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Abstract—Finding a global solution to the optimal power flow
(OPF) problem is difficult due to its nonconvexity. A convex re-
laxation in the form of semidefinite programming (SDP) has at-
tracted much attention lately as it yields a global solution in sev-
eral practical cases. However, it does not in all cases, and such cases
have been documented in recent publications. This paper presents
another SDP method known as the moment-sos (sum of squares)
approach, which generates a sequence that converges towards a
global solution to the OPF problem at the cost of higher runtime.
Our finding is that in the small examples where the previously
studied SDP method fails, this approach finds the global solution.
The higher cost in runtime is due to an increase in the matrix size
of the SDP problem, which can vary from one instance to another.
Numerical experiment shows that the size is very often a quadratic
function of the number of buses in the network, whereas it is a
linear function of the number of buses in the case of the previously
studied SDP method.

Index Terms—Global optimization, moment/sum-of-squares ap-
proach, optimal power flow, polynomial optimization, semidefinite
programming.

I. INTRODUCTION

T HE optimal power flow (OPF) gives its name to a problem
pertaining to power systems that was first introduced by

Carpentier in 1962 [1]. It seeks to determine a steady state oper-
ating point of an alternating current (AC) power network that
is optimal under some criteria such as generating costs. The
problem can be cast as a nonlinear optimization problem, which
is NP-hard, as was shown in [2]. So far, the various methods [3],
[4] that have been investigated to solve the OPF can only guar-
antee local optimality, due to the nonconvexity of the problem.
Recent progress suggests that it may be possible to design a
method, based on semidefinite programming (SDP), that yields
global optimality rapidly.
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SDP is a subfield of convex conic optimization [5]. It deals
with problems whose structure resembles that of a linear opti-
mization problem, but where the variable that is being solved
for is a positive semidefinite matrix. An SDP problem has a
convex feasible set whose definition is sufficiently general to
model a large variety of convex problems. Furthermore, it can
be solved by efficient techniques, notably the interior point
methods, which are able to find a solution of a given precision
in polynomial time. These properties make the SDP modelling
adapted to many applications [6].
The first attempt to use SDP to solve the OPF problem was

made by Bai et al. [7] in 2008. In [2], Lavaei and Low show that
the OPF can be written as an SDP problem, with an additional
constraint imposing that the rank of the matrix variable must
not exceed 1. They discard the rank constraint, as it is done in
Shor’s relaxation [8], a well-known procedure which applies to
quadratically constrained quadratic problems (see [9], [10] and
the references therein). They also accept quartic terms that ap-
pear in some formulations of the OPF, transforming them by
Schur’s complement. Their finding is that for all IEEE bench-
mark networks, namely the 9-, 14-, 30-, 57-, 118-, and 300-bus
systems, the rank constraint is satisfied if a small resistance is
added in the lines of the network that have zero resistance. Such
a modification to the network is acceptable because in reality,
resistance is never equal to zero.
There are cases when the rank constraint is not satisfied and a

global solution can thus not be found. Lesieutre et al. [11] illus-
trate this with a practical 3-bus cyclic network. Gopalakrishnan
et al. [12] find yet more examples bymodifying the IEEE bench-
mark networks. Bukhsh et al. [13] provide a 2-bus and a 5-bus
example. In addition, they document the local solutions to the
OPF in many of the above-mentioned examples where the rank
constraint is not satisfied [14].
Several papers propose ways of handling cases when the rank

constraint is not satisfied. Gopalakrishnan et al. [12] propose
a branch and reduce algorithm. It is based on the fact that the
rank relaxation gives a lower bound of the optimal value of
the OPF. But according to the authors, using the classical La-
grangian dual to evaluate a lower bound is about as efficient.
Sojoudi and Lavaei [15] prove that if one could add control-
lable phase-shifting transformers to every loop in the network
and if the objective is an increasing function of generated active
power, then the rank constraint is satisfied. Though numerical
experiments confirm this [16], such a modification to the net-
work is not realistic, as opposed to the one mentioned earlier.
Cases where the rank constraint holds have been identified.

