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We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to
linear inequality constraints. Linear optimization is an important particular instance of this problem. We
show that, provided the augmentation parameter is large enough, the constraint value converges globally
linearly to zero. This property is viewed as a consequence of the proximal interpretation of the algorithm
and of the global radial Lipschitz continuity of the reciprocal of the dual function subdifferential. This
Lipschitz property is itself obtained by means of a lemma of general interest, which compares the distances
from a point in the positive orthant to an affine space, on the one hand, and to the polyhedron given by
the intersection of this affine space and the positive orthant, on the other hand. No strict complementarity
assumption is needed. The result is illustrated by numerical experiments and algorithmic implications,
including complexity issues, are discussed.
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1. Introduction

Convex quadratic programs (QP) arise in their own right and as subproblems in some
numerical algorithms to solve optimization problems. On the one hand, since no strictly
convex assumption is made, the important family of linear optimization problems, with a
zero quadratic term in their objective, enters this framework. On the other hand, the SQP
algorithm decomposes a regularized constrained least-squares problem into a sequence of
strictly convex QP’s (see [10, 5] for an example in reflection tomography, which partly
motivates this study; see [19, 2] for recent books describing the SQP algorithm). Finding
efficient algorithms to solve this basic multi-faceted problem in all possible situations is
an objective that has been pursued for decades (see for example the already 20 year old
survey on quadratic programming in [20] and the monographs on interior point methods
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in [15, 7, 18, 30, 14, 29, 31, 2]).

The convex quadratic problem we consider is written

{

minx
1
2
x>Qx+ q>x

l ≤ Cx ≤ u,
(1)

where Q is an n × n positive semi-definite symmetric matrix, q ∈ Rn, C is m × n, and
the m-dimensional vectors l and u satisfy l < u (i.e., li < ui for all indices i = 1, . . . ,m)
and may have infinite components. With lower and upper bounds, problem (1) is close to
what is actually implemented in numerical codes (see [6] for an example). We have not
included linear equality constraints, like Ax = b, in (1) to make the presentation simple,
but such constraints can be expressed like in (1) by adding two inequalities Ax ≤ b and
−Ax ≤ −b. Therefore, our analysis covers problems with linear equality constraints.
Note that, since Q may be zero, (1) also models linear optimization.

The method that we further explore in this paper fits into the class of dual approaches,
since it is essentially the augmented Lagrangian (AL) method of Hestenes [11] and Powell
[22] that is applied to the convex QP (1). This algorithm can be implemented in such a
way that it does not require any matrix factorization. It is therefore appropriate when the
problem is so large that such a factorization is impracticable or too much time consuming.
This is a motivation for using the AL algorithm when the optimization problem deals
with systems governed by partial differential equations [8]. In that case, however, a good
preconditioner for the unavoidable conjugate gradient iterations must be available.

The version of the AL algorithm we analyze is defined on an equivalent form of (1)
obtained by introducing an auxiliary variable y ∈ Rm [10]:







minx
1
2
x>Qx+ q>x

y = Cx
l ≤ y ≤ u.

(2)

The algorithm generates a sequence {λk} ⊂ Rm converging to some optimal multiplier
associated with the equality constraint of (2). At each iteration, an auxiliary bound
constrained QP has to be solved, so that the approach can be viewed as transforming (1)
into a sequence of bound constrained convex quadratic subproblems. Two facts contribute
to the possible success of this method. First, a bound constraint QP is much easier to
solve than (1), which has general linear constraints (see [17, 9] and the references therein).
Second, because of its dual and constraint convergence, the AL algorithm usually identifies
the active constraints of (1) in a finite number of iterations. Since often these constraints
are also the active constraints of the subproblems close to the solution, the combinatorial
aspect of the bound constrained QP’s rapidly decreases in intensity as the convergence
progresses (and usually disappears after finitely many AL iterations). This reasoning is
valid, for instance, when Q is positive definite and strict complementarity holds at the
solution.

The AL algorithm also generates primal iterates (xk, yk) ∈ Rn × Rm and is controlled
by the convergence of the constraint values to zero: if ‖yk − Cxk‖ is less than a given
tolerance, optimality can be considered to be reached. The algorithm is also driven by
a so-called augmentation parameter rk, whose role on the speed of convergence is major.
This paper essentially shows that, provided rk is larger than a certain positive threshold,
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the convergence of the constraint norm to zero is globally linear, meaning that at each
iteration the constraint norm decreases by a factor uniformly less than one. This property
makes predictable the number of iterations to converge to a given precision and offers a
possibility to study the global iterative complexity of the algorithm.

The paper is organized as follows. In Section 2, the AL algorithm under investigation
is presented with the appropriate level of details. In Section 3, we give the tools from
convex analysis that are useful for the study of the method. We already set out some
of the properties of the algorithm. This section also gives a lemma of general interest,
which compares the distances from a point in the positive orthant to an affine space, on
the one hand, and to the polyhedron given by the intersection of this affine space and the
positive orthant, on the other hand. Section 4 deals with the global linear convergence
of the AL algorithm. It starts by showing a global error bound for the dual solution
set, in terms of the subgradient of the dual function. The global linear convergence is
then seen as an easy consequence of this property. We conclude in Section 5 by relating
some numerical experiments on a seismic tomography problem and by a discussion on
algorithmic consequences.

Notation

We denote the Euclidean norm by ‖·‖. The distance associated with this norm is denoted
by “distÔ, B := {x : ‖x‖ ≤ 1} is the closed unit ball, and ∂B := {x : ‖x‖ = 1} is the
unit sphere. We note R̄ := R∪{−∞,+∞}. The nonnegative orthant of Rn is denoted by
Rn

+ := {x ∈ Rn : x ≥ 0}, while Rn
++ := {x ∈ Rn : x > 0}. The null space and range space

of a matrix A are respectively denoted by N(A) and R(A). We write A < 0 [resp. A ¿ 0]
to indicate that a symmetric matrix A is positive semi-definite [resp. positive definite].

Let E be a finite dimensional Euclidean space. The indicator function of a set S ⊂ E is
denoted by IS (this is the function that vanishes on S and takes the value +∞ outside S).
The domain of a function f : E → R∪{+∞} is defined by dom f := {x ∈ E : f(x) < +∞}
and its epigraph by epi f := {(x, α) ∈ E × R : f(x) ≤ α}. As in [12], Conv(E) is the set
of functions f : E → R ∪ {+∞} that are convex (epi f is convex), proper (epi f 6= ∅),
and closed (epi f is closed). The subdifferential at x ∈ E of a proper convex function
f : E → R ∪ {+∞} is denoted by ∂f(x). We denote by NC(x) the normal cone at x to a
convex set C ⊂ E. The orthogonal projection of a point x onto a nonempty closed convex
set C is denoted by PC(x).

2. An AL algorithm to solve the QP

We assume throughout that problem (2) has a solution and denote by SP the set
of its solutions (x̄, ȳ). The projections of SP onto Rn and Rm are respectively denoted by
Sx
P := {x̄ ∈ Rn : (x̄, ȳ) ∈ SP for some ȳ ∈ Rm} (this is also {x̄ ∈ Rn : (x̄, Cx̄) ∈ SP},

the solution set of (1)) and Sy
P := {ȳ ∈ Rm : (x̄, ȳ) ∈ SP for some x̄ ∈ Rn}. Since the

constraints of (2) are qualified, there exist optimal multipliers, which certainly implies
that the affine subspace

Λ := {λ ∈ Rm : C>λ ∈ q +R(Q)} (3)

is nonempty. Note that Λ = Rm if Q ¿ 0.
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The augmented Lagrangian is obtained by dualizing the equality constraint of (2). It is
the function `r : (x, y, λ) ∈ Rn × Rm × Rm 7→ R, defined by

`r(x, y, λ) =
1

2
x>Qx+ q>x+ λ>(y − Cx) +

r

2
‖y − Cx‖2, (4)

where r ≥ 0 is called the augmentation parameter (see [1, 11, 22]).

We can now give a precise statement of the AL algorithm we study in this paper, which
is basically the method of Hestenes [11] and Powell [22] applied to (2).

AL algorithm to solve (1)

Initialization: choose λ0 ∈ Rm and r0 > 0.
Repeat for k = 0, 1, 2, . . .

1. Solve:
min
x

l≤y≤u

`rk(x, y, λk). (5)

Denote a solution by (xk+1, yk+1).

