
SQPlab – A Matlab software for solving nonlinear

optimization problems

Version 0.3 (March, 2007)

J. Charles Gilbert†

1 The problem to solve 1

1.1 The problem . 1
1.2 State constraints . 2

2 Description of the method 3

2.1 Osculating quadratic problem 3
2.2 Hessians and their approximation 4
2.3 Globalization . 5

3 Usage 5

3.1 The solver . 5
3.2 The simulator . 8

3.2.1 Free call . 8
3.2.2 Function and first order derivative computations 9
3.2.3 Second order derivative computations 10
3.2.4 Optimal control computations 11

3.3 Calling sequence . 12
3.4 Other tools . 12

3.4.1 QR factorization 12

1 The problem to solve

The name of the software, SQPlab, stands for Sequential Quadratic Program-
ming (SQP) laboratory. It is written in Matlab.

1.1 The problem

SQPlab can solve a general nonlinear optimization problem of the form

(P)















minx∈Rn f(x)
l ≤ (x, cI(x)) ≤ u

cE(x) = 0
cS(x) = 0,

(1)

where f : R
n → R, cI : R

n → R
mI , and cE : R

n → R
mE are nonlinear smooth

functions, possibly nonconvex. The function cS : R
n → R

mS imposes additional

†INRIA-Rocquencourt, BP 105, F-78153 Le Chesnay Cedex, France; e-mail: Jean-Charles.

Gilbert@inria.fr.

1

equality constraints that are treated by SQPlab in a way that is appropriate to
optimal control problems (see section 1.2). Smoothness means that at least first
order differentiability is required. The notation l ≤ (x, cI(x)) ≤ u expresses in
compact form bound constraints on x and on cI(x). The bounds l and u ∈ R̄

n+mI

must verify l < u and may have components with infinite values (they are not
considered in that case). To be concise, we note cB(x) ≡ x and c : R

n → R
m

the function defined by c(x) := (cB(x), cI(x), cE(x), cS(x)); hence m := n+mI +
mE + mS.

For a vector v ∈ R
m, we define the vector v# by

(v#)i =

{

max(0, li − vi, vi − ui) if i ∈ B ∪ I

vi if i ∈ E ∪ S.
(2)

Then all the constraints of (P) can be written c(x)# = 0. This does not make
the problem easier, however, since x 7→ c(x)# is usually non differentiable. It is
just a way of making the notation more concise.

The Lagrangian of the problem is the function ` : R
n × R

m defined at (x, λ)
by

`(x, λ) = f(x) + λ>c(x).

This one is useful to write the KKT optimality conditions of problem (P). Note
that, for i ∈ B ∪ I, λi is actually the difference between the multiplier associated
with the upper bound constraint ci(x) ≤ ui and the one with the lower bound
constraint li ≤ ci(x). If x is a solution to (P) and if the constraints are qualified
at x, there exists a vector λ ∈ R

m such that:






(a) ∇x`(x, λ) = 0
(b) l ≤ (x, cI(x)) ≤ u, cE(x) = 0, cS(x) = 0
(c) ∀i ∈ B ∪ I : λ−

i (li − ci(x)) = λ+
i (ci(x) − ui) = 0,

(3)

where t+ := max(t, 0) and t− := max(−t, 0). In (c), infinite bounds are replaced
by large numbers of the same sign, so that, for example, λi must be nonnegative
when li = −∞ and ui is finite. The first condition refers to the proper optimality,
the second one to the feasibility, and the third one is known as the complemen-

tarity conditions. The components of the vector λ in this equation are called the
optimal KKT multipliers or the dual solutions or the marginal costs.

1.2 State constraints

The constraint cS(x) = 0 can be used to express state constraints in an optimal
control setting. These constraints are assumed to be without singularities, in the
sense that the Jacobian matrix

AS(x) = c′S(x)

is assumed uniformly surjective, which means that

∃γS > 0, ∀x ∈ XS , ∀v ∈ R
mS : ‖AS(x)>v‖ ≥ γS‖v‖. (4)

The x’s range on a large closed set XS, which may not be the full space R
n, but

should include the solutions and the iterates generated by the algorithm.