Authors of [17], [18], and [19] prove that the rank constraint is
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satisfied if the graph of the network is acyclic and if load over-
satisfaction is allowed. This is typical of distribution networks
but it is not true of transmission networks.
This paper examines the applicability of the moment-sos

(sum of squares) approach to the OPF. This approach [20], [21],
[22] aims at finding global solutions to polynomial optimiza-
tion problems, of which the OPF is a particular instance. The
approach can be viewed as an extension of the SDP method
of [2]. Indeed, it proposes a sequence of SDP relaxations
whose first element is the rank relaxation in many cases. The
subsequent relaxations of the sequence become more and more
accurate. When the rank relaxation fails, it is therefore natural
to see whether the second order relaxation provides the global
minimum, then the third, and so on.
The limit to this approach is that the complexity of the relax-

ations rapidly increases. The matrix size of the SDP relaxation
of order is roughly equal to the number of buses in the net-
work to the power . Surprisingly, in the 2-, 3-, and 5-bus sys-
tems found in [11] and [13] where the rank relaxation fails, the
second order relaxation nearly always finds the global solution.
This paper is organized as follows. Section II presents a for-

mulation of the OPF problem and shows that it can be viewed as
a polynomial optimization problem. The moment-sos approach
which aims at solving such problems is described in Section III.
In Section IV, numerical results show that this approach suc-
cessfully finds the global solution to the 2-, 3-, and 5-bus sys-
tems mentioned earlier. Conclusions are given in Section V.

II. OPF AS A POLYNOMIAL OPTIMIZATION PROBLEM

We first present a classical formulation of the OPF with
quadratic objective, Kirchoff’s laws, Ohm’s law, power bal-
ance equations, and operational constraints. It allows for ideal
phase-shifting transformers that have a fixed ratio. Next we
show how the OPF can be cast as a polynomial optimization
problem.

A. Classical Formulation of the OPF

Let denote the imaginary unit and let and respectively
denote the modulus and the conjugate of a complex number .
Consider an AC electricity transmission network defined by

a set of buses of which a subset is
connected to generators. Let denote
generated power at bus . All buses are connected to a load
(i.e., power demand). Let denote
power demand at bus . Let denote voltage at bus

and denote current injected into the network at
bus . The convention used for current means that is
the power injected into the network at bus . This means
that at bus and
at bus .
The network connects buses to one another through a set of

branches . Let denote the set of buses con-
nected to bus by a branch in . If there is a branch
connecting buses and , then and

. A branch between two buses is described in Fig. 1.
In this figure, denotes the mutual admittance between
buses ( for all );

Fig. 1. Branch connecting buses and .

denotes the admittance-to-ground at end of line ;
denotes current injected in line at bus

; and denotes the ratio of the ideal phase-shifting
transformer at end of line ( if there is no
transformer, the ratio is never equal to zero). For a reference on
modelling of an ideal phase-shifting transformer, see [23]. Two
ideal transformers appear in Fig. 1 even though only one or none
exist per branch in a transmission network. This allows one to
describe a branch using (3).
The objective of the OPF is a second order polynomial objec-

tive function of generated active power at each generator. Let
denote the coefficients of the polynomial at

bus as can be seen in (1). These can be used to model
the cost of active generation. They can be of any value, positive
or negative, so they can also be used to model minimum devi-
ation from a given generation plan at each generator. Let
denote an active generation plan at bus . One may impose

, , and to achieve this.
OPF:

(1)

over the variables
and subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Here are a few explanations for the constraints: (2) corresponds
to Kirchoff’s first law; (3) corresponds to Kirchoff’s first law
and Ohm’s law; (4) and (5) correspond to power balance equa-
tions; (6) corresponds to bounds on active generation; (7) cor-
responds to bounds on reactive generation; (8) corresponds to
bounds on voltage amplitude; (9) corresponds to bounds on
voltage difference; (10) corresponds to bounds on current flow;
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(11) corresponds to bounds on active power flow; and (12) cor-
responds to bounds on apparent power flow.
Since the ratios of the transformers are considered fixed, (3)

implies that current injected at one end of a line is a linear
function of the voltages at both ends of the line. Together with
(2), this implies that there exists a complex matrix such that

. This so called admittance matrix is defined by

if
if

otherwise.