2. Update the multiplier
λk+1 = λk + rk(yk+1 − Cxk+1). (6)

3. Stop if yk+1 ' Cxk+1.

4. Choose a new augmentation parameter: rk+1 > 0.

This algorithm deserves some comments.

1. Under the sole assumption that problem (1) has a solution, the QP in step (5) has
also a solution. This fact is clarified in Proposition 3.3. This solution is not necessary
unique however.

2. Even though (xk+1, yk+1) is not uniquely determined as a solution to (5), yk+1 −
Cxk+1 is independent of that solution, so that the multipliers λk are unambiguously
generated.

3. The augmentation parameter rk can change from iteration to iteration, but the same
value must be used in the AL minimized in step 2 and in the multiplier update in
step 2. If the “step-sizeÔ in (6) is different from rk (with the aim at minimizing better
the dual function, as in [21, Section 4.2] for example), several properties of the AL
algorithm may no longer hold, such as the finite identification of active constraints (in
the presence of strict complementarity) and the global linear convergence of Section 4.

4. The larger are the augmentation parameters rk, the faster is the convergence. The
only limitation on a large value for rk comes from the ill-conditioning that such a
value induces in the AL and the resulting difficulty in solving (5). Actually, it is clear
from the structure of the AL in (4) that a large r gives priority to the restoration of
the equality constraint, leaving aside the minimization of the Lagrangian (whose role
is to provide optimality).

In comparison with an interior point method, which faces the combinatorial aspect of (1)
by transforming the problem into a sequence of linear systems, the AL algorithm goes
around this difficulty by transforming a general QP into a sequence of QP’s with simple
bounds, which are easier to solve. Indeed, a number of efficient algorithms are available for



F.Delbos, J. Ch.Gilbert / Global Linear Convergence of an AL Algorithm for QP 49

dealing with the bound constraints on the AL in step 2. A possibility would be to minimize
first analytically `r in y and then to minimize the resulting function in x. Unfortunately
this function of x, which is the AL associated with the inequality constrained QP (1)
[24, 26], has a combinatorial structure (it contains maxima) that is not easier to deal
with than the direct numerical minimization of `r in (x, y) with bounds on y. In our code
QPAL [6], used for the numerical experiments of Section 5 and in [5], we have adapted
to the (x, y) structure of problem (2) an active set strategy together with the gradient
projection algorithm and conjugate gradient iterations on the activated faces (see [17, 9]
and the references therein).

As opposed to standard (non shifted) interior point methods, whose elementary linear
systems have an exploding condition number, the AL algorithm does not require the
penalty parameter rk to go to infinity. Actually, any sequence {rk} that remains bounded
away from zero guarantees the convergence, even though large values speed it up [28].
Therefore, the bound constrained QP’s in step 2 can be maintained reasonably well con-
ditioned, keeping satisfactory the efficiency of a conjugate gradient based solver. This
remark reinforces the viewpoint that considers the AL algorithm as a method suitable for
large problems.

3. Convex analysis tools

3.1. Duality

As a dual function associated with problem (2), we use the one obtained by dualizing its
equality constraints. It is the function δ : Rm → R ∪ {+∞} defined by

λ 7→ δ(λ) := − inf
x

y∈[l,u]

(

1

2
x>Qx+ q>x+ λ>(y − Cx)

)

. (7)

Clearly δ ∈ Conv(Rm) (it takes a finite value, for instance, when λ is an optimal multiplier
associated with the equality constraint of (2)).

For a given λ ∈ Rm, (xλ, yλ) is a solution to the Lagrange problem, the minimization
problem in (7), if and only if xλ ∈ Xλ and yλ ∈ Yλ, where Xλ is the affine space

Xλ := {x ∈ Rn : Qx = C>λ− q} (8)

and Yλ is the Cartesian product of the following intervals

(Yλ)i =











[ui, ui] if λi < 0

[li, ui] if λi = 0

[li, li] if λi > 0.

(9)

These intervals, with their possible infinite bounds, have to be understood in a broad
sense: for example, [li, ui] is the interval ] − ∞, ui] if li = −∞ and ui is finite, [li, li] is
the empty set if li = −∞, etc. Since the Lagrange problem is always feasible and since
a feasible convex quadratic problem has a solution if and only if it is bounded (see [2,
Theorem 17.1] for example), the domain of δ is the set of λ’s for which the Lagrange
problem has a solution. Therefore dom δ can be written as the nonempty polyhedron

dom δ = {λ ∈ Rm : Xλ 6= ∅, Yλ 6= ∅} = Rm
l,u ∩ Λ,
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where we used the fact that Xλ 6= ∅ if and only if λ ∈ Λ and the notation

Rm
l,u := {λ ∈ Rm : λi ≤ 0 if li = −∞, λi ≥ 0 if ui = +∞}.

Observe finally that the multivalued function λ 7→ −Yλ is monotone: for λ and λ′ ∈ Rm,
and for yλ ∈ Yλ and yλ′ ∈ Yλ′ , there holds

−(yλ′ − yλ)
>(λ′ − λ) ≥ 0. (10)

Let Q† be the pseudo-inverse of Q and take the notation

H := CQ†C> and v := CQ†q. (11)

Let λ ∈ dom δ. Then, the minimization in x of the Lagrangian in (7) is achieved by any
xλ ∈ Xλ, hence satisfying Qxλ + q = C>λ. This minimizer is not necessarily unique and
we can take the minimum norm minimizer x†

λ := Q†(C>λ− q). After substitution in the
function minimized in (7) and the use of Q†QQ† = Q†, one gets

δ(λ) = sup
y∈[l,u]

(

1

2
λ>Hλ− (v + y)>λ+

1

2
q>Q†q

)

, for λ ∈ dom δ. (12)

On its domain, the dual function δ is therefore the maximum of a finite number of convex
quadratic functions (those defined by the argument of the supremum in (12) with the
components of y set to li or ui; only the finite values of these bounds must be considered),
which only differ by their slope at the origin (in particular, they have the same HessianH).

Lemma 3.1. The subdifferential of the dual function (7) is given at λ ∈ dom δ by

∂δ(λ) = Hλ− v − Yλ + C(N(Q)).

Proof. We write δ as the sum of three convex functions. Let l̃ and ũ ∈ Rm be chosen
such that l̃ < ũ, l̃i = li if li is finite, and ũi = ui if ui is finite. Define Ỹλ by formula (9)
with l and u respectively replaced by l̃ and ũ. Then the following finite value function
δ̃ ∈ Conv(Rm) is identical to the right hand side of (12) on Rm

l,u:

δ̃(λ) = sup
y=(yi)mi=1

yi = l̃i or ũi

(

1

2
λ>Hλ− (v + y)>λ+

1

2
q>Q†q

)

.

Clearly δ = δ̃ + IRm
l,u

+ IΛ, so that Theorem 23.8 in [23] implies that for λ ∈ dom δ:

∂δ(λ) = ∂δ̃(λ) + ∂IRm
l,u
(λ) + ∂IΛ(λ).

Equality holds above because IRm
l,u

and IΛ are polyhedral and because ri dom δ̃ (= Rm, ri

denotes the relative interior), domIRm
l,u

= Rm
l,u, and dom IΛ = Λ have a point in common

(one in dom δ 6= ∅).
To compute ∂δ̃(λ), we use Corollary VI.4.3.2 in [12] (conv denotes the convex hull):

∂δ̃(λ) = conv
{

Hλ− v − y : y ∈ Ỹλ and (yi = l̃i or ũi if λi = 0)
}

= Hλ− v − Ỹλ.
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On the other hand, ∂IRm
l,u
(λ) = NRm

l,u
(λ), which is the set of vectors ν ∈ Rm satisfying















νi ≥ 0 when λi = 0, li = −∞, and ui is finite
νi ≤ 0 when λi = 0, li is finite, and ui = +∞
νi ∈ R when λi = 0, li = −∞, and ui = +∞
νi = 0 when λi 6= 0.

We deduce from this computation that for λ ∈ dom δ

Ỹλ − ∂IRm
l,u
(λ) = Yλ.

Finally ∂IΛ(λ) = NΛ(λ) = {µ ∈ Rm : C>µ ∈ R(Q)}⊥ = C(N(Q)). Adding the last three
subdifferentials provides the formula of ∂δ(λ) given in the statement of the lemma.

