Gaëtan Leurent University of Luxembourg

Presented by Pierre-Alain Fouque **ENS**

Third NIST SHA-3 conference

Motivation

- Most of the cryptanalysis of ARX designs is bit-twiddling
 - As opposed to SBox based designs
- Building/Verifying differential path for ARX designs is hard
 - Many paths built by hand
 - Problems with MD5 and SHA-1 attacks [Manuel, DCC 2011]
 - Problems reported with boomerang attacks (incompatible paths):
 - [Sasaki, SAC 2011] HAVAL
 - ► SHA-256 [BLMN, Asiacrypt 2011]
- Some tools are described in literature, but most are not available

Our tools

Tool for S-systems

Introduction

- ▶ Similar to [Mouha & al., SAC 2010]
- Completely automated
- Representation of differential paths as sets of constraints, and analysis with S-systems
 - Similar to [De Cannière & Rechberger, Asiacrypt 2006]
 - New set of constraints
 - Propagation of necessary constraints
- 3 Graphical tool for bit-twiddling with differential paths

Outline

Introduction

S-system Analysis

Differential characteristics

Application

S-Systems

Definition

T-function $\forall t$, t bits of the output can be computed from t bits of the input.

S-function There exist a set of states S so that: $\forall t$, bit t of the output and state $S[t] \in \mathcal{S}$ can be computed from bit t of the input, and state S[t-1].

S-system f(P,x)=0f is an S-function, P is a parameter, x is an unknown

- Operations mod 2ⁿ, Boolean functions are T-functions
- Addition, Xor, and Boolean operations are S-functions

Solving S-Systems

$$x \oplus \Delta = x \boxplus \delta$$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- ▶ For random δ , Δ , most of the time the system is inconsistent

$$x \oplus \Delta = x \boxplus \delta$$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- ▶ For random δ , Δ , most of the time the system is inconsistent

Solving S-Systems

$$x \oplus \Delta = x \boxplus \delta$$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- Backtracking is exponential in the worst case: $x \oplus 0x80000000 = x$
- ▶ For random δ , Δ , most of the time the system is inconsistent

Solving S-Systems

$$x \oplus \Delta = x \boxplus \delta$$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- Backtracking is exponential in the worst case: $x \oplus 0x80000000 = x$
- ▶ For random δ , Δ , most of the time the system is inconsistent

Transition Automata

Carry transitions for $x \oplus \Delta = x \boxplus \delta$ *.*

Δ	δ	х	c'
0	0	0	0
0	0	1	0
0	1	0	-
0	1	1	-
1	0	0	-
1	0	1	-
1	1	0	0
1	1	1	1
	0 0 0 0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

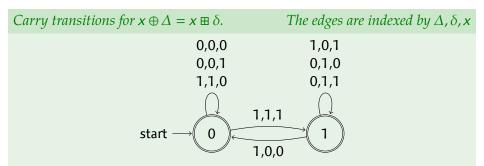
С	Δ	δ	x	c'
1	0	0	0	-
1	0	0	1	-
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	-
1	1	1	1	-

We use automata to study S-systems:

[Mouha & al., SAC 2010]

- States represent the carries
- Transitions are labeled with the variables

Transition Automata

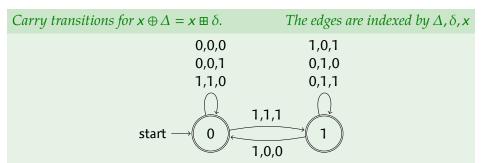


We use automata to study S-systems:

[Mouha & al., SAC 2010]

- States represent the carries
- Transitions are labeled with the variables

Transition Automata



We use automata to study S-systems:

[Mouha & al., SAC 2010]

- States represent the carries
- Transitions are labeled with the variables
- Automaton accepts solutions to the system.
- Can count the number of solutions.

Decision Automata

Carry transitions for $x \oplus \Delta = x \boxplus \delta$.	The edges are indexed by Δ , δ , x
0,0,0	1,0,1
0,0,1	0,1,0
1,1,0	0,1,1
$\operatorname{start} \longrightarrow \bigcirc \bigcirc$	1,1,1

- Remove x from the transitions

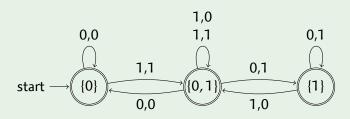
Decision automaton for $x \oplus \Delta = x \boxplus \delta$ *. The edges are indexed by* Δ *,* δ 0,0 1,0 0,0 0,1 1,1 0,1 1,1 start 1,0

- Remove x from the transitions
- Can decide whether a given Δ , δ is compatible.