(13)

B. Polynomial Optimization Formulation of the OPF

In order to obtain a polynomial formulation of the OPF, we
proceed in 3 steps. First, we write a formulation in complex
numbers. Second, we use it to write a formulation in real num-
bers. Third, we use the real formulation to write a polynomial
formulation.
1) Formulation of the OPF in Complex Numbers: Let and
denote the conjugate transpose of a complex vector and of

a complex matrix , respectively. It can be deduced from [15]
that there exist finite sets and , Hermitian matrices
of size , complex matrices and of size , and
complex numbers and such that the OPF can be
written as

(14)

subject to

(15)

(16)

Constraints (16) correspond to bounds on apparent power flow
(12). Constraints (15) correspond to all other constraints.
2) Formulation of the OPF in Real Numbers: Let

denote as is done in [2].
In order to transform the complex formulation of the OPF
(14)–(16) into a real number formulation, observe that

, where the super-
script denotes transposition

Then (14)–(16) becomes

(17)

subject to

(18)

(19)

(20)

3) Formulation of the OPF as Polynomial Optimiza-
tion Problem: We recall that a polynomial is a function

, where is a finite set of
integer multi-indices, the coefficients are real numbers, and
is the monomial . Its degree, denoted , is

the largest associated with a nonzero .
The formulation of the OPF in real numbers (17)–(20) is said

to be a polynomial optimization problem since the functions
that define it are polynomials. Indeed, the objective (17) is a
polynomial of of degree 4, the constraints (18)–(19)
are polynomials of of degree 2, and the constraints (20) are
polynomials of of degree 4.
Formulation (17)–(20) will however not be used below be-

cause it has infinitely many global solutions. Indeed, formu-
lation (14)–(16) from which it derives is invariant under the
change of variables where . This invari-
ance property transfers to (17)–(20). An optimization problem
with non isolated solutions is generally more difficult to solve
than one with a unique solution [24]. This feature manifests it-
self in some properties of the moment-sos approach described
in Section III. For this reason, we choose to arbitrarily set the
voltage phase at bus to zero. Bearing in mind that ,
this can be done by replacing voltage constraint (21) at bus
by (22):

(21)

(22)

In light of (22), a polynomial optimization problem where
there are variables instead of variables can be for-
mulated. More precisely, the OPF (1)–(12) can be cast as the
following polynomial optimization problem
PolyOPF:

(23)

subject to

(24)

where is an integer, denotes the real coefficients of
the polynomial functions , and summations take place over

. The summations are nevertheless finite because only a
finite number of coefficients are nonzero.

III. MOMENT-SOS APPROACH

We first review some theoretical aspects of the moment-sos
approach (a nice short account can be found in [25], and more in
[26] and [27]). Next, we present a set of relaxations of PolyOPF
obtained by this method and illustrate it on a simple example.
Finally, we emphasize the relationship between the moment-sos
approach and the rank relaxation of [2].

A. Foundation of the Moment Approach

The moment-sos approach has been designed to find global
solutions to polynomial optimization problems. It is grounded
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on deep results from real algebraic geometry. The term mo-
ment-sos derives from the fact that the approach has two dual
aspects: the moment and the sum of squares approaches. Both
approaches are dual of one another in the sense of Lagrangian
duality [28]. Below, we focus on the moment approach because
it leads to SDP problems that have a close link with the previ-
ously studied SDP method in [2].
Let be a subset of . The moment approach rests

on the surprising (though easy to prove) fact that the problem
: is equivalent to the convex optimization

problem in :

(25)

Although the latter problem has a simple structure, it cannot be
solved directly, since its unknown is an infinite dimensional
object. Nevertheless, the realized transformation suggests that
the initial difficult global optimization problem can be struc-
turally simplified by judiciously expressing it on a space of
larger dimension. The moment-sos approach goes along this
way by introducing a hierarchy of more and more accurate
approximations of problem (25), hence (23)–(24), defined on
spaces of larger and larger dimension.
When is a polynomial and : ,

for is defined by polynomials like in PolyOPF,
it becomes natural to approximate the measure by a finite
number of its moments. The moment of , associated with

, is the real number . Then, when is the
polynomial in (23), the objective of (25) becomes

, whose
linearity in the new unknown is transparent. The constraint

is also readily transformed into . In contrast,
expressing which are the vectors that are moments of a pos-
itive measure on (the other constraint in (25)) is a much
more difficult task known as themoment problem, wich has been
studied for over a century [29]. It is that constraint that is ap-
proximated in the moment-sos approach, with more and more
accuracy in spaces of higher and higher dimension.
The sum of squares approach is dual to the moment approach

in the sense of Lagrangian duality [28]. It relies on the fact that
minimizing a function over a set is equivalent to maxi-
mizing a real number under the constraints
for all . These trivial linear constraints are intractable
because there is an infinite number of them. In the case of poly-
nomial optimization, one recovers the problem of finding cer-
tificates ensuring the positivity of the polynomial on the
semi-algebraic set , which involves sums of squares of poly-
nomials [30]. Relaxations consist in imposing degree bounds on
these sos polynomials.