Let us denote by SD the set of dual solutions:

SD := {λ̄ ∈ Rm : 0 ∈ ∂δ(λ̄)}.

Not surprisingly, this is a convex polyhedron, which can be described in the standard
form. It will be useful to make this form explicit and we do so in Lemma 3.2 below. For
this, we take a partition of {1, . . . ,m} into the index sets

Il := {i : ȳi = li for all (x̄, ȳ) ∈ SP},
J := {i : li < ȳi < ui for some (x̄, ȳ) ∈ SP},
Iu := {i : ȳi = ui for all (x̄, ȳ) ∈ SP}.

(13)

We also introduce the orthant face O and the affine subspace A

O := {λ ∈ Rm : λIl ≥ 0, λJ = 0, λIu ≤ 0},

A := {λ ∈ Rm : C>λ = Qx̄+ q}.
(14)

In the definition ofA, x̄ is an arbitrary primal solution. We have not made this dependence
explicit in the symbol of the set since, as shown in the proof of the next lemma, A does
not depend on the choice of x̄ ∈ Sx

P .

Lemma 3.2. The set of dual solutions SD can be written as the intersection

SD = O ∩A.

Furthermore, for any λ̄ ∈ SD and any ȳ ∈ Sy
P , we have ȳ ∈ Yλ̄ and Hλ̄ = v + ȳ + Cū for

some ū ∈ N(Q).

Proof. Let `(x, y, λ) = 1
2
x>Qx+ q>x+ I[l,u](y) + λ>(y−Cx) be the Lagrangian function

of the problem min(x,y){1
2
x>Qx + q>x + I[l,u](y) : y = Cx}, which has the same dual

function as problem (2). Since the constraint of this problem is qualified, λ̄ ∈ SD if and
only if 0 ∈ ∂(x,y)`(x̄, ȳ, λ̄), where (x̄, ȳ) is an arbitrary primal solution. This can also be
written Qx̄+ q = C>λ̄ and 0 ∈ N[l,u](ȳ) + λ̄, which is equivalent to λ̄ ∈ Ax̄ ∩ Oȳ, where

Ax̄ := {λ ∈ Rm : C>λ = Qx̄+ q},
Oȳ := {λ ∈ Rm : λi ≥ 0 if ȳi = li, λi = 0 if li < ȳi < ui, λi ≤ 0 if ȳi = ui}.
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By varying (x̄, ȳ) ∈ SP , we see that Ax̄ = A is independent of the chosen primal solution
x̄ ∈ Sx

P and that λ̄ ∈ ∩{Oȳ : ȳ ∈ Sy
P} = O.

For proving the second part of the lemma, take λ̄ ∈ SD and (x̄, ȳ) ∈ SP . We have shown
that λ̄ ∈ Ax̄ ∩ Oȳ. Actually, λ̄ ∈ Oȳ is equivalent to ȳ ∈ Yλ̄. By λ̄ ∈ Ax̄, we have
that C>λ̄ = Qx̄ + q. Multiplying to the left both sides of this equation by CQ† provides
Hλ̄ = v + ȳ + Cū, where ū := (Q†Q− I)x̄ ∈ N(Q).

The fact observed in the proof above that the gradient of the criterion of the primal
problem at a solution, here Qx̄+ q, is independent of the chosen solution is a property of
general convex problems; see [16, 3]. This fact can also be deduced from the property that
the subdifferential of a convex function (here the criterion of problem (1)) is constant on
the relative interior of a set on which this function is constant (here the solution set).

3.2. Proximality

We will use the fundamental result of Rockafellar [25], according to which the AL algo-
rithm of Section 2 is the proximal algorithm on the dual function δ. More precisely, the
multiplier λk+1 computed in step 2 of the AL algorithm is also the unique solution to

inf
λ∈Rm

(

δ(λ) +
1

2rk
‖λ− λk‖2

)

. (15)

The same parameter rk > 0 is used above and in (5). In addition, the optimal value of this
problem is the opposite of the optimal value of problem (5). The optimality conditions
of problem (15) can be written 0 ∈ ∂δ(λk+1) + (λk+1 − λk)/rk. Using (6), we see that:

Cxk − yk ∈ ∂δ(λk), ∀k ≥ 1. (16)

Note that, since λk+1 is uniquely determined as the solution to (15), this is also the case
for yk+1 − Cxk+1, even though xk+1 and yk+1 are not uniquely determined.

Let us now clarify the conditions ensuring that the augmented Lagrange problem (5) has
a solution.

Proposition 3.3. The following three properties are equivalent:

(i) dom δ 6= ∅,
(ii) problem (1), with some (or any) finite shift of its finite bounds to make it feasible,

has a solution,

(iii) for some (or any) rk > 0 and λk ∈ Rm, problem (5) has a solution.

(i) ⇒ (iii). Fix rk > 0 and λk ∈ Rm (not necessarily the kth iterate). Since dom δ 6= ∅,
the optimal value of (15) is finite, so that the optimal value of problem (5) is also finite.
As a feasible bounded convex quadratic problem, (5) must have a solution [2, Theorem
17.1].

[(iii) ⇒ (ii)] We proceed by contradiction. Suppose that l̃ and ũ ∈ R̄m are such that
l̃ < ũ, l̃i = −∞ iff li = −∞, ũi = +∞ iff ui = +∞, and [l̃, ũ] ∩ R(C) 6= ∅ (these
bounds l̃ and ũ result from a finite shift of the finite bounds of (1) that makes this
problem feasible) and assume that the feasible problem min{f(x) : l̃ ≤ Cx ≤ ũ}, where
f(x) := (1/2)x>Qx + q>x, has no solution. Then, there exists a sequence {xj} such
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that Cxj ∈ [l̃, ũ] and f(xj) → −∞ when j → ∞ (this is because a bounded feasible
convex quadratic problem has a solution). Let yj := P[l,u] (Cxj) be the projection of

Cxj onto [l, u]. Then ‖yj − Cxj‖ ≤ m1/2‖yj − Cxj‖∞ ≤ m1/2γ, where γ := max(‖l̃ −
l‖∞, ‖ũ− u‖∞) (these norms are taken on the finite components of l and u), and (xj, yj)
is feasible for problem (5). On the other hand, for an arbitrary rk > 0 and λk ∈ Rm,
`rk(xj, yj, λk) ≤ f(xj)+m1/2γ‖λk‖+(rk/2)mγ2 → −∞ when j → ∞. Therefore problem
(5) has no solution.

[(ii) ⇒ (i)] Let l̃ and ũ be some finite shifts of the finite bounds of problem (1), such
that the problem min{f(x) : l̃ ≤ Cx ≤ ũ}, with f as in the previous paragraph, has
a solution, x̃ say. Since its constraints are qualified, there exist λ̃l and λ̃u such that
Qx̃ + q = C>(λ̃l − λ̃u), λ̃l ≥ 0, λ̃u ≥ 0, λ̃l

i = 0 if li = −∞, and λ̃u
i = 0 if ui = +∞. It is

easy to check that λ̃l − λ̃u ∈ Rm
l,u ∩ Λ = dom δ.

If the original quadratic problem (1) has a solution, condition (ii) above holds (without
having to shift the bounds), so that the augmented Lagrange problem (5) has a solution.

3.3. Projection onto a convex polyhedron

This section gives two lemmas related to the projection onto a convex polyhedron. The
first lemma has a general interest. It compares the distance from a point x in the positive
orthant to a convex polyhedron X defined in the standard form and the distance from x
to the underlying affine space A. It is claimed that the second distance is bounded below
by a positive constant (independent of x ≥ 0) times the first one. Of course, since X ⊂ A,
dist(x,A) ≤ dist(x,X ).

Lemma 3.4. Let A be an m×n matrix and b ∈ Rm. Consider the affine subspace A and
the convex polyhedron X defined by

A := {x ∈ Rn : Ax = b} and X := {x ∈ Rn : Ax = b, x ≥ 0}.

These sets are supposed to be nonempty. Then, there exists a constant γ > 0 such that

∀x ∈ Rn
+, dist(x,A) ≥ γ dist(x,X ).

Proof. First stage: reformulation of the statement of the lemma. By using the triangle
inequality, it is easy to see that the conclusion of the lemma is equivalent to claiming that

∃γ′ > 0, ∀x ∈ Rn
+, ‖x− PA(x)‖ ≥ γ′‖PA(x)− PX (x)‖, (17)

This inequality suggests that a certain function (whose value is the left hand side of the
inequality in (17) divided by the factor of γ′ in the right hand side) has a positive slope.
This is the strategy we follow to establish (17).