Decision Automata

Decision automaton for $x \oplus \Delta = x \boxplus \delta$ *.*

The edges are indexed by Δ *,* δ



- Remove x from the transitions
- Can decide whether a given Δ , δ is compatible.
- Convert the non-deterministic automata to deterministic (optional).

Our Tool

1 Automatic construction of the automaton from a natural expression Useful to study properties of the system

C functions to test compatibility, count solutions, or solve systems

Outline

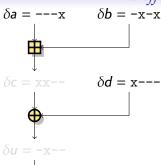
Introduction

S-system Analysis

Differential characteristics

Application

Differential Characteristic



Differential characteristics •0000000

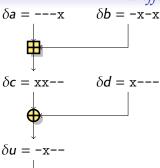
- A differential only specifies the input and output difference
- A difference characteristic specifies

$$c = a + b$$

$$u = c + d$$

$$v = u \ll 2$$

Differential Characteristic



$$\delta u = -x--$$

$$\delta v = ---x$$

$$c = a + b$$

$$u = c + d$$

$$v = u \ll 2$$

▶ Choose a difference operation: ⊕

Differential characteristics •0000000

- A differential only specifies the input and output difference
- A difference characteristic specifies the difference of each internal variable
 - Compute probability for each operation

Signed difference

A path defines a set of good pairs:

$$x^{[i]} \oplus x'^{[i]} = 1 \Leftrightarrow (x^{[i]}, x'^{[i]}) \in \{(0, 1), (1, 0)\}$$

Wang introduced a signed difference:

►
$$\delta(x^{[i]}, x'^{[i]}) = +1$$
 \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(0, 1)\}$
► $\delta(x^{[i]}, x'^{[i]}) = -1$ \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(1, 0)\}$

- Captures both xor difference and modular difference
- Generalized constraints

[De Cannière & Rechberger 06]

Problem: how to compute probabilities?

Generalized constraints [De Cannière & Rechberger 06]

	(x,x'):	(0, 0)	(0,1)	(1,0)	(1,1)
?	anything	\checkmark	✓	✓	✓
_	x = x'	\checkmark	-	-	\checkmark
x	$x \neq x'$	-	\checkmark	\checkmark	-
0	x = x' = 0	\checkmark	-	-	-
u	(x,x')=(0,1)	-	\checkmark	-	-
n	(x,x')=(1,0)	-	-	\checkmark	-
1	x = x' = 0	-	-	-	\checkmark
#	incompatible	-	-	-	-
3	x = 0	√	✓	-	-
5	x'=0	\checkmark	-	\checkmark	-
7		\checkmark	\checkmark	\checkmark	-
Α	x' = 1	-	\checkmark	-	\checkmark
В		\checkmark	\checkmark	-	\checkmark
C	<i>x</i> = 1	-	-	\checkmark	\checkmark
D		\checkmark	-	\checkmark	\checkmark
E		-	\checkmark	\checkmark	\checkmark

Signed difference

- A path defines a set of good pairs:
 - $x^{[i]} \oplus x'^{[i]} = 1 \qquad \Leftrightarrow \qquad (x^{[i]}, x'^{[i]}) \in \{(0,1), (1,0)\}$
- Wang introduced a signed difference:

►
$$\delta(x^{[i]}, x'^{[i]}) = +1$$
 \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(0, 1)\}$
► $\delta(x^{[i]}, x'^{[i]}) = -1$ \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(1, 0)\}$

- Captures both xor difference and modular difference
- Generalized constraints

[De Cannière & Rechberger 06]

Problem: how to compute probabilities?

