact that problem (2.18) has a solution

when s ∈ S and assumption 2.6 holds.
[(iv) ⇒ (i)] Let (xs, ys) be a feasible point of problem (2.18) with the minimality
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property mentioned in (iv). Then for any µ ∈ R
m:

sTµ− δ(µ)

6 q(xs) + µT(Axs − ys + s) [definition of δ in (2.6)]

= q(xs) + λT(Axs − ys + s) [feasibility of (xs, ys), implying Axs + s = ys]

= sTλ+ inf
(x,y)∈Rn×[l,u]

q(x) + λT(Ax− y) [minimality property of (xs, ys)]

= sTλ− δ(λ) [definition of δ in (2.6)].

Therefore λ minimizes µ ∈ R
n 7→ δ(µ)− sTµ, which implies that s ∈ ∂δ(λ).

[S = R(∂δ)] The inclusion R(∂δ) ⊆ S was shown during the proof of “(i), (ii) ⇒ (iii)”.
To prove S ⊆ R(∂δ), let s ∈ S. By assumption 2.6, problem (2.18) has a primal-dual
solution ((xs, ys), λs). Hence (xs, ys) minimizes (x, y) 7→ ℓ(x, y, λs)+sTλs on R

n×[l, u] and,
therefore, also minimizes (x, y) 7→ ℓ(x, y, λs) on R

n × [l, u]. By the implication (iv) ⇒ (i),
s ∈ ∂δ(λs); hence s ∈ R(∂δ). ✷

A proof of the identity S = R(∂δ) can almost be obtained by using general arguments.
Note first that for any function δ ∈ Conv(Rm), not necessarily a dual function, there holds

ri(dom δ∗) ⊆ R(∂δ) ⊆ dom δ∗,

where “ri” denotes the relative interior [46; p. 227]. Taking the closure, one gets clR(∂δ) =
cl dom δ∗. Now, for the dual function δ of problem (1.1), we have by proposition 2.8,
clR(∂δ) = cl dom v = clS, which would yield S = R(∂δ) if we knew that R(∂δ) is close
(in our case, S is clearly closed as the sum of two convex polyhedra).

Examples 2.10 (S not closed) For non-polyhedral constraints, S may not be closed.
Here are two exemples.

1. Consider the nonempty constraint set {x ∈ R : ex 6 1}. Then, the set of feasible shifts
reads S := {s ∈ R : there exists an x such that ex + s 6 1} = {s ∈ R : s < 1}, which is
open.

2. Consider the set defined by the linear matrix inequality system of the form A(X) = b
and X ∈ S

n
+, where A maps linearly the space of symmetric matrices Sn into R

m and S
n
+

denotes the cone of positive semi-definite matrices. Then, the set of feasible shifts reads
S = {s ∈ R

m : there is an X ∈ S
n
+ such that A(X) + s = b} = b − A(Sn+), which may

not be closed, since a linear map may transform S
n
+ in a nonclosed set. ✷

Examples 2.11 (strict inclusion R(∂δ) ⊂ S) 1. For the convex quadratic problem
(1.1) without assumption 2.6, the dual function δ ≡ +∞. Therefore R(∂δ) = ∅,
while S 6= ∅.

2. For a non-quadratic problem, one can have the situation in which S is closed but strictly
larger than R(∂δ). Consider the problem in the single variable x ∈ R: inf{x : x2 6 0}.
Then S := {s ∈ R : x2 + s 6 0 for some x ∈ R} = {s ∈ R : s 6 0}. The dual function
λ ∈ R 7→ δ(λ) := − inf{x+ λ(x2 − y) : (x, y) ∈ R× R−} verifies

δ(λ) =

{

1/(4λ) if λ > 0
+∞ otherwise,

and ∂δ(λ) =

{

{−1/(4λ2)} if λ > 0
∅ otherwise.
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Hence R(∂δ) = {s ∈ R : s < 0}, which is strictly smaller than S. This example and the
conditions (iii) and (iv) of proposition 2.9 highlight the benefit of a dual solution to
problem (2.18), which does not exist here when s = 0 (the zero feasible shift is precisely
the one that is not in R(∂δ)). ✷

The global linear convergence of the AL algorithm is based on the following quasi-global
error bound on the dual solution set

SD := {λ ∈ R
m : 0 ∈ ∂δ(λ)} (2.20)

of the feasible QP (1.4) [17; proposition 4.4].

Lemma 2.12 (quasi-global error bound) Consider problem (1.4) with H < 0 and
suppose that it has a solution. Then

for any bounded set B ⊆ R
m, there is an L > 0, such that

∀λ ∈ SD + B, ∀ s ∈ ∂δ(λ) : dist(λ,SD) 6 L ‖s‖. (2.21)

We use the word quasi-global to qualify this error bound since the constant L in (2.21)
depends on the bounded set B and may be infinite (i.e., may not exist) if B = R

m. This is
the case for instance for the feasible problem infx∈R{0 : −1 6 0x 6 1} [17; example 4.3],
for which the dual function is λ ∈ R 7→ δ(λ) = |λ|, so that SD = {0} and the last inequality
in (2.21) reads |λ| 6 L, which, obviously, cannot hold for all λ ∈ R. The necessity to use
a bounded set B will imply no restriction on the global linear convergence of theorem 3.4,
since it will be possible to choose B such the λ0 ∈ SD + B implies that the next dual
iterates λk ∈ SD +B (proof of lemma 3.3). Now, when problem (1.1) is infeasible, SD = ∅,
but lemma 2.21 will be used with the dual solution set S̃D of the closest feasible problem,
introduced in section 2.4.

