University Paris-Saclay Advanced Continuous Optimization I (J.Ch. Gilbert) Exercises

The difficulty (or length?) of an exercise is sometimes loosely estimated by a number surrounded by braces at the beginning of its statement. The difficulty/length scale ranges from 1 to 5 (the higher the more difficult/long).

Background

- **0.1.** {1} Affine hull. Let A be an affine subspace and $O \subset A$ be relatively open in A (i.e., open for the relative/induced/subspace topology of A). Then aff O = A.
- **0.2.** $\{1\}$ Relative interior. Let C be a nonempty convex set of a finite dimensional vector space. Then

$$2(\operatorname{ri} C) = C + \operatorname{ri} C = \overline{C} + \operatorname{ri} C.$$

0.3. {3} Decomposition in a subspace and a convex cone. Let \mathbb{E}_0 be a subspace of a vector space \mathbb{E} and K be a convex cone of \mathbb{E} . We denote by vect K the smallest vector space containing K (since K is a cone, vect $K = \operatorname{aff} K$ actually). Then,

 $\mathbb{E}_0 + K = \mathbb{E} \qquad \Longleftrightarrow \qquad \begin{cases} \mathbb{E}_0 + \operatorname{vect} K = \mathbb{E} \\ \mathbb{E}_0 \cap (\operatorname{ri} K) \neq \emptyset. \end{cases}$

1 Optimality conditions

First order optimality conditions for (P_G)

- **1.1.** {1} Convex (P_{EI}) . Let $G = \{0_{\mathbb{R}^{m_E}}\} \times \mathbb{R}^{m_I}$ and $T : \mathbb{R}^n \to \mathbb{R}^m : x \mapsto c(x) G$ be the multifunction associated with the constraint of problem (P_{EI}) . Show that T is convex if and only if c_E is affine and c_I is componentwise convex.
- **1.2.** {1} Examples of use of Robinson's constraint qualification condition. Consider the following sets of the form $X_G := \{x \in \mathbb{E} : c(x) \in G\}$, with $G \subset \mathbb{F}$, and points $x_0 \in X_G$:
 - 1. $\mathbb{E} = \mathbb{F} = \mathbb{R}^2$, and c and G are defined by

$$c(x) = (x_1^2 + (x_2 - 1)^2 - 1, x_1^2 + (x_2 + 1)^2 - 1), \qquad G = \mathbb{R}^2_-, \qquad \text{and} \qquad x_0 = (0, 0),$$

2. $\mathbb{E} = \mathbb{F} = \mathbb{R}^2$, and c (2 identical constraints) and G are defined by

 $c(x) = (x_2, x_2),$ $G = \mathbb{R}^2_+,$ and $x_0 = (0, 0).$

For these sets X_G and points $x_0 \in X_G$,

- (i) determine whether Robinson's constraint qualification condition holds at x_0 , without using its equivalence with (CQ-MF),
- (*ii*) find a mudulus of metric regularity of the multifunction $x \mapsto c(x) G$ at $(x_0, 0)$ if any.
- **1.3.** {1.5} Robinson's constraint qualification conditions for (P_{EI}) . Viewing problem (P_{EI}) as a particular instance of problem (P_G) , show that the Robinson constraint qualification condition is equivalent to the Mangasarian-Fromovitz constraint qualification condition.
- **1.4.** {3} First order optimality conditions with an additional set-inclusion constraint. Let \mathbb{E} and \mathbb{F} be two Euclidean vector spaces. Consider the problem

$$\begin{cases} \min f(x) \\ x \in Q \\ c(x) \in G, \end{cases}$$
(1)

where $f : \mathbb{E} \to \mathbb{R}$ and $c : \mathbb{E} \to \mathbb{F}$ are differentiable functions, Q is a nonempty closed convex set of \mathbb{E} , and G is a nonempty closed convex set of \mathbb{F} . Show that if x_* is a local minimizer of problem (1) and if

$$0 \in \inf(c(x_*) + c'(x_*)(Q - x_*) - G),$$
(2)

then, there exists $\lambda_* \in \mathbb{F}$ such that

$$\begin{cases} \nabla f(x_*) + c'(x_*)^* \lambda_* \in (\mathcal{T}_{x_*} Q)^+ \\ \lambda_* \in \mathcal{N}_{c(x_*)} G. \end{cases}$$
(3)

Second order optimality conditions

1.5. {2} Example of use of the second order optimality conditions. Consider the following nonlinear optimization problem in $x \in \mathbb{R}^2$:

$$\begin{cases} \min -\frac{1}{2}(x_1^2 + x_2^2) \\ x_2 \ge x_1^2 - 1 \\ x_1 \ge 0. \end{cases}$$