Instead of testing the validity of the inequality in (17) for any x ∈ Rn
+, we consider all

the possible points x0 that are projections onto X of points in the positive orthant and
reformulate (17). For a point x0 ∈ X and a direction d ∈ NX (x

0) ∩ N(A) ∩ ∂B, let us
introduce the function

ϕ : α ∈ R++ 7→ ϕ(α) := inf
{

‖A>y‖ : y ∈ Rm, x0 + αd+ A>y ≥ 0
}

. (18)
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This function depends on the choice of x0 and d, but we do not mention this dependence
to keep the notation light. Let us show that (17) holds if

∃γ′ > 0, ∀x0 ∈ X , ∀d ∈ NX (x
0) ∩N(A) ∩ ∂B, ∀α > 0, ϕ(α) ≥ γ′α. (19)

Let x ∈ Rn
+, x

1 := PA(x), and x0 := PX (x). One can assume that x1 6= x0 (since otherwise
the inequality in (17) is trivially satisfied). Set d := (x1 − x0)/‖x1 − x0‖. It is clear that
d ∈ N(A) ∩ ∂B (note that both x1 and x0 ∈ A). To show that d ∈ NX (x

0), observe that
x1 := PA(x) implies that x = x1 + A>y = x0 + αd + A>y for α := ‖x1 − x0‖ > 0 and a
certain y ∈ Rm. Then, for all z ∈ X , there holds

d>(z − x0) =
1

α
(x− x0 − A>y)>(z − x0) =

1

α
(x− x0)>(z − x0) ≤ 0.

We have used the fact that z−x0 ∈ N(A) and that x0 := PX (x) to get the last inequality.
This shows that d ∈ NX (x

0). Using (19) and the fact that x = x0 +αd+A>y ≥ 0, we see
that the inequality in (17) holds:

‖x− x1‖ = ‖A>y‖ ≥ ϕ(α) ≥ γ′α = γ′‖x1 − x0‖.

The claim (19) can be simplified. Observe that ϕ(α) ≥ 0, that ϕ(0) = 0, and that
ϕ(tα) ≤ tϕ(α) when α ≥ 0 and t ∈ ]0, 1]. To prove this last property of ϕ, assume
that ϕ(α) < ∞ (otherwise, there is nothing to show). Then take ε > 0 and y ∈ Rm

such that x0 + αd + A>y ≥ 0 and ‖A>y‖ ≤ ϕ(α) + ε. Since x0 ≥ 0, there holds 0 ≤
(1−t)x0+t(x0+αd+A>y) = x0+tαd+A>(ty) and therefore ϕ(tα) ≤ ‖A>(ty)‖ ≤ tϕ(α)+ε.
Since ε > 0 is arbitrary, there holds ϕ(tα) ≤ tϕ(α). Now, this property of ϕ implies that
α ∈ R++ 7→ ϕ(α)/α is nondecreasing. Therefore, we have reduced the problem to showing
that

∃γ′ > 0, ∀x0 ∈ X , ∀d ∈ NX (x
0) ∩N(A) ∩ ∂B, ϕ′(0; 1) ≥ γ′, (20)

where ϕ′(0; 1) denotes the right derivative of ϕ at zero.

Second stage: control of the decomposition of the normal directions. Consider a point x0 ∈
X having a unitary normal direction in the null space of A, say d ∈ Nx0(X )∩N(A)∩∂B.
Define I := I(x0) := {i : x0

i = 0} and J := J(x0) := {i : x0
i > 0}. These directions d are

characterized by the conditions

d = A>z − r, rI ≥ 0, rJ = 0, Ad = 0, and ‖d‖ = 1, (21)

for some vectors z ∈ Rm and r ∈ Rn. The decomposition of d in A>z − r as above is not
necessarily unique. It will be useful to identify a decomposition that provides the smallest
value to ‖A>z‖, which is therefore a solution to















min(z,r)
1
2
‖A>z‖2

A>z − r = d
rI ≥ 0
rJ = 0.

It is easy to show that this problem has a solution, which is characterized by (21) and

A(A>z − s) = 0, sI ≥ 0, and s>I rI = 0, (22)
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for some vector s ∈ Rn.

Let us show that
max
x0∈X

sup
d∈NX (x0)

Ad=0
‖d‖=1

min
(z,r)∈Rm×Rn

A>z−r=d
rI(x0)≥0

rJ(x0)=0

‖A>z‖ < +∞. (23)

We see on (21) that two points x0 ∈ X having the same index set I have the same
normal cone. Therefore, the point x0 ∈ X intervenes in (23) only through its index sets I
and J . Since there is a finite number of such sets, one can fix x0, hence I and J . Let
us continue by contradiction, assuming that there exists a sequence {(dk, zk, rk, sk)} such
that Adk = 0, ‖dk‖ = 1, A>zk − rk = dk, rkI ≥ 0, rkJ = 0, A(A>zk − sk) = 0, skI ≥ 0,
(skI )

>rkI = 0, and ‖A>zk‖ → ∞. Extracting a subsequence if necessary, it can be assumed
that A>zk/‖A>zk‖ → A>z̄, a vector of unit norm. Since {dk} is bounded, the identity
A>zk − rk = dk shows that rk/‖A>zk‖ converges to r̄ := A>z̄. Multiplying the identity
A(A>zk − sk) = 0 by z̄, one finds for sufficiently large k

0 = z̄>AA>zk − r̄>sk = z̄>AA>zk,

because, when r̄i > 0, then i ∈ I and, for all sufficiently large k, rki > 0, so that ski = 0.
Dividing the right hand side by ‖A>zk‖ and taking the limit, one would find A>z̄ = 0,
which provides the expected contradiction.

Third stage: lower bound for ϕ′(0; 1) and conclusion. Let us introduce υ : Rn → R ∪
{+∞}, the value function of the problem

{

infy ‖A>y‖
x0 + A>y ≥ 0,

(24)

which is the proper convex function defined by υ(p) := inf{‖A>y‖ : x0+A>y ≥ p}. Then,
for fixed x0 ∈ X and d ∈ NX (x

0) ∩ N(A) ∩ ∂B, ϕ(α) defined by (18) can be written
ϕ(α) = υ(−αd). Therefore

ϕ′(0; 1) = υ′(0;−d) ≥ −g>d, ∀g ∈ ∂υ(0). (25)

As for the subdifferential ∂υ(0), it is formed of the optimal multipliers associated with
the constraint of (24), which are the g-parts of the pairs (g, u) satisfying

g ∈ u+N(A), ‖u‖ ≤ 1, g ≥ 0, and (x0)>g = 0. (26)

Let d = A>z − r be a decomposition of d satisfying (21)-(22). If A>z = 0, then g :=
−αd = αr is a subgradient of υ at zero for any α ≥ 0 (the conditions (26) are satisfied
with u = 0; recall that d ∈ N(A)), so that (25) shows that ϕ′(0; 1) = +∞. If A>z 6= 0,
then g := (A>z − d)/‖A>z‖ = r/‖A>z‖ is a subgradient of υ at zero (the conditions (26)
are satisfied with u = A>z/‖A>z‖). Then (25) shows that ϕ′(0; 1) ≥ 1/‖A>z‖. Since for
these decompositions, stage 2 of the proof has shown that A>z is bounded, (20) holds
and, consequently, the result is proven.

As shown by the following example, Lemma 3.4 no longer holds with all its generality
when X is the intersection of an affine space A and an arbitrary closed convex cone.
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Example 3.5. Let us introduce the following closed convex cone K := {x ∈ R3 : x2x3 ≥
x2
1, x2 ≥ 0, x3 ≥ 0}, the 1× 3 matrix A := (0 1 0), and b = 0 ∈ R. Define the affine space

A and its intersection with K by

A := {x ∈ R3 : Ax = b} = {x ∈ R3 : x2 = 0},
X := K ∩ A = {x ∈ R3 : x1 = x2 = 0, x3 ≥ 0}.

Then the conclusion of Lemma 3.4 does not hold for these sets A and X . To see this,
consider the points xt := (t, t2, 1) for t ↓ 0. Clearly xt ∈ K, PA(x

t) = (t, 0, 1), and
PX (x

t) = (0, 0, 1). Therefore ‖xt−PA(x
t)‖/‖PA(x

t)−PX (x
t)‖ = t, which is not bounded

away from zero.