2.3 The smallest feasible shift

The smallest feasible shift s̄ is defined by (1.11) as the smallest element in S = [l, u]+R(A)
for the Euclidean norm. Clearly, s̄ is perpendicular to R(A), which reads

ATs̄ = 0. (2.22)

The next lemma gives conditions equivalent to the fact that a pair (x, y) realizes at
best the constraint Ax = y, in the ℓ2-norm sense:

min
(x,y)∈Rn×[l,u]

‖Ax− y‖. (2.23)

The interest of the conditions in point (ii) is that they do not make use of the vector s̄,
which is unknown when the AL algorithm is trying to solve (1.1). These conditions (ii) are
a first step in the design of a stopping criterion of the revised version of the AL algorithm,
given in section 4.2. The next step is in proposition 2.18.
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S := [l, u] +R(A)

Figure 2.1: Illustration of lemma 2.13

Lemma 2.13 The following properties of (x, y) ∈ R
n × R

m are equivalent:
(i) y −Ax = s̄ and y ∈ [l, u],
(ii) AT(Ax− y) = 0 and P[l,u](Ax) = y,
(iii) (x, y) is a solution to (2.23).

Proof. [(i) ⇒ (ii)] Since ATs̄ = 0 by (2.22), the first identity is a clear consequence of
y −Ax = s̄ in (i). Now, since s̄ is the projection of zero on [l, u] +R(A), there holds

s̄T(s− s̄) > 0, ∀ s ∈ [l, u] +R(A).

Choosing s = y ∈ [l, u], substituting s̄ = y −Ax, and using the identity ATs̄ = 0 yield

(y −Ax)T(y − y) > 0, ∀ y ∈ [l, u],

which shows the second identity.
[(ii) ⇒ (iii)] Using the function ϕ : Rn × R

m → R defined at (x, y) ∈ R
n × R

m by
ϕ(x, y) = 1

2‖Ax− y‖2, the conditions in (ii) can also be written

∇xϕ(x, y) = 0 and ∇yϕ(x, y)
T(y − y) > 0, ∀ y ∈ [l, u].

These are the optimality conditions of the convex problem (2.23). Hence (x, y) is a solution
to that problem.

[(iii) ⇒ (i)] This is because problem (2.23) is equivalent to problem inf{‖s‖ : y−Ax =
s, (x, y) ∈ R

n × [l, u]} = inf{‖s‖ : s ∈ S}, whose solution is s̄. Hence (i). ✷

2.4 The closest feasible problem

Recall that the closest feasible problem is the relaxation (1.12) of the possibly infeasible
problem (1.1). Using an auxiliary vector y ∈ R

m, it can be written in one of the two forms







inf(x,y) q(x)

Ax+ s̄ = y
l 6 y 6 u.

or







inf(x,y) q(x)

Ax = y
l − s̄ 6 y 6 u− s̄.

(2.24)
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That problem is therefore feasible. Of course, if the original problem (1.1) is feasible,
s̄ = 0 and (2.24) is identical to (1.4). Problem (2.24) is the one that the AL algorithm will
actually solve, when it is used to solve (1.4). This section gives some properties of that
problem.

The dual function δ̃ : Rm → R associated with the closest feasible problem takes at
λ ∈ R

m the value

δ̃(λ) = − inf
(x,y)∈Rn×[l−s̄,u−s̄]

q(x) + λT(Ax− y) (2.25)

= − inf
(x,y)∈Rn×[l,u]

q(x) + λT(Ax+ s̄− y) (2.26)

= δ(λ) − s̄Tλ. (2.27)

As a result
∂δ̃(λ) = ∂δ(λ) − s̄. (2.28)

The set of dual solutions to problem (2.24) is denoted by

S̃D := {λ ∈ R
m : 0 ∈ ∂δ̃(λ)}. (2.29)

Here are some other expressions of S̃D.

Lemma 2.14 (expressions of S̃D) When assumption 2.6 holds, S̃D is a nonempty
closed convex set, which also reads

S̃D = {λ ∈ R
m : s̄ ∈ ∂δ(λ)} = ∂v(s̄). (2.30)

Proof. The first equality in (2.30) comes from (2.28) and the second comes from the
equivalence (i) ⇔ (ii) in proposition 2.9. Now, by the identity S = R(∂δ) in (2.15), s̄ ∈ S
implies the existence of some λ ∈ R

m such that s̄ = ∂δ(λ), so that S̃D 6= ∅. Since S̃D is
the set of minimizers of the closed convex function δ̃, it is closed and convex. ✷

The next proposition will be useful to identify some displacement decreasing the dis-
tance to S̃D. Recall that the Hadamard product of two vectors u and v ∈ R

m is the vector,
denoted u q v ∈ R

m, having its ith component defined by

(u q v)i = uivi. (2.31)

Lemma 2.15 (s̄ and S̃D) Suppose that assumption 2.6 holds and let λ ∈ S̃D. Then
(i) s̄ q λ 6 0,
(ii) if s̄ q (λ+ αs̄) 6 0 for some α ∈ R, then λ+ αs̄ ∈ S̃D,
(iii) −s̄ ∈ S̃∞

D
.
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Proof. [Preliminaries] By s̄ ∈ S and assumption 2.6, the closest feasible problem (2.24)
has a solution, say (x, y). By the assumption λ ∈ S̃D, the expression (2.30) of S̃D shows
that s̄ ∈ ∂δ(λ). Now, the implication (i) ⇒ (iii) of proposition 2.9 indicates that (x, y)
minimizes the Lagrangian ℓ(·, ·, λ) on R

n × [l, u].