2

When AS(x) is surjective, it has a right inverse and it is assumed that this
one is the value at x of a smooth map

A−
S : XS → R

n×mS : x 7→ A−
S (x).

Hence
∀x ∈ XS: A−

S (x) is injective and AS(x)A−
S (x) = ImS

. (5)

On the other hand, the null space N (AS(x)), which is also the space tangent
to the manifold {x′ ∈ R

n : cS(x′) = cS(x)} at x, has a basis formed of n−mS

vectors. We assume that these vectors are given by a smooth map

Z−
S : XS → R

n×(n−mS) : x 7→ Z−
S (x).

More precisely, for all x ∈ XS , the columns of Z−
S (x) form a basis of N (AS(x))

or equivalently:

∀x ∈ XS : Z−
S (x) is injective and AS(x)Z−

S (x) = 0. (6)

If a state constraint exists (mS 6= 0), SQPlab will ask the simulator to compute
the products

A−
S (x)v and Z−

S (x)w

for various x ∈ XS, v ∈ R
mS , and w ∈ R

n−mS .
In optimal control problems, these functions A−

S and Z−
S can be deduced

from a partition of the variables x = (y, u) in state variables y ∈ R
mS and control

variables u ∈ R
n−mS . Consider the corresponding partition of the Jacobian

AS(x):
AS(x) =

(

B(x) N(x)
)

,

where the square matrix B(x) is supposed to be nonsingular on for x ∈ XS with
{B(x)}x∈XS

and {B(x)−1}x∈XS
bounded. Then one can take

A−
S (x) =

(

B(x)−1

0

)

and Z−
S (x) =

(

−B(x)−1N(x)
ImS

)

.

2 Description of the method

One iteration of the SQP algorithm (see part III of [1] for an introduction) is
made of a sequence of stages. We describe them in sequence in this section. Only
the elements that are useful for understanding the behavior of SQPlab are given.

2.1 Osculating quadratic problem

The SQP algorithm decomposes problem (P) in a sequence of quadratic subprob-
lems (quadratic objective and linear constraints). Such a subproblem is called a
osculating quadratic problems (QP). At the current iterate (x, λ) ∈ R

n × R
m, it

reads (we drop the dependence of the functions in (x, λ)):






mind∈Rn g>d + 1
2 d>Md

l̃ ≤ (d,AId) ≤ ũ

cE∪S + AE∪Sd = 0,

(7)

3

where g is the gradient ∇f(x), M is the Hessian of the Lagrangian L := ∇2
xx`(x, λ)

or an approximation to it, AI := c′I(x), AE∪S := c′E∪S(x), l̃ = l − cB∪I(x), and
ũ := u − cB∪I(x). It is classical to impose the positive semi-definiteness of M

(even though L does not have that property), in order to avoid a QP that, oth-
erwise, would be NP-hard. The osculating QP is then convex. See section 2.2 for
more details on the computation of M .

When S = ∅, SQPlab solves (7) thanks to the QP solver quadprog from the
optimization toolbox of Matlab.

When S 6= ∅, SQPlab eliminates the linearized state constraints from (7)
as follows. Any solution to problem (7) verifies cS + ASd = 0, so that, with the
operators A−

S ≡ A−
S (x) and Z−

S ≡ Z−
S (x) defined in section 1.2, it can be written

d = r + t, (8)

where r ∈ R(A−
S) is the restoration step and t ∈ R(Z−

S) is the tangent step. The
step t is indeed tangent to the manifold c−1

S (cS(x)), which is “parallel” to the
state constraint manifold c−1

S (0). Clearly, there holds

r := −A−
S cS ∈ R

n, (9)

while t := Z−
S h with h ∈ R

n−mS is a solution to the tangent quadratic problem:







minh∈R
n−mS (g + Mr)>Z−

S h + 1
2 h>Z−>

S MZ−
S h

l̃′ ≤ (Z−
S h,AIZ

−
S h) ≤ ũ′

cE + AEr + AEZ−
S h = 0.