B. Hierarchy of Semidefinite Relaxations

Lasserre [22] proposes a sequence of relaxations for any poly-
nomial optimization problem like PolyOPF that grow better in
accuracy and bigger in size when the order of the relaxation
increases. Here and below, is an integer larger than or equal to
each for all (we have denote
by the ceiling operator).

Let denote that is a symmetric positive semidefinite
matrix. Define , whose cardinality is

, and denote by
a matrix indexed by the elements of .
Relaxation of order d:

(26)

subject to

(27)

(28)

(29)

We have already discussed the origin of (26)–(27) in the above
SDP problem, while (28)–(29) are necessary conditions to en-
sure that is formed of moments of some positive measure
on . When increases, these problems form a hierarchy of
semidefinite relaxations, called that way because the objective
(26) is not affected and the feasible set is reduced as the size of
the matrices in (28)–(29) increases. These properties show that
the optimal value of problem (26)–(29) increases with and re-
mains bounded by the optimal value of (23)–(24).
For the method to give better results, a ball constraint
must be added according to [25, technical assumption 1.1].

For the OPF problem, this can be done easily by setting
to using (8) and (22), without modifying the
problem. The following two properties hold in this case [25,
theorem 1.12]:
1) the optimal values of the hierarchy of semidefinite relax-
ations increasingly converge toward the optimal value of
PolyOPF;

2) let denote a global solution to the relaxation of order
and denotes the canonical basis of ; if
PolyOPF has a unique global solution, then
converges towards the global solution to PolyOPF as
tends to .

The largest matrix size of the moment relaxation appears in
(27) and has the value , where is the
number of buses. For a fixed , matrix size is therefore equal
to . This makes high order relaxations too large to com-
pute with currently available SDP software packages. Conse-
quently, the success of the moment-sos approach relies wholly
upon its ability to find a global solution with a low order re-
laxation, for which there is no guarantee. Note that the global
solution is found by a finite order relaxation under conditions
that include the convexity of the problem [31] (not the case of
PolyOPF though) or the positive definiteness of the Hessian of
the Lagrangian at the saddle points of the Lagrangian [32] (open
question in the case of PolyOPF).

C. Example on a 2-Bus Network

Consider the general OPF problem presented in Section II-A
on a 2-bus network. We will focus only on one constraint among
many and write its contribution to the first couple of relaxations
of the hierarchy described inSection III-B.
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For clarity of presentation, assume there is no apparent power
flow constraint and the objective in (1) is a linear function of
active power. As was remarked in section Section II-B3, the
degree of the objective and the degree of the constraints of
PolyOPF are thus equal to 2. The hierarchy of semidefinite re-
laxations is hence defined for all orders .
Notice that since there are buses, the vector variable in

PolyOPF can be written as . For clarity of pre-
sentation, assume that . Thus, one of the constraints of
(22) is . Based on (29), the expressions of this constraint
in the first and second order relaxations of the hierarchy, using
the usual monomial order, are (30) and (31) respectively:

(30)

(31)

For higher orders, the size of the matrix corresponding to the
constraint grows: 10, 20, 35, etc. Nevertheless, it is the matrix
in (28) that determines the size of the relaxation of order as its
size is greater than matrix size in (29).
According to Section III-B, vector appears in

all the relaxations of the hierarchy. When optimality is reached
in the relaxations, this vector converges towards the global so-
lution to PolyOPF, provided it is unique [25,
Theorem 1.12]. Notice that in (31), terms appear that corre-
spond to monomials that do not exist in PolyOPF. Typically,

corresponds to the monomial of degree 3 which is
not in PolyOPF because we have restricted the degree of the
polynomials to be equal to 2.

D. Moment-SOS Relaxations and Rank Relaxation

When the polynomials defining PolyOPF are quadratic, the
first order relaxation (26)–(29) is equivalent to Shor’s
relaxation [33]. To make the link with the rank relaxation of
[2], consider now the case when the varying part of the ’s are
quadratic and homogeneous like in [2], that is
for all , with symmetric matrices and scalars
. Then introducing the vector and the matrix defined by

and , and the trace operator, the first
order relaxation reads

(32)

subject to

(33)

Using Schur’s complement, the positive semidefiniteness con-
dition in (33) is equivalent to . Since does not
intervene elsewhere in (32)–(33), it can be eliminated and the
constraints of the problem can be replaced by

(34)

The pair made of (32) and (34) is the rank relaxation of [2].

