University Paris-Saclay
Advanced Continuous Optimization I (J.Ch. Gilbert)
Exercises

The difficulty (or length?) of an exercise is sometimes loosely estimated by a number
surrounded by braces at the beginning of its statement. The difficulty /length scale
ranges from 1 to 5 (the higher the more difficult/long).

Background

0.1. {1} Affine hull. Let A be an affine subspace and O c A be relatively open in A (i.e.,
open for the relative/induced /subspace topology of A). Then aff O = A.

0.2. {1} Relative interior. Let C be a nonempty convex set of a finite dimensional vector

space. Then
2(riC)=C+1iC=C+1iC.

0.3. {3} Decomposition in a subspace and a convex cone. Let Eq be a subspace of a vector
space E and K be a convex cone of E. We denote by vect K the smallest vector space
containing K (since K is a cone, vect K = aff K actually). Then,

Eg+vect K =E

BorK=E {Eom(riK)qt@.

1 Optimality conditions

First order optimality conditions for (Pg)

1.1. {1} Conver (Pgr). Let G = {Ogmp} x R™ and T : R” — R™ : 2 » ¢(x) — G be
the multifunction associated with the constraint of problem (Pgr). Show that 7T is
convex if and only if cg is affine and ¢; is componentwise convex.

1.2. {1} Ezamples of use of Robinson’s constraint qualification condition. Consider the
following sets of the form Xg :={x € E: ¢(x) € G}, with G c F, and points xg € X¢:

1. E=F=R?, and ¢ and G are defined by

c(x) = (JE% + (29— 1)2 -1, :n% + (2o + 1)2 -1), G= R%, and xo = (0,0),

2. E=F=R? and ¢ (2 identical constraints) and G are defined by

c(x) = (x2, x2), G = Ri, and xo = (0,0).

For these sets X and points g € Xg,



1.3.

1.4.

(i) determine whether Robinson’s constraint qualification condition holds at o,
without using its equivalence with (CQ-MF),

(i7) find a mudulus of metric regularity of the multifunction = — c¢(z) - G at (z9,0)
if any.

{1.5} Robinson’s constraint qualification conditions for (Pgr). Viewing problem (Pgr)
as a particular instance of problem (Pg), show that the Robinson constraint qualifi-
cation condition is equivalent to the Mangasarian-Fromovitz constraint qualification
condition.

{3} First order optimality conditions with an additional set-inclusion constraint. Let E
and F be two Euclidean vector spaces. Consider the problem

min f(x)
rEeQ (1)
c(x) € G,

where f:E - R and ¢: E - F are differentiable functions, ) is a nonempty closed
convex set of E, and G is a nonempty closed convex set of F. Show that if z, is a
local minimizer of problem (1) and if

OEint(c(a;*)+c’(a:*)(Q—x*)—G), (2)
then, there exists A, € [F such that
V(@) + (@) A € (Te, Q)7 (3)
Ay € Nc(m*) G.

Second order optimality conditions

1.5.

{2} Ezample of use of the second order optimality conditions. Consider the following
nonlinear optimization problem in z € R?:

12 02
min —5(z7 +x3)
To 2 :17% -1
z1 2 0.

Using the Lagrangian £: R? x R? - R defined at (z,)) by
Oz, \) = =1(af +23) + M (2] — 22— 1) + Ao (—21),

it can be shown that the first order optimality conditions are verified by the following
primal-dual pairs

r=0 and A=0, (4a)
x=(0,-1) and X=(1,0), (4b)
z=(v2/2,-1/2) and X =(1/2,0). (4c)

Using the second order optimality conditions, determine analytically which of the
points in (4) are (strict) local minimum, (strict) local maximum, or undetermined.
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1.6. {3} Sufficient second order optimality conditions for problem (Pg). Let E and F be
finite dimensional vector spaces. Consider the general optimization problem

min f(x)
(o) {c(a:) €@,
where f:E - R and ¢: E - F are smooth functions, and G is a nonempty closed
convex set in F (not necessarily a cone). Its feasible set is denoted by X := {z ¢ E:
c(x) € G}. The Lagrangian of problem (Pg) is the function ¢: E x F — R defined at
(z,\) e ExF by

Uz, A) = f(@) + (A c(x)). (5)

Let z, be a local minimum of (Pg) and assume that there exists a multiplier A, € E
such that

ng(x*, )\*) =0 and )\* € Nc(gc,,) G. (6)

We denote by A, the set of optimal multipliers A, such that (z., A, ) verifies (6), which
is therefore nonempty, and by L, := meﬁ(:p*, A.) the Hessian of the Lagrangian with
respect to x at a pair (z.,\.) defined in the context where L, appears. The critical
cone at a local solution x. to problem (Pg) is defined by

Co={deE:(z.)deT., )G, f'(x.)d<0}. (7)

1) Show that, when z, satisfies the first order optimality conditions (6), the critical
cone also reads

C.:={deE:(z.)deT., )G, f'(x.)d=0}. (8)

2) Show that the following two properties are equivalent (|| is an arbitrary norm):

Vde Con {0}, 3A. €A, (L.d,d)>0, (9a)

35>0, YdeCy, AN €Ay (L.d,d)>~|d|> (9b)

3) Assume that (9b) holds. Show that for all v € [0,7), there exists a neighborhood
V of x,. such that

Vee(XanV)N{a): f(@)> f(@) + 4 e -2 (10)

The quadratic growth property (10) implies that z. is a strict local minimum of (Pg).