(10)

We have denoted by ḡ := Z−>
S g the reduced gradient, l̃′ = l − cB∪I(x) − AB∪Ir

and ũ′ = u − cB∪I(x) − AB∪Ir. The (n−mS) × (n−mS) matrix M̄ := Z−>
S MZ−

S

is called the reduced matrix .

2.2 Hessians and their approximation

In the osculating quadratic problem (7), the symmetric n × n matrix M should
be a convenient and good approximation of the Hessian of the Lagrangian

L ≡ L(x, λ) ≡ ∇2
xx`(x, λ),

which is the n × n symmetric matrix of the second order derivatives of ` with
respect to x. Its (i, j) element is given by

Lij =
∂2`

∂xi∂xj

(x, λ). (11)

When M = L, the SQP algorithm without globalization technique is a Newton-
like method, which converges locally quadratically in (x, λ).

When M = L in (10), the (n−mS) × (n−mS) matrix

L̄ := Z−>
S LZ−

S ≡ Z−
S (x)L(x, λ)Z−

S (x)> (12)

is called the reduced Hessian of the Lagrangian.

4

The usually expensive matrix Z−
S intervenes at many places in (10). For some

problem, this can be a deterrent factor. Therefore, in the present version of SQ-

Plab, it is assumed that, when S 6= ∅, the other constraints does not involve the
state variables. This implies that the matrix Z−

S disappears from the constraints
of (10). Then, SQPlab neglects the term r>MZ−

S h in the criterion of (10) and

approximates the reduced Hessian of the Lagrangian Z−>
S LZ−

S by a matrix M̄

using a quasi-Newton technique. With this assumption and simplifications, the
matrix Z−

S largely disappears from (10). A few matrix-vector multiplications

Z−
S v will still be necessary for computing the reduced gradient ḡ := Z−>

S g and

the update of the reduced matrix M̄ ' Z−>
S LZ−

S .
This positive definiteness can be ensured by the BFGS formula with Powell’s

correction. . . .

2.3 Globalization

SQPlab combines merit function and linesearch to ensure convergence from re-
mote starting points.

A merit function gathers the two aspects of problem (P), minimality of the
criterion f and feasibility of the constraints c. In SQPlab, we use the merit
function Θσ : R

n → R defined at x ∈ R
n by

Θσ(x) = f(x) + σ‖c(x)#‖1,

where σ > 0 is a penalty parameter, ‖ · ‖1 is the `1-norm, and the notation c(x)#

has been defined by (2).
Once the primal-dual solution (d, λQP) to the osculating quadratic problem (7)

has been computed, the new iterate (x+, λ+) is obtained by

x+ = x + αd and λ+ = λ + α(λQP − λ), (13)

where the stepsize α > 0 can be set to one (this is convenient in a neighborhood
of the solution) or determined by linesearch. The latter forces the decrease of Θσ.

3 Usage

The arguments of the procedure sqplab are described in section 3.1. In sec-
tion 3.3, we give the typical sequence of statements that must precede a call to
the solver.

3.1 The solver

Here is the form of the sqplab procedure:

[x,lm,info] = sqplab (simul, x, lm, lb, ub, options)

Input arguments. The first two input arguments are mandatory the other ones
are optional. If an optional argument is present, those preceding it must also be
present.

5

simul: string giving the name of the user-supplied simulator; see section 3.2 for
more details.

x: vector giving the initial guess of the solution to problem (P). The length of x
is used to determine the number of variables n.

lm (optional): vector giving the initial guess of the dual solution (Lagrange or
KKT multiplier):

• lm(1:n) = λ+
B − λ−

B is the difference between the multiplier λ+
B associated

with the bound constraint x ≤ uB and the multiplier λ−
B associated with

the bound constraint lB ≤ x,

• lm(n+1:n+mi) = λ+
I − λ−

I is the difference between the multiplier λ+
I as-

sociated with the inequality constraint cI(x) ≤ uI and the multiplier λ−
I

associated with the inequality constraint lI ≤ cI(x),

• lm(n+mi+1:n+mi+me) = λE is the multiplier associated with the equality
constraint cE(x) = 0,

• lm(n+mi+me+1:n+mi+me+ms) = λS is the multiplier associated with the
state constraint cS(x) = 0.

