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Background
Convex analysis (notation)

R := R ∪ {−∞,+∞}.
R+ := {t ∈ R : t > 0} and R++ := {t ∈ R : t > 0}.
B , B̄: open and closed unit balls centered at the origin; for r > 0:
B(x , r) = x + rB and B̄(x , r) = x + r B̄.

E, F, G usually denote Euclidean vector spaces.
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Background
Convex analysis (projection)

Definition. For a nonempty, closed, convex set C in a Euclidean
space E, with scalar product 〈·, ·〉 and associated norm ‖ · ‖, the
problem

inf
y∈C

‖y − x‖
x

PC (x)

y

C

has a unique solution, called the projection of x on C and denoted
PC (x).

Characterization. For x ∈ E and x̄ ∈ C , there hold

x̄ = PC (x) ⇐⇒ 〈y − x̄ , x̄ − x〉 > 0, ∀ y ∈ C ,

⇐⇒ 〈y − x̄ , y − x〉 > 0, ∀ y ∈ C ,

⇐⇒ 〈y − x , x̄ − x〉 > ‖x̄ − x‖2, ∀ y ∈ C .
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Background
Convex analysis (relative interior I)

The affine hull of P ⊆ E is the smallest affine space containing P :

aff P :=
⋂

{A : A is an affine space containing P}.

The relative interior of P ⊆ E is its interior in aff P :

riP := {x ∈ P : ∃ r > 0 such that [B(x , r) ∩ aff P ] ⊆ P}.

In finite dimension, the following holds

C convex and nonempty =⇒
{

riC 6= ∅,
aff C = aff(riC ).
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Background
Convex analysis (relative interior II)

Proposition (relative interior criterion)

Let C be a nonempty convex set and x ∈ E. Then

x ∈ riC and y ∈ C =⇒ [x , y) ⊆ riC .

x ∈ riC ⇐⇒ ∀ x0 ∈ C (or aff C ), ∃ t > 1 : (1−t)x0 + tx ∈ C .

Let C be a nonempty convex set. Then

riC is convex,
C is convex and aff C = aff C ,
riC = C and riC = riC (i.e., the last operation prevails).

A point x ∈ C is said absorbing if ∀ d ∈ E, ∃ t > 0 such that x + td ∈ C .

x ∈ intC ⇐⇒ x is absorbing.
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Background
Convex analysis (dual cone and Farkas lemma)

The (positive) dual cone of a set P ⊆ E is defined by

P+ := {d ∈ E : 〈d , x〉 > 0, ∀ x ∈ P}.

The negative dual cone of a set P is P− := −P+.

Lemma (Farkas, generalized)

Let E and F be two Euclidean spaces, A : E → F a linear map, and K a
nonempty convex cone of E. Then

A(K ) = {y ∈ F : A∗y ∈ K+}+.

A∗ : F → E is defined by: ∀ (x , y) ∈ E× F, 〈A∗y , x〉 = 〈y ,Ax〉.
One cannot get rid of the closure on A(K ) in general.

If K is polyhedral, then A(K ) is polyhedral, hence closed.

For K = E, one recovers R(A) = N (A∗)⊥.
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Background
Convex analysis (tangent and normal cones)

Tangent cone

◮ Let C be a convex set of E and x ∈ C .
◮ The cone of feasible directions for C at x is Tf

x C := R+(C − x).
◮ The tangent cone to C at x is the closure of the previous one

Tx C ≡ TC (x) = R+(C − x).

Normal cone

◮ Let C be a convex set of E and x ∈ C .
◮ The normal cone to C at x is

Nx C ≡ NC (x) = {d ∈ E : 〈x ′ − x , d〉 6 0, ∀ x ′ ∈ C}.

◮ There hold

Nx C = (Tx C )− and Tx C = (Nx C )−.

9 / 112



Background
Convex analysis (asymptotic cone I)

Let E be a vector space of finite dimension and C be a nonempty closed
convex set of E.

The asymptotic cone of C is

C∞ := {d ∈ E : C + R+d ⊆ C} = {d ∈ E : C + d ⊆ C}.
Properties

◮ C∞ is closed.
◮ For any x ∈ C :

C∞ = {d ∈ E : x + R+d ⊆ C} =
⋂

t>0

C − x

t

=

{

d ∈ E : ∃ {xk} ⊆ C , ∃ {tk} → ∞ such that
xk

tk
→ d

}

.

◮ Boundedness by calculation:

C is bounded ⇐⇒ C∞ = {0}.
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Background
Convex analysis (asymptotic cone II)

Two calculation rules (there are many more)
◮ If K 6= ∅, then K is a closed convex cone ⇐⇒ K∞ = K .

◮ For an arbitrary collection {Ci}i∈I of closed convex sets Ci with
nonempty intersection:

(∩i∈ICi )
∞ = ∩i∈IC

∞
i .

Example
◮ Let A : E → F and B : E → G be linear maps, a ∈ F, b ∈ G, K be a

nonempty closed convex cone of G, and

P := {x ∈ E : Ax = a, Bx ∈ b + K} 6= ∅.

Then
P∞ = {d ∈ E : Ad = 0, Bd ∈ K}.
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Background
Convex analysis (strict separation of convex sets)

The sets S1 and S2 in a Euclidean vector space E are said to be strictly
separable if there exists a vector ξ ∈ E (necessarily nonzero) such that

sup
x1∈S1

〈ξ, x1〉 < inf
x2∈S2

〈ξ, x2〉 .

Proposition (strict separation of convex sets)

One can strictly separate two disjoint nonempty closed convex sets C1 and
C2 ⊆ E in any of the following situations

1 C1 − C2 is closed,
2 C∞

1 ∩ C∞
2 = {0},

3 C1 or C2 is compact,
4 C1 and C2 are polyhedral.
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Background
Convex analysis (convex polyhedron)

A convex polyhedron in E is a set of the form

P = {x ∈ E : Ax 6 b},

where A : E → Rm is a linear map and b ∈ Rm. It is a closed set. For x ∈ P ,
define

I (x) := {i ∈ [1 :m] : (Ax − b)i = 0}.

({xk} → x) =⇒ I (xk ) ⊆ I (x) for large k .

If T : E → F is linear, then T (P) is a convex polyhedron.

If P1 and P2 are polyhedra, then P1 + P2 is a polyhedron.

Tx P = Tf
x P = {d ∈ E : (Ad)I (x) 6 0}.

I (x1) ⊆ I (x2) =⇒ Tx1 P ⊇ Tx2 P .

Nx P = cone{A∗ei : i ∈ I (x)} (A∗: adjoint of A for the scalar product of E).

I (x1) ⊆ I (x2) =⇒ Nx1 P ⊆ Nx2 P .

13 / 112



Background
Convex analysis (asymptotic function I)

The domain and the epigraph of a function f : E → R ∪ {+∞} are the sets

dom f := {x ∈ E : f (x) < +∞} and epi f := {(x , α) ∈ E× R : f (x) 6 α}.
Let Conv(E) be the set of closed (i.e., epi f is closed) proper (i.e., epi f 6= ∅)
convex (i.e., epi f is convex) functions.

Proposition (asymptotic function f
∞)

If f ∈ Conv(E), then

1 (epi f )∞ is the epigraph of a function f ∞ : E → R ∪ {+∞},
2 for all x ∈ dom f and all d ∈ E

f ∞(d) = lim
t→∞

f (x + td)− f (x)

t
= lim

t→∞

f (x + td)

t
,

3 dom f ∞ ⊆ (dom f )∞,

4 f ∞ ∈ Conv(E).
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Background
Convex analysis (asymptotic function II)

The sublevel set of f : E → R ∪ {+∞} of level ν ∈ R is the set

Lν(f ) := {x ∈ E : f (x) 6 ν}.

Proposition (existence of a bounded set of minimizers)

If f ∈ Conv(E), then

1 ∀ ν ∈ R such that Lν(f ) 6= ∅, the following holds

[

Lν(f )
]∞

= {d ∈ E : f ∞(d) 6 0},

2 the following properties are equivalent:

i ∃ ν ∈ R: Lν(f ) is nonvoid and bounded,
ii ∀ ν ∈ R: Lν(f ) is bounded,
iii Argmin f is nonvoid and bounded,
iv ∀ d ∈ E \ {0}: f ∞(d) > 0.
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Background
Convex analysis (subdifferential)

A subgradient at x ∈ E of f ∈ Conv(E) is a vector x∗ ∈ E such that

f (y) > f (x) + 〈x∗, y − x〉 , ∀ y ∈ E.