Actually, it will be useful below to have the following relaxed version of Lemma 3.4.
This one allows the projected point x not to belong to Rn

+. This point must however be
sufficiently close to the positive orthant with respect to its distance to X .

Corollary 3.6. Assume the framework defined in the statement of Lemma 3.4. Then,
there exist two constants τ > 0 and γ > 0 such that for all x ∈ Rn,

dist(x,Rn
+) ≤ τ dist(x,X ) =⇒ dist(x,A) ≥ γ dist(x,X ).

Proof. Let γ be the constant given by Lemma 3.4 and set

τ :=
γ

4(1 + γ)
.

Let x be such that dist(x,Rn
+) ≤ τ dist(x,X ). To simplify the notation, let us define

x0 := PX (x), x1 := PA(x), and x̄ := PRn
+
(x),

Using several times the triangle inequality, Lemma 3.4, the non-expansiveness of the
projectors PA and PX , and the definition of τ , one can write

‖x− x1‖ ≥ ‖x̄− PA(x̄)‖ − ‖PA(x̄)− PA(x)‖ − ‖x− x̄‖
≥ γ‖x̄− PX (x̄)‖ − 2‖x− x̄‖
≥ γ‖x̄− x0‖ − (2 + γ)‖x− x̄‖
≥ γ‖x− x0‖ − 2(1 + γ)‖x− x̄‖
≥ γ‖x− x0‖ − 2τ(1 + γ)‖x− x0‖

=
γ

2
‖x− x0‖.

This is the expected inequality.

The following lemma will be also useful. If I ⊂ {1, . . . , n}, we denote by Ic the comple-
mentary set of I in {1, . . . , n}.
Lemma 3.7. Let A be an m × n matrix, b ∈ Rm, I ⊂ {1, . . . , n}, and ϕ : Rn → R be a
convex differentiable function. If x̄ is a solution to the problem

min {ϕ(x) : Ax = b, xI ≥ 0, xIc = 0} ,

then there is a subset of indices J ⊂ {1, . . . , n}, containing I, such that x̄ is also a solution
to the problem

min {ϕ(x) : Ax = b, xJ ≥ 0, xJc ≤ 0} .
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Proof. The constraints of the first problem are affine, hence qualified. Therefore, there
exist vectors y ∈ Rm and s ∈ Rn such that

∇ϕ(x̄) + A>y + s = 0, x̄I ≥ 0, sI ≤ 0, s>I x̄I = 0, x̄Ic = 0.

Define
J := I ∪ {i ∈ Ic : si ≤ 0}.

Then

∇ϕ(x̄) + A>y + s = 0, x̄J ≥ 0, sJ ≤ 0, s>J x̄J = 0,

x̄Jc ≤ 0, sJc ≥ 0, s>Jcx̄Jc = 0.

By convexity, these conditions suffice to show that x̄ is also a solution to the second
problem.

4. Global linear convergence of the algorithm

The global linear convergence of the AL algorithm will be shown in Section 4.2 to be a
consequence of the radial Lipschitz continuity of the multifunction ∂δ−1, the reciprocal
of the subdifferential of the dual function (this argument is taken from [28]). The latter
property is the subject of Section 4.1.

4.1. Global dual error bound

Two normed spaces E and F being given, a multifunction T : E ° F is said to be radially
Lipschitz continuous at x0 ∈ E with constant L ≥ 0 if for all x ∈ E and all y ∈ T (x),
there holds dist(y, T (x0)) ≤ L‖x− x0‖ (“distÔ denotes here the distance associated with
the norm of F ). Consider the multifunction

∂δ−1 : g ∈ Rm 7→ {λ ∈ Rm : g ∈ ∂δ(λ)} ⊂ Rm,

where δ is the dual function defined in (7). Clearly ∂δ−1(0) = SD, the set of dual solutions.
Then ∂δ−1 is radially Lipschitz continuous at 0 with constant L ≥ 0, if

∀λ ∈ Rm, ∀g ∈ ∂δ(λ) : dist(λ,SD) ≤ L‖g‖. (27)

Such a property is sometimes called a global error bound for the dual solution set SD

in terms of the dual function subgradient (see the review paper by Pang [21] and the
contribution of Izmailov and Solodov [13]). In this section, we show that this property
holds in a weaker form: λ has to stay at a bounded distance from SD (the Lipschitz
constant L depends on this distance). Nevertheless, this property still has a global nature,
since λ is not required to be close to SD and g is not required to be close to 0.

To show that this property is natural, consider first a quadratic problem with only equality
constraints:

{

infx
1
2
x>Qx+ q>x

Cx = b.
(28)

It is assumed that this problem is convex (Q < 0) and has a solution. It is therefore
feasible: b ∈ R(C). Since the constraint is qualified, there exist optimal multipliers,
which implies that the affine subspace Λ defined in (3) is nonempty.
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Using the pseudo-inverse Q† of Q, the symmetric matrix H < 0, and the vector v defined
in (11), the dual function δ associated with problem (28) can be written

δ(λ) =

{

1
2
λ>Hλ− (v + b)>λ+ 1

2
q>Q†q for λ ∈ Λ

+∞ otherwise.
(29)

A computation like in the proof of Lemma 3.1 shows that

∂δ(λ) = Hλ− v − b+ C(N(Q)), for λ ∈ Λ.

Since SD is defined as the set of minimizers of δ, one finds

SD = {λ̄ ∈ Λ : Hλ̄ ∈ v + b+ C(N(Q))}.

It is useful to introduce

σ := inf
µ∈ ∂B∩R(C)
C>µ∈R(Q†)

µ>Hµ, (30)

which, by definition, takes the value +∞ when {µ ∈ R(C) : C>µ ∈ R(Q†)} = {0}.
Below, the smallest nonzero eigenvalue of a zero matrix is defined to be +∞.

Lemma 4.1. The value in R̄ defined by (30) satisfies σ > 0. It is the smallest nonzero
eigenvalue of H when R(C>) ⊂ R(Q†).

Proof. We only have to consider the case when {µ ∈ R(C) : C>µ ∈ R(Q†)} 6= {0}.
Then, Q† 6= 0 (because C>µ = 0 and µ ∈ R(C) imply that µ = 0) and C 6= 0. Now,
when C>µ ∈ R(Q†) = N(Q†)⊥, µ>Hµ = µ>CQ†C>µ ≥ ζmin(Q

†)‖C>µ‖2, where ζmin(Q
†)

is the smallest nonzero eigenvalue of Q†. On the other hand, when µ ∈ R(C), ‖C>µ‖ ≥
σmin(C)‖µ‖, where σmin(C) is the smallest nonzero singular value of C. We have shown
that

σ ≥ ζmin(Q
†)σmin(C)2 > 0.

Suppose now that R(C>) ⊂ R(Q†). Then σ = inf{µ>Hµ : µ ∈ ∂B ∩ R(C)}, so that
σ will be the smallest nonzero eigenvalue of H if we show that R(C) = N(H)⊥ or that
N(H) = N(C>). The inclusion N(C>) ⊂ N(H) is clear. Conversely, let ν ∈ N(H), which
reads CQ†C>ν = 0. This implies that C>ν ∈ N(Q†) = R(Q†)⊥ ⊂ N(C), by assumption.
Then C>ν = 0.

Note that when R(C>) 6⊂ R(Q†), σ is not the smallest nonzero eigenvalue of H. Here is
an example

Q† =

(

1 0
0 0

)

and C =
(

1 1
)

.

Then H = 1, while σ = +∞ since there is no nonzero µ such that C>µ ∈ R(Q†).

Proposition 4.2. Consider problem (28) with Q < 0 and suppose that it has a solution.
Then property (27) is satisfied by the dual function (29), with the Euclidean norm and a
constant L = 1/σ, where σ is defined by (30).
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Proof. Since problem (28) has a solution and its constraint is qualified, SD is nonempty
(it is identical to the set of optimal multipliers). To prove (27), we only have to consider
the dual variables λ ∈ Λ, since otherwise ∂δ(λ) is empty. Note also that we only have to
consider the case when H 6= 0 since otherwise SD = Λ and (27) is trivially satisfied with
L = 0.