The default value is the least-squares multiplier. The dimensions mi = mI ,
me = mE , and ms = mS are known after the first call to the simulator (see
section 3.2).

lb (optional): vector of dimension n + mI giving the lower bound on x (first n

components) and cI(x). It can have infinite components. The default value
is -inf.

ub (optional): vector of dimension n + mI giving the upper bound on x (first n

components) and cI(x). It can have infinite components. The default value
is inf.

options (optional): structure for tuning the behavior of sqplab. In the strings
below, the case is meaningless and multiple white spaces are considered as a
single white space. The following fields can be used.

• options.algo method specifies the second order information used in the
algorithm:

– ’quasi-Newton’ for a quasi-Newton technique (hence only with first
order derivatives are required),

– ’Newton’ for a Newton technique (hence second order derivatives are
required).

• options.algo globalization specifies the type of globalization technique
to use.

– ’unit stepsize’ prevents sqplab to use a globalization technique. In
other words, α in (13) is set to 1.

– ’linesearch’ requires sqplab to force convergence with linesearch (de-
fault).

• options.algo linear solver specifies the type of algorithm must be used
to solve linear systems.

– ’direct’: the linear systems are solved by direct solvers, hence using
factorization,

6

– ’cg’: the linear systems are solved by conjugate gradient, hence using
factorization,

• options.dxmin is a positive number specifying the precision to which the
primal variables must be determined. If sqplab needs to make a step
smaller than dxmin in the infinity-norm to progress to optimality, it will
stop. Specifying a too small value for dxmin will force the solver to work
for nothing at the very end when rounding errors prevent making any
progress. The default value is 1.e-20.

• options.fout is the file identifier (FID) for the printed outputs. The
default value is 1, which implies that the outputs are written on the screen.

• options.inf is used to specified infinite (or nonexistent) bounds. A lower
bound lb(i) ≤ −options.inf is considered to be infinitely negative (or
nonexistent) and an upper bound ub(i) ≥ options.inf is considered to
be be infinitely positive (or nonexistent). The default value is inf (the
largest number in Matlab).

• options.miter maximum number of iterations. The default value is 1000.

• options.msimul maximum number of simulations. The default value is
1000.

• options.tol tolerance on optimality:

– options.tol(1) is the tolerance on the gradient of the Lagrangian,
– options.tol(2) is the tolerance on the feasibility.

Therefore, as soon as (x, λ) satisfies

‖∇x`(x, λ)‖∞ ≤ options.tol(1)

‖c(x)#‖∞ ≤ options.tol(2),

it is considered as optimal. The complementarity conditions are also veri-
fied.

• options.verbose is the verbosity level for the outputs:

= 0 nothing is printed; the only manner to be informed of the behavior of
sqplab is to look at the structure info (see below);

≥ 1 error messages (default);
≥ 2 initial setting and final status;
≥ 3 one line per iteration;
≥ 4 details on the iterations;
≥ 5 details on the step computation and on the globalization;
≥ 6 some additional information is printed, generally requiring expensive

computation, such as the evaluation of the eigenvalues of M .

Output arguments. None of the output arguments must be present. If an output
argument is present those preceding it must also be present.

x: vector of dimension n giving the computed primal solution x.

lm: vector of dimension m = n + mI + mE + mS giving the computed dual
solution λ. See the description of input variable lm for the meaning of its
components.

7

info: structure providing various information on the minimization realized by
sqplab. The following fields are meaningful.

• info.flag specifies the output status.

= 0: a solution has been found up to the required accuracy,
= 1: failure because one of the input argument is wrong,
= 2: error when running the simulator for the first time,
= 3: maximum iteration reached,
= 4: maximum simulation reached,
= 5:
= 6: stop on dxmin,
= 7: infeasible QP,
= 8: unbounded QP,
= 9: the direction d computed by the QP solver is not a descent direction

of the merit function Θσ,
= 99: strange, such an error should not occur (call your guru).