We have just shown that the equivalence between that the
SDP relaxation of [2] and to the first-order moment relaxation
holds when the varying part of the ’s are quadratic and ho-
mogeneous. For the OPF problem, this certainly occurs when
1) the objective of the OPF (1) is an affine function of active
power;

2) there are no constraints on apparent power flow;
3) Equation (21) is not replaced by (22).
Point 1 ensures that the objective is quadratic and has a homoge-
neous varying part. Points 2 and 3 guarantee the same property
for the constraint functions.

IV. NUMERICAL RESULTS

We present numerical results for the moment-sos approach
applied to instances of the OPF for which the rank relaxation
method of [2] fails to find the global solution. We focus on
the WB2 2-bus system, LMBM3 3-bus system, and the WB5
5-bus system that are described in [13]. Note that LMBM3 is
also found in [11]. For each of the three systems, the authors of
[13] modify a bound in the data and specify a range for which
the rank relaxation fails. We consider 10 values uniformly dis-
tributed in the range in order to verify that the rank relaxation
fails and to assess the moment-sos approach. We proceed in
accordance with the discussion of Section III-B by adding the
redundant ball constraint. Surprisingly, the second order relax-
ation whose greatest matrix size is equal to nearly
always finds the global solution.
The materials used are:
• Data of WB2, LMBM3, WB5 systems available online
[14];

• Intel® Xeon™ MP CPU 2.70 GHz 7.00 Go RAM;
• MATLAB version 7.7 2008b;
• MATLAB-package MATPOWER version 3.2 [34];
• SeDuMi 1.02 [35] with tolerance parameter pars.eps set to

for all computations;
• MATLAB-based toolbox YALMIP [36] to compute Opti-
mization 4 (Dual OPF) in [2] that yields the solution to the
rank relaxation;

• MATLAB-package GloptiPoly version 3.6.1 [37] to com-
pute solutions to a hierarchy of SDP relaxations (26)–(29).

The same precision is used as in the solutions of the test
archives [14]. In other words, results are precise up to p.u.
for voltage phase, degree for angles, MW for ac-
tive power, MVA for reactive power, and cent per hour
for costs. Computation time is several seconds.
GloptiPoly can guarantee that it has found a global solution

to a polynomial optimization problem, up to a given precision.
This is certainly the case when it finds a feasible point giving
to the objective a value sufficiently close to the optimal value of
the relaxation.

A. 2-Bus Network: WB2

Authors of [13] observe that in the WB2 2-bus system of
Fig. 2, the rank constraint is not satisfied in the rank relaxation
method of [2] when In Table I,
the first column is made up of 10 points in that range that are uni-
formly distributed. The second column contains the lowest order
of the relaxations that yield a global solution. The optimal value
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Fig. 2. WB2 2-bus system.

TABLE I
ORDER OF HIERARCHY NEEDED TO REACH GLOBAL
SOLUTION TO WB2 WHEN RANK RELAXATION FAILS

of the relaxation of that order is written in the third column. The
fourth column contains the optimal value of the rank relaxation
(it is put between parentheses when the relaxation is inexact).
The hierarchy of SDP relaxations is defined for be-

cause the objective is an affine function and there are no ap-
parent flow constraints. Let us explain how it works in the case
where The optimal value of the first order
relaxation is 861.51 $/h, that of the second order relaxation is
901.38 $/h, and that of the third is 905.73 $/h. This is coherent
with point 1 of the discussion of Section III-B that claims that
the optimal values increase with . Computing higher orders
is not necessary because GloptiPoly numerically proves global
optimality for the third order.
Notice that for the value of the rank relax-

ation found in Table I (888.08 $/h) is different from the value of
the first order relaxation (861.51 $/h). If we run GloptiPoly with
(21) instead of (22), the optimal value of the first order relax-
ation is equal 888.08 $/h as expected according to Section III-D.
For and (see the first

and last rows of Table I), the rank constraint is satisfied in the
rank relaxation method so its optimal value is equal to the one of
the successful moment-sos method. In between those values, the
rank constraint is not satisfied since the optimal value is less than
the optimal value of the OPF. Notice the correlation between
the results of Table I and [13, upper half of Fig. 8]. Indeed, the
figure shows the optimal value of the OPF is constant whereas
the optimal value of the rank relaxation decreases in a linear
fashion when
Surprisingly and encouragingly, according to the second

column of Table I, the second order moment-sos relaxation
finds the global solution in 8 out of 10 times, and the third order
relaxation always find the global solution.
Remark: The fact that the rank constraint is not satisfied for

the WB2 2-bus system of [13] seems in contradiction with the

Fig. 3. LMBM3 3-bus system.