The subdifferential ∂f (x) of f at x is the set of its subgradients at x . f is
said to be subdifferentiable at x if ∂f (x) 6= ∅.

Proposition (characterization of subgradients)

For f ∈ Conv(E), x ∈ dom f , x∗ ∈ E, here are equivalent propreties

1 x∗ ∈ ∂f (x),
2 f ′(x ; d) > 〈x∗, d〉 , ∀ d ∈ E,
3 x ∈ Argminy∈E

(

f (y)− 〈x∗, y〉
)

= Argmaxy∈E
(

〈x∗, y〉 − f (y)
)

.
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Background
Nonsmooth analysis (multifunction I)

A multifunction T (or set-valued mapping) between two sets E and F

is a function from E to P(F), the set of the subsets of F. Notation:

T : E ⊸ F : x 7→ T (x) ⊆ F.

Same concept as a binary relation (i.e., the data of a part of E× F).

The graph, the domain, the range of T : E ⊸ F are defined by

G(T ) := {(x , y) ∈ E× F : y ∈ T (x)},
D(T ) := {x ∈ E : (x , y) ∈ G(T ) for some y ∈ F} = πEG(T ),

R(T ) := {y ∈ F : (x , y) ∈ G(T ) for some x ∈ E} = πFG(T ).

The image of a part P ⊆ E by T is

T (P) :=
⋃

x∈P

T (x).
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Background
Nonsmooth analysis (multifunction II)

The inverse of a multifunction T : E ⊸ F (it always exists!) is the
multifunction T−1 : F ⊸ E defined by

T−1(y) := {x ∈ E : y ∈ T (x)}.

Hence
y ∈ T (x) ⇐⇒ x ∈ T−1(y).

When E, F are topological/metric spaces, a multifunction T : E ⊸ F is said
to be

◮ closed at x ∈ E if y ∈ T (x) when (xk , yk) ∈ G(T ) converges to (x , y),
◮ closed if G(T ) is closed in E× F (i.e., T is closed at any x ∈ E),
◮ upper semi-continuous at x ∈ E if ∀ ε > 0, ∃ δ > 0, ∀ x ′ ∈ x + δB, one

has T (x ′) ⊆ T (x) + εB (in this definition, B may be the open or
closed ball at any place).
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Background
Nonsmooth analysis (multifunction III)

When E, F are vector spaces, a multifunction T : E ⊸ F is said to be
convex if G(T ) is convex in E× F. This is equivalent to saying that
∀ (x0, x1) ∈ E2 and ∀ t ∈ [0, 1]:

T ((1 − t)x0 + tx1) ⊇ (1 − t)T (x0) + tT (x1).

Note that

T convex and C convex in E =⇒ T (C ) convex in F.
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Background
Nonsmooth analysis (Lipschitz continuity)

Let E and F be two normed spaces and F : E → F be a function.

F is Lipschitz on a set U ⊆ E if

∃ L > 0, ∀ (x , x ′) ∈ U2 : ‖F (x)− F (x ′)‖ 6 L‖x − x ′‖.

F is Lipschitz near x ∈ E if it is Lipschitz on some neighborhood of x .

F is locally Lipschitz on an open set Ω ⊆ E if it is Lipschitz near any
point of Ω.
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Background
Optimization (a generic problem)

One considers the generic optimization problem

(PX )

{

min f (x)

x ∈ X .

where

f : E → R (E is a Euclidean vector space),
X is a set of E (possibly nonconvex).

Définitions:

solution or (global) minimum x∗ ∈ X if ∀ x ∈ X , f (x∗) 6 f (x),
local minimum x∗ ∈ X if ∃V ∈ N (x∗), ∀ x ∈ X ∩ V , f (x∗) 6 f (x),
strict local/global minimum x∗ if f (x∗) < f (x) above when x 6= x∗.
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Background
Optimization (tangent cone to a nonconvex set)

A direction d ∈ E is tangent to X ⊆ E at x ∈ X (in the sense of
Bouligand) if

∃ {xk} ⊆ X , ∃ {tk} ↓ 0 :
xk − x

tk
→ d .

The tangent cone to X at x (in the sense of Bouligand) is the set of
tangent directions. It is denoted by

Tx X or TX (x).

Properties Let x ∈ X .

Tx X is closed.

X is convex =⇒ Tx X is convex and Tx X = R+(X − x).
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Background
Optimization (Peano-Kantorovich NC1)

Theorem (Peano-Kantorovich NC1)

If x∗ is a local minimizer of (PX ) and f is differentiable at x∗, then

∇f (x∗) ∈ (Tx∗ X )+.

The gradient of f at x is denoted by ∇f (x) ∈ E and is defined from
the derivative f ′(x) by

∀ d ∈ E : 〈∇f (x∗), d〉 = f ′(x) · d .
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Background
Optimization (NSC1 for convex problems)

Recall that a convex function f : E → R ∪ {+∞} has directional
derivatives f ′(x ; d) ∈ R for all x ∈ dom f and all d ∈ E.

Proposition (NSC1 for a convex problem)

Suppose that X is convex, f is convex on X , and x∗ ∈ X . Then x∗ is a
global solution to (PX ) if and only if

∀x ∈ X : f ′(x∗; x − x∗) > 0.

Proof. Straightforward, using the convexity inequality

∀ x ∈ X : f (x) > f (x∗) + f ′(x∗; x − x∗).
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Background
Optimization (problem (PE ))

Let E, F be Euclidean vector spaces. The equality constrained problem is

(PE )

{

infx f (x)
c(x) = 0,

where f : E → R, c : E → F are smooth (possibly non convex) functions.

The feasible set is denoted by

XE := {x ∈ E : c(x) = 0}.

(PE ) is said to be convex if f is convex and XE is convex.
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Background
Optimization (problem (PE ) – Lagrange optimality conditions)

Theorem (NC1 for (PE ), Lagrange, XVIIIth)

If x∗ is a local minimum of (PE ), if f and c are differentiable at x∗, and if c
is qualified for representing XE at x∗ in the sense (2) below, then there
exists a multiplier λ∗ ∈ F such that

∇xℓ(x∗, λ∗) = 0, (1a)

c(x∗) = 0. (1b)

Some explanations.

The constraint c is qualified for representing XE at x ∈ XE if

Tx XE = T′
x XE := N (c ′(x)). (2)

Qualification holds of c ′(x) is surjective (sufficient condition of CQ).

The Lagrangian of (PE ) is the function

ℓ : (x , λ) ∈ E× F 7→ ℓ(x , λ) = f (x) + 〈λ, c(x)〉 .
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Background
Optimization (problem (PE ) – second order optimality conditions)

Theorem (NC2 for (PE ))

If x∗ is a local minimum of (PE ), if f and c are twice differentiable at x∗, and if
(1a) holds for some λ∗ ∈ F, then

∀ d ∈ Tx∗ XE :
〈

∇2

xx ℓ(x∗, λ∗)d , d
〉

> 0. (3)

Inequality in (3) is not necessarily true for d ∈ N (c ′(x∗)) \ Tx∗ XE .

∇2
xxℓ(x∗, λ∗) is not necessarily positive semi-definite (even if qualification holds).

Theorem (SC2 for (PE ))

If f and c are twice differentiable at x∗, if (1) holds for some λ∗ ∈ F, and if

∀ d ∈ Tx∗ XE \ {0} : dT∇2

xx ℓ(x∗, λ∗)d > 0, (4)

then x∗ is a strict local minimum of (PE ).

(4) stronger (hence conclusion holds) if inequality holds ∀ d ∈ N (c ′(x∗)) \ {0}.
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Background
Optimization (problem (PEI ))

A generic form of the nonlinear optimization problem:

(PEI )







infx f (x)
cE (x) = 0
cI (x) 6 0,

where f : E → R, E and I form a partition of [1 :m], cE : E → R
mE , and

cI : E → R
mI are smooth (possibly non convex) functions.

The feasible set is denoted by

XEI := {x ∈ E : cE (x) = 0, cI (x) 6 0}.

We say that an inequality constraint is active at x ∈ XEI if ci (x) = 0.

The set of indices of active inequality constraints is denoted by

I
0(x) := {i ∈ I : ci(x) = 0}.

(PEI ) is said to be convex if f is convex and XEI is convex.
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Background
Optimization (problem (PEI ) – NC1 or KKT conditions)

Theorem (NC1 for (PEI ), Karush-Kuhn-Tucker (KKT))

If x∗ is a local minimum of (PEI ), if f and c = (cE , cI ) are differentiable
at x∗, and if c is qualified for representing XEI at x∗ in the sense (6) below,
then there exists a multiplier λ∗ ∈ R

m such that

∇xℓ(x∗, λ∗) = 0, (5a)

cE (x∗) = 0, (5b)

0 6 (λ∗)I ⊥ cI (x∗) 6 0. (5c)

Some explanations.