• info.niter specifies the realized number of iterations,

• info.nsimul specifies the realized number of simulations.

3.2 The simulator

The simulator is a user-supplied procedure that evaluates the value of the func-
tions defining (P), as well as its derivatives. Sqplab uses the indicator argument

indic to tell the simulator what it has to compute. On its side, the simulator
does not use its number of input and/or output arguments to decide what it has
to do but the value found in the variable indic. Then, the simulator does the
required computation (if this is possible) and sends back in the output variables
the result expected by sqplab. It also specifies in the output argument outdic

whether the computation has been realized. By the same outdic argument, the
simulator can send a message to the optimization procedure, telling, for example
that it is desirable to stop at the current point.

Below, the simulator is supposed to be named “mysimul”. Then, sqplab must
be called with simul set to ’mysimul’ (with the quotes). Sqplab calls mysimul

in one of the following three ways.

[outdic] = mysimul (indic,x,lm)

[outdic,f,ci,ce,cs,g,ai,ae] = mysimul (indic,x)

[outdic,hl] = mysimul (indic,x,lm,v)

[outdic,mv] = mysimul (indic,x,v)

We examine them in sequence in the following sections.

3.2.1 Free call

At the beginning of every iteration, sqplab calls the simulator without requiring
any computation from it. To indicate this fact, sqplab set indic to 1. The
simulator can take the opportunity of this call to do whatever it makes sense or
is useful for it: printing results in some file or plotting them is very standard.
Since this call is done at every iteration, the simulator can know the iteration

8

index by counting the iterations, which is sometimes useful. The call statement
is the following.

mysimul (indic, x, lm)

Input arguments.

indic: scalar variable that is set to 1 by sqplab in this case.

x, lm: specify the current value of the primal-dual iterate (x, λ) = (x, lm) ∈ R
n ×

R
m at the beginning of the iteration.

3.2.2 Function and first order derivative computations

Sqplab can call the simulator to compute either the functions defining the prob-
lem (P), or their derivatives, or both functions and derivatives. Sqplab calls
the simulator before the optimization loop to get the dimensions mI = mi =
length(ci), mE = me = length(ce), and mS = ms = length(cs). A zero
dimension means the absence of the corresponding constraint.

[outdic,f,ci,ce,cs,g,ai,ae] = mysimul (indic, x)

Input arguments.

indic: scalar variable indicating what the simulator has to compute. Here are
the possible values used by sqplab.

= 2: the simulator has to compute f, ci, ce, and cs.
= 3: the simulator has to compute g, ai, and ae, and do what will be needed

for the subsequent evaluations of products of a vector with one of the
matrices AS(x), A−

S (x), Z−
S (x) and their transpose (see section 3.2.4).

= 4: this is indic = 2 and indic = 3 together; in full words, the simulator
has to compute f, ci, ce, cs, g, ai, and ae, and do what will be needed
for the subsequent evaluations of products of a vector with one of the
matrices AS(x), A−

S (x), Z−
S (x) and their transpose (see section 3.2.4).

Other values are possible, see below for the other forms on the simulator.

x: point x at which the function and their derivatives have to be computed.

Output arguments. None of the output arguments must be present. If an output
argument is present those preceding it must also be present.

outdic: scalar variable, which is a message sent by the simulator to the opti-
mization solver. Here are the values that are meaningful for sqplab.

= 0: the required computation has been done.
= 1: the given x = x is out of an implicit domain (the simulator does not

want to evaluate functions at that point). If a globalization technique
has been required (see the option options.algo globalization in the
description of sqplab), sqplab will find a point closer to the previous
accepted iterate (hence the implicit domain must be an open set and
“strong” constraints cannot be taken into account by this technique).
Otherwise, sqplab will stop.

