SPRING

Fast Pseudorandom Functions from Rounded Ring Products

Abhishek Banerjee1 Hai Brenner2 Gaëtan Leurent3
Chris Peikert1 Alon Rosen2

1Georgia Institute of Technology
2IDC Herzliya
3UCL & Inria

FSE 2014
Motivation

Public key
- Strong algebraic structure
- Security reduction
- Slow

Secret key
- Security from cryptanalysis
- Fast

Bridging the gap
- Can we have an efficient design with strong algebraic structure?
 - Security reduction from a well-understood problem?
 - Extra features?
 - Previous examples: SWIFFT, FSB, Lapin, HB family
Motivation

Public key

- Strong algebraic structure
- Security reduction
- Slow

Secret key

- Security from cryptanalysis
- Fast

Bridging the gap

- Can we have an efficient design with strong algebraic structure?
 - Security reduction from a well-understood problem?
 - Extra features?
 - Previous examples: SWIFFT, FSB, Lapin, HB family
SPRING construction

Subset Product with Rounding over a ring

\[F_{a,s}(x_1, \ldots, x_k) := S \left(a \cdot \prod_{j=1}^{k} s_j^{x_j} \right) \]

- **Lattice-based PRF**
- **Polynomial ring** \(R_p = \mathbb{Z}_p[X]/(X^n + 1) \)
- **Key**: \(a, (s_i)_{i=1}^{k} \in R_p \)
- **Rounding function** \(S \)
 - e.g. MSB of each polynomial coefficient

[BPR, Eurocrypt ’12]
SPRING security

- Based on the **Ring-Learning With Errors** assumption
 - Secret polynomial $s \in R_p$, $R_p = \mathbb{Z}_p[X]/(X^n + 1)$
 - Distinguish $(a_i, a_i \cdot s + e_i)$ from uniform
 - Reduction to worst-case *ideal* lattice problems

- Deterministic version: **Ring-Learning With Rounding** assumption
 - Secret polynomial $s \in R_p$
 - Distinguish $(a_i, \lfloor a_i \cdot s \rfloor)$ from uniform
 - Rounding removes information, like adding noise

- Two SPRING outputs gives something similar to an LWR sample
 - $F_{a,s}(x_1, \ldots, x_k) := S\left(a \cdot \prod_{j=1}^{k} s_j^{x_j}\right)$
 - Secret polynomials s, t
 - Output $(\lfloor t \rfloor, \lfloor t \cdot s \rfloor)$
SPRING security

- Based on the **Ring-Learning With Errors** assumption
 - Secret polynomial \(s \in R_p \)
 - Distinguish \((a_i, a_i \cdot s + e_i)\) from uniform
 - *Reduction to worst-case ideal lattice problems*

- Deterministic version: **Ring-Learning With Rounding** assumption
 - Secret polynomial \(s \in R_p \)
 - Distinguish \((a_i, \lfloor a_i \cdot s \rfloor)\) from uniform
 - Rounding removes information, like adding noise

- Two SPRING outputs gives something similar to an LWR sample
 - \(F_{a,\tilde{s}}(x_1, \ldots, x_k) := S \left(a \cdot \prod_{j=1}^{k} s_j^{x_j} \right) \)
 - Secret polynomials \(s, t \)
 - Output \((\lfloor t \rfloor, \lfloor t \cdot s \rfloor)\)
From provable security to efficiency

- Security reduction require huge parameters

- What happens when we use small parameters?
 - Security reduction not applicable as such
 - Guideline towards reasonable constructions (mode of operation?)
 - Bias can appear (was negligible with large parameters)
 - Concrete security evaluation needed
Choice of ring

\[
F_{a,s}(x_1, \ldots, x_k) := S \left(a \cdot \prod_{j=1}^{k} s_{j}^{x_j} \right) \quad \text{over} \quad R_p = \mathbb{Z}_p[X]/(X^n + 1)
\]

- Select parameters with fast polynomial product
 1. Polynomial product very efficient using FFT algorithm
 2. Arithmetic mod \(2^i + 1\) is efficient in software

- Problem was studied for SWIFFT
 - Use \(p = 257, n = 128\)
Product in the ring \mathbb{R}_{257}

Fast polynomial product $h = f \cdot g$

1. Evaluate f and g: $f_i = f(x_i), g_i = g(x_i)$

2. Multiply values coefficients-wise

3. Interpolate h s.t. $h(x_i) = f_i \times g_i$

 - Let ω be a 256-th root of unity, $x_i = \omega^i$.
 - Use FFT for evaluation/interpolation in $n \log(n)$

We want $f \cdot g \mod x^{128} + 1$

- $x^{128} + 1 = \prod(x - \omega^{2i+1})$
- Chinese Remainder: compute $h \mod x - \omega^{2i+1}$ i.e. $h(\omega^{2i+1})$

Evaluating $f(\omega^{2i+1})$

- $\phi : \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
- $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$