The Lagrangian of (PEI ) is the function

ℓ : (x , λ) ∈ E× R
m 7→ ℓ(x , λ) = f (x) + λT

c(x).

The complementarity condition (5c) means

(λ∗)I > 0, (λ∗)
T
I cI (x∗) = 0, and cI (x∗) 6 0.
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Background
Optimization (problem (PEI ) – constraint qualification)

The tangent cone Tx XEI is always contained in the linearizing cone

T′
x XEI := {d ∈ E : c ′E (x) · d = 0, c ′I 0(x)(x) · d 6 0}.

It is said that the constraint c is qualified for representing XEI at x if

Tx XEI = T′
x XEI . (6)

Sufficient conditions of qualification: continuity and/or differentiability
and one of the following

◮ (CQ-A) cE∪I0(x) is affine near x (Affinity),

◮ (CQ-S) cE is affine, cI0(x) is componentwise convex, ∃ x̂ ∈ XEI such
that cI0(x)(x̂) < 0 (Slater),

◮ (CQ-LI)
∑

i∈E∪I0(x) αi∇ci(x) = 0 =⇒ α = 0 (Linear Independence),

◮ (CQ-MF)
∑

i∈E∪I0(x) αi∇ci(x) = 0 and αI0(x) > 0 =⇒ α = 0

(Mangasarian-Fromovitz).
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Background
Optimization (problem (PEI ) – more on constraint qualification)

Proposition (other forms of (CQ-MF))

Suppose that cE∪I0(x) is differentiable at x ∈ XEI . Then the following properties
are equivalent:

i (CQ-MF) holds at x ,

ii ∀ v ∈ Rm, ∃ d ∈ E: c ′E (x) · d = vE and c ′
I0(x)(x) · d 6 vI0(x),

iii c ′E (x) is surjective and ∃ d ∈ E: c ′E (x) · d = 0 and c ′I0(x)(x) · d < 0.
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Background
Optimization (problem (PEI ) – SC1 for convex problem)

Theorem (SC1 for convex (PEI ))

If f is a convex function and XEI is a convex set,
f and c are differentiable at x∗ ∈ XEI ,
there is a λ∗ ∈ F such that (x∗, λ∗) satisfies (5),

then x∗ is a global minimum of (PEI ).

No need of constraint qualification.

The goal of the first part of this course is to extend the previous
NC1 and SC1 to a more general problem and to derive second order
optimality conditions.
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Background
Optimization (linear optimization duality)

Let c ∈ E (a Euclidean vector space), A : E → Rm and B : E → Rp linear,
a ∈ Rm, and b ∈ Rp.

A linear optimization problem (PL) and its dual (DL) read

(PL)







infx∈E 〈c , x〉
Ax = a

Bx 6 b

and (DL)







sup(y,s)∈Rm×Rp aTy − bTs

A∗y − B∗s = c

s > 0.

Properties

(PL) has a solution ⇐⇒ val (PL) ∈ R,

val (DL) 6 val (PL) [named weak duality],

(PL), (DL) feasible ⇐⇒ Sol (PL) 6= ∅ ⇐⇒ Sol (DL) 6= ∅. (7)

When (7) holds [named strong duality], val (DL) = val (PL).
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Background
Algorithmics (speeds of convergence)

Let E be a normed space and {xk} ⊆ E be a sequence converging to x̄ .

{xk} is said to converge linearly, if ∃ r ∈ [0, 1) and K ∈ N such that
∀ k > K , one has ‖xk+1 − x̄‖ 6 r‖xk − x̄‖.

◮ Depends on the norm of E.

{xk} is said to converge superlinearly, if xk+1 − x̄ = o(‖xk − x̄‖).
◮ Independent of the norm of E.
◮ Faster than linear convergence.
◮ Typical of the quasi-Newton methods.

{xk} is said to converge quadratically, if xk+1 − x̄ = O(‖xk − x̄‖2).
◮ Independent of the norm of E.
◮ Faster than superlinear convergence.
◮ Typical of Newton’s method.

Lemma

If {xk} → x∗ superlinearly, then {xk+1 − xk} ∼ {xk − x∗}.
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Background
Algorithmics (Dennis & Moré criterion for superlinear convergence)

Let F : E → F and consider the nonlinear system to solve in x ∈ E:

F (x) = 0.

A quasi-Newton algorithm locally generates a sequence {xk} by the recurrence

F (xk ) +Mk(xk+1 − xk) = 0, (8)

where Mk ∈ L(E,F) is an approximation of F ′(xk), generated by the algorithm.

Proposition (Dennis & Moré criterion for superlinear convergence)

If F is differentiable at a zero x∗ of F ,

F ′(x∗) is nonsingular,

{xk} generated by (8) converges to x∗,

then the convergence is superlinear if and only if

(

Mk − F ′(x∗)
)

(xk+1 − xk) = o(‖xk+1 − xk‖).
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Optimality conditions
First order optimality conditions for (PG ) (the problem I)

We consider the problem

(PG )

{

min f (x)

c(x) ∈ G ,

where
◮ f : E → R (E is a Euclidean vector space),
◮ c : E → F (F is another Euclidean vector space),
◮ G is nonempty closed convex set in F.

The feasible set is denoted by

XG := {x ∈ E : c(x) ∈ G} = c−1(G ).

(PG ) is said to be convex if f is convex and XG is convex.

T : E ⊸ F : x 7→ c(x) − G is convex =⇒ XG is convex.
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Optimality conditions
First order optimality conditions for (PG ) (the problem II)

Some examples of optimization problems that can be written in the form (PG ).

The nonlinear optimization problem

(PEI )

{

infx∈R f (x)
cE (x) = 0 and cI (x) 6 0,

where f : E → R, E and I form a partition of [1 :m], cE : E → RmE , and
cI : E → RmI are smooth (possibly non convex) functions.

The linear semidefinite optimization problem

(PSDO)

{

infX∈Sn 〈C ,X 〉
A(X ) = b and X < 0,

where C ∈ Sn, A : Sn → Rm is linear, and b ∈ Rm.

The composite optimization problem

inf
x∈E

(g ◦ f )(x),

where f : E → F and g : F → R.
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Optimality conditions
First order optimality conditions for (PG ) (tangent and linearizing cones, qualification)

Proposition (tangent and linearizing cones)

If c is differentiable at x ∈ XG , then

Tx XG ⊆ T′
x XG := {d ∈ E : c ′(x) · d ∈ Tc(x) G}.

T′
x XG is called the linearizing cone to X at x .

The equality Tx XG = T′
x XG is not guaranteed.

The constraint function c is said to be qualified for representing XG

at x if

Tx XG = T′
x XG , (9a)

c ′(x)∗[(Tc(x) G )+] is closed. (9b)
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Optimality conditions
First order optimality conditions for (PG ) (NC1)

Theorem (NC1 for (PG ))

If x∗ is a local minimum of (PG ), if f and c are differentiable at x∗, and if c is
qualified for representing XG at x∗ in the sense (9a)-(9b), then

1 there exists a multiplier λ∗ ∈ F such that

∇f (x∗) + c ′(x∗)
∗λ∗ = 0, (10a)

λ∗ ∈ Nc(x∗) G . (10b)

2 if, furthermore, G ≡ K is a convex cone, then (10b) can be written

K− ∋ λ∗ ⊥ c(x∗) ∈ K or c(x∗) ∈ Nλ∗
K−. (10c)

One recognizes in (10a) the gradient of the Lagrangian wrt x

ℓ : E× F → R : x 7→ ℓ(x , λ) = f (x) + 〈λ, c(x)〉
and in (10c) the complementarity conditions.
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Optimality conditions
First order optimality conditions for (PG ) (SC1 for convex problem)

Theorem (SC1 for convex (PG ))

If f is a convex function and XG is a convex set,
f and c are differentiable at x∗ ∈ XG ,
there is a λ∗ ∈ F such that (x∗, λ∗) satisfies (10a)-(10b),

then x∗ is a global minimum of (PG ).

