University Paris-Saclay Advanced Continuous Optimization I (J.Ch. Gilbert) Exercises

The difficulty (or length?) of an exercise is sometimes loosely estimated by a number surrounded by braces at the beginning of its statement. The difficulty/length scale ranges from 1 to 5 (the higher the more difficult/long).

Background

0.1. $\{1\}$ Affine hull. Let A be an affine subspace and $O \subset A$ be relatively open in A (i.e., open for the relative/induced/subspace topology of A). Then aff $O=A$.
0.2. $\{1\}$ Relative interior. Let C be a nonempty convex set of a finite dimensional vector space. Then

$$
2(\operatorname{ri} C)=C+\operatorname{ri} C=\bar{C}+\operatorname{ri} C .
$$

0.3. $\{3\}$ Decomposition in a subspace and a convex cone. Let \mathbb{E}_{0} be a subspace of a vector space \mathbb{E} and K be a convex cone of \mathbb{E}. We denote by vect K the smallest vector space containing K (since K is a cone, vect $K=\operatorname{aff} K$ actually). Then,

$$
\mathbb{E}_{0}+K=\mathbb{E} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\mathbb{E}_{0}+\operatorname{vect} K=\mathbb{E} \\
\mathbb{E}_{0} \cap(\text { ri } K) \neq \varnothing
\end{array}\right.
$$

1 Optimality conditions

First order optimality conditions for (P_{G})

1.1. $\{1\}$ Convex $\left(P_{E I}\right)$. Let $G=\left\{0_{\mathbb{R}^{m_{E}}}\right\} \times \mathbb{R}_{-}^{m_{I}}$ and $T: \mathbb{R}^{n} \multimap \mathbb{R}^{m}: x \mapsto c(x)-G$ be the multifunction associated with the constraint of problem $\left(P_{E I}\right)$. Show that T is convex if and only if c_{E} is affine and c_{I} is componentwise convex.
1.2. $\{1\}$ Examples of use of Robinson's constraint qualification condition. Consider the following sets of the form $X_{G}:=\{x \in \mathbb{E}: c(x) \in G\}$, with $G \subset \mathbb{F}$, and points $x_{0} \in X_{G}$:

1. $\mathbb{E}=\mathbb{F}=\mathbb{R}^{2}$, and c and G are defined by

$$
c(x)=\left(x_{1}^{2}+\left(x_{2}-1\right)^{2}-1, x_{1}^{2}+\left(x_{2}+1\right)^{2}-1\right), \quad G=\mathbb{R}_{-}^{2}, \quad \text { and } \quad x_{0}=(0,0),
$$

2. $\mathbb{E}=\mathbb{F}=\mathbb{R}^{2}$, and $c(2$ identical constraints) and G are defined by

$$
c(x)=\left(x_{2}, x_{2}\right), \quad G=\mathbb{R}_{+}^{2}, \quad \text { and } \quad x_{0}=(0,0)
$$

For these sets X_{G} and points $x_{0} \in X_{G}$,
(i) determine whether Robinson's constraint qualification condition holds at x_{0}, without using its equivalence with (CQ-MF),
(ii) find a mudulus of metric regularity of the multifunction $x \mapsto c(x)-G$ at $\left(x_{0}, 0\right)$ if any.
1.3. $\{1.5\}$ Robinson's constraint qualification conditions for $\left(P_{E I}\right)$. Viewing problem ($P_{E I}$) as a particular instance of problem $\left(P_{G}\right)$, show that the Robinson constraint qualification condition is equivalent to the Mangasarian-Fromovitz constraint qualification condition.
1.4. $\{3\}$ First order optimality conditions with an additional set-inclusion constraint. Let \mathbb{E} and \mathbb{F} be two Euclidean vector spaces. Consider the problem

$$
\left\{\begin{array}{l}
\min f(x) \tag{1}\\
x \in Q \\
c(x) \in G
\end{array}\right.
$$

where $f: \mathbb{E} \rightarrow \mathbb{R}$ and $c: \mathbb{E} \rightarrow \mathbb{F}$ are differentiable functions, Q is a nonempty closed convex set of \mathbb{E}, and G is a nonempty closed convex set of \mathbb{F}. Show that if x_{*} is a local minimizer of problem (1) and if

