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Advanced Continuous Optimization I (J.Ch. Gilbert)

Exercises

The difficulty (or length?) of an exercise is sometimes loosely estimated by a number
surrounded by braces at the beginning of its statement. The difficulty/length scale
ranges from 1 to 5 (the higher the more difficult/long).

Background

0.1. {1} Affine hull. Let A be an affine subspace and O ⊂ A be relatively open in A (i.e.,
open for the relative/induced/subspace topology of A). Then aff O = A.

0.2. {1} Relative interior . Let C be a nonempty convex set of a finite dimensional vector
space. Then

2 (riC) = C + riC = C + riC.
0.3. {3} Decomposition in a subspace and a convex cone. Let E0 be a subspace of a vector

space E and K be a convex cone of E. We denote by vectK the smallest vector space
containing K (since K is a cone, vectK = affK actually). Then,

E0 +K = E ⇐⇒ {E0 + vectK = E
E0 ∩ (riK) ≠ ∅.

1 Optimality conditions

First order optimality conditions for (PG)

1.1. {1} Convex (PEI). Let G = {0RmE } × RmI

− and T ∶ Rn ⊸ R
m ∶ x ↦ c(x) − G be

the multifunction associated with the constraint of problem (PEI). Show that T is
convex if and only if cE is affine and cI is componentwise convex.

1.2. {1} Examples of use of Robinson’s constraint qualification condition. Consider the
following sets of the form XG ∶= {x ∈ E ∶ c(x) ∈ G}, with G ⊂ F, and points x0 ∈XG:

1. E = F = R2, and c and G are defined by

c(x) = (x21 + (x2 − 1)2 − 1, x21 + (x2 + 1)2 − 1), G = R2
−, and x0 = (0,0),

2. E = F = R2, and c (2 identical constraints) and G are defined by

c(x) = (x2, x2), G = R2
+, and x0 = (0,0).

For these sets XG and points x0 ∈ XG,
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(i) determine whether Robinson’s constraint qualification condition holds at x0,
without using its equivalence with (CQ-MF),(ii) find a mudulus of metric regularity of the multifunction x↦ c(x) −G at (x0,0)
if any.

1.3. {1.5} Robinson’s constraint qualification conditions for (PEI). Viewing problem (PEI)
as a particular instance of problem (PG), show that the Robinson constraint qualifi-
cation condition is equivalent to the Mangasarian-Fromovitz constraint qualification
condition.

1.4. {3} First order optimality conditions with an additional set-inclusion constraint. Let E
and F be two Euclidean vector spaces. Consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min f(x)
x ∈ Q
c(x) ∈ G,

(1)

where f ∶ E → R and c ∶ E → F are differentiable functions, Q is a nonempty closed
convex set of E, and G is a nonempty closed convex set of F. Show that if x∗ is a
local minimizer of problem (1) and if

0 ∈ int(c(x∗) + c′(x∗)(Q − x∗) −G), (2)

then, there exists λ∗ ∈ F such that

{∇f(x∗) + c′(x∗)∗λ∗ ∈ (Tx∗ Q)+
λ∗ ∈ Nc(x∗)G.

(3)

Second order optimality conditions

1.5. {2} Example of use of the second order optimality conditions. Consider the following
nonlinear optimization problem in x ∈ R2:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min −1
2
(x21 + x22)

x2 ⩾ x21 − 1
x1 ⩾ 0.

Using the Lagrangian ℓ ∶ R2 ×R2 → R defined at (x,λ) by

ℓ(x,λ) = −1
2
(x21 + x22) + λ1(x21 − x2 − 1) + λ2(−x1),

it can be shown that the first order optimality conditions are verified by the following
primal-dual pairs

x = 0 and λ = 0, (4a)

x = (0,−1) and λ = (1,0), (4b)

x = (√2/2,−1/2) and λ = (1/2,0). (4c)

Using the second order optimality conditions, determine analytically which of the
points in (4) are (strict) local minimum, (strict) local maximum, or undetermined.
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1.6. {3} Sufficient second order optimality conditions for problem (PG). Let E and F be
finite dimensional vector spaces. Consider the general optimization problem

(PG) {min f(x)
c(x) ∈ G,

where f ∶ E → R and c ∶ E → F are smooth functions, and G is a nonempty closed

convex set in F (not necessarily a cone). Its feasible set is denoted by XG ∶= {x ∈ E ∶
c(x) ∈ G}. The Lagrangian of problem (PG) is the function ℓ ∶ E × F → R defined at(x,λ) ∈ E × F by