[(i)] Suppose that s̄i > 0 for some index i (the reasoning is similar when s̄i < 0 and
there is nothing to prove when s̄i = 0).

r We first show, by contradiction, that yi = li. Since s̄ = argmin{‖s‖ : s ∈ [l, u]+R(A)},

(y −Ax− s̄)Ts̄ > 0, ∀ (x, y) ∈ R
n × [l, u]. (2.32)

If yi > li, y−εei = Ax+ s̄−εei is in [l, u] for some ε > 0 (ei denotes the ith basis vector
of Rm). Taking y = Ax+ s̄− εei and x = x in (2.32) yields −εs̄i > 0, a contradiction.
Hence yi = li.

r Now since (x, y) minimizes the Lagrangian ℓ(·, ·, λ) on R
n × [l, u] and since l < u, the

fact that yi = li implies λi 6 0. We have shown that s̄iλi 6 0.

[(ii)] We have seen that (x, y) minimizes the Lagrangian ℓ(·, ·, λ) on R
n×[l, u]. Suppose

that α ∈ R is such that s̄ q (λ+αs̄) 6 0. The implication (iv) ⇒ (i) of proposition 2.9 tells
us that to prove that λ+αs̄ ∈ S̃D, which is equivalent to s̄ ∈ ∂δ(λ+αs̄) by (2.30), we only
have to show that (x, y) minimizes

(x, y) 7→ ℓ(x, y, λ+ αs̄) = q(x) + (λ+ αs̄)T(Ax− y)

on R
n× [l, u]. By (2.22), the minimization in x is not affected by the new term αs̄. As for

the minimization in yi (the minimization in y can be done component by component), we
only consider the case when s̄i > 0 (the case s̄i < 0 is similar and, when s̄i = 0, the term
in yi of ℓ(x, y, λ+ αs̄) is the same as the one of ℓ(x, y, λ) so that yi is still a minimizer of
yi 7→ ℓ(x, y, λ + αs̄) on [li, ui]). By the proof of (i), we know that yi = li in that case, so
that it is enough to show that (λ+αs̄)i 6 0, which is indeed verified since s̄ q (λ+αs̄) 6 0
by assumption.

[(iii)] Let α > 0. By point (i), s̄ q (λ− αs̄) 6 −α(s̄ q s̄) 6 0. Therefore, by point (ii),
λ− αs̄ ∈ S̃D for all α > 0, meaning that −s̄ ∈ S̃∞

D
. ✷

The example below shows that, if S̃∞
D

contains the half line −R+s̄ (point (iii) of the
previous lemma), it is not necessarily reduced to it.

Example 2.16 (S̃∞

D
can be an orthant) For the trivial optimization problem with n =

1, m = 2, g = 0, H = 0, A = 0, l = (−∞,−∞), and u = (−1,−1), one finds s̄ = u by the
definition (1.11) of s̄ and δ̃ = IR2

+
by the definition (2.26) of δ̃, so that S̃D = R

2
+ = S̃∞

D
. ✷

We recall that the prox operator is defined in (2.10).

Lemma 2.17 (distance to S̃D) Suppose that assumption 2.6 holds and let λ ∈ R
m.
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Then the following properties hold:
(i) dist(λ− αs̄, S̃D) 6 dist(λ, S̃D), when α > 0,
(ii) proxδ,r(λ) = proxδ̃,r(λ− rs̄),

(iii) dist(proxδ,r(λ), S̃D) 6 dist(λ, S̃D).

Proof. [(i)] Let λ̃ be the projection of λ on the nonempty closed convex set S̃D

(lemma 2.14). For α > 0, λ̃− αs̄ ∈ S̃D (point (iii) of lemma 2.15), so that

dist(λ− αs̄, S̃D) 6 ‖(λ− αs̄)− (λ̃− αs̄)‖ = ‖λ− λ̃‖ = dist(λ, S̃D).

[(ii)] Let µ := proxδ̃,r(λ− rs̄). Then, 0 ∈ ∂δ̃(µ)+ 1
r [µ− (λ− rs̄)], so that there is some

s̃ ∈ ∂δ̃(µ) such that
µ = λ− r(s̃+ s̄).

Now s̃+ s̄ ∈ ∂δ̃(µ) + s̄ = ∂δ(µ) by (2.28), so that µ := proxδ,r(λ).
[(iii)] By (ii),

dist
(

proxδ,r(λ), S̃D

)

= dist
(

proxδ̃,r(λ− rs̄), S̃D

)

. (2.33)

Now, since S̃D = argmin δ̃ and a proximal step decreases the distance to the minimizer set
(a standard property in proximality), there holds

dist
(

proxδ̃,r(λ− rs̄), S̃D

)

6 dist(λ− rs̄, S̃D). (2.34)

The inequality in (iii) is now obtained by combining (2.33), (2.34), and (i). ✷

Another way of viewing point (ii) is to observe that it tells us that the proximal step from
λ to λ+ on λ 7→ δ(λ) = δ̃(λ) + s̄Tλ is decomposed into the sum of the proximal step
on the linear function λ → s̄Tλ, from λ to λ − rs̄, and the proximal step on the convex
function δ̃, from λ− rs̄ to λ+. The linearity of the first function is important to have that
decomposition.