$$
\begin{equation*}
0 \in \operatorname{int}\left(c\left(x_{*}\right)+c^{\prime}\left(x_{*}\right)\left(Q-x_{*}\right)-G\right), \tag{2}
\end{equation*}
$$

then, there exists $\lambda_{*} \in \mathbb{F}$ such that

$$
\left\{\begin{array}{l}
\nabla f\left(x_{*}\right)+c^{\prime}\left(x_{*}\right)^{*} \lambda_{*} \in\left(\mathrm{~T}_{x_{*}} Q\right)^{+} \tag{3}\\
\lambda_{*} \in \mathrm{~N}_{c\left(x_{*}\right)} G .
\end{array}\right.
$$

Second order optimality conditions

1.5. $\{2\}$ Example of use of the second order optimality conditions. Consider the following nonlinear optimization problem in $x \in \mathbb{R}^{2}$:

$$
\left\{\begin{array}{l}
\min -\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
x_{2} \geqslant x_{1}^{2}-1 \\
x_{1} \geqslant 0 .
\end{array}\right.
$$

Using the Lagrangian $\ell: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined at (x, λ) by

$$
\ell(x, \lambda)=-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\lambda_{1}\left(x_{1}^{2}-x_{2}-1\right)+\lambda_{2}\left(-x_{1}\right),
$$

it can be shown that the first order optimality conditions are verified by the following primal-dual pairs

$$
\begin{array}{rll}
x=0 & \text { and } & \lambda=0, \\
x=(0,-1) & \text { and } & \lambda=(1,0), \\
x=(\sqrt{2} / 2,-1 / 2) & \text { and } & \lambda=(1 / 2,0) . \tag{4c}
\end{array}
$$

Using the second order optimality conditions, determine analytically which of the points in (4) are (strict) local minimum, (strict) local maximum, or undetermined.
1.6. $\{3\}$ Sufficient second order optimality conditions for problem $\left(P_{G}\right)$. Let \mathbb{E} and \mathbb{F} be finite dimensional vector spaces. Consider the general optimization problem

$$
\left(P_{G}\right) \quad\left\{\begin{array}{l}
\min f(x) \\
c(x) \in G
\end{array}\right.
$$

where $f: \mathbb{E} \rightarrow \mathbb{R}$ and $c: \mathbb{E} \rightarrow \mathbb{F}$ are smooth functions, and G is a nonempty closed convex set in \mathbb{F} (not necessarily a cone). Its feasible set is denoted by $X_{G}:=\{x \in \mathbb{E}$: $c(x) \in G\}$. The Lagrangian of problem $\left(P_{G}\right)$ is the function $\ell: \mathbb{E} \times \mathbb{F} \rightarrow \mathbb{R}$ defined at $(x, \lambda) \in \mathbb{E} \times \mathbb{F}$ by

$$
\begin{equation*}
\ell(x, \lambda)=f(x)+\langle\lambda, c(x)\rangle \tag{5}
\end{equation*}
$$

Let x_{*} be a local minimum of $\left(P_{G}\right)$ and assume that there exists a multiplier $\lambda_{*} \in \mathbb{E}$ such that

$$
\begin{equation*}
\nabla_{x} \ell\left(x_{*}, \lambda_{*}\right)=0 \quad \text { and } \quad \lambda_{*} \in \mathrm{~N}_{c\left(x_{*}\right)} G \tag{6}
\end{equation*}
$$

We denote by Λ_{*} the set of optimal multipliers λ_{*} such that $\left(x_{*}, \lambda_{*}\right)$ verifies (6), which is therefore nonempty, and by $L_{*}:=\nabla_{x x}^{2} \ell\left(x_{*}, \lambda_{*}\right)$ the Hessian of the Lagrangian with respect to x at a pair $\left(x_{*}, \lambda_{*}\right)$ defined in the context where L_{*} appears. The critical cone at a local solution x_{*} to problem $\left(P_{G}\right)$ is defined by

$$
\begin{equation*}
C_{*}:=\left\{d \in \mathbb{E}: c^{\prime}\left(x_{*}\right) d \in \mathrm{~T}_{c\left(x_{*}\right)} G, f^{\prime}\left(x_{*}\right) d \leqslant 0\right\} . \tag{7}
\end{equation*}
$$