The goal of the next slides is to highlight and analyze a condition
(Robinson’s condition) that

1 provides an error bound for the feasible set y +XG (y small),
2 claims the stability of the feasible set XG ,
3 ensures that c is qualified for representing XG .
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Optimality conditions
First order optimality conditions for (PG ) (Robinson’s condition)

We say that Robinson’s condition holds at x ∈ XG if

(CQ-R) 0 ∈ int
(

c(x) + c ′(x) · E− G
)

. (11)

We will see below that

it is useful since it
◮ provides an error bound for small perturbations y + XG of XG ,
◮ claims the stability of the feasible set XG with respect to small

perturbations,
◮ shows that the constraint function c is qualified for representing XG

at x , in the sense (9a)-(9b),

it generalizes to (PG ) the Mangasarian-Fromovitz constraint
qualification (CQ-MF) for (PEI ).
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Optimality conditions
First order optimality conditions for (PG ) (Robinson’s error bound I) [21]

Theorem ((CQ-R) and metric regularity)

If c is continuously differentiable near x0 ∈ XG , then the following
properties are equivalent:

1 (CQ-R) holds at x = x0,
2 there exists a constant µ > 0, such that ∀ (x , y) near (x0, 0):

dist(x , c−1(y + G )) 6 µ dist(c(x), y + G ). (12)

Condition 2 is named metric regularity since it is equivalent to that
property (see its definition below) for the multifunction

T : E ⊸ F : x 7→ c(x)− G .
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Optimality conditions
First order optimality conditions for (PG ) (Robinson’s error bound II) [21]

An error bound is an estimation of the distance to a set by a quantity
easier to compute.

Corollary (Robinson’s error bound)

If c is continuously differentiable near x0 ∈ XG and if (CQ-R) holds at
x = x0, then there exists a constant µ > 0, such that

∀ x near x0 : dist(x ,XG ) 6 µ dist(c(x),G ). (13)

dist(x ,XG ) is often difficult to evaluate in E,

dist(c(x),G) is often easier to evaluate in F (it is the case if c(x) is easy to
evaluate and G is simple),

useful in theory (e.g., for proving that (CQ-R) implies constraint
qualification), in algorithmics (e.g., for proving [speed of] converge) or in
practice (for estimating dist(x ,XG )).
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Optimality conditions
First order optimality conditions for (PG ) (stability wrt small perturbations)

The estimate (12) readily implies the following stability result.

Corollary (stability wrt small perturbations)

If c is continuously differentiable near some x0 ∈ XG and if (CQ-R) holds
at x0, then, for all small y ∈ F:

{x ∈ E : c(x) ∈ y + G} 6= ∅.
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Optimality conditions
First order optimality conditions for (PG ) (open multifunction theorem I) [26, 23, 5]

Let T : E ⊸ F be a multifunction and B̄E and B̄F be the closed balls of E and F.

T is open at (x0, y0) ∈ G(T ) with ratio ρ > 0 if there exist a neighborhood
W of (x0, y0) and a radius rmax > 0 such that for all (x , y) ∈ W ∩ G(T ) and
r ∈ [0, rmax]: y + ρ r B̄F ⊆ T (x + r B̄E).

T is metric regular at (x0, y0) ∈ G(T ) with modulus µ > 0 if for all (x , y)
near (x0, y0): dist(x ,T−1(y)) 6 µ dist(y ,T (x)).

Difference: (x , y) ∈ G(T ) for the openness, but not for the metric regularity.

T (x) y + ρ(2r)B̄F

r
x x

y

T (x)

G(T ) G(T )

T−1(y)

dist(y ,T (x))

dist(x ,T−1(y))

slope 1/µslope ρ

y

y + ρrB̄F

Both estimate the change in T (x) with x (but these are not infinitesimal

notions), either from inside G(T ) (openness) or outside (metric regularity).
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Optimality conditions
First order optimality conditions for (PG ) (open multifunction theorem II) [26, 23, 5]

Extention of the open mapping theorem for linear (continuous) maps to
(nonlinear) convex multifunctions.

Theorem (open multifunction theorem, finite dimension)

If T : E ⊸ F is convex and (x0, y0) ∈ G(T ), then the following properties
are equivalent:

1 y0 ∈ intR(T ),
2 for all r > 0, y0 ∈ intT (x + r B̄E),
3 T is open at (x0, y0) with rate ρ > 0,
4 T is metric regular at (x0, y0) with modulus µ > 0.

One can take µ = 1/ρ in point 4 if ρ is given by point 3.
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Optimality conditions
First order optimality conditions for (PG ) (metric regularity diffusion) [7]

Theorem (metric regularity diffusion)

Suppose that

c : E → F a continuous function, G 6= ∅ a closed convex set of F,
T : E ⊸ F : x 7→ c(x)− G is µ-metric regular at (x0, y0) ∈ G(T ),
δ : E → F is Lipschitz near x0 with modulus L < 1/µ,
T̃ : E ⊸ F : x 7→ c(x) + δ(x) − G .

Then T̃ is also metric regular at (x0, y0 + δ(x0)) ∈ G(T̃ ) with modulus
µ/(1 − Lµ): for all (x , y) near (x0, y0 + δ(x0)), the following holds

dist(x , T̃−1(y)) 6
µ

1 − Lµ
dist(y , T̃ (x)). (14)

No need of convexity.
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Optimality conditions
First order optimality conditions for (PG ) (qualification with (CQ-R) I)

Proposition (other forms of (CQ-R))

Suppose that c is differentiable at x ∈ XG . Then the following properties
are equivalent

i 0 ∈ int(c(x) + c ′(x)E − G ) [this is (CQ-R)],
ii c ′(x)E − Tf

c(x) G = F,
iii c ′(x)E − Tc(x) G = F,

iv c ′(x)E − Tc(x) G = F.
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Optimality conditions
First order optimality conditions for (PG ) (qualification with (CQ-R) II)

Proposition (qualification with (CQ-R))

Suppose that c is continuously differentiable near x ∈ XG and that (CQ-R)
holds at x . Then c is qualified for representing XG at x .

The figure below shows how (CQ-R) is used to create an appropriate

sequence {xk} in XG := c−1(G) to get qualification (the figure requires some oral

explanations, though . . . ).

c(x)

c′(x) · d ∈ Tc(x) G

x

x ′
k

c(x ′
k
)

c(xk )

ykxk
c : E → F

G

d ∈ T′
x XG

XG := c−1(G)
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Optimality conditions
First order optimality conditions for (PG ) (qualification with (CQ-R) III)

Proposition (Gauvin’s boundedness property)

Suppose that f and c are differentiable at x∗ ∈ XG and that the set Λ∗ of
multipliers λ∗ ∈ F satisfying (10a)-(10b) is nonempty. Then

1 Λ∞
∗ = [c ′(x∗)E − Tc(x∗) G ]+,

2 Λ∗ is bounded if and only if (CQ-R) holds.

The property was originally established for problem (PEI ) and (CQ-MF) [10].
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Optimality conditions
Second order optimality conditions for (PEI )

Let x∗ be a local solution to (PEI ), λ∗ be an associated optimal multiplier,
and L∗ := ∇2

xxℓ(x∗, λ∗).

In view of the second order optimality conditions of the equality
constrained optimization problem (PE ), it is tempting to claim that

∀ d ∈ Tx∗ XEI : 〈L∗d , d〉 > 0.

But this is not guaranteed!

The good cone is not Tx∗ XEI but the critical cone C∗ (to be defined).

The multiplier λ∗ must be chosen, depending on d ∈ C∗.
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Optimality conditions
Second order optimality conditions for (PEI ) (critical cone)

Critical cone at x ∈ XEI (it is a part of T′
x XEI )

C (x) := {d ∈ E : c ′E (x) · d = 0, c ′I 0(x)(x) · d 6 0, f ′(x) · d 6 0}.

Short notation for index sets

I 0∗ := {i ∈ I : ci (x∗) = 0} := I 0(x∗),

I 0+∗ := {i ∈ I : ci (x∗) = 0, (λ∗)i > 0},
I 00∗ := {i ∈ I : ci (x∗) = 0, (λ∗)i = 0}.

Other forms of the critical cone at a stationary pair (x∗, λ∗):

C∗ = {d ∈ E : c ′E (x∗) · d = 0, c ′I 0∗ (x∗) · d 6 0, f ′(x∗) · d = 0},
= {d ∈ E : c ′

E∪I 0+∗
(x∗) · d = 0, c ′I 00∗

(x∗) · d 6 0}.
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Optimality conditions
Second order optimality conditions for (PEI ) (three instructive examples)

Three instructive examples

1 Strong NC2 (not always true): ∀λ∗ ∈ Λ∗, ∀ d ∈ C∗: 〈L∗d , d〉 > 0.

{

min x2

x2 > x2

1
,

2 Semi-strong NC2 (not always true): ∃λ∗ ∈ Λ∗, ∀ d ∈ C∗: 〈L∗d , d〉 > 0.






min x2

x2 > x2

1

x2 > − 1

2
x2

1
.