The next characterization of a solution to the closest feasible problem (2.24) is used in
the stopping criterion of the revised version of the AL algorithm, given in section 4.2. We
further discuss this matter after the proof of the proposition.

Proposition 2.18 (optimality conditions of the closest feasible problem)
Let r > 0 and let ℓr be the augmented Lagrangian (1.5). Then (x, y) ∈ R

n × [l, u] is a
solution to the closest feasible problem (2.24) if and only if there is some λ ∈ R

m such
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that

(x, y) ∈ argmin
(x,y)∈Rn×[l,u]

ℓr(x, y, λ), (2.35)

AT(Ax− y) = 0, (2.36)

P[l,u](Ax) = y. (2.37)

Proof. Note that in both parts of the equivalence, assumption 2.6 holds. This is clearly
the case by (2.13) when the closest feasible problem has a solution. This is also the case by
the implication (iii) ⇒ (i) of proposition 2.5 and (2.12) when the augmented Lagrangian
with r > 0 has a minimizer. Finally, it is also the case by (2.12) when the augmented
Lagrangian with r = 0 (i.e., the Lagrangian) has a minimizer.

[Necessity] Since a solution (x, y) to the closest feasible problem (2.24) satisfies the con-
straints of that problem, (2.36) and (2.37) hold by the implication (i) ⇒ (ii) of lemma 2.13.
Now, by the identity S = R(∂δ) in (2.15), s̄ ∈ S implies the existence of some λ such that
s̄ = ∂δ(λ). By the implication (i) ⇒ (iii) of proposition 2.9, (x, y) minimizes the La-
grangian ℓ(·, ·, λ) on R

n × [l, u]:

q(x) + λ
T
(Ax− y) 6 q(x) + λ

T
(Ax− y), ∀ (x, y) ∈ R

n × [l, u]. (2.38)

Now, y − Ax ∈ S := [l, u] +R(A), so that ‖Ax − y‖ = ‖s̄‖ 6 ‖Ax − y‖ by the minimum
norm property of s̄ in (1.11). Using (2.38), we get for all (x, y) ∈ R

n × [l, u]:

q(x) + λ
T
(Ax− y) +

r

2
‖Ax− y‖2 6 q(x) + λ

T
(Ax− y) +

r

2
‖Ax− y‖2.

This is (2.35).
[Sufficiency] By the implication (ii) ⇒ (i) of lemma 2.13, (2.36) and (2.37) show that

(x, y) satisfies the constraints of the closest feasible problem (2.24). Now let (x, y) satisfy
the constraints of (2.24). Then (2.35) and Ax− y = Ax− y = −s̄ yield

q(x)− λ
T
s̄+

r

2
‖s̄‖2 6 q(x)− λ

T
s̄+

r

2
‖s̄‖2.

Hence q(x) 6 q(x), implying that (x, λ) is a solution to (2.24). ✷

Since at each iteration of the AL algorithm, in step 1 actually, the condition (2.35)
is satisfied with λk in place of λ, it makes sense to stop the AL iterations when condi-
tions (2.36) and (2.37) are approximately satisfied, namely when

AT(Axk+1 − yk+1) ≃ 0 and P[l,u](Axk+1)− yk+1 ≃ 0. (2.39)

For this reason, we take these last two conditions as stopping criterion in step 3 of the
revised version of the AL algorithm in section 4.2. Proposition 4.2 below will show by its
points (ii) and (iii) that they are eventually satisfied by the AL algorithm.

21



3 Global linear convergence

With the results presented in the previous section, one can now start the analysis of the
convergence of the AL algorithm when the considered QP may be infeasible. The notion
of convergence will, of course, have to be redefined, since then the QP may have neither
primal nor dual solution. Nevertheless, section 3.2 will show that, when assumption 2.6
holds, the AL algorithm is able to find a solution to the closest feasible problem (2.24) at
a global linear speed.

Let us denote by {(xk, yk)} and {λk} the primal and dual sequences generated by the
AL algorithm.

3.1 Convergence

This section deals with monotonicity and convergence properties of the AL algorithm that
can be obtained without the use of an error bound of the dual solution set S̃D of the closest
feasible problem (1.12). The convergence result of point (iii) extends a little the one by
Spingarn [59; 1987, lemma 1] (see also the earlier contributions by Bruck and Reich [7, 45;
1977]), in the sense that it does not assume that the penalty parameters rk are fixed to 1:
the constraint values or dual function subgradients

sk := yk −Axk

converge to the smallest feasible shift s̄, provided rk is bounded away from zero. As we shall
see in theorem 3.4, this convergence result prevails when the augmentation parameters rk
are small.

Proposition 3.1 (convergence without error bound) Suppose that assump-
tion 2.6 holds. Then

(i) the sequence {‖sk‖}k>1 is nonincreasing,
(ii) the sequence {dist(λk, S̃D)}k>0 is nonincreasing,
(iii) if rk is bounded away from zero, then sk → s̄.

Proof. [(i)] The inequality ‖sk+1‖ 6 ‖sk‖ is a standard property of the proximal algo-
rithm and can be obtained by writing

‖sk‖2 = ‖(sk − sk+1) + sk+1‖2 = ‖sk − sk+1‖2 + 2〈sk − sk+1, sk+1〉+ ‖sk+1‖2.