TABLE II
ORDER OF HIERARCHY NEEDED TO REACH GLOBAL
SOLUTION TO LMBM3 WHEN RANK RELAXATION FAILS

results of papers [17],[18], and [19]. Indeed, the authors of the
papers state that the rank is less than or equal to 1 if the graph of
the network is acyclic and if load over-satisfaction is allowed.
However, load over-satisfaction is not allowed in this network.
For example, for , adding 1 MW of load
induces the optimal value to go down from 905.73 $/h to 890.19
$/h. One of the sufficient conditions in [38] for the rank is less
than or equal to 1 relies on the existence of a strictly feasible
point. It is not the case here because equality constraints must
be enforced in the power balance equation.

B. 3-Bus Network: LMBM3

We observe that in the LMBM3 3-bus system of Fig. 3, the
rank constraint is not satisfied in the rank relaxation method of
[2] when . Below
28.35MVA, no solutions can be found by the OPF solver runopf
in MATPOWER nor by the hierarchy of SDP relaxations. At
53.60MVA, the rank constraint is satisfied in the rank relaxation
method so its optimal value is equal to the optimal value of the
OPF found by the second order relaxation; see the last row of
Table II.
The objective of the OPF is a quadratic function of active

power so the hierarchy of SDP relaxations is defined for .
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Fig. 4. WB5 5-bus system.

Again, it is surprising that the second order moment-sos relax-
ation always finds the global solution to the LMBM3 system, as
can be seen in the second column of Table II.
Authors of [2] make the assumption that the objective of the

OPF is an increasing function of generated active power. The
moment-sos approach does not require such an assumption. For
example, when MVA, active generation at
bus 1 is equal to 148.07 MW and active generation at bus 2 is
equal to 170.01 MW using the increasing cost function of [11]
and [14]. Suppose we choose a different objective which aims at
reducing deviation from a given active generation plan at each
generator. Say that this plan is MW at bus 1 and

MW at bus 2. The objective function is equal to
. It is not an increasing function

of and . The second order relaxation yields a global so-
lution in which active generation at bus 1 is equal to 169.21MW
and active generation at bus 2 is equal to 149.19 MW.

C. 5-Bus Network: WB5

Authors of [13] observe that in the WB5 5-bus system of
Fig. 4, the rank constraint is not satisfied in the rank relax-
ation method of [2] when MVAR. Above 61.81
MVAR, no solutions can be found by the OPF solver runopf in
MATPOWER. At MVAR, the rank constraint is satis-
fied in the rank relaxation method so its optimal value is equal
to the optimal value of the OPF found by the second order mo-
ment-sos relaxation; see the first row of Table III. As for the
9 values considered greater than MVAR, the rank con-
straint is not satisfied since the optimal value is not equal to the
optimal value of the OPF. Notice that the objective of the OPF
is a linear function of active power and there are bounds on ap-
parent flow so the hierarchy of SDP relaxations is defined for

.
When MVAR, the hierarchy of SDP relax-

ations is unable to find a feasible point, hence the empty slots
in the last row of Table III. Apart from that value, the second
order moment-sos relaxation again always finds the global so-
lution according to the second column of Table III.

D. Related Contributions

Waki et al. [39] have produced a piece of software called
SparsePOP [40] similar to GloptiPoly only that it seeks to re-

TABLE III
ORDER OF HIERARCHY NEEDED TO REACH GLOBAL
SOLUTION TO WB5 WHEN RANK RELAXATION FAILS

duce problem size in Lasserre’s relaxations using matrix com-
pletion theory in semidefinite programming. SparsePOP suc-
cessfully solves the systems studied in this paper to global opti-
mality but fails to reduce the size of the moment-sos relaxations
and to solve problems with a larger number of buses.
Briefly after this paper was submitted to the IEEE

TRANSACTIONS ON POWER SYSTEMS, the preprint [41] ap-
peared; it presents conclusions close to ours.

V. CONCLUSION

This paper examines the application of the moment-sos ap-
proach to the global optimization of the OPF problem. The re-
sult of this paper is that the OPF can be successfully convex-
ified in the case of several small networks where a previously
known SDP method fails. The SDP problems considered in this
paper can be viewed as extensions of the previously used rank
relaxation. It is guaranteed to bemore accurate than the previous
one but requires more runtime. Directions for future research in-
clude using sparsity techniques to reduce computational effort
and identifying the OPF problems for which a low order relax-
ation is exact.
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