1) Show that, when x_{*} satisfies the first order optimality conditions (6), the critical cone also reads

$$
\begin{equation*}
C_{*}:=\left\{d \in \mathbb{E}: c^{\prime}\left(x_{*}\right) d \in \mathrm{~T}_{c\left(x_{*}\right)} G, f^{\prime}\left(x_{*}\right) d=0\right\} \tag{8}
\end{equation*}
$$

2) Show that the following two properties are equivalent ($\|\cdot\|$ is an arbitrary norm):

$$
\begin{gather*}
\forall d \in C_{*} \backslash\{0\}, \quad \exists \lambda_{*} \in \Lambda_{*}: \quad\left\langle L_{*} d, d\right\rangle>0, \tag{9a}\\
\exists \bar{\gamma}>0, \quad \forall d \in C_{*}, \quad \exists \lambda_{*} \in \Lambda_{*}: \quad\left\langle L_{*} d, d\right\rangle \geqslant \bar{\gamma}\|d\|^{2} . \tag{9b}
\end{gather*}
$$

3) Assume that (9b) holds. Show that for all $\gamma \in[0, \bar{\gamma})$, there exists a neighborhood V of x_{*} such that

$$
\begin{equation*}
\forall x \in\left(X_{G} \cap V\right) \backslash\left\{x_{*}\right\}: \quad f(x)>f\left(x_{*}\right)+\frac{\gamma}{2}\left\|x-x_{*}\right\|^{2} \tag{10}
\end{equation*}
$$

The quadratic growth property (10) implies that x_{*} is a strict local minimum of $\left(P_{G}\right)$.

2 Linearization methods

The Josephy-Newton algorithm for functional inclusions

2.1. $\{1\}$ Explicit variational problem. Let \mathbb{E} be a Euclidean space, X be a (not necessarily convex) subset of \mathbb{E}, and $F: \mathbb{E} \rightarrow \mathbb{E}$ be a smooth map. Consider the variational problem

$$
\left(P_{\mathrm{v}}\right) \quad F(x)+\mathrm{N}_{X}(x) \ni 0
$$

where $\mathrm{N}_{X}(x)$ is the normal cone to X at x. Suppose that \mathbb{F} is another Euclidean space and that X has actually the following form

$$
X:=\{x \in \mathbb{E}: c(x) \in G\},
$$

in which $c: \mathbb{E} \rightarrow \mathbb{F}$ is a smooth function and G is a closed convex set of \mathbb{F}. Show that if x_{*} is a solution to $\left(P_{\mathrm{v}}\right)$ satisfying

$$
0 \in \operatorname{int}\left\{c\left(x_{*}\right)+c^{\prime}\left(x_{*}\right) \mathbb{E}-G\right\},
$$

then, there exists $\lambda_{*} \in \mathrm{~N}_{c\left(x_{*}\right)} G$ such that

$$
F\left(x_{*}\right)+c^{\prime}\left(x_{*}\right)^{*} \lambda_{*}=0
$$

2.2. $\{2\}$ Josephy-Newton algorithm for a nonlinear complementarity problem. Let \mathbb{E} and \mathbb{F} be two Euclidean spaces, K be a nonempty closed convex cone of \mathbb{F}, K^{+}its positive dual, and F and $G: \mathbb{E} \rightarrow \mathbb{F}$ be two differentiable functions. Consider the nonlinear complementarity problem

$$
\begin{equation*}
K \ni G(x) \perp F(x) \in K^{+} . \tag{11}
\end{equation*}
$$

Show that the algorithm that computes the next iterate x_{k+1} from the current one x_{k} by solving the linear complementarity problem in x

$$
\begin{equation*}
K \ni\left(G\left(x_{k}\right)+G^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right) \perp\left(F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right) \in K^{+}, \tag{12}
\end{equation*}
$$

can be viewed as the Josephy-Newton algorithm on a certain variational inequality problem on a cone; which one?