Observe now that the cross term in the right hand side is nonnegative by the monotonicity
of ∂δ(·):

〈sk − sk+1, sk+1〉 =
1

rk
〈sk − sk+1, λk − λk+1〉 > 0,

since, by (2.11), sk ∈ ∂δ(λk) and sk+1 ∈ ∂δ(λk+1). Point (i) follows.

[(ii)] Recall that λk+1 = proxδ,rk(λk) (lemma 2.4) and apply point (iii) of lemma 2.17.
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[(iii)] The inventive idea used in [59; 1987, lemma 1] is to compare the sequence
{λk}k>0 with a sequence {µk}k>0 in S̃D 6= ∅ (lemma 2.14) defined as follows:

µ0 ∈ S̃D and µk+1 = µk − rks̄ (for k > 0).

By point (iii) of lemma 2.15, {µk} ⊆ S̃D. Since λk+1 = λk − rksk+1 by (1.7), there holds

λk − µk = λk+1 − µk+1 + rk(sk+1 − s̄).

Now sk+1 ∈ ∂δ(λk+1), s̄ ∈ ∂δ(µk+1) by (2.30), and the monotonicity of ∂δ imply that
〈sk+1 − s̄, λk+1 − µk+1〉 > 0. Therefore, taking the squared norm of both sides of the
identity above and neglecting the resulting cross term in the right hand side yield

‖λk − µk‖2 > ‖λk+1 − µk+1‖2 + r2k‖sk+1 − s̄‖2.
Since the last term is nonnegative, the inequality shows that the nonnegative sequence
{‖λk −µk‖} is nonincreasing, hence converges. Therefore the same inequality implies that
rk‖sk+1 − s̄‖ converges to zero. Since rk is bounded away from zero, sk → s̄. ✷

It will be shown in lemma 3.3, that dist(λk, S̃D) also tends to zero when rk is bounded
away to zero.

To extend the inequality (42) in [17], it would have been pleasant that ‖sk+1 − s̄‖ does
not exceed ‖sk − s̄‖, whatever is the index k and the augmentation parameter rk > 0. As
shown by the following example, however, it is not true that the sequence {‖sk − s̄‖}k>1 is
nonincreasing for small rk. For large rk, section 3.2 will show that this sequence is linearly
decreasing.

Example 3.2 (non monotonicity of {‖sk − s̄‖}k>1) Consider the problem (1.1), in
which n = 1, m = 2, g = 0, H = 1, A = e (e is the vector of all ones in R

2), l = (−1, 2),
and u = (0, 3). The smallest feasible shift is s̄ = (−1, 1). Let the augmentation parameter
be fixed to an arbitrary (small) constant value r in the open interval ]0, (

√
2− 1)/2[ and let

the initial iterate be λ0 = r(l1, l2) = r(−1, 2). It is easier to compute the next two iterates
λ1 and λ2 of the AL algorithm as though they were generated by the proximal algorithm
on the dual function (lemma 2.4), which reads here

δ : λ ∈ R
2 7→ δ(λ) =

(

max
y∈[l,u]

yTλ

)

+
1

2
(eTλ)2.

r Since 0 = λ0 − r(l1, l2) and (l1, l2) ∈ ∂δ(0) = [l, u], the next iterate is λ1 = 0, with
s1 = (l1, l2) = (−1, 2).

r To show that λ2, defined by λ2 := λ1 − rs2 = −rs2 for some s2 ∈ ∂δ(λ2), is the vector

λ2 = − r

1 + 2r

(

−2r
2 + 2r

)

,

we only have to prove that s2 := (−2r, 2 + 2r)/(1 + 2r) is in ∂δ(λ2). Since the first
component of λ2 is positive and the second is negative, the expression of the dual
function above shows that the function is differentiable at λ2 and that

∇δ(λ2) =

(

u1
l2

)

+ eeTλ2 =

(

0
2

)

− 2r

1 + 2r

(

1
1

)

= s2.
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Now, ‖s1 − s̄‖ = 1 and ‖s2 − s̄‖ =
√
2/(1 + 2r), so that the inequality ‖s2 − s̄‖ 6 ‖s1 − s̄‖

fails for the chosen small value of r. ✷

3.2 Linear convergence

This section presents convergence results that prevail when the augmentation parameters
rk are sufficiently large. The results depend on the error bound associated with the dual
solution set S̃D, derived from the one presented in lemma 2.12.

Lemma 3.3 (dist(λk, S̃D)) Suppose that assumption 2.6 holds. Then for any β > 0,
there exists an L > 0, such that dist(λ0, S̃D) 6 β implies that

∀ k > 1 : dist(λk, S̃D) 6 L ‖sk − s̄‖. (3.1)

In particular, if rk is bounded away from zero, dist(λk, S̃D) → 0.

Proof. Since, by (2.14), the closest feasible problem (2.24) has a solution. The quasi-
global error bound of lemma 2.12 applied to the second form of the problem in (2.24)
yields

for any bounded set B̃ ⊆ R
m, there is an L > 0, such that

∀λ ∈ S̃D + B̃, ∀ s̃ ∈ ∂δ̃(λ) : dist(λ, S̃D) 6 L ‖s̃‖. (3.2)

Let β > 0 and define B := βB, where B denotes the closed unit ball. Let L > 0 be
the constant given by (3.2). Assume now that dist(λ0, S̃D) 6 β. Then point (ii) of
proposition 3.1 implies that dist(λk, S̃D) 6 β for all k > 0, which can also be written
λk ∈ S̃D + B. Assume now that k > 1. By (2.11) and (2.28), sk − s̄ ∈ ∂δ̃(λk). Therefore,
one can use λ = λk and s̃ = sk − s̄ in (3.2), which leads to (3.1).