Generalized Characteristics

00000000

We can write generalized constraints as an S-system:

$$P_0 = 0 \Rightarrow (x, x') \neq (0, 0)$$
 $P_1 = 0 \Rightarrow (x, x') \neq (0, 1)$
 $P_2 = 0 \Rightarrow (x, x') \neq (1, 0)$ $P_3 = 0 \Rightarrow (x, x') \neq (1, 1)$

- We can now compute the probability of a generalized characteristic.
 - Addition, Xor, Boolean functions are S-functions
 - Rotations just rotate the constraints

	(x,x'):	(0,0)	(0,1)	(1,0)	(1,1)	P_0	P_1	P_2	P_3
?	anything	√	✓	✓	✓	1	1	1	1
-	x = x'	\checkmark	-	-	\checkmark	1	0	0	1
x	$x \neq x'$	-	\checkmark	\checkmark	-	0	1	1	0
0	x = x' = 0	\checkmark	-	-	-	1	0	0	0
u	(x,x')=(0,1)	-	\checkmark	-	-	0	1	0	0
n	(x, x') = (1, 0)	-	-	\checkmark	-	0	0	1	0
1	x = x' = 0	-	-	-	\checkmark	0	0	0	1
#	incompatible	-	-	-	-	0	0	0	0

New Constraints

- ► Carry propagation leads to constraints of the form $x^{[i]} = x^{[i-1]}$
- We use new constraints to capture this information
- We consider subsets of $\{(x^{[i]}, x'^{[i]}, x^{[i-1]})\}$ instead of $\{(x^{[i]}, x'^{[i]})\}$
- This can still be written as an S-system with Boolean filtering on $x, x', x \boxplus x$.

New Constraints Table

$(x \oplus x', x \oplus 2x, x)$:	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
? anything	✓	✓	✓	✓	✓	✓	✓	✓
- $x = x'$	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-
$\mathbf{x} \qquad \mathbf{x} \neq \mathbf{x}'$	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark
0 x = x' = 0	\checkmark	-	\checkmark	-	-	-	-	-
(x,x')=(0,1)	-	-	-	-	\checkmark	-	\checkmark	-
\mathbf{n} $(x, x') = (1, 0)$	-	-	-	-	-	\checkmark	-	\checkmark
1 $x = x' = 0$	-	\checkmark	-	\checkmark	-	-	-	-
# incompatible	-	-	-	-	-	-	-	-
x = 0	✓	-	✓	-	√	-	√	-
x = 1	-	\checkmark	-	✓	-	\checkmark	-	\checkmark
5 x' = 0	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark
$\mathbf{A} \qquad x' = 1$	-	✓	-	\checkmark	\checkmark	-	✓	-
= x = x' = 2x	✓	✓	-	-	-	-	-	-
$! x = x' \neq 2x$	-	-	\checkmark	\checkmark	-	-	-	-
$x \neq x' = 2x$	-	-	-	-	\checkmark	\checkmark	-	-
$x \neq x' \neq 2x$	-	-	-	-	-	-	✓	√

Propagation of constraints

Differential characteristics 0000000

We use S-systems to propagate constraints:

- Split subsets in two smaller subsets
- If one subset gives zero solutions, the characteristic can be restricted to the other subset.

?
$$\rightarrow$$
 -/x, 3/C, 5/A \rightarrow 0/1, =/! $x \rightarrow u/n$, >/<
3 \rightarrow 0/u $C \rightarrow 1/n$ 5 \rightarrow 0/n A \rightarrow 1/u = \rightarrow 0/1 ! \rightarrow 0/1 > \rightarrow u/n $< \rightarrow$ u/n

Outline

Introduction

S-system Analysis

Differential characteristics

Application

Verifying paths

Problem

Most analysis assume that operations are independent and multiply the probabilities.

But sometimes, operations are not independent...

Known problem in Boomerang attacks.

[Murphy, TIT 2011]

- We compute necessary conditions.
- This allows to detect cases of incompatibility
- We have detected problems in several published works
 - Incompatible paths seem to appear guite naturally

Boomerang incompatibility

$$\downarrow \qquad \qquad \downarrow \\
\delta \mathbf{a} = -\mathbf{x} - \qquad \delta \mathbf{b} = ---$$

Top path:

$$(a^{(0)},b^{(0)};a^{(2)},b^{(2)})(a^{(1)},b^{(1)};a^{(3)},b^{(3)})$$

$$\delta a = -x - \delta b = -x - \delta u = -x$$

Bottom path:
$$(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)})$$
 $(a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

$$x^{(0)}$$
 $x^{(1)}$ $x^{(2)}$ $x^{(3)}$

a 0 1 1 0 0 1

b 1 0 0 1

$$u = a + b$$

Appears easily with linearized paths, e.g. Blake [Biryukov & al., FSE 2011]