9

= 2: the simulator wants to stop and this is what sqplab will do.
= 3: something wrong happened during the simulation. For example, the

code corresponding to the given value of indic has not been imple-
mented. In that case, sqplab will stop.

f: the cost function f = f(x).

ci: the inequality constraint function ci = cI(x).

ce: the equality constraint function ce = cE(x).

cs: the state constraint function cs = cS(x).

g: the gradient g = ∇f(x) of f at x, which is the vector of its partial derivatives.

ai: the Jacobian ai = c′I(x) of cI at x, whose (i, j) element is the partial deriva-
tive of ci (i ∈ I) with respect to xj .

ae: the Jacobian ae = c′E(x) of cE at x, whose (i, j) element is the partial deriva-
tive of ci (i ∈ E) with respect to xj .

3.2.3 Second order derivative computations

When options.algo method is set to ’Newton’, sqplab needs second derivatives.
It can be the Hessian (when S = ∅), the reduced Hessian (when S 6= ∅) of the
Lagrangian at the successive iterates (x, λ) ot the latter right-multiplied by a
vector.

Recall that the Hessian of the Lagrangian is the symmetric n × n matrix
L ≡ L(x, λ) whose (i, j) element is given by (11), while the reduced Hessian of

the Lagrangian is the symmetric (n−mS)× (n−mS) matrix given by (12), where
Z−

S ≡ Z−
S (x) is the tangent basis matrix defined in section 1.2.

When sqplab needs the Hessian of the Lagrangian (only if S = ∅), it calls the
simulator with indic = 5, when it needs the reduced Hessian of the Lagrangian
(only if S 6= ∅), it calls the simulator with indic = 6, and when it needs the
Hessian of the Lagrangian times a vector, it calls the simulator with indic = 7.
The simulator is never called with indic = 5 and indic = 6 in the same problem
optimization, since either S = ∅ or S 6= ∅.

[outdic,rhlv] = mysimul (indic, x, lm, v)

Input arguments.

indic: scalar variable indicating what the simulator has to compute. Here are
the possible values corresponding to second order derivatives calculation.

= 5: the simulator has to compute the Hessian of the Lagrangian and to put
it in rhlv;

= 6: the simulator has to compute the reduced Hessian of the Lagrangian
and to put it in rhlv; in addition, the simulator will compute what is
needed for a subsequent computation of the Hessian of the Lagrangian
times a vector (call with indic = 7);

= 7: the simulator has to compute the Hessian of the Lagrangian times the
vector v ∈ R

n and to put it in rhlv.

x, lm: specify the point (x, λ) = (x, lm) ∈ R
n×R

m at which the (reduced) Hessian
of the Lagrangian has to be computed.

10

v: vector of dimension n that will right-multiply the Hessian of the Lagrangian
when the simulator is called with indic = 7.

Output arguments.

outdic: scalar variable, with the same meaning as in section 3.2.2.

rhlv: will contain the n × n Hessian of the Lagrangian L when indic = 5,
the (n−mS) × (n−mS) reduced Hessian of the Lagrangian Z−>

S LZ−
S when

indic = 6, and the product Lv when indic = 7.

3.2.4 Optimal control computations

When the state constraint cS(x) = 0 is present, the simulator must be able to
compute the matrix-vector products AS(x)v, AS(x)v, A−

S (x)v, A−>
S (x)v, Z−

S (x)v,

and Z−>
S (x)v introduced in section 1.2. Recall that

• AS(x) = c′S(x) is the mS × n Jacobian of the state constraints cS at x,
• A−

S (x) is an n × mS right inverse of AS(x), and
• Z−

S (x) is an n×(n−mS) matrix whose columns form a basis of the null space
of AS(x).

Of course, the matrices AS(x), A−
S (x), and Z−

S (x), or the pieces forming them,
should not be recomputed each time a matrix-vector product is required. Indeed,
in general, many products are required with various vectors v and the same x.
Therefore, the simulator will compute the matrices AS(x), A−

S (x), and Z−
S (x), or

the pieces forming them, only once per iteration, when it is called with indic = 3
or indic = 4 (see section 3.2.2).