To see that dist(λk, S̃D) → 0, use point (iii) of proposition 3.1 and (3.1). ✷

Here is our main result.

Theorem 3.4 (global linear convergence) Suppose that assumption 2.6 holds.
Then, for any β > 0, there exists an L > 0, such that dist(λ0, S̃D) 6 β implies that

∀ k > 1 : ‖sk+1 − s̄‖ 6
L

rk
‖sk − s̄‖, (3.3)

∀ k > 0 : dist(λk+1, S̃D) 6 min

(

L

rk
, 1

)

dist(λk, S̃D). (3.4)

Proof. Suppose that k > 0 and consider an arbitrary λ̃ ∈ S̃D. First 0 ∈ ∂δ̃(λ̃), by the
definition (2.29) of S̃D. Next sk+1 − s̄ ∈ ∂δ(λk+1) − s̄ = ∂δ̃(λk+1), by (2.11) and (2.28).
Then, the monotonicity of the multifunction ∂δ̃ implies that

(sk+1 − s̄)T(λk+1 − λ̃) > 0. (3.5)
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On the other hand, subtracting λ̃+ rks̄ from both sides of the iteration identity (1.17) and
introducing λ̃k := λk − rks̄ yield

λk+1 − λ̃+ rk(sk+1 − s̄) = λ̃k − λ̃.

Taking the squared norm of both sides of this identity, using (3.5) and rk > 0, and ne-
glecting ‖λk+1 − λ̃‖2 lead to

‖sk+1 − s̄‖ 6
1

rk
‖λ̃k − λ̃‖.

Since λ̃ is arbitrary in S̃D:

‖sk+1 − s̄‖ 6
1

rk
dist(λ̃k, S̃D).

Now the expression of λ̃k = λk − rks̄ and point (i) of lemma 2.17 yield

∀ k > 0 : ‖sk+1 − s̄‖ 6
1

rk
dist(λk, S̃D). (3.6)

Assuming that k > 1 and using (3.1) in (3.6) gives (3.3).
On the other hand, starting with (3.1) and using (3.6) lead to (3.4) with the factor

L/rk. For getting the unit factor in (3.4), just use point (ii) of proposition 3.1. ✷

4 The revised AL algorithm

4.1 Update of the augmentation parameters

When the convex quadratic optimization problem (1.1) has a solution, the estimate (1.8)
offers a possibility to design an update rule for the augmentation parameters rk, based
on a desired linear convergence rate ρdes ∈ ]0, 1[ of the constraint value sk := yk − Axk
towards zero (the lower ρdes is, the faster the convergence is required). In practice, this
convergence rate is easier to specify by the user of the algorithm than the augmentation
parameter itself, because a satisfactory value of the latter depends in a complex way on
the problem data and its solutions (see formula (34) in [17]). The rule proposed in [17]
and implemented in [27, 28] is based on an examination of the ratio ρk := ‖sk+1‖/‖sk‖: if
this one is not less than ρdes, rk+1 is set to rkρk/ρdes. The logic is that, from (1.8), ρk is
always less than L/rk, so that it makes sense to increase rk in this way.

When problem (1.1) is infeasible, the ratio ‖sk+1‖/‖sk‖ is no longer bounded by L/rk
(it cannot be, since sk cannot tend to zero), so that the update rule of rk sketched above
generates an unbounded sequence of augmentation parameters, without the hope to realize
what it is designed for. By theorem 3.4, ‖sk+1 − s̄‖/‖sk − s̄‖ is bounded by L/rk, but the
latter ratio is not accessible while the algorithm is running, since the smallest feasible shift
s̄ is not known before convergence is reached, so that the extension of the above update
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rule to infeasible problems is not straightforward. In other to overcome this difficulty, we
propose to watch instead the ratio ‖s′k+1‖/‖s′k‖, where

s′k = sk − sk−1. (4.1)

This proposal is grounded on the following proposition.

Proposition 4.1 Let {sk} and {s′k} be two sequences of a normed space E, whose
elements are linked by (4.1).

1) If the sequence {sk} satisfies for some s̄ ∈ E, some ρ ∈ [0, 1[, and some index k1

∀ k > k1 : ‖sk+1 − s̄‖ 6 ρ‖sk − s̄‖,

then the sequence {s′k} verifies

∀ k > k1 + 1 : ‖s′k+1‖ 6
(1 + ρ)ρ

1− ρ
‖s′k‖. (4.2)

2) Conversely, if the sequence {s′k} verifies for some ρ′ ∈ [0, 1[ and some index k1

∀ k > k1 : ‖s′k+1‖ 6 ρ′‖s′k‖,

then the sequence {sk} converges to some s̄ and satisfies

∀ k > k1 − 1 : ‖sk+1 − s̄‖ 6
ρ′

1− 2ρ′
‖sk − s̄‖. (4.3)

Proof. 1) Let k > k1 + 1. Then

‖s′k+1‖ 6 ‖sk+1 − s̄‖+ ‖sk − s̄‖ 6 (1 + ρ)‖sk − s̄‖
‖s′k‖ > ‖sk−1 − s̄‖ − ‖sk − s̄‖ > (1− ρ)‖sk−1 − s̄‖.