3 Weak NC2 (always true): ∀ d ∈ C∗, ∃λ∗ ∈ Λ∗: 〈L∗d , d〉 > 0.














min x3

x3 > (x1 + x2)(x1 − x2)
x3 > (x2 + 3x1)(2x2 − x1)
x3 > (2x2 + x1)(x2 − 3x1).
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Optimality conditions
Second order optimality conditions (NC2)

Notation at a stationary point x∗:

Λ∗ := {λ∗ ∈ Rm : (x∗, λ∗) satisfies the KKT system (5)}.
L∗ := ∇2

xxℓ(x∗, λ∗) for some specified λ∗ ∈ Λ∗.

Theorem (NC2 for (PEI ))

Suppose that

x∗ is a local minimum of (PEI ),

f and cE are C 2 near x∗, cI0
∗

is twice differentiable at x∗, cI\I0
∗

is continuous
at x∗,

(CQ-MF) holds at x∗,

then ∀ d ∈ C∗, ∃λ∗ ∈ Λ∗ such that 〈L∗d , d〉 > 0.

These conditions are named weak second order necessary conditions and also read

∀ d ∈ C∗ : max
λ∗∈Λ∗

〈L∗d , d〉 > 0. (15)
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Optimality conditions
Second order optimality conditions (SC2 I)

Theorem (SC2 for (PEI ))

Suppose that

f and cE∪I0
∗

are twice differentiable at x∗,

(x∗, λ∗) verifies the KKT conditions (5),

the following equivalent conditions hold

∀ d ∈ C∗ \ {0}, ∃λ∗ ∈ Λ∗ : 〈L∗d , d〉 > 0, (16a)

∃ γ̄ > 0, ∀ d ∈ C∗, ∃λ∗ ∈ Λ∗ : 〈L∗d , d〉 > γ̄ ‖d‖2, (16b)

then ∀ γ ∈ [0, γ̄), ∃ a neighborhood V of x∗, ∀ x ∈ (V \ {x∗}) ∩ XEI :

f (x) > f (x∗) +
γ

2
‖x − x∗‖2. (17)

In particular, x∗ is a strict local minimum of (PEI ).
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Optimality conditions
Second order optimality conditions (SC2 II)

Condition (17) is called the quadratic growth property.

No need of a constraint qualification assumption.

The property

∃λ∗ ∈ Λ∗ : ∀ d ∈ C∗ \ {0}, 〈L∗d , d〉 > 0

is stronger than (16) and is called the semi-strong SC2.

The even stronger property

∀λ∗ ∈ Λ∗ : ∀ d ∈ C∗ \ {0}, 〈L∗d , d〉 > 0

is called the strong SC2.
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Perturbation analysis
Stability result for (PG ) with a polyhedral cone G I [22]

Let P be a vector space. For p ∈ P, consider the perturbed problem

(Pp
K )

{

minx f (x , p)
c(x , p) ∈ K ,

where f : E× P → R smooth, c : E× P → F smooth, K ⊆ F convex
polyhedral cone.

Optimality system at x ∈ E: ∃λ ∈ F such that
{

∇x f (x , p) + c ′x(x , p)
∗λ = 0

K− ∋ λ ⊥ c(x , p) ∈ K .
(18)

The multiplier multifunction Λ : E× P ⊸ F is defined at (x , p) ∈ E× P by

Λ(x , p) := {λ ∈ F : (x , p, λ) satisfies (18)}.

The stationary multifunction Σ : P ⊸ E is defined at p ∈ P by

Σ(p) := {x ∈ E : Λ(x , p) 6= ∅}.
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Perturbation analysis
Stability result for (PG ) with a polyhedral cone G II

Assume the framework defined above.

Proposition (stability of (PK ))

If f (·, p0) and c(·, p0) are C 2 near x0 ∈ E for some p0 ∈ P,

f ′x , c and c ′x are Lipschitz continuous near (x0, p0),

0 ∈ int
(

c(x0, p0) + c ′x(x0, p0)E− K
)

,

x0 ∈ Σ(p0),

∃λ0 ∈ Λ(x0, p0) such that strong SC2 holds for (Pp0

K ),

then ∃ L > 0, such that ∀ p near p0:

1 Σ(p) 6= ∅,

2 ∀ x ∈ Σ(p) near x0, ∀λ ∈ Λ(x , p):

dist
(

(x , λ), {x0} × Λ(x0, p0)
)

6 L ‖p − p0‖.
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Linearization methods
Overview

Two classes of linearization methods that are used to solve systems with
nonsmoothness.

1 Methods that capture much of the local behavior of the system.

Features

◮ Expensive iteration (nonlinear), fast convergence, easy to globalize.

Examples

◮ The Josephy-Newton algorithm for functional inclusions.
◮ The SQP algorithm for (PEI ).

2 Methods that use a single piece of the local behavior of the system.

Features

◮ Cheap iteration (linear), fast convergence, difficult to globalize.

Example

◮ The semismooth Newton algorithm for nonsmooth system of equations.
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Linearization methods
Josephy-Newton algorithm for functional inclusions (functional inclusion I)

Let E and F be Euclidean vector spaces of the same dimension, F : E → F be a
smooth function, and N : E ⊸ F be a multifunction.

We consider the functional inclusion problem

(PFI ) F (x) + N(x) ∋ 0. (19)

Interested in algorithmic issues (not theoretical ones, like existence of solution).

Examples

1 The variational problem if N = NX the normal cone to X ⊆ E at x (= ∅ if x /∈ X ):

(PV ) F (x) + NX (x) ∋ 0. (20)

2 The variational inequality problem is (PV ) with X = C (a closed convex set):

(PVI )

{

x ∈ C

〈F (x), y − x〉 > 0, ∀ y ∈ C .
(21)

3 The complementarity problem is (PFI ) with N = NK+ ◦ G (closed convex cone
K ⊆ F, G : E → F)

(PCP) K
+ ∋ G(x) ⊥ F (x) ∈ K . (22)
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Linearization methods
Josephy-Newton algorithm for inclusions (functional inclusion II)

Examples (continued)

4 The Peano-Kantorovitch NC1 of problem min{f (x) : x ∈ X} reads

∇f (x) + NX (x) ∋ 0.

5 The first order optimality conditions for (PG ), when G ≡ K is a closed convex
cone, can be written

K̃
− ∋ x̃ ⊥ F̃ (x̃) ∈ K̃ ,

with the variable x̃ := (x , λ) ∈ E× F,

F̃ (x̃) :=

(

∇f (x) + c ′(x)∗λ
−c(x)

)

, and K̃ := {0E} × (−K). (23)

6 If N is the constant multifunction x ⊸ {0mE
R

} × R
mI
+ ⊆ R

m ≡ F where E and I

make a partition of [1 :m], (PFI ) becomes the system of equalitites and
inequalitites

FE (x) = 0 and FI (x) 6 0.
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Linearization methods
Josephy-Newton algorithm for inclusions (the JN algorithm) [15, 16]

Algorithm (Josephy-Newton algorithm for solving (PFI ))

Given xk , compute xk+1 as a solution to the problem in x :

F (xk) +Mk(x − xk) + N(x) ∋ 0, (24)

where Mk = F ′(xk) or an approximation to it.

Remarks

Only F is linearized, not N (is the reason for the chosen structure of (PFI )).

(24) captures more information from (PFI ) than a “simple” linearization.

(24) is often a nonlinear problem, hence yielding an expensive iteration.

Makes sense computationally if N is sufficiently simple.
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Linearization methods
Josephy-Newton algorithm for inclusions (semi-stability) [3]

A solution x∗ to (PFI ) is said semi-stable if ∃σ1 > 0 and ∃σ2 > 0 such that

(x , p) ∈ E× F

F (x) + N(x) ∋ p

‖x − x∗‖ 6 σ1







=⇒ ‖x − x∗‖ 6 σ2‖p‖.

Remarks

The perturbed inclusion F (x) + N(x) ∋ p is not required to have a solution.

Semistability implies that x∗ is the unique solution to (PFI ) on B̄(x∗, σ1).