Using the Lagrangian $\ell : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined at (x, λ) by

$$\ell(x,\lambda) = -\frac{1}{2}(x_1^2 + x_2^2) + \lambda_1(x_1^2 - x_2 - 1) + \lambda_2(-x_1),$$

it can be shown that the first order optimality conditions are verified by the following primal-dual pairs

$$x = 0 \quad \text{and} \quad \lambda = 0,$$
 (4a)

$$x = (0, -1)$$
 and $\lambda = (1, 0),$ (4b)

$$x = (\sqrt{2/2}, -1/2)$$
 and $\lambda = (1/2, 0).$ (4c)

Using the second order optimality conditions, determine analytically which of the points in (4) are (strict) local minimum, (strict) local maximum, or undetermined.

1.6. {3} Sufficient second order optimality conditions for problem (P_G) . Let \mathbb{E} and \mathbb{F} be finite dimensional vector spaces. Consider the general optimization problem

$$(P_G) \quad \begin{cases} \min f(x) \\ c(x) \in G, \end{cases}$$

where $f : \mathbb{E} \to \mathbb{R}$ and $c : \mathbb{E} \to \mathbb{F}$ are smooth functions, and G is a nonempty *closed* convex set in \mathbb{F} (not necessarily a cone). Its feasible set is denoted by $X_G := \{x \in \mathbb{E} : c(x) \in G\}$. The Lagrangian of problem (P_G) is the function $\ell : \mathbb{E} \times \mathbb{F} \to \mathbb{R}$ defined at $(x, \lambda) \in \mathbb{E} \times \mathbb{F}$ by

$$\ell(x,\lambda) = f(x) + \langle \lambda, c(x) \rangle.$$
(5)

Let x_* be a local minimum of (P_G) and assume that there exists a multiplier $\lambda_* \in \mathbb{E}$ such that

$$\nabla_x \ell(x_*, \lambda_*) = 0 \quad \text{and} \quad \lambda_* \in \mathcal{N}_{c(x_*)} G.$$
(6)

We denote by Λ_* the set of optimal multipliers λ_* such that (x_*, λ_*) verifies (6), which is therefore nonempty, and by $L_* \coloneqq \nabla^2_{xx} \ell(x_*, \lambda_*)$ the Hessian of the Lagrangian with respect to x at a pair (x_*, λ_*) defined in the context where L_* appears. The *critical cone* at a local solution x_* to problem (P_G) is defined by

$$C_* \coloneqq \{ d \in \mathbb{E} : c'(x_*) d \in \mathcal{T}_{c(x_*)} G, \ f'(x_*) d \leq 0 \}.$$

$$\tag{7}$$

1) Show that, when x_* satisfies the first order optimality conditions (6), the critical cone also reads

$$C_* \coloneqq \{ d \in \mathbb{E} : c'(x_*) d \in \mathcal{T}_{c(x_*)} G, \ f'(x_*) d = 0 \}.$$
(8)

2) Show that the following two properties are equivalent $(\|\cdot\|$ is an arbitrary norm):

$$\forall d \in C_* \smallsetminus \{0\}, \ \exists \lambda_* \in \Lambda_* : \quad \langle L_*d, d \rangle > 0, \tag{9a}$$

$$\exists \bar{\gamma} > 0, \ \forall d \in C_*, \ \exists \lambda_* \in \Lambda_* : \quad \langle L_*d, d \rangle \ge \bar{\gamma} \|d\|^2.$$
(9b)

3) Assume that (9b) holds. Show that for all $\gamma \in [0, \bar{\gamma})$, there exists a neighborhood V of x_* such that

$$\forall x \in (X_G \cap V) \setminus \{x_*\}: \qquad f(x) > f(x_*) + \frac{\gamma}{2} \|x - x_*\|^2.$$
(10)

The quadratic growth property (10) implies that x_* is a strict local minimum of (P_G) .