Boomerang incompatibility

$$\downarrow \qquad \qquad \downarrow \\
\delta a = -x - \delta b = ---$$

Top path:
$$(a^{(0)}, b^{(0)}; a^{(2)}, b^{(2)}) (a^{(1)}, b^{(1)}; a^{(3)}, b^{(3)})$$

$$\delta a = -x - \delta b = -x - \delta u = -x$$

Bottom path:
$$(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)})$$
 $(a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

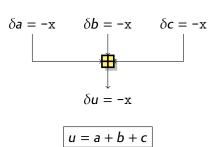
	x ⁽⁰⁾	<i>x</i> ⁽¹⁾	x ⁽²⁾	x ⁽³⁾
a	0	1	1	0
b	1	0	0	1

$$u = a + b$$

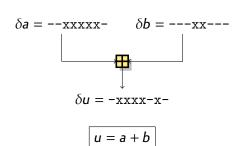
- Appears easily with linearized paths, e.g. Blake [Biryukov & al., FSE 2011]
- Wlog, assume $a^{(0)} = 0$
- Compute $a^{(i)}$, deduce sign of b
- Contradiction for b!

Incompatibility with additions

Some "natural" differentials do not work with additions:



Linearized path



- Seems valid with signed difference
- Found in Skein near-collision [eprint 2011/148]

$$\delta a = -xx - - \delta b = xxx - -$$

$$\delta c = - - - -$$

$$\delta c' = - - - \delta d = - - xx -$$

- Each operation has a non-zero probability
- Path seems valid with signed difference
- Consider the 1st addition
 - Constraint: $c^{[4]} \neq c^{[5]}$
- Consider the 2nd addition
 - Constraint: $c'^{[2]} = c'^{[3]}$
- ► Incompatible!
 - Detected with the new constraints

$$\delta a = -xx - - \delta b = xxx - -$$

$$\delta c = - \neq - - -$$

$$\delta c' = - - \neq - - \delta d = - - - xx -$$

$$\delta u = - - - xx -$$

- Each operation has a non-zero probability
- Path seems valid with signed difference
- Consider the 1st addition
 - Constraint: $c^{[4]} \neq c^{[5]}$
- Incompatible!

$$\delta a = -xx - - \delta b = xxx - -$$

$$\delta c = ----$$

$$\delta c' = ---- \delta d = ---xx -$$

$$\delta u = ---xx -$$

- Each operation has a non-zero probability
- Path seems valid with signed difference
- Consider the 1st addition
 - Constraint: $c^{[4]} \neq c^{[5]}$
- Consider the 2nd addition
 - Constraint: $c'^{[2]} = c'^{[3]}$
- Incompatible!

$$\delta a = -xx - - \delta b = xxx - -$$

$$\delta c = -\# - - -$$

$$\delta c' = --\# - \delta d = ---xx -$$

$$\delta u = ---xx -$$

- Each operation has a non-zero probability
- Path seems valid with signed difference
- Consider the 1st addition
 - ► Constraint: $c^{[4]} \neq c^{[5]}$
- Consider the 2nd addition
 - Constraint: $c'^{[2]} = c'^{[3]}$
- Incompatible!
 - Detected with the new constraints

Graphical tool

- To study more complex cases, we have a graphical tool
- We can manually constrain some bits and propagate.
- Problems found in the Boomerang paths for Skein-512 [Chen & Jia, ISPEC 2010]

Main result

Many published attacks are invalid.

Boomerang attacks on Blake

- [Biryukov & al., FSE 2011]
- Basic linearized paths, with MSB difference
- Proposed attack on 7/8 round for KP and 6/6.5 for CF do not work
 - 7-round KP attack can be made with the 6-round path
 - 8-round KP attack and 6/6.5-round CF attack can be fixed using another active bit (non-MSB)
- Boomerang attacks on Skein-512 [Chen & Jia, ISPEC 2010]
 - Basic linearized paths, with MSB difference
 - Proposed attacks do not work on Skein-512
 - Similar paths work on Skein-256 [Leurent & Roy, CT-RSA 2012]

ARXtools: A toolkit for ARX analysis

- Can be fixed using another active bit?
- Near-collision attack on Skein

[eprint 2011/148]

25/26

- Complex rebound-like handcrafted path
- Path is not satisfiable

Conclusion

We hope these tools will be useful to cryptanalists...

Code and documentation available at: http://www.di.ens.fr/~leurent/arxtools.html