If N ≡ {0}, then semi-stability of x∗ ⇔ injectivity of F ′(x∗) (hence, nonsingularity

if dimE = dimF).
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Linearization methods
Josephy-Newton algorithm for inclusions (semi-stability for polyhedral VI) [3]

Proposition (semi-stability characterization for polyhedral VI)

Consider problem (PVI ) with a convex polyhedron C and F being C 1 near a
solution x∗. Then the following properties are equivalent:

1 x∗ is semi-stable,

2 x∗ is an isolated solution to

F (x∗) + F ′(x∗)(x − x∗) + NC (x) ∋ 0,

3 one has 〈F ′(x∗)(x − x∗), x − x∗〉 > 0 when x ∈ C \ {x∗} satisfies

〈F (x∗), x − x∗〉 = 0 and F (x∗) + F ′(x∗)(x − x∗) + NC (x∗) ∋ 0,

4 x∗ is the unique solution to

NC (x) ⊆ NC (x∗), 〈F (x∗), x − x∗〉 = 0, R+F (x∗)+F ′(x∗)(x−x∗)+NC (x) ∋ 0.
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Linearization methods
Josephy-Newton algorithm for inclusions (speed of convergence) [3]

Proposition (speed of convergence of quasi-Newton methods)

Suppose that F is C 1 near a semi-stable solution x∗ to (PFI ). Let {xk} be a
sequence generated by algorithm (24), converging to x∗.

1 If (Mk − F ′(x∗))(xk+1 − xk) = o(‖xk+1 − xk‖),
then {xk} converges superlinearly.

2 If (Mk − F ′(x∗))(xk+1 − xk) = O(‖xk+1 − xk‖2) and F is C 1,1 near x∗,
then {xk} converges quadratically.

Corollary (speed of convergence of Newton’s method)

Suppose that F is C 1 near a semi-stable solution x∗ to (PFI ). Let {xk} be a
sequence generated by algorithm (24) with Mk = F ′(xk), converging to x∗. Then

1 {xk} converges superlinearly,

2 if, furthermore, F is C 1,1 near x∗, then {xk} converges quadratically.
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Linearization methods
Josephy-Newton algorithm for inclusions (local convergence) [3]

A solution x∗ to (PFI ) is said hemi-stable if ∀α > 0, ∃β > 0, ∀ x0 ∈ B̄(x∗, β), the
“linearized” inclusion in x

F (x0) + F ′(x0)(x − x0) + N(x) ∋ 0

has a solution in B̄(x∗, α).

Theorem (local convergence of JN)

Suppose that F is C 1 near a semi-stable and hemi-stable solution x∗ to (PFI ).
Then ∃ ε > 0 such that if x1 ∈ B̄(x∗, ε), then

1 the JN algorithm (24) with Mk = F ′(xk) can generate {xk} ⊆ B̄(x∗, ε),

2 any sequence {xk} generated in B̄(x∗, ε) by the JN algorithm converges
superlinearly to x∗ (quadratically if F is C 1,1).
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Linearization methods
The SQP algorithm (overview)

Recall the equality and inequality constrained problem

(PEI )







infx f (x)
cE (x) = 0
cI (x) 6 0.

Three popular methods to solve (PEI )

Augmented Lagrangian methods: a dual method that generates
{(λk , rk)} ⊆ R

m × R++ by

r inf
x, s>0

(

f (x) + (λk)
T
E cE (x) +

rk

2
‖cE (x)‖

2
2 + (λk)

T
I (cI (x)+s) +

rk

2
‖cI (x)+s‖2

2

)

,

r λk+1 := (λk + rkc(xk ))
# and rk+1 = ? (heuristics for nonlinear problems).

SQP methods: it is a linearization method on the KKT system (see below).

Interior point methods, which can be viewed as a penalization method solving
(approximately) a sequence of problems (25) below with µ ↓ 0, thanks to the SQP
algorithm:

{

min(x,s) f (x)− µ
∑

i∈I
log si

cE (x) = 0, cI (x) + s = 0.
(25)
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Linearization methods
The SQP algorithm (definition - KKT is a nonlinear complementarity problem)

Similarly to Newton’s method in unconstrained optimization, the SQP
algorithm is conceptually interested in solutions of the first order optimality
(KKT) system in (x , λ) of (PEI ):

∇x ℓ(x , λ) = 0, (26a)

cE (x) = 0, (26b)

0 6 λI ⊥ cI (x) 6 0. (26c)

This system in (x , λ) can be written like (PFI ) or (PCP), namely

F (x , λ) + NK+(x , λ) ∋ 0 or K+ ∋ (x , λ) ⊥ F (x , λ) ∈ K , (27)

with the data

F (x , λ) =

(

∇xℓ(x , λ)
−c(x)

)

and K = {0E} × ({0RmE } × R
mI

+ ). (28)

Hence, K+ = E×
(

RmE × R
mI

+

)

.
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Linearization methods
The SQP algorithm (definition - the SQP algorithm viewed as a JN method) [22]

The SQP algorithm (SQP for Sequential Quadratic Programming) for
solving (PEI ) is the JN algorithm (24) on the functional inclusion (27)-(28):

∇xℓ(xk , λk) +Mk(x − xk ) + c ′(xk)
∗(λ− λk ) = 0, (29a)

cE (xk) + c ′E (xk ) · (x − xk) = 0, (29b)

0 6 λI ⊥
(

cI (xk ) + c ′I (xk ) · (x − xk )
)

6 0, (29c)

where Mk = Lk := ∇2
xx ℓ(xk , λk ) or an approximation to it (Mk 6≃ ∇2f (xk )!).

(29) is formed of the KKT conditions of the osculating quadratic problem

(OQP)







minx 〈∇f (xk ), x − xk 〉+ 1

2
〈Mk(x − xk), x − xk〉

cE (xk) + c ′E (xk ) · (x − xk) = 0,
cI (xk) + c ′I (xk ) · (x − xk) 6 0.

(30)

The primal-dual solution (xk+1, λk+1) to the OQP is the new iterate.
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Linearization methods
The SQP algorithm (definition - the local SQP algorithm) [12, 13]

Algorithm (local SQP)

From (xk , λk) to (xk+1, λk+1):

1 If (26) holds at (x , λ) = (xk , λk), stop.
2 Compute a primal-dual stationary point (xk+1, λk+1) of the OQP (30).

Remarks

The OQP’s are still hard to solve (not just a linear system, expensive iteration):

◮ If Mk = Lk |< 0, the OQP is NP-hard.
◮ One of the good reasons for taking Mk ≃ Lk with Mk ≻ 0, updated by a

quasi-Newton method; the OQP is then polynomial, but still difficult.

Other (non local) difficulties to overcome:

◮ What if the linearized constraints are incompatible?
◮ What if the OQP is unbounded?

Nothing is done for forcing the convergence from remote starting points.
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Linearization methods
The SQP algorithm (local convergence - semi-stability and hemi-stability of a KKT
pair) [3]

Proposition (semi-stability and SC2)

If x∗ is a local minimum of (PEI ) and λ∗ is an associated mutiplier, then the
following properties are equivalent:

1 (x∗, λ∗) is semi-stable,

2 Λ∗ = {λ∗} and x∗ satisfies SC2.

At a local solution, semi-stability implies hemi-stability:

Proposition (SC for hemi-stability)

If x∗ is a local minimum of (PEI ),

(x∗, λ∗) satisfies the KKT conditions,

(x∗, λ∗) is semi-stable,

then (x∗, λ∗) is hemi-stable.
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Linearization methods
The SQP algorithm (local convergence - the result) [3]

Theorem (local convergence of SQP)

If f and c are C 2,1 near a local minimizer x∗ of (PEI ),
there is a unique multiplier λ∗ associated with x∗,
SC2 is satified,

then there exists a neighborhood V of (x∗, λ∗) such that if the first iterate
(x1, λ1) ∈ V , then

1 the SQP algorithm can generate {(xk , λk)} in V ,
2 any sequence {(xk , λk)} generated in V by the SQP algorithm

converges quadratically to (x∗, λ∗).
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Linearization methods
The SQP algorithm (exact penalization)

Consider the nonsmooth penalty function Θσ : E → R associated with (PEI ):

Θσ(x) := f (x) + σ ‖c(x)#‖,
where for v ∈ R

m, v# ∈ R
m is defined by: (v#)i = vi when i ∈ E and

(v#)i = v+
i = max(0, vi) when i ∈ I .

The dual norm of ‖ · ‖ is defined by

‖u‖D := sup
‖v‖61

uTv .

Proposition (exact penalty property)

If f and c are C 2 near a local minimizer x∗ of (PEI ),
the set Λ∗ of associated optimal multipliers is nonempty,
weak SC2 holds,
σ > sup{‖λ∗‖D : λ∗ ∈ Λ∗} and σ > ‖λ̂∗‖D for some λ̂∗ ∈ Λ∗,

then x∗ is a strict local minimum of Θσ.