Hence

‖s′k+1‖ 6 (1 + ρ)‖sk − s̄‖ 6 (1 + ρ)ρ‖sk−1 − s̄‖ 6
(1 + ρ)ρ

1− ρ
‖s′k‖.

2) Observe first that the sequence {sk} is a Cauchy sequence, since for l > k > k1 − 1,
there holds

‖sl − sk‖ 6 ‖s′l‖+ · · ·+ ‖s′k+1‖ 6

l−k−1
∑

i=0

(ρ′)i‖s′k+1‖ 6
1

1− ρ′
‖s′k+1‖,

which tends to zero when k → ∞. Therefore {sk} converges, say to some s̄. Taking k + 1
instead of k in the previous estimate and letting l → ∞ yield for k > k1 − 1:

‖sk+1 − s̄‖ 6
1

1− ρ′
‖s′k+2‖ 6

ρ′

1− ρ′
‖s′k+1‖ 6

ρ′

1− ρ′
(‖sk+1 − s̄‖+ ‖sk − s̄‖).
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The linear convergence of {sk} in (4.3) follows. ✷

This proposition shows that the linear convergence of the sequence {sk − s̄} and {s′k}
occurs simultaneously, provided their convergence rate is sufficiently small:

r by point 1: as soon as the sequence {sk} converges linearly to some s̄ with a rate ρ <√
2−1 ≃ 0.41, the sequence {s′k} converges linearly to zero with the rate (1+ρ)ρ/(1−ρ);

r by point 2: as soon as the sequence {s′k} converges linearly to zero with a rate ρ′ < 1/3,
the sequence {sk} converges linearly to some s̄ with the rate ρ′/(1− 2ρ′).

For example, if ρ = 0.1, the rate of convergence in (4.2) is approximately 0.122; if ρ′ = 0.1
the rate of convergence in (4.3) is 0.125.

4.2 Revised augmented Lagrangian algorithm

Let us now incorporate in the AL algorithm of section 1 the modifications suggested by
the analysis of this paper: a new stopping criterion is introduced in step 3 and a new rule
for updating the augmentation parameter is found in step 4. The algorithm is described
as though computation were done in exact arithmetic.

Revised AL algorithm to solve (1.1)

Initialization: choose λ0 ∈ R
m, r0 > 0, and ρdes ∈ ]0, 1[; set ρ′des := ρdes/(1+2ρdes).

Repeat for k = 0, 1, 2, . . .

1. If the feasible AL subproblem (1.15) has no solution, exit with a direction d ∈
R
n verifying (1.16). Otherwise, denote a solution to (1.15) by (xk+1, yk+1).

2. Update the multiplier by (1.17).
3. Stop if

AT(Axk+1 − yk+1) = 0 and P[l,u](Axk+1) = yk+1.

4. Update the augmentation parameter if k > 1. Let sk+1 and s′k+1 be given
by (1.13) and (4.1) respectively and set ρ′k := ‖s′k+1‖/‖s′k‖. Then take

rk+1 := max

(

1,
ρ′k
ρ′des

)

rk. (4.4)

The next paragraphs discuss the new components of the algorithm.
By proposition 2.5, if assumption 2.6 does not hold, the revised AL algorithm exits in

step 1 at the first iteration (k = 0). Otherwise, the stopping criterion in step 3 is eventually
satisfied (up to a given precision), as shown by the next proposition.
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Proposition 4.2 (satisfaction of the stopping criterion) Suppose that assump-
tion 2.6 holds. Then the revised AL algorithm does not terminate in step 1 with a
direction of unboundedness and generates a sequence {(xk, yk)} that satisfies

AT(Axk − yk) → 0 and P[l,u](Axk)− yk → 0. (4.5)

Proof. By assumption 2.6, the AL subproblems have a solution, so that the algorithm
does not terminate in step 1 with a direction of unboundedness.

By proposition 3.1 and the fact that rk is bounded away from zero (it can only increase
in this version of the algorithm), sk := yk − Axk → s̄, so that AT(yk − Axk) → ATs̄ = 0
by (2.22), which is the first condition in (4.5).

Let us denote the projection of Axk on [l, u] by

ỹk := P[l,u](Axk),

which is characterized by

(ỹk −Axk)
T(y − ỹk) > 0, ∀ y ∈ [l, u].

Taking y = yk ∈ [l, u] yields

(ỹk −Axk)
T(yk − ỹk) > 0. (4.6)

On the other hand, the characterization of the projection s̄ of zero on S can be written

s̄T(s− s̄) > 0, ∀ s ∈ S.

Taking s = ỹk − yk + sk = ỹk −Axk ∈ [l, u] +R(A) = S yields

s̄T(ỹk − yk + sk − s̄) > 0. (4.7)

Now adding (4.6) and (4.7) leads to

(s̄ − ỹk +Axk)
T(ỹk − yk) + s̄T(sk − s̄) > 0

or, using sk := yk −Axk and Cauchy-Schwarz inequality,

‖ỹk − yk‖2 6 (s̄ − sk)
T(ỹk − yk) + s̄T(sk − s̄) 6 ‖sk − s̄‖ ‖ỹk − yk‖+ ‖s̄‖ ‖sk − s̄‖.