ℓ(x,λ) = f(x) + ⟨λ, c(x)⟩. (5)

Let x∗ be a local minimum of (PG) and assume that there exists a multiplier λ∗ ∈ E
such that ∇xℓ(x∗, λ∗) = 0 and λ∗ ∈ Nc(x∗)G. (6)

We denote by Λ∗ the set of optimal multipliers λ∗ such that (x∗, λ∗) verifies (6), which
is therefore nonempty, and by L∗ ∶= ∇2

xxℓ(x∗, λ∗) the Hessian of the Lagrangian with
respect to x at a pair (x∗, λ∗) defined in the context where L∗ appears. The critical

cone at a local solution x∗ to problem (PG) is defined by

C∗ ∶= {d ∈ E ∶ c′(x∗)d ∈ Tc(x∗)G, f ′(x∗)d ⩽ 0}. (7)

1) Show that, when x∗ satisfies the first order optimality conditions (6), the critical
cone also reads

C∗ ∶= {d ∈ E ∶ c′(x∗)d ∈ Tc(x∗)G, f ′(x∗)d = 0}. (8)

2) Show that the following two properties are equivalent (∥ ⋅∥ is an arbitrary norm):

∀d ∈ C∗ ∖ {0}, ∃λ∗ ∈ Λ∗ ∶ ⟨L∗d, d⟩ > 0, (9a)

∃ γ̄ > 0, ∀d ∈ C∗, ∃λ∗ ∈ Λ∗ ∶ ⟨L∗d, d⟩ ⩾ γ̄∥d∥2. (9b)

3) Assume that (9b) holds. Show that for all γ ∈ [0, γ̄), there exists a neighborhood
V of x∗ such that

∀x ∈ (XG ∩ V ) ∖ {x∗} ∶ f(x) > f(x∗) + γ

2
∥x − x∗∥2. (10)

The quadratic growth property (10) implies that x∗ is a strict local minimum of (PG).

2 Linearization methods

The Josephy-Newton algorithm for functional inclusions

2.1. {1} Explicit variational problem. Let E be a Euclidean space, X be a (not necessarily
convex) subset of E, and F ∶ E → E be a smooth map. Consider the variational
problem (Pv) F (x) +NX(x) ∋ 0,
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where NX(x) is the normal cone to X at x. Suppose that F is another Euclidean
space and that X has actually the following form

X ∶= {x ∈ E ∶ c(x) ∈ G},
in which c ∶ E→ F is a smooth function and G is a closed convex set of F. Show that
if x∗ is a solution to (Pv) satisfying

0 ∈ int{c(x∗) + c′(x∗)E −G},
then, there exists λ∗ ∈ Nc(x∗)G such that

F (x∗) + c′(x∗)∗λ∗ = 0.
2.2. {2} Josephy-Newton algorithm for a nonlinear complementarity problem. Let E and F

be two Euclidean spaces, K be a nonempty closed convex cone of F, K+ its positive
dual, and F and G ∶ E → F be two differentiable functions. Consider the nonlinear
complementarity problem

K ∋ G(x) ⊥ F (x) ∈K+. (11)

Show that the algorithm that computes the next iterate xk+1 from the current one xk
by solving the linear complementarity problem in x

K ∋ (G(xk) +G′(xk)(x − xk)) ⊥ (F (xk) +F ′(xk)(x − xk)) ∈K+, (12)

can be viewed as the Josephy-Newton algorithm on a certain variational inequality
problem on a cone; which one?

The SQP algorithm in constrained optimization

2.3. An SQP Algorithm for Solving Problem (PG). Consider the optimization problem(PG) with its Lagrangian ℓ ∶ E × F→ R defined at (x,λ) by

ℓ(x,λ) = f(x) + ⟨λ, c(x)⟩.
For a given pair (x∗, λ∗) ∈ E × F, denote by L∗ ∶= ∇2

xxℓ(x∗, λ∗) the Hessian of the
Lagrangian at (x∗, λ∗). Let us introduce the set

C∗ ∶= {d ∈ E ∶ c′(x∗)d ∈ Tc(x∗)G, f ′(x∗)d ⩽ 0}.
1) Show that the first order optimality conditions at a solution x∗ to problem (PG)

can be written
F (z∗) +NC(z∗) ∋ 0, (13)

for some variable z∗, some function F , and some closed convex set C to determine.

2) Show in what sense the Josephy-Newton (JN) algorithm on the functional inclusion
(13) consists in determining the new iterate x + d from the current one x by
computing d as a stationary point of

{mind ⟨∇f(x), d⟩ + 1
2
⟨∇2

xxℓ(x,λ)d, d⟩
c(x) + c′(x) ⋅ d ∈ G.