80 / 112



Linearization methods
The SQP algorithm (globalization - descent property of the convex OQP solution)

Recall the osculating quadratic problem at (xk , λk): Mk ≃ L(xk , λk) and

(OQP)k

{

mind 〈∇f (xk), d〉+ 1
2
〈Mkd , d〉

(c(xk) + c ′(xk)d)
# = 0.

(31)

We often make the following assumption (true for ℓp norms)

‖ ·# ‖ : v ∈ R
m 7→ ‖v#‖ is convex.

Proposition (descent direction)

If (dk , λ
QP

k ) is a stationary pair of (31),
‖ ·# ‖ is convex,

then

1 Θ′
σ(xk ; dk) 6 −〈Mkdk , dk〉+ (λQP

k )Tc(xk)− σ‖c(xk)#‖,
2 Θ′

σ(xk ; dk) < 0, if σ > ‖λQP

k ‖D , Mk ≻ 0, and xk is not stationary.
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Linearization methods
The SQP algorithm (globalization I)

The SQP algorithm with linesearch forces Mk ≻ 0 and minimizes the
changing nondifferentiable merit function Θσk

along the SQP directions dk .

Algorithm (global SQP)

Given (xk , λk ,Mk) ∈ R
n ×R

m × Sn
++, compute (xk+1, λk+1,Mk+1) by

solve (31) to get a PD solution (dk , λ
QP

k ) (if any),
impose σk > ‖λQP

k ‖D + σ̄ keeping σk constant if {λQP

k } is bounded,
linesearch: αk > 0 such that Θσk

(xk + αkdk) 6 Θσk
(xk) + ωαk∆k ,

xk+1 := xk + αkdk and λk+1 := λk + αk(λ
QP

k − λk),
update Mk y Mk+1.

We have used ∆k := 〈∇f (xk), dk〉 − σk‖c(xk)#‖ as a negative
over-estimate of Θ′

σk
(xk ; dk).
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Linearization methods
The SQP algorithm (globalization II)

Theorem (global convergence of SQP)

If f and c are C 1,1,
‖ ·# ‖ is convex,
{Mk} and {M−1

k } are ≻ 0 and bounded,
(31) has a PD solution (dk , λ

QP

k ) for all k > 1,
{λQP

k } is bounded,
Θσk

(xk) is bounded below,

then the KKT conditions are satisfied asymptotically, meaning that
∇xℓ(xk , λ

QP

k ) → 0, c(xk)
# → 0, (λQP

k )I > 0, and (λQP

k )TI cI (xk) → 0.
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Linearization methods
The semismooth Newton method (motivation)

Let E and F be (finite dimensional) normed spaces and Ω ⊆ E be open.

We consider the problem of fiding a zero of a nonsmooth function
F : Ω → F:

F (x) = 0. (32)

Examples

1 The CP (0 6 x ⊥ Φ(x) > 0) can be represented by (32):

Ψ(x ,Φ(x)) = 0,

where Ψ(u, v) = {ψ(ui , vi )}i and ψ is a C-function, meaning that
ψ(a,b) = 0 iff a > 0, b > 0, and ab = 0. Examples (F = Fischer):

ψmin(a, b) = min(a, b) and ψF (a,b) =
√

a2 + b2 − (a+ b).

2 The VI problem (find x ∈ C s.t. 〈Φ(x), y − x〉 > 0 for all y ∈ C) can be
written llike (32):

PC (x −Φ(x)) − x = 0.
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Linearization methods
The semismooth Newton method (motivation)

Suppose that F : E → F is Lipschitz continuous near x∗ ∈ Ω.

Then ∂CF (x) 6= ∅ for x near x∗ and one could think of the Newton-like algorithm
generating {xk} by

xk+1 = xk − J
−1
k F (xk),

provided some nonsingular Jk can be found in ∂CF (xk ).

Actually, this algorithm may not converge locally as in the example below [18]:

F : R → R is Lipschitz,

F (0) = 0,

∂CF (0) = [ 1
2
, 2] 6∋ 0,

limk→∞
F (xk )−F (0)−F ′(xk )(xk−0)

|xk−0|
> 1.

Semismoothness is an assumption on F that prevents such a cycling (arbitrary
close to the zero).
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Linearization methods
The semismooth Newton method (generalized differentiability I) [6]

For a function F : E → F (E, F are finite dimensional vector spaces), denote

DF := {x ∈ E : F is Fréchet-differentiable at x}.

Theorem (Rademacher, 1919)

If F is Lipschitz near any point of an open set Ω ⊆ E, then the Lebesgue measure
of Ω \ DF is zero; in particular DF is dense in Ω, i.e., Ω ⊆ DF .

The B-differential (B honoring Bouligand) of F at x is the set

∂BF (x) := {J ∈ L(E,F) : ∃ {xk} ⊆ DF such that xk → x , F ′(xk ) → J}.

The C-differential (C for Clarke) of F at x is the set

∂CF (x) := co ∂BF (x).
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Linearization methods
The semismooth Newton method (generalized differentiability II) [6]

Proposition (compactness and upper semi-continuity)

If F is L-Lipschitz near x , then

1 ∂CF (x) is nonempty compact (⊆ LB̄) and convex,
2 ∂CF is upper semi-continuous at x .

∂CF (x) is said to be nonsingular if any J ∈ ∂CF (x) is nonsingular.

Proposition (nonsingularity diffusion)

If F is Lipschitz near x and ∂CF (x) is nonsingular, then there are constants
C > 0 and δ > 0 such that

sup
x ′∈B̄(x ,δ)
J∈∂CF (x

′)

max
(

‖J‖, ‖J−1‖
)

6 C .
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Linearization methods
The semismooth Newton method (semismoothness - definition) [19, 20]

Let E, F, ... be normed spaces of finite dimension and Ω be open in E.

F : Ω → F is semismooth at x ∈ Ω if

(S1) F is Lipschitz near x ,
(S2) F ′(x ; h) exists for all h ∈ E,
(S3) for h → 0 in E, the following holds

sup
J∈∂CF (x+h)

‖F (x + h)− F (x) − Jh‖
‖h‖ → 0.

F : Ω → F is strongly semismooth at x ∈ Ω if it is semismooth at x
with (S3) strengthened by

(S4) for h small in E, the following holds

sup
J∈∂CF (x+h)

‖F (x + h)− F (x) − Jh‖ = O(‖h‖2).
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Linearization methods
The semismooth Newton method (semismoothness - properties I) [9, 14]

Proposition (differentiable function)

If F : Ω → F is C 1 (C 1,1) near x ∈ Ω, then F is (strongly) semismooth at x .

Proposition (convex function)

If f : Ω → R is convex in a convex neighborhood of x ∈ Ω, then f is semismooth at x .

F : Ω → F is said to be piecewise semismooth at x ∈ Ω if there exist a neighborhood V

of x and functions Fi : V → F, with i ∈ I (I finite), which are semismooth at x , such
that r F is continuous on V and, r for all y ∈ V , F (y) = Fi (y) for some i ∈ I .

Proposition (piecewise semismooth function)

If F : Ω → F is piecewise semismooth at x ∈ Ω, then F is semismooth at x .

When the pieces are affine, F is said to be piecewise affine at x .

Proposition (piecewise affine function)

If F : Ω → F is piecewise affine at x ∈ Ω, then F is strongly semismooth at x .
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Linearization methods
The semismooth Newton method (semismoothness - properties II) [9, 14]

Proposition (componentwise semismooth function)

Let F1 : Ω → F1, F2 : Ω → F2, and x ∈ Ω. Then (F1,F2) : Ω → F1 × F2 is
(strongly) semismooth at x ∈ Ω if and only if F1 and F2 are (strongly)
semismooth at x .

Proposition (composition of functions)

If F : Ω → F is (strongly) semismooth at x ∈ Ω, V is a neighborhood of F (x),
and G : V → G is (strongly) semismooth at F (x), then G ◦ F is (strongly)
semismooth at x .

Proposition (calculus)

If F1 : Ω → F and F2 : Ω → F are (strongly) semismooth at x ∈ Ω, then the
following functions are (strongly) semismooth at x (for the last two, F = Rm):

F1 + F2, 〈F1,F2〉 , max(F1,F2), and min(F1,F2).
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Linearization methods
The semismooth Newton method (semismoothness - examples) [9, 14]

Examples

The ℓp norm, for 1 6 p 6 ∞, is strongly semismooth.

The min C-function ψmin : (a, b) ∈ R2 7→ min(a, b) is strongly semismooth.

The Fischer C-function ψF : (a, b) ∈ R2 7→
√
a2 + b2 − (a+ b) is strongly

semismooth.