The SQP algorithm in constrained optimization

2.3. An SQP Algorithm for Solving Problem $\left(P_{G}\right)$. Consider the optimization problem $\left(P_{G}\right)$ with its Lagrangian $\ell: \mathbb{E} \times \mathbb{F} \rightarrow \mathbb{R}$ defined at (x, λ) by

$$
\ell(x, \lambda)=f(x)+\langle\lambda, c(x)\rangle .
$$

For a given pair $\left(x_{*}, \lambda_{*}\right) \in \mathbb{E} \times \mathbb{F}$, denote by $L_{*}:=\nabla_{x x}^{2} \ell\left(x_{*}, \lambda_{*}\right)$ the Hessian of the Lagrangian at $\left(x_{*}, \lambda_{*}\right)$. Let us introduce the set

$$
C_{*}:=\left\{d \in \mathbb{E}: c^{\prime}\left(x_{*}\right) d \in \mathrm{~T}_{c\left(x_{*}\right)} G, f^{\prime}\left(x_{*}\right) d \leqslant 0\right\} .
$$

1) Show that the first order optimality conditions at a solution x_{*} to problem $\left(P_{G}\right)$ can be written

$$
\begin{equation*}
F\left(z_{*}\right)+\mathrm{N}_{C}\left(z_{*}\right) \ni 0 \tag{13}
\end{equation*}
$$

for some variable z_{*}, some function F, and some closed convex set C to determine.
2) Show in what sense the Josephy-Newton (JN) algorithm on the functional inclusion (13) consists in determining the new iterate $x+d$ from the current one x by computing d as a stationary point of

$$
\left\{\begin{array}{l}
\min _{d}\langle\nabla f(x), d\rangle+\frac{1}{2}\left\langle\nabla_{x x}^{2} \ell(x, \lambda) d, d\right\rangle \tag{14}\\
c(x)+c^{\prime}(x) \cdot d \in G .
\end{array}\right.
$$

3) In this item, we assume that G is a convex polyhedron.

Show that $\left(x_{*}, \lambda_{*}\right) \in \mathbb{E} \times \mathbb{F}$ is a semi-stable primal-dual solution to $\left(P_{G}\right)$ if and only if $\left\langle L_{*} d, d\right\rangle>0$ for all pairs $(d, \mu) \in \mathbb{E} \times \mathbb{F}$ satisfying

$$
\begin{gather*}
\left(d, c^{\prime}\left(x_{*}\right) d, \mu\right) \neq 0, \tag{15a}\\
c\left(x_{*}\right)+c^{\prime}\left(x_{*}\right) d \in G, \tag{15b}\\
\left\langle\lambda_{*}, c^{\prime}\left(x_{*}\right) d\right\rangle=0, \tag{15c}\\
L_{*} d+c^{\prime}\left(x_{*}\right)^{*} \mu=0, \tag{15d}\\
\lambda_{*}+\mu \in \mathrm{N}_{G}\left(c\left(x_{*}\right)\right) . \tag{15e}
\end{gather*}
$$

2.4. Nondifferentiable augmented Lagrangian. Let \mathbb{E} be a Euclidean vector space. Consider the usual optimization problem with equality and inequality constraints

$$
\left(P_{E I}\right)\left\{\begin{array}{l}
\inf _{x} f(x) \\
c_{E}(x)=0 \\
c_{I}(x) \leqslant 0
\end{array}\right.
$$

where $f: \mathbb{E} \rightarrow \mathbb{R}, E$ and I form a partition of $[1: m], m_{E}:=|E|, m_{I}:=|I|, c_{E}: \mathbb{E} \rightarrow$ $\mathbb{R}^{m_{E}}$, and $c_{I}: \mathbb{E} \rightarrow \mathbb{R}^{m_{I}}$. The functions f and c are supposed smooth. The lagrangian of the problem is the function $\ell: \mathbb{E} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined at $(x, \lambda) \in \mathbb{E} \times \mathbb{R}^{m}$ by

$$
\ell(x, \lambda)=f(x)+\lambda^{\top} c(x),
$$

where $c(x):=\left(c_{E}(x), c_{I}(x)\right)$.
Let x_{*} be a local minimum of problem $\left(P_{E I}\right)$ at which the KKT conditions hold. We denote by Λ_{*} the set of optimal multipliers associated with x_{*}. Suppose that the weak second-order sufficient condition of optimality holds at x_{*}.