This inequality, quadratic in ‖ỹk − yk‖, and the convergence sk → s̄ imply that there is a
constant γ > 0 such that

‖ỹk − yk‖ 6 γ‖sk − s̄‖1/2,
which certainly implies the second condition in (4.5). ✷
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The logic behind the update rule of the augmentation parameter rk in step 4 is the
following. The algorithm should ideally guarantee the desired convergence rate ρdes ∈ ]0, 1[
of sk := yk−Axk towards s̄, as opposed to the one of {s′k} to zero, because this convergence,
expressed in terms of the optimization problem data, is meaningful for the user of the
algorithm. Nevertheless, we have already pointed out that the current value of the quotient

ρk :=
‖sk+1 − s̄‖
‖sk − s̄‖

cannot be examined (s̄ being unknown), so that the algorithm tries to get the convergence
rate of ρ′des := ρdes/(1 + 2ρdes) on s′k, which implies indeed a rate ρdes for the linear
convergence of sk towards s̄ (see point 2 of proposition 4.1). Now, if the effect of rk on
the rate of convergence of sk to s̄ is transparent through (3.3), its effect on the rate of
convergence of {s′k} is more complex. For this reason, if we assume that ρdes is sufficiently
small, say less than 0.1, the rate of convergence of the two sequences {sk− s̄} and {s′k} are
close to each other (proposition 4.1), and the algorithm can proceed on {s′k} as it would
do on {sk}: if

ρ′k :=
‖s′k+1‖
‖s′k‖

is sufficiently small (step 4.1), the value of rk is unchanged; otherwise, rk is multiplied by
the factor ρ′k/ρdes (step 4.2).

The update rule of the augmentation parameters in step 4 will maintain the sequence {rk}
bounded, even when the quadratic problem is infeasible, since ρ′k 6 ρ′des as soon as the
quotient ρk is permanently less than the positive root ρ+des of ρ 7→ ρ2 + (1 + ρ′des)ρ − ρ′des
(point 1 of proposition 4.1), which will occur if rk is permanently larger than L/ρ+des (in-
equality (3.3)). As already observe by Fortin and Glowinski [24; 1982, remark 5.6, page 42],
if the generated multipliers λk blow up when the problem is infeasible, they do so by adding
at each iteration the converging term −rksk → −rs̄ (if rk converges to r), which is much
slower than the decrease of sk → 0, which occurs with a linear convergence speed. Hence
overflow will not be observed in the implementation of the algorithm.

5 Perspectives

The implementation of the revised AL algorithm of section 4.2 for solving convex quadratic
optimization problems is ongoing. It takes the form of C++/Matlab pieces of software
called Oqla/Qpalm [28]. A particular attention is paid to the problems that are either
unbounded or infeasible. When the closest feasible problem is unbounded, the codes return
an unboundedness direction, that is a direction d satisfying (2.4). Otherwise, assumption 2.6
holds and the codes return a solution to the closest feasible problem (1.12), as well as the
smallest feasible shift s̄ (which can vanish). These features are attractive when the solvers
are used to deal with the convex quadratic optimization problems generated by some
versions of the SQP algorithm for solving nonlinear optimization problems.

It would be interesting to know whether the global linear convergence presented in this
paper can be extended to a (possibly infeasible) convex quadratic problem defined on a
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Euclidean space E (with a scalar product denoted by 〈·, ·〉) and that reads







infx 〈g, x〉 + 1
2 〈x,Hx〉

Ax ∈ C
x ∈ X,

(5.1)

where g ∈ E, H is a linear symmetric positive definite operator on E, A is a linear operator
from E to some linear space F, while X and C are convex sets in E and F respectively. The
experience acquired in [17] and in this paper suggests that the polyhedrality of the sets X
and C is probably sufficient to get the quasi-global error bound of lemma 2.12, which has
been important so far to get the global linear convergence result, but other assumptions on
X and C might also yield a similar error bound. The generalization (5.1) of (1.1) is useful,
in particular, because it can model by x ∈ X a trust region constraint [14], which is not
present in (1.1) as a constraint satisfied at each iteration of the AL algorithm, even when
the constraints are incompatible. Such a constraint may occur in a trust region approach
for solving a nonlinear optimization problem or may be used to prevent the solution to (1.1)
from being discontinuous with respect to the problem data [10, 8, 9]. Many algorithms
have indeed been proposed to find a solution to some relaxed version of (5.1) when the set
{x ∈ E : Ax ∈ C, x ∈ X} is empty (see [43, 60, 13, 12, 40, 44] to mention a few), while to
our knowledge the use of the AL algorithm has not been investigated.

Another computationally important question is to know whether the linear convergence
result still holds when the AL subproblems are solved inexactly. Contributions along this
line include [31, 55, 56, 57, 22, 23] and the references thereof.

The case of the Lagrangian relaxation algorithm [34; chapters XIV-XV] probably de-
serves more investigations. Indeed, on the one hand, Dean and Glowinski [16; 2006, the-
orem 4.1] have shown that, for the minimization of a strictly convex quadratic function
subject to linear equality constraints, the Lagrangian relaxation method, which is the steep-
est descent algorithm on the dual function, with sufficiently small step-sizes in the dual
space, generates primal iterates that converge globally linearly to the (unique) solution to
the closest feasible problem. On the other hand, more robust and accurate algorithms like
bundle methods have been shown to be possible approaches to computing an approximate
proximal point [36, 15, 4; 1990-1995], so that their use on the dual function could benefit
from the properties of the augmented Lagrangian (or proximal method on the dual func-
tion) highlighted in this paper. We are not aware of an extension of this result to convex
problems with inequality constraints.
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