2 Linearization methods

The Josephy-Newton algorithm for functional inclusions

2.1. {1} *Explicit variational problem.* Let \mathbb{E} be a Euclidean space, X be a (not necessarily convex) subset of \mathbb{E} , and $F : \mathbb{E} \to \mathbb{E}$ be a smooth map. Consider the variational problem

$$(P_{\rm v}) \quad F(x) + \mathcal{N}_X(x) \ni 0,$$

where $N_X(x)$ is the normal cone to X at x. Suppose that \mathbb{F} is another Euclidean space and that X has actually the following form

$$X \coloneqq \{x \in \mathbb{E} : c(x) \in G\},\$$

in which $c : \mathbb{E} \to \mathbb{F}$ is a smooth function and G is a closed convex set of \mathbb{F} . Show that if x_* is a solution to (P_v) satisfying

$$0 \in \inf\{c(x_*) + c'(x_*)\mathbb{E} - G\},\$$

then, there exists $\lambda_* \in \mathcal{N}_{c(x_*)} G$ such that

$$F(x_*) + c'(x_*)^*\lambda_* = 0.$$

2.2. {2} Josephy-Newton algorithm for a nonlinear complementarity problem. Let \mathbb{E} and \mathbb{F} be two Euclidean spaces, K be a nonempty closed convex cone of \mathbb{F} , K^+ its positive dual, and F and $G : \mathbb{E} \to \mathbb{F}$ be two differentiable functions. Consider the nonlinear complementarity problem

$$K \ni G(x) \perp F(x) \in K^+. \tag{11}$$

Show that the algorithm that computes the next iterate x_{k+1} from the current one x_k by solving the linear complementarity problem in x

$$K \ni \left(G(x_k) + G'(x_k)(x - x_k) \right) \perp \left(F(x_k) + F'(x_k)(x - x_k) \right) \in K^+, \tag{12}$$

can be viewed as the Josephy-Newton algorithm on a certain variational inequality problem on a cone; which one?

The SQP algorithm in constrained optimization

2.3. An SQP Algorithm for Solving Problem (P_G) . Consider the optimization problem (P_G) with its Lagrangian $\ell : \mathbb{E} \times \mathbb{F} \to \mathbb{R}$ defined at (x, λ) by

$$\ell(x,\lambda) = f(x) + \langle \lambda, c(x) \rangle.$$

For a given pair $(x_*, \lambda_*) \in \mathbb{E} \times \mathbb{F}$, denote by $L_* := \nabla^2_{xx} \ell(x_*, \lambda_*)$ the Hessian of the Lagrangian at (x_*, λ_*) . Let us introduce the set

$$C_* \coloneqq \{ d \in \mathbb{E} : c'(x_*) d \in \mathcal{T}_{c(x_*)} G, f'(x_*) d \leq 0 \}.$$

1) Show that the first order optimality conditions at a solution x_* to problem (P_G) can be written

$$F(z_*) + \mathcal{N}_C(z_*) \ni 0, \tag{13}$$

for some variable z_* , some function F, and some closed convex set C to determine.

2) Show in what sense the Josephy-Newton (JN) algorithm on the functional inclusion (13) consists in determining the new iterate x + d from the current one x by computing d as a *stationary point* of

$$\begin{cases} \min_{d} \left\langle \nabla f(x), d \right\rangle + \frac{1}{2} \left\langle \nabla_{xx}^{2} \ell(x, \lambda) d, d \right\rangle \\ c(x) + c'(x) \cdot d \in G. \end{cases}$$
(14)

3) In this item, we assume that G is a convex polyhedron.

Show that $(x_*, \lambda_*) \in \mathbb{E} \times \mathbb{F}$ is a semi-stable primal-dual solution to (P_G) if and only if $\langle L_*d, d \rangle > 0$ for all pairs $(d, \mu) \in \mathbb{E} \times \mathbb{F}$ satisfying

$$(d, c'(x_*)d, \mu) \neq 0,$$
 (15a)

$$c(x_*) + c'(x_*)d \in G, \tag{15b}$$

$$\langle \lambda_*, c'(x_*)d \rangle = 0, \tag{15c}$$

$$L_*d + c'(x_*)^*\mu = 0, \tag{15d}$$

$$\lambda_* + \mu \in \mathcal{N}_G(c(x_*)). \tag{15e}$$

2.4. Nondifferentiable augmented Lagrangian. Let \mathbb{E} be a Euclidean vector space. Consider the usual optimization problem with equality and inequality constraints

$$(P_{EI}) \quad \begin{cases} \inf_x f(x) \\ c_E(x) = 0 \\ c_I(x) \le 0, \end{cases}$$

where $f : \mathbb{E} \to \mathbb{R}$, E and I form a partition of [1:m], $m_E := |E|$, $m_I := |I|$, $c_E : \mathbb{E} \to \mathbb{R}^{m_E}$, and $c_I : \mathbb{E} \to \mathbb{R}^{m_I}$. The functions f and c are supposed smooth. The lagrangian of the problem is the function $\ell : \mathbb{E} \times \mathbb{R}^m \to \mathbb{R}$ defined at $(x, \lambda) \in \mathbb{E} \times \mathbb{R}^m$ by

$$\ell(x,\lambda) = f(x) + \lambda^{\mathsf{T}} c(x),$$

where $c(x) \coloneqq (c_E(x), c_I(x))$.