Let $\|\cdot\|_{\mathrm{P}}$ be a norm on \mathbb{R}^{m} and $\|\cdot\|_{\mathrm{D}}$ be its dual norm with respect to the Euclidean scalar product. Let $\mu \in \mathbb{R}^{m}$ and $\sigma \in \mathbb{R}_{+}$verifying

$$
\begin{equation*}
\sigma \geqslant \sup _{\lambda_{*} \in \Lambda_{*}}\left\|\lambda_{*}-\mu\right\|_{\mathrm{D}} \quad \text { and } \quad \sigma>\left\|\hat{\lambda}_{*}-\mu\right\|_{\mathrm{D}}, \tag{16}
\end{equation*}
$$

for some $\hat{\lambda}_{*} \in \Lambda_{*}$. We want to show that the function $\Theta_{\mu, \sigma}: \mathbb{E} \rightarrow \mathbb{R}$ defined at $x \in \mathbb{E}$ by

$$
\Theta_{\mu, \sigma}(x):=f(x)+\mu^{\top} c(x)^{\#}+\sigma\left\|c(x)^{\#}\right\|_{\mathrm{P}}
$$

has a strict local minimum at x_{*}. We propose a reasoning by contradiction.

1) Show that if $\Theta_{\mu, \sigma}$ has not a strict local minimum at x_{*}, one can find a sequence $\left\{x_{k}\right\} \subset \mathbb{E}$, a sequence of positive real numbers $\left\{t_{k}\right\} \downarrow 0$, and a nonzero critical direction d such that $x_{k}=x_{*}+t_{k} d+o\left(t_{k}\right)$.
2) Show that

$$
\exists \lambda_{*} \in \Lambda_{*}, \quad \forall k \geqslant 1: \quad \ell\left(x_{*}, \lambda_{*}\right)<\ell\left(x_{k}, \lambda_{*}\right) .
$$

3) Get a contradiction.
2.5. Norm assumptions. For an arbitrary norm $\|\cdot\|$ on \mathbb{R}^{m}, show that the following properties are equivalent (the operators $|\cdot|$ and $(\cdot)^{+}$act componentwise):
(i) $0 \leqslant u \leqslant v \Rightarrow\|u\| \leqslant\|v\|$,
(ii) $u \leqslant v \Rightarrow\left\|u^{+}\right\| \leqslant\left\|v^{+}\right\|$,
(iii) $v \mapsto\left\|v^{+}\right\|$is convex.

The semismooth Newton algorithm for equations

2.6. Upper semi-continuity of the subdifferential. The subdifferential of a convex function $f: \mathbb{E} \rightarrow \mathbb{R}$ at $x \in \mathbb{E}$ is the set

$$
\partial f(x):=\{s \in \mathbb{E}: f(y) \geqslant f(x)+\langle s, y-x\rangle, \forall y \in \mathbb{E}\} .
$$

Show that the multifunction $\partial f: \mathbb{E} \multimap \mathbb{E}: x \mapsto \partial f(x)$ is upper-semicontinuous at any $x \in \mathbb{E}$.

3 Conic Optimization

Semidefinite Optimization

3.1. Singular Schur complement. Let $A \in \mathcal{S}^{n}, C \in \mathcal{S}^{m}$, and $B \in \mathbb{R}^{n \times m}$. Denote by A^{\dagger} the pseudo-inverse of A. Show that

$$
\left(\begin{array}{cc}
A & B \tag{17}\\
B^{\top} & C
\end{array}\right) \geqslant 0 \Longleftrightarrow\left\{\begin{array}{l}
A \geqslant 0 \\
C-B^{\top} A^{\dagger} B \geqslant 0 \\
\mathcal{R}(B) \subset \mathcal{R}(A) .
\end{array}\right.
$$

3.2. Existence of dual solutions in $S D O$. We use the notation of the course. Consider the standard primal form of the semidefinite optimization problem

$$
\left\{\begin{array}{l}
\inf _{X \in \mathcal{S}^{n}}\langle C, X\rangle \\
\mathcal{A}(X)=b \\
X \geqslant 0,
\end{array}\right.
$$

Show that

$$
\mathcal{F}_{\mathrm{P}}^{s} \times \mathcal{F}_{\mathrm{D}} \neq \varnothing \Longrightarrow\left\{\begin{array}{l}
\operatorname{Sol}(D) \cap\left(\mathcal{R}(A) \times \mathcal{S}^{n}\right) \text { is nonempty and compact }, \\
\text { there is no duality gap: val }(D)=\operatorname{val}(P)
\end{array}\right.
$$