Let λ ∈ dom δ = Λ, g ∈ ∂δ(λ), and λ̄ be the projection of λ onto SD. We have for some
u and ū ∈ N(Q)

g = Hλ− (v + b) + Cu and 0 = Hλ̄− (v + b) + Cū.

Subtracting these two identities and taking the scalar product with (λ− λ̄) yield

g>(λ− λ̄) = (λ− λ̄)>H(λ− λ̄) + (u− ū)>C>(λ− λ̄).

The last term vanishes, since C>(λ − λ̄) ∈ R(Q) and Q(u − ū) = 0. Now observe that
λ − λ̄ ∈ R(C), since λ̄ + N(C>) ⊂ SD (equality holds actually), and that C>(λ − λ̄) ∈
R(Q) = R(Q†), since both λ and λ̄ ∈ Λ. Therefore

g>(λ− λ̄) ≥





 inf
µ∈∂B∩R(C)
C>µ∈R(Q†)

µ>Hµ





 ‖λ− λ̄‖2 = σ‖λ− λ̄‖2.

Now (27) with L = 1/σ follows by using the Cauchy-Schwarz inequality on the left hand
side.

When C is surjective and Q ¿ 0, extending this result to the dual function associated
with the strictly convex quadratic problem (2) is an exercise (then H is positive definite
and L is the inverse of the smallest eigenvalue of H). On the other hand, when C is not
surjective, property (27) cannot hold without being lightly weakened, as shown by the
following example.

Example 4.3. Consider the special QP with a single inactive constraint (m = 1, C = 0,
and l < 0 < u) and a zero optimal value (q = 0). Then δ is the function

δ(λ) =

{

−uλ if λ ≤ 0
−lλ if λ > 0.

Clearly, (27) can hold only if λ is not too far from the dual solution set: |λ| ≤ Lmin(−l, u).

The analysis of the inequality constrained QP is more difficult than the one of problem
(28), since it has to cover simultaneously two different cases: the quadratic dual function
of the equality constrained QP (28) and the sharp dual function of the previous example.

In the case of an inequality constrained QP, it will be shown that the Lipschitz constant
L may also depend on the largest gap ∆ between the ȳ ∈ Sy

P and the inactive bounds.
More precisely, ∆ is defined by

∆ := sup
ȳ∈Sy

P

min

(

min
i∈Il∪J

(ui − ȳi), min
i∈J∪Iu

(ȳi − li)

)

, (31)
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where the index sets Il, J , and Iu are introduced in (13). If J = ∅, either Il or Iu 6= ∅,
and the fact that l < u implies that ∆ > 0. If J 6= ∅, the convexity of SP implies that
there is a ȳ ∈ Sy

P such that lJ < ȳJ < uJ , in which case also ∆ > 0. The dependence of
L on ∆ is clearly visible in Example 4.3: for λ at a unit distance from the solution, we
must have L ≥ 1/min(−l, u) = 1/∆. This lower bound on L goes to infinity when l or u
tends to zero, and it goes to zero when l → −∞ and u → +∞.

Proposition 4.4. Consider problem (1) with Q < 0 and suppose that it has a solution.
Then, for any bounded set B ⊂ Rm, there exists a constant L, such that

∀λ ∈ SD + B, ∀g ∈ ∂δ(λ) : dist(λ,SD) ≤ L‖g‖. (32)

Proof. First stage: definition of L. We know that SD 6= ∅. Let B be a bounded set in
Rm, i.e., B ⊂ βB for some β > 0. To make the proof rigorous, we now define L > 0, even
though the motivation for its definition will not look quite clear at this point.

Let K be the collection of index sets K ⊂ {1, . . . ,m} such that Il ⊂ K and Iu ⊂
Kc := {1, . . . ,m}\K (the index sets Il and Iu are defined in (13)). With any index set
K ⊂ {1, . . . ,m}, we associate the orthant

OK := {λ ∈ Rm : λK ≥ 0, λKc ≤ 0}.

Define O and A by (14). For any index set K ∈ K, OK ∩ A is nonempty (since it
contains SD = O∩A, see Lemma 3.2). Therefore, with an index set K ∈ K, Corollary 3.6
associates two constants τK > 0 and γK > 0 such that for any λ ∈ Rm:

dist(λ,OK) ≤ τK dist(λ,OK ∩ A) =⇒ dist(λ,A) ≥ γK dist(λ,OK ∩ A).

Since K is finite, the constants

τ := min
K∈K

τK and γ := min
K∈K

γK

are positive. Therefore, we have found two constants τ > 0 and γ > 0 such that, for any
K ∈ K, there holds

λ ∈ O τ
K := {λ′ ∈ Rm : dist(λ′,OK) ≤ τ dist(λ′,OK ∩ A)}

=⇒ dist(λ,A) ≥ γ dist(λ,OK ∩ A).
(33)

Recall the definitions (30) of σ > 0 and (31) of ∆ > 0. Then, the constant L ≥ 0 is
defined by

L := max

(

1

σγ2
,
β

τ∆

)

. (34)

In this formula, the constants σ > 0 and ∆ > 0 may take the value +∞. Therefore, L is
finite, but can vanish.

Second stage: Proof of (32). Fix λ ∈ SD + B and g ∈ ∂δ(λ) (necessarily, λ ∈ dom δ).
Denote the projection of λ onto SD by λ̄ := PSD

(λ). Observe that,

‖λ− λ̄‖ ≤ β. (35)
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Let ε ∈ ]0,∆[ and define Lε by formula (34), but with ∆− ε in place of ∆. Observe now
that showing

g>(λ− λ̄) ≥ 1

Lε

‖λ− λ̄‖2 (36)

suffices to conclude the proof since then the inequality in (32) follows from the Cauchy-
Schwarz inequality applied to the left hand side of (36) and the fact that ε can be chosen
arbitrarily close to zero.

From the form of the subdifferential ∂δ(λ) given by Lemma 3.1, we have for some yλ ∈ Yλ,
some yλ̄ ∈ Yλ̄, and some u, ū ∈ N(Q):

g = Hλ− v − yλ + Cu and 0 = Hλ̄− v − yλ̄ + Cū. (37)

According to Lemma 3.2, yλ̄ can be chosen arbitrarily in Sy
P and we take it such that

min

(

min
i∈Il∪J

(ui − ȳi), min
i∈J∪Iu

(ȳi − li)

)

≥ ∆− ε. (38)

As in the proof of Proposition 4.2, (u − ū)>C>(λ − λ̄) = 0, because C>(λ − λ̄) ∈ R(Q)
(both λ and λ̄ ∈ dom δ ⊂ Λ) and Q(u − ū) = 0. Therefore, subtracting the identities in
(37) and taking the scalar product with (λ− λ̄) yield

g>(λ− λ̄) = (λ− λ̄)>H(λ− λ̄)− (yλ − yλ̄)
>(λ− λ̄). (39)

We will get (36) by finding a lower bound of the right hand side of (39). Note that the
two terms are nonnegative (this is clear for the first one, since H is positive semi-definite;
for the second one, use the monotonicity property (10)).

Since λ̄ = PA∩O(λ), by Lemma 3.7, one can find an index set K ⊂ K such that λ̄ =
PA∩OK

(λ). We analyze successively two complementary cases, using the set O τ
K defined

in (33) and λt := (1−t)λ̄+ tλ for t ∈ R.

Case A: there exists a t ∈ ]0, 1] such that λt ∈ O τ
K . In this case, we work on the first term

in the right hand side of (39), discarding the second one. Because PA∩OK
(λt) = λ̄, (33)

gives
γ‖λt − λ̄‖ ≤ ‖λt − PA(λ

t)‖.

Decompose λt − λ̄ = µ0 + µ1, where µ0 ∈ N(C>) and µ1 ∈ R(C), and observe that
C>µ1 = C>(λt − λ̄) ∈ R(Q) = R(Q†) (since both λt and λ̄ ∈ dom δ ⊂ Λ). Then, using
the definition (30) of σ, one finds

(λt − λ̄)>H(λt − λ̄) = µ>
1Hµ1 ≥ σ‖µ1‖2.

From the fact that µ1 ∈ R(C) and that C>(λt − µ1) = C>(λ̄ + µ0) = C>λ̄ = Qx̄ + q, we
deduce that µ1 = λt − PA(λ

t). Therefore

(λt − λ̄)>H(λt − λ̄) ≥ σγ2‖λt − λ̄‖2.