Let x_* be a local minimum of problem (P_{EI}) at which the KKT conditions hold. We denote by Λ_* the set of optimal multipliers associated with x_* . Suppose that the weak second-order sufficient condition of optimality holds at x_* .

Let $\|\cdot\|_{\mathsf{P}}$ be a norm on \mathbb{R}^m and $\|\cdot\|_{\mathsf{D}}$ be its dual norm with respect to the Euclidean scalar product. Let $\mu \in \mathbb{R}^m$ and $\sigma \in \mathbb{R}_+$ verifying

$$\sigma \ge \sup_{\lambda_* \in \Lambda_*} \|\lambda_* - \mu\|_{\mathsf{D}} \quad \text{and} \quad \sigma > \|\hat{\lambda}_* - \mu\|_{\mathsf{D}}, \tag{16}$$

for some $\lambda_* \in \Lambda_*$. We want to show that the function $\Theta_{\mu,\sigma} : \mathbb{E} \to \mathbb{R}$ defined at $x \in \mathbb{E}$ by

$$\Theta_{\mu,\sigma}(x) \coloneqq f(x) + \mu^{\mathsf{T}} c(x)^{\#} + \sigma \| c(x)^{\#} \|_{\mathsf{P}}$$

has a strict local minimum at x_* . We propose a reasoning by contradiction.

- 1) Show that if $\Theta_{\mu,\sigma}$ has not a strict local minimum at x_* , one can find a sequence $\{x_k\} \subset \mathbb{E}$, a sequence of positive real numbers $\{t_k\} \downarrow 0$, and a nonzero critical direction d such that $x_k = x_* + t_k d + o(t_k)$.
- 2) Show that

 $\exists \lambda_* \in \Lambda_*, \quad \forall k \ge 1: \quad \ell(x_*, \lambda_*) < \ell(x_k, \lambda_*).$

3) Get a contradiction.

- **2.5.** Norm assumptions. For an arbitrary norm $\|\cdot\|$ on \mathbb{R}^m , show that the following properties are equivalent (the operators $|\cdot|$ and $(\cdot)^+$ act componentwise):
 - (i) $0 \leq u \leq v \Rightarrow ||u|| \leq ||v||,$ (ii) $u \leq v \Rightarrow ||u^+|| \leq ||v^+||,$
 - (*iii*) $v \mapsto ||v^+||$ is convex.

The semismooth Newton algorithm for equations

2.6. Upper semi-continuity of the subdifferential. The subdifferential of a convex function $f : \mathbb{E} \to \mathbb{R}$ at $x \in \mathbb{E}$ is the set

$$\partial f(x) \coloneqq \{ s \in \mathbb{E} : f(y) \ge f(x) + \langle s, y - x \rangle, \ \forall \ y \in \mathbb{E} \}.$$

Show that the multifunction $\partial f : \mathbb{E} \to \mathbb{E} : x \mapsto \partial f(x)$ is upper-semicontinuous at any $x \in \mathbb{E}$.

3 Conic Optimization

Semidefinite Optimization

3.1. Singular Schur complement. Let $A \in S^n$, $C \in S^m$, and $B \in \mathbb{R}^{n \times m}$. Denote by A^{\dagger} the pseudo-inverse of A. Show that

$$\begin{pmatrix} A & B \\ B^{\mathsf{T}} & C \end{pmatrix} \ge 0 \qquad \Longleftrightarrow \qquad \begin{cases} A \ge 0 \\ C - B^{\mathsf{T}} A^{\dagger} B \ge 0 \\ \mathcal{R}(B) \subset \mathcal{R}(A). \end{cases}$$
(17)

3.2. Existence of dual solutions in SDO. We use the notation of the course. Consider the standard primal form of the semidefinite optimization problem

$$\begin{cases} \inf_{X \in \mathcal{S}^n} \langle C, X \rangle \\ \mathcal{A}(X) = b \\ X \ge 0, \end{cases}$$

Show that

$$\mathcal{F}_{P}^{s} \times \mathcal{F}_{D} \neq \emptyset \implies \begin{cases} \operatorname{Sol}(D) \cap (\mathcal{R}(A) \times \mathcal{S}^{n}) \text{ is nonempty and compact,} \\ \text{there is no duality gap: } \operatorname{val}(D) = \operatorname{val}(P). \end{cases}$$