(14)
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3) In this item, we assume that G is a convex polyhedron.

Show that (x∗, λ∗) ∈ E×F is a semi-stable primal-dual solution to (PG) if and only
if ⟨L∗d, d⟩ > 0 for all pairs (d,µ) ∈ E × F satisfying

(d, c′(x∗)d,µ) ≠ 0, (15a)

c(x∗) + c′(x∗)d ∈ G, (15b)

⟨λ∗, c′(x∗)d⟩ = 0, (15c)

L∗d + c
′(x∗)∗µ = 0, (15d)

λ∗ + µ ∈ NG(c(x∗)). (15e)

2.4. Nondifferentiable augmented Lagrangian. Let E be a Euclidean vector space. Consider
the usual optimization problem with equality and inequality constraints

(PEI)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
infx f(x)
cE(x) = 0
cI(x) ⩽ 0,

where f ∶ E → R, E and I form a partition of [1 ∶m], mE ∶= ∣E∣, mI ∶= ∣I ∣, cE ∶ E →
R
mE , and cI ∶ E→ R

mI . The functions f and c are supposed smooth. The lagrangian
of the problem is the function ℓ ∶ E ×Rm → R defined at (x,λ) ∈ E ×Rm by

ℓ(x,λ) = f(x) + λTc(x),
where c(x) ∶= (cE(x), cI(x)).
Let x∗ be a local minimum of problem (PEI) at which the KKT conditions hold. We
denote by Λ∗ the set of optimal multipliers associated with x∗. Suppose that the
weak second-order sufficient condition of optimality holds at x∗.

Let ∥ ⋅ ∥p be a norm on R
m and ∥ ⋅ ∥d be its dual norm with respect to the Euclidean

scalar product. Let µ ∈ Rm and σ ∈ R+ verifying

σ ⩾ sup
λ∗∈Λ∗

∥λ∗ − µ∥d and σ > ∥λ̂∗ − µ∥d, (16)

for some λ̂∗ ∈ Λ∗. We want to show that the function Θµ,σ ∶ E → R defined at x ∈ E
by

Θµ,σ(x) ∶= f(x) + µTc(x)# + σ∥c(x)#∥p
has a strict local minimum at x∗. We propose a reasoning by contradiction.

1) Show that if Θµ,σ has not a strict local minimum at x∗, one can find a sequence{xk} ⊂ E, a sequence of positive real numbers {tk} ↓ 0, and a nonzero critical
direction d such that xk = x∗ + tkd + o(tk).

2) Show that
∃λ∗ ∈ Λ∗, ∀k ⩾ 1 ∶ ℓ(x∗, λ∗) < ℓ(xk, λ∗).

3) Get a contradiction.
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2.5. Norm assumptions. For an arbitrary norm ∥ ⋅ ∥ on R
m, show that the following

properties are equivalent (the operators ∣ ⋅ ∣ and (⋅)+ act componentwise):

(i) 0 ⩽ u ⩽ v ⇒ ∥u∥ ⩽ ∥v∥,(ii) u ⩽ v ⇒ ∥u+∥ ⩽ ∥v+∥,(iii) v ↦ ∥v+∥ is convex.

The semismooth Newton algorithm for equations

2.6. Upper semi-continuity of the subdifferential. The subdifferential of a convex function
f ∶ E→ R at x ∈ E is the set

∂f(x) ∶= {s ∈ E ∶ f(y) ⩾ f(x) + ⟨s, y − x⟩, ∀y ∈ E}.
Show that the multifunction ∂f ∶ E⊸ E ∶ x ↦ ∂f(x) is upper-semicontinuous at any
x ∈ E.

3 Conic Optimization

Semidefinite Optimization

3.1. Singular Schur complement. Let A ∈ Sn, C ∈ Sm, and B ∈ Rn×m. Denote by A† the
pseudo-inverse of A. Show that

( A B

BT C
) ≽ 0 ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A ≽ 0
C −BTA†B ≽ 0R(B) ⊂ R(A). (17)

3.2. Existence of dual solutions in SDO. We use the notation of the course. Consider the
standard primal form of the semidefinite optimization problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
infX∈Sn ⟨C,X⟩A(X) = b
X ≽ 0,

Show that

Fs
p
×Fd ≠ ∅ Ô⇒ {Sol(D) ∩ (R(A) × Sn) is nonempty and compact,

there is no duality gap: val(D) = val(P ).
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