Since λ− λ̄ = (λt − λ̄)/t, we also have

(λ− λ̄)>H(λ− λ̄) ≥ σγ2‖λ− λ̄‖2.
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Discarding the second term in the right hand side of (39) (it is nonnegative) and using
the definition of L in (34), it follows that

g>(λ− λ̄) ≥ (λ− λ̄)>H(λ− λ̄) ≥ σγ2‖λ− λ̄‖2 ≥ 1

L
‖λ− λ̄‖2 ≥ 1

Lε

‖λ− λ̄‖2,

which is the expected inequality (36).

Case B: for any t ∈ ]0, 1], λt /∈ O τ
K . In this case, we work on the second term in the right

hand side of (39), discarding the first one. Let us start by choosing t ∈ ]0, 1] sufficiently
small such that λt

iλ̄i > 0 when λ̄i 6= 0; by assumption, this λt /∈ O τ
K . Let gt ∈ ∂δ(λt), so

that gt = Hλt − v − yλt + Cut for some yλt ∈ Yλt and some ut ∈ N(Q) (compare with
(37)). Proceeding as before, we get an identity like (39):

(gt)>(λt − λ̄) = (λt − λ̄)>H(λt − λ̄)− (yλt − yλ̄)
>(λt − λ̄). (40)

Denote by λt
K := POK

(λt) the projection of λt onto OK and decompose

−(yλt − yλ̄)
>(λt − λ̄) = −(yλt − yλ̄)

>(λt − λt
K)− (yλt − yλ̄)

>(λt
K − λ̄).

The last term in the right hand side is nonnegative. Indeed, by the choice of t, if λ̄i 6= 0,
one has λt

iλ̄i > 0 and therefore (yλt − yλ̄)i = 0 (see the definition (9) of Yλ). The only
nonzero terms of the last scalar product are therefore of the form (yλ̄ − yλt)i(λ

t
K)i. If

(λt
K)i > 0, one has λt

i > 0 (since λt
K is the projection of λt onto OK) and therefore

(yλt)i = li, so that the term can be written ((yλ̄)i − li)(λ
t
K)i ≥ 0 (since li ≤ (yλ̄)i ≤ ui).

Similarly, the term is nonnegative when (λt
K)i < 0. Therefore

−(yλt − yλ̄)
>(λt − λ̄) ≥ −(yλt − yλ̄)

>(λt − λt
K) =

∑

i∈IK,λt

(yλ̄ − yλt)i(λ
t − λt

K)i,

where we have introduced the index set

IK,λt := {i : λt
i 6= (λt

K)i}.

Let us show that all the terms of the sum on the indices i ∈ IK,λt above are positive.
Observe first that (λt

K)i = 0 (since λt
i 6= (λt

K)i and λt
K is the projection of λt onto

the orthant OK). On the other hand, if λt
i > 0, then (yλt)i = li and li < (yλ̄)i ≤ ui

(this is because i ∈ Kc when λt
i > 0 and (λt

K)i = 0, and because Il ⊂ K); therefore
(yλ̄−yλt)i = (yλ̄)i− li ≥ ∆−ε > 0 (see (38)). Similarly, if λt

i < 0, then (yλt)i = ui, i ∈ K,
and (yλ̄ − yλt)i = (yλ̄)i − ui ≤ −(∆− ε) < 0. In particular, all the terms of the sum are
positive. Therefore, we get (‖ · ‖1 denotes the `1-norm)

−(yλt−yλ̄)
>(λt−λ̄) ≥ (∆−ε)‖λt−λt

K‖1 ≥ (∆−ε)‖λt−λt
K‖ ≥ τ(∆−ε)‖λt−λ̄‖, (41)

where the last inequality comes from the fact that λt /∈ O τ
K and that PA∩OK

(λt) = λ̄. We
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can now conclude:

g>(λ− λ̄) ≥ (gt)>(λ− λ̄) [monotonicity of the subdifferential]

=
1

t
(gt)>(λt − λ̄) [definition of λt]

≥ −1

t
(yλt − yλ̄)

>(λt − λ̄) [(40)]

≥ τ(∆− ε)

t
‖λt − λ̄‖ [(41)]

≥ τ(∆− ε)‖λ− λ̄‖ [definition of λt]

≥ τ(∆− ε)

β
‖λ− λ̄‖2 [(35)]

≥ 1

Lε

‖λ− λ̄‖2 [definition of Lε].

This is the expected inequality (36).

4.2. Global linear convergence

We can now state the global linear convergence of the constraint norm towards zero in the
AL algorithm of Section 2. Note that the rate of convergence min(L/rk, 1) may depend
through L on the distance from the initial iterate λ0 to the dual solution set SD.

Theorem 4.5. Suppose that problem (1) with Q < 0 has a solution. Consider the AL
algorithm of Section 2. For any β > 0, there exists an L > 0, such that dist(λ0,SD) ≤ β
implies that

‖yk+1 − Cxk+1‖ ≤ min

(

L

rk
, 1

)

‖yk − Cxk‖, for all k ≥ 1. (42)

In particular, if rk ≥ r̄ for all k ≥ 1 and some r̄ > L, the constraint norm tends to zero
globally linearly.

Proof. The proof gathers known techniques (see for example [27, 28]) with the result of
Proposition 4.4. We give the details for completeness.

Let us note gk+1 := Cxk+1 − yk+1. Recall from (16) that gk+1 ∈ ∂δ(λk+1). Subtracting
two consecutive iteration identities (6) provides

1

rk+1
(λk+2 − λk+1) + (gk+2 − gk+1) =

1

rk
(λk+1 − λk).

Taking norms, using the monotonicity of the subdifferential (which implies that (gk+2 −
gk+1)

>(λk+2 − λk+1) ≥ 0), and discarding ‖gk+2 − gk+1‖2 ≥ 0, we get ‖λk+2 − λk+1‖2/r2k+1

≤ ‖λk+1 − λk‖2/r2k or ‖gk+2‖ ≤ ‖gk+1‖. This yields the second part of the min in (42).

Subtracting an arbitrary dual solution λ̄ ∈ SD from both sides of the iteration identity
(6) gives

λk+1 − λ̄+ rkgk+1 = λk − λ̄, for k ≥ 0.
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Taking norms and using the monotonicity of the subdifferential lead to

‖λk+1 − λ̄‖2 + r2k‖gk+1‖2 ≤ ‖λk − λ̄‖2, for k ≥ 0. (43)

This shows in particular that the sequence {‖λk − λ̄‖}k≥0 is nonincreasing. Since λ̄ is
arbitrary in SD, there holds

dist(λk+1,SD) ≤ ‖λk+1 − PSD
(λk)‖ ≤ ‖λk − PSD

(λk)‖ = dist(λk,SD).

Therefore, {dist(λk,SD)}k≥0 is also nonincreasing, so that λk ∈ SD + βB for all k ≥ 0.
Now, let L > 0 be the constant that Proposition 4.4 associates with B := βB. By this
proposition, ‖λk − PSD

(λk)‖ ≤ L‖gk‖. Discarding the first term in the left hand side of
(43) and using PSD

(λk) for λ̄, we get ‖gk+1‖ ≤ (L/rk)‖gk‖. This yields the first part of
the min in (42).

5. Numerical experiments and discussion

The aim of this section is to illustrate by numerical experiments the global linear conver-
gence property of the AL algorithm studied in this paper and to assess the quality of the
bound given by Theorem 4.5. The numerical experiments are taken from seismic reflection
tomography applications. We conclude with a discussion on algorithmic implications.

5.1. A seismic reflection tomography problem

Seismic reflection tomography is a technique used to recover the geological structure of
the subsoil from the measurements of the travel-times of seismic waves (see [10] for a
description of the approach). From an optimization viewpoint, the problem consists in
minimizing a nonlinear least-squares function subject to nonlinear constraints. In [5], a
Gauss-Newton SQP method globalized by line-search is proposed and analyzed. At each
iteration, a solution to a strictly convex quadratic model of the objective function subject
to linear constraints is computed using our code QPAL [4, 6].