2 Linearization methods

The Josephy-Newton algorithm for functional inclusions

2.1. {1} Explicit variational problem. Let E be a Euclidean space, X be a (not necessarily
convex) subset of E, and F': E - E be a smooth map. Consider the variational
problem

(Py) F(x)+Nx(z)30,



2.2,

where Nx(z) is the normal cone to X at x. Suppose that F is another Euclidean
space and that X has actually the following form

X :={zeE:c(z)eG},

in which ¢: E — F is a smooth function and G is a closed convex set of F. Show that
if z. is a solution to (P, ) satisfying

0 eint{c(x,) + ' (z.)E -G},
then, there exists A, € Ny, )G such that

F(z.)+c(z:) X =0.

{2} Josephy-Newton algorithm for a nonlinear complementarity problem. Let E and F
be two Euclidean spaces, K be a nonempty closed convex cone of F, K" its positive
dual, and F and G : E - F be two differentiable functions. Consider the nonlinear
complementarity problem

K>G(z) L F(z)e K. (11)

Show that the algorithm that computes the next iterate xp,; from the current one xy
by solving the linear complementarity problem in x

K5 (Glag) + G (o) (@ - o)) L (Fax) + F (i) (x - 2p) ) € K, (12)

can be viewed as the Josephy-Newton algorithm on a certain variational inequality
problem on a cone; which one?

The SQP algorithm in constrained optimization

2.3.

An SQP Algorithm for Solving Problem (Pg). Consider the optimization problem
(Pg) with its Lagrangian £:E x F - R defined at (x,\) by

Uz, A) = f(2) + (A c(x)).
For a given pair (74,\.) € Ex F, denote by L, = V2, {(z,\s) the Hessian of the
Lagrangian at (x.,\:). Let us introduce the set

Co={deB:(x.)d e Te,) G, f'(x.)d<0}.

1) Show that the first order optimality conditions at a solution x. to problem (Pq)
can be written
F(z.)+Ng(z:) 30, (13)

for some variable z,, some function F, and some closed convex set C' to determine.

2) Show in what sense the Josephy-Newton (JN) algorithm on the functional inclusion
(13) consists in determining the new iterate z + d from the current one = by
computing d as a stationary point of

{mind (Vf(x),d)+ % (V2.0(x,\)d,d)

c(x)+(x)-deG. (14)
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3) In this item, we assume that G is a convex polyhedron.

Show that (., A«) € ExF is a semi-stable primal-dual solution to (Pg) if and only
if (L.d,d) >0 for all pairs (d,u) € E x IF satisfying

(d,c (w4 )d, p1) %0, (15a)
c(z,)+c(z,)de @, (15b)

(Ae,c(z2)d) =0, (15¢)
Liod+c () =0, (15d)
A+ e No(e(an). (15¢)

2.4. Nondifferentiable augmented Lagrangian. Let E be a Euclidean vector space. Consider
the usual optimization problem with equality and inequality constraints

inf, f(x)
(Per) {ce(r)=0
CI('Z') < 07

where f:E - R, F and [ form a partition of [1:m], mpg := |E|, m; :=|I|, cg : E >
R™Eand ¢y : E - R™I. The functions f and c¢ are supposed smooth. The lagrangian

of the problem is the function £:E x R™ — R defined at (z,\) € E x R™ by
(a,A) = f2) + ATe(x),
where ¢(x) := (cg(x),cr(x)).

Let =, be a local minimum of problem (Pgr) at which the KKT conditions hold. We
denote by A, the set of optimal multipliers associated with z,. Suppose that the
weak second-order sufficient condition of optimality holds at z,.

Let |- |p be a norm on R™ and | - |, be its dual norm with respect to the Euclidean
scalar product. Let y € R™ and o € R, verifying

o> sup [A-plo  and o> A - plb, (16)

* €L

for some 5\* € A.. We want to show that the function ©,, : E - R defined at z € E
by
Opo (@) = f(z) + p' e(x)® + ole(x)? s

has a strict local minimum at xz,. We propose a reasoning by contradiction.

1) Show that if ©, , has not a strict local minimum at ., one can find a sequence
{zr} c E, a sequence of positive real numbers {t;} | 0, and a nonzero critical
direction d such that zj = x. + tpd + o(tx).

2) Show that

JAe €Ny, VE21: xw, ) <l(Tp, As).

3) Get a contradiction.



2.5. Norm assumptions. For an arbitrary norm | - | on R™, show that the following
properties are equivalent (the operators || and (-)* act componentwise):

() 0<usv = ful < o],
(1) u<v = fur| <[o"],
(i13) v |v*]| is convex.
The semismooth Newton algorithm for equations

2.6. Upper semi-continuity of the subdifferential. The subdifferential of a convex function

f:E—>Rat zeckE is the set
Of(x):={sek: f(y) > f(z) +(s,y—x), VyecE}.

Show that the multifunction df : E — E: z — df(z) is upper-semicontinuous at any
xeE.

3 Conic Optimization

Semidefinite Optimization

3.1. Singular Schur complement. Let A € S, C' e S™, and B € R™™. Denote by A’ the
pseudo-inverse of A. Show that

41 B A>0
(BT 0) >0 — C-BTA'B>0 (17)
R(B) c R(A).

3.2. Ezistence of dual solutions in SDO. We use the notation of the course. Consider the
standard primal form of the semidefinite optimization problem

A(X)=b
X =0,
Show that
TS T o+ Sol(D)n (R(A) x 8™) is nonempty and compact,
poop there is no duality gap: val(D) = val(P).
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