To require the computation of these products from the simulator, sqplab uses
the following statement.

[outdic,mv] = mysimul (indic, x, v)

Input arguments.

indic: scalar variable that specifies which of the matrix-vector product AS(x)v,
AS(x)>v, A−

S (x)v, A−>
S (x)v, Z−

S (x)v, or Z−>
S (x)v to compute.

= 11: the computation of AS(x)v is required.
= 12: the computation of AS(x)>v is required.
= 13: the computation of A−

S (x)v is required.

= 14: the computation of A−>
S (x)v is required.

= 15: the computation of Z−
S (x)v is required.

= 16: the computation of Z−>
S (x)v is required.

x: point x at which the Jacobian AS(x) = c′S(x), its right inverse A−
S (x), or the

basis matrix Z−
S (x) must be evaluated.

v: vector v intervening in the required matrix-vector product and whose dimen-
sion depends on the value of indic: v ∈ R

n if indic = 11, v ∈ R
mS if

indic = 12, v ∈ R
mS if indic = 13, v ∈ R

n if indic = 14, v ∈ R
n−mS

if indic = 15, and v ∈ R
n if indic = 16. When options.algo method =

’Newton’ and indic = 16, v can be a matrix with n rows.

11

Output arguments.

outdic: scalar variable, with the same meaning as in section 3.2.2.

mv: matrix-vector product, whose meaning depends on the value of indic:

– mv = AS(x)v if indic = 11,
– mv = AS(x)>v if indic = 12,
– mv = A−

S (x)v if indic = 13,

– mv = A−>
S (x)v if indic = 14,

– mv = Z−
S (x)v if indic = 15,

– mv = Z−>
S (x)v if indic = 16.

3.3 Calling sequence

Necessarily, the instructions preceding the call to SQPlab must include the
following items.

1. Initialization of the primal variable x = x ∈ R
n and the constraint multiplier

lm = λ ∈ R
n+mI+mE .

2. Setting the options in options (see section 3.1).

3. Calling sqplab.

3.4 Other tools

The SQPlab package also offers some other procedures, which are not used by
the software, but which can be useful in some simulators. They are described
below.

3.4.1 QR factorization

The function qplab qrg realizes the QR factorization of a matrix A, using Givens

rotations: A = QR, where Q is an orthogonal matrix and R is upper triangular of
the same dimensions as A. The Matlab function qr uses Householder reflections

instead.

[Q,R] = sqplab qrg (A)

Input arguments.

A: real matrix of any dimensions, say m × n, without any particular properties.

Output arguments.

Q: orthogonal matrix of order n.

R: Upper triangular matrix of dimension m × n, such that A = QR.

References

[1] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, C. Sagastizábal (2006). Numerical Opti-

mization – Theoretical and Practical Aspects (second edition). Universitext. Springer
Verlag, Berlin.

12

Index

BFGS formula, 5

complementarity, 2
conjugate gradient, see linear system solver
constraint

bound, 2
state, 2

dual variable, see multiplier

feasibility, 2

Givens rotation, 12

Hessian
of the Lagrangian, 4, 10
reduced – of the Lagrangian, 4, 10

Householder reflection, 12

Lagrangian, 2
linear system solver

conjugate gradient, 7
direct, 6

marginal cost, see multiplier
Matlab function

quadprog, 4
simul, 8–12
sqplab qrg, 12
sqplab, 5–8, 12

merit function, 5
multiplier, 2

optimality (proper), 2
optimality conditions, 2

Powell’s correction, 5
problem

(P), 1
optimal control, 2, 2–3

quadratic, see quadratic problem
procedure, see Matlab function

QR factorization, 12
quadratic problem

osculating, 3
tangent, 4

reduced
gradient, 4
Hessian of the Lagrangian, 4
matrix, 4

restoration, see step
right inverse, 3, 11

simulator, 8
solution, 2
state, see constraint, variable
step

restoration, 4
tangent, 4

tangent, see quadratic problem, step

uniformly surjective, 2

variable
control, 3
state, 3

13