We have chosen here to present the results obtained with the problem karine, which
is representative of those observed with our collection of 2D and 3D seismic reflection
problems. These have a number of variables up to 15 103 and a number of constraints up
to 104. The features of the selected problem are summarized in Table 5.1. It is a 2D model

n m m∗
act κ2

442 320 108 8.4 105

Table 5.1: Description of the tomography problem karine

depending on n = 442 parameters and having m = 320 linear inequality constraints. The
matrix Q of the selected quadratic subproblem (1) is positive definite and has its `2
condition number equal to κ2 = 8.4 105. Its constraint matrix C has been balanced (the
Euclidean norm of each of its rows is equal to 1). The number of active constraints at the
solution is m∗

act = 108, which represents 34% of the number of constraints.

The results presented in Section 5.2 have been obtained using the AL algorithm described
in Section 2, with a fixed augmentation parameter r. In order to study the dependence of
the results on r, we have run the QP solver for 21 different values of r, ranging from 1 to
105. In each case, the AL algorithm is initialized with a null Lagrangian multiplier (λ0 = 0)
and is stopped when the constraint norm is sufficiently small (‖yk−Cxk‖ ≤ 10−10).
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5.2. Assessing the global linear convergence result

In this section, we illustrate the global linear convergence property of the AL algorithm
established in Theorem 4.5. The actual global rate of linear convergence is given by
ρ := sup{‖yk+1 − Cxk+1‖/‖yk − Cxk‖ : k ≥ 1} and can be estimated during a particular
run by

ρest := max
1≤k≤nAL

‖yk+1 − Cxk+1‖
‖yk − Cxk‖

≤ ρ, (44)

where nAL is the number of AL iterations actually performed to reach the required accu-
racy of 10−10 on the constraint norm.

Theorem 4.5 has shown that ρ is bounded above by a function of r:

ρ ≤ min

(

L

r
, 1

)

or log ρ ≤ min(logL− log r, 0). (45)

A natural question is to know whether this bound is tight in practice. This is difficult to
say, since the value of L is generally unknown, but the appearance of ρest as a function
of r in the considered problem may give a clue on this question.
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Figure 5.1: Global linear convergence rate of the constraint norm as a function of r

The plain curve in Figure 5.1 gives log ρest as a function of log r (double logarithmic
scale). As predicted by the theory, we see that ρest ≤ 1 for all positive r. Furthermore,
the larger is the augmentation parameter r, the faster is the convergence: ρ ' 1 for r ≤ 10
(convergence is hardly detectable) and ρ ' 3.10−3 for r = 105 (convergence is obtained
in very few AL iterations). We have represented by a dotted line the tangent to the
ρest curve with a slope −1. This line crosses the top horizontal line of the graph at the
horizontal coordinate Linf ' 304. According to (45), Linf provides a lower estimate of the
value of L. Since both curves (the plain and dotted ones) are quite close, it is likely that
the dotted curve is close to the upper bound on ρ given by (45). As a result, it is likely
that the upper bound given by Theorem 4.5 is tight. Note that the small discrepancy
between both curves for large values of r (r ≥ 7.5 104) is due here to the fact that the
AL algorithm reaches the required constraint norm accuracy in very few AL iterations
(nAL ≤ 3), so that the maximum in (44) is taken on that few number. In other cases,
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such a discrepancy can come from an inexact solve of the bound constraint problem (5),
due to a large value of r.

5.3. Discussion

As shown in this paper, the global linear rate of convergence of the AL algorithm depends
on the Lipschitz constant L given by (34) and on the value of r̄ := inf rk, where rk is
the value of the augmentation parameter at iteration k. More precisely, the decrease of
the constraint norm at iteration k is bounded above by L/rk. It is usually impossible to
compute L in practice, since it depends on the constants γ, σ, and ∆ (see Lemma 3.4,
(30), (31), and finally (34)), which are either unknown or too expensive to compute. As
a Lipschitz constant, however, L has easily computable lower estimates.

The estimate Linf of L given in Section 5.2 is not available at run time, since it requires
to run the AL algorithm on a particular problem for various values of r. Nevertheless,
the quantities

Linf,k := max
1≤i≤k

(

ri
‖yi+1 − Cxi+1‖
‖yi − Cxi‖

)

satisfy Linf,k ≤ L and can therefore be used as a lower estimate of L, after iteration k is
completed. A given desired rate of convergence ρdes ∈ ]0, 1[ is then likely to be obtained
at iteration k + 1 by taking

rk+1 ≥
Linf,k

ρdes
. (46)

It is the fact that the estimate (42) has a global validity that gives sense to an update of
the value of rk in this way at each iteration. It should be clear at this point that the AL
algorithm gains in efficiency by taking rk as large as possible, the only limitation being
that problem (5) needs to be numerically solvable. Since it is sometimes difficult to tell
what is a large value for a particular problem, the lower bound on rk+1 in (46) may also
be useful as a reference.

We conclude with a result providing an estimate of the number of iterations needed to
reach a given tolerance on the constraint norm. Assume that a number ρdes ∈ ]0, 1[ is given
as a desired rate of convergence. Of course, since the Lipschitz constant L is unknown,
this rate of convergence cannot be ensured, but the algorithm can try to approach it by
updating rk when it feels it is necessary. The next result gives an estimate of the iterative
complexity of the AL algorithm with an update rule based on (46). More precisely,
defining

ρk :=
‖yk+1 − Cxk+1‖
‖yk − Cxk‖

,

the AL algorithm is supposed to update the value of rk, for k ≥ 1, according to:

if ρk ≤ ρdes, then rk+1 = rk, else rk+1 =
ρk
ρdes

rk. (47)

There is nothing magic in the update rule of rk above. It could equally use rk+1 =
10 ρkrk/ρdes or simply rk+1 = 10 rk when rk needs to be increased.

Proposition 5.1. Suppose that the AL algorithm of Section 2 uses the rule (47) to update
the augmentation parameter rk, for k ≥ 1. Let ε ∈ ]0, 1] and let L be the positive constant
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given by Theorem 4.5. Fix any t ∈ ]ρdes, 1[. Then

‖yk+1 − Cxk+1‖ ≤ ε‖y1 − Cx1‖, (48)

as soon as

k ≥ log ε

log t
+max

(

1 +
log(L/(tr1))

log(t/ρdes)
, 0

)

. (49)

Proof. Let t ∈ ]ρdes, 1[. Clearly, since ρi ≤ 1,

‖yk+1 − Cxk+1‖
‖y1 − Cx1‖

=
∏

1≤i≤k

ρi ≤
∏

1≤i≤k
ρi≤t

ρi ≤ tkt ,

where kt := |Kt| is the number of elements in Kt := {i ∈ N : 1 ≤ i ≤ k, ρi ≤ t}. Taking
logarithms, we see that (48) holds as soon as kt ≥ (log ε)/(log t).

If Kc
t := {1, . . . , k}\Kt is empty, then k = kt and the result is proven.

Suppose now that Kc
t 6= ∅. Since ρi ≤ L/ri (by Theorem 4.5), i ∈ Kt as soon as ri ≥ L/t.

Let j be the last index in Kc
t , namely the (k−kt)th one, if any. Then rj is the result of

k − kt − 1 updates from r1, using factors ρi/ρdes that are ≥ t/ρdes (see the update rule
(47)). Hence we must have (t/ρdes)

k−kt−1r1 ≤ rj ≤ L/t. This gives an upper bound on
the number of elements of Kc

t , namely

k − kt ≤ 1 +
log(L/(tr1))

log(t/ρdes)
.

The total number of iterations to satisfy (48) is therefore at most this upper bound on
the number of elements in Kc

t , plus the lower bound on kt obtained above.

Roughly expressed, the number of iterations needed to reach precision ε > 0 on the relative
constraint norm is of order O(log ε)+O(logL). As shown in the proof of Proposition 5.1,
the first term of order O(log ε) is due to the linear convergence of the constraint norm
towards zero, which is triggered when the augmentation parameter is large enough (a
consequence of Theorem 4.5). The second term of order O(logL), which is the only
place where the dimension of the problem can intervene, is due to a possible too small
value of r1 and to the number of iterations that the rule (47) needs to make rk large
enough. This term can be made as small as desired by choosing a large value for r1 or by
adopting an update rule of rk that increases these values more rapidly than in (47). As
a result, the computational complexity of the AL algorithm of Section 2 essentially rests
on the one of the AL subproblems (5). When strict complementarity holds, the finite
identification of the active constraints in (5) occurs and the computational complexity is
then basically induced by the very first AL subproblems. Our experience with the AL
algorithm, limited to the seismic reflection tomography problems described in Section 5.1,
supports that conclusion.
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