Jad Dabaghi Jad Dabaghi Jad Dabaghi Jad Dabaghi

Researcher in applied mathematics
CEA Saclay, DEN/DANS/LTSD/SERMA 91191 Gif-sur-Yvette cedex
e-mail: jad.dabaghi@cea.fr


Current position


Previous position

Research interests

  • Variational inequalities:
    • Elliptic contact problems, parabolic variational inequalities, dynamic hyperbolic variational inequalities.
  • Numerical analysis of Variational inequalities:
    • Finite elements, finite volumes, Discontinuous Galerkin methods, HHO methods.
  • Semismooth Newton methods, iterative algebraic solvers:
    • Newton-min, Newton-Fischer-Burmeister, GMRES, Multigrid, PCG.
  • A posteriori error estimate and adaptivity:
    • Residual a posteriori estimators, equilibrated flux reconstructions, distinction of the error components, adaptive stopping criteria, efficiency.
  • Multiphase flow:
    • storage of radioactive wastes, sustainable and renewable ressources, two-phase flow, phase transition, nonlinear complementarity constraints, finite volumes.
  • Parallel in time algorithm:
    • Parareal algorithm, parabolic problems.
  • Monte-Carlo resolutions:
    • Diffusion heat equation, Boltzmann equation.


  • J. Dabaghi, V. Martin, and M. Vohralik, Adaptive inexact semismooth Newton methods for the contact problem between two membranes. J. Sci. Comput. (2020). DOI 10.1007/s10915-020-01264-3. preprint .
  • I. Ben Gharbia, J. Dabaghi, V. Martin, and M. Vohralik, A posteriori error estimates and adaptive stopping criteria for a compositional two-phase flow with nonlinear complementarity constraints. Comput. Geosci. 24 (2020), 1031–1055. DOI 10.1007/s10596-019-09909-5 . Journal version , preprint .
  • J. Dabaghi, V. Martin, and M. Vohralik, A posteriori estimates distinguishing the error components and adaptive stopping criteria for numerical approximations of parabolic variational inequalities. Comput. Methods Appl. Mech. Engrg. 367 (2020), 113105. Journal version , preprint .
  • J. Dabaghi, Y. Maday, and A. Zoia, An adaptive parareal Monte-Carlo algorithm for the parabolic time dependant diffusion equation. In preparation.
  • J. Dabaghi, and G. Delay, High order numerical discretizations and nonsmooth Newton methods for variational inequalities. In preparation.


International conferences


Teaching activities