The projector PK on the convex set K := {x ∈ E : c(x) 6 0} is semismooth
at x , provided

◮ c : E → Rm is C 2 and componentwise convex,
◮ the constant rank constraint qualification (CQ-CR) holds at PK (x)

[(CQ-LI) is certainly fine].
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Linearization methods
The semismooth Newton method (the algorithm)

Algorithm (semismooth Newton for equations)

Given xk ∈ E, compute xk+1 ∈ E as a solution to

F (xk) + Jk(x − xk) = 0,

for some nonsingular Jk ∈ ∂CF (xk) (if any).

Remarks

To work well the algorithm needs smoothness and regularity assumptions.

There is a single linear system to solve per iteration (i.e., cheap iteration).
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Linearization methods
The semismooth Newton method (local convergence)

Theorem (local convergence of the semismooth Newton method)

If F (x∗) = 0,
F is semismooth at x∗,
∂CF (x∗) is nonsingular,

then

1 there is a neighborhood V of x∗ such that the semismooth Newton
algorithm starting at x1 ∈ V is well defined and generates a sequence
in V , converging to x∗ superlinearly,

2 if F is strongly semismooth, then the convergence is quadratic.
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Semidefinite optimization
Problem definition (cones Sn

+ and Sn
++)

Notation and first properties

Sn is the Euclidean space of symmetric n × n real matrices, equipped with
the scalar product

〈·, ·〉 : (A,B) ∈ (Sn)2 7→ 〈A,B〉 = tr(AB) =
∑

ij AijBij ∈ R.

Sn
+ is the cone of Sn made of the positive semidefinite matrices:

A < 0
def
⇐⇒ A ∈ Sn

+ ⇐⇒ λ(A) ⊆ [0,+∞),

A < 0 ⇐⇒ ∀B < 0 : 〈A,B〉 > 0, (33)

if A < 0 and B < 0, then 〈A,B〉 = 0 ⇐⇒ AB = 0,

TA Sn
+ = {D ∈ Sn : vT

Dv > 0, for all v ∈ N (A)}.

By (33), Sn
+ is self-dual, meaning that (Sn

+)
+ = Sn

+.

Sn
++ is the cone of Sn made of the positive definite matrices:

A ≻ 0
def
⇐⇒ A ∈ Sn

++ ⇐⇒ λ(A) ⊆ (0,+∞),

A ≻ 0 ⇐⇒ ∀B ∈ Sn
+ \ {0} : 〈A,B〉 > 0,

A < 0 and [vTMv > 0, ∀ v ∈ N (A) \ {0}] =⇒ M + rA ≻ 0 for large r .
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Semidefinite optimization
Problem definition (primal and dual problems)

The primal and (Lagrange) dual of the SDO problem read

(P)







inf 〈C ,X 〉
A(X ) = b

X < 0
and (D)







sup 〈b, y〉
A∗(y) + S = C

S < 0,
(34)

where

C ∈ Sn and b ∈ R
m,

A : Sn → Rm is linear (A∗ : Rm → Sn is its adjoint).

Notation

Feasible sets: FP := {X ∈ Sn
+ : A(X ) = b},

FD := {(y , S) ∈ Rm × Sn
+ : A∗(y) + S = C}, and F := FD ×FD.

Strictly feasible sets: F s
P
:= {X ∈ Sn

++ : A(X ) = b},
F s

D
:= {(y , S) ∈ Rm × Sn

++ : A∗(y) + S = C}, and F s := F s
D
×F s

D
.

Optimal values: val(P) and val(D).

Solution sets: Sol(P) and Sol(D).
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Semidefinite optimization
Problem definition (Lagrange dualization consequences)

The Lagrangian of problem (P) is the function ℓ : Sn × R
m × Sn → R

defined at (X , y ,S) ∈ Sn × R
m × Sn by

ℓ(X , y ,S) = 〈C ,X 〉 − 〈y ,A(X )− b〉 − 〈S ,X 〉 .

Proposition (consequences of the Lagrangian dualization)

1 val(D) 6 val(P).

2 (X , y ,S) ∈ F =⇒ 〈C ,X 〉 − 〈b, y〉 = 〈X ,S〉 > 0.

3 (X , y ,S) ∈ F , 〈X ,S〉 = 0
⇐⇒ X ∈ Sol(P), (y ,S) ∈ Sol(D), val(D) = val(P),
⇐⇒ (X , (y ,S)) is a saddle-point of ℓ on Sn × (Rm × Sn

+).

Remarks

One says that there is a duality gap if val(D) < val(P).
X ∈ Sol(P), (y ,S) ∈ Sol(D) 6⇒ val(D) = val(P).
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Semidefinite optimization
Problem definition (examples of SDO formulations)

The Schur complement of A ≻ 0 in

K :=

(

A B

BT C

)

is (A |K ) := C − BTA−1B . The following holds

K ≻ 0 ⇐⇒
{

A ≻ 0
(A |K ) ≻ 0.

Examples of SDO modelling

1 Linear optimization.

2 Convex quadratic optimization.

3 Global minimization of polynomials (relaxation if # variables > 2).
4 Rank relaxation of a QCQP.
5 Many more . . .
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Semidefinite optimization
Existence of solution

Strong duality of linear optimization no longer holds (since the linear
image of a closed convex cone is not necessarily closed).

Here are conditions for having nonempty compact sets of solutions.

Proposition (compact sets of solutions)

1 FP ×F s
D
6= ∅ =⇒ Sol(P) 6= ∅ and compact.

2 F s
P
×FD 6= ∅ =⇒ Sol(D) ∩ (R(A) × Sn) 6= ∅ and compact.

3 F s 6= ∅ =⇒ Sol(P) and Sol(D) ∩ (R(A) × Sn) 6= ∅ and compact.

In these cases, there is no duality gap: val(D) = val(P).

The sufficient condition in 1 is (CQ-R) for (D).
The sufficient conditions in 2 are (CQ-R) for (P).
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Semidefinite optimization
Optimality conditions

Proposition (optimality conditions)

Suppose that F s 6= ∅, then

(X , (y ,S)) ∈ Sol(P)× Sol(D) ⇐⇒







A∗(y) + S = C , S < 0,
A(X ) = b, X < 0,
〈X ,S〉 = 0.

(35)
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Semidefinite optimization
An interior point algorithm (central path I)

There are good reasons to generate iterates well inside F s
P
. This is obtained

analytically (not geometrically) by an interior penalization:

(P) y (Pµ)

{

infX 〈C ,X 〉+ µ ld(X )
A(X ) = b,

(D) y (Dµ)

{

sup(y,S) 〈b, y〉 − µ ld(S)

A∗(y) + S = C ,

where ld : Sn → R is the strictly convex and closed function defined at X by

ld(X ) :=

{

− log det(X ) if X ≻ 0
+∞ otherwise.

Three properties of ld (with X ≻ 0 and H , K ∈ Sn):

ld′(X ) · H = −
〈

X−1,H
〉

,

ld′′(X ) · (H ,K ) =
〈

X−1HX−1,K
〉

,

ld∞ = ISn
+
.
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Semidefinite optimization
An interior point algorithm (central path II)

The central path is the smooth curve C : µ ∈ R++ 7→ the unique solution
to

(Oµ)







A∗(y) + S = C , S ≻ 0,
A(X ) = b, X ≻ 0,
XS = µI .

(36)

Proposition (existence and smoothness of the central path)

Suppose that F s 6= ∅ and µ > 0. Then,

1 the system (Oµ) has a solution (Xµ, yµ, Sµ), unique in Sn
++ ×R(A)× Sn

++,

2 the map µ ∈ R++ 7→ (Xµ, yµ, Sµ) ∈ Sn
++ ×R(A) × Sn

++ is C∞.
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Semidefinite optimization
An interior point algorithm (an algorithmic scheme)

A primal-dual path-following interior-point algorithm generates iterates
zk := (Xk , yk ,Sk) ∈ F s in a neighborhood V (θ) of the central path C

(θ ∈ (0, 1) is a parameter that determines the size of the neighborhood).
Each iteration proceeds along a Newton direction aiming a moving point
on C , whose central parameter if σµ̄(z) where σ ∈ (0, 1) and
µ̄(z) := 〈X ,S〉 /n.

Algorithm (primal-dual path-following IP)

From one iterate z to the next one z+.

1 Let d be the Newton direction on a symmetrized version of (Oσµ̄(z)).

2 Determine a large stepsize α > 0 such that z + αd ∈ V (θ).

3 z+ := z + αd .
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