- $\text{FFT}_{128}(\phi(f \cdot g)) = \text{FFT}_{128}(\phi(f)) \times \text{FFT}_{128}(\phi(g))$ (coeff.-wise \times)
Product in the ring \mathbb{R}_{257}

Fast polynomial product $h = f \cdot g$

1. Evaluate f and g: $f_i = f(x_i)$, $g_i = g(x_i)$
 (256 points)

2. Multiply values coefficients-wise

3. Interpolate h s.t. $h(x_i) = f_i \times g_i$
 (degree 256)

- Let ω be a 256-th root of unity, $x_i = \omega^i$,
 Use FFT for evaluation/interpolation in $n \log(n)$
 $\omega = 41$

- We want $f \cdot g \mod x^{128} + 1$
 - $x^{128} + 1 = \prod (x - \omega^{2i+1})$
 - Chinese Remainder: compute $h \mod x - \omega^{2i+1}$ i.e. $h(\omega^{2i+1})$

- Evaluating $f(\omega^{2i+1})$
 - $\phi: \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
 - $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$

- $\text{FFT}_{128}(\phi(f \cdot g)) = \text{FFT}_{128}(\phi(f)) \times \text{FFT}_{128}(\phi(g))$
 (coeff.-wise \times)
Product in the ring \mathbb{R}_{257}

Fast polynomial product $h = f \cdot g$

1. Evaluate f and g: $f_i = f(x_i), g_i = g(x_i)$ (256 points)
2. Multiply values coefficients-wise
3. Interpolate h s.t. $h(x_i) = f_i \times g_i$ (degree 256)
 - Let ω be a 256-th root of unity, $x_i = \omega^i$.
 - Use FFT for evaluation/interpolation in $n \log(n)$

 - We want $f \cdot g \mod x^{128} + 1$
 - $x^{128} + 1 = \prod (x - \omega^{2i+1})$
 - Chinese Remainder: compute $h \mod x - \omega^{2i+1}$ i.e. $h(\omega^{2i+1})$
 - Evaluating $f(\omega^{2i+1})$
 - $\phi : \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
 - $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$
 - $\text{FFT}_{128}(\phi(f \cdot g)) = \text{FFT}_{128}(\phi(f)) \times \text{FFT}_{128}(\phi(g))$ (coeff.-wise \times)
Product in the ring R_{257}

Fast polynomial product $h = f \cdot g \mod x^{128} + 1$

1. Evaluate f and g: $f_i = f(x_i), g_i = g(x_i)$ (128 points)
2. Multiply values coefficients-wise
3. Interpolate h s.t. $h(x_i) = f_i \times g_i$ (degree 128)
 - Let ω be a 256-th root of unity, $x_i = \omega^{2i+1}$, $\omega = 41$
 - Use FFT for evaluation/interpolation in $n \log(n)$

- We want $f \cdot g \mod x^{128} + 1$
 - $x^{128} + 1 = \prod (x - \omega^{2i+1})$
 - Chinese Remainder: compute $h \mod x - \omega^{2i+1}$ i.e. $h(\omega^{2i+1})$
- Evaluating $f(\omega^{2i+1})$
 - $\phi: \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
 - $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$
- $\text{FFT}_{128}(\phi(f \cdot g)) = \text{FFT}_{128}(\phi(f)) \times \text{FFT}_{128}(\phi(g))$ (coeff.-wise \times)
Implementation tricks

SPRING PRF

\[F_{a,\tilde{s}}(x_1, \ldots, x_k) := S\left(a \cdot \prod_{j=1}^{k} s_j^{x_j} \right) \]

- Use FFT for the subset product
 - \[\prod_{x_j=1}^{s_j} = \phi^{-1}\left(\text{FFT}^{-1}\left(\bigotimes_{x_j=1}^{s_j} \text{FFT}(\phi(s_j)) \right) \right) \]
 - Store \(\tilde{s}_j := \text{FFT}(\phi(s_j)) \) (equivalent key)
 - \[\prod_{x_j=1}^{s_j} = \phi^{-1}\left(\text{FFT}^{-1}\left(\bigotimes_{x_j=1}^{s_j} \tilde{s}_j \right) \right) \] (coefficients-wise product)

- Use counter mode for a stream cipher
 - Single addition instead of subset-sum
Implementation tricks

SPRING PRF

\[F_{a, \tilde{s}}(x_1, \ldots, x_k) := S\left(a \cdot \prod_{j=1}^{k} s_j^{x_j}\right) \]

- Use FFT for the subset product
 - \(\prod_{x_j=1} s_j = \phi^{-1}\left(\text{FFT}^{-1}\left(\prod_{x_j=1} \text{FFT}(\phi(s_j))\right)\right) \)
 - Store \(\tilde{s}_{ij} := \log(\tilde{s}_{ij}) \), \(\tilde{s}_j := \text{FFT}(\phi(s_j)) \) (equivalent key)
 - \(\prod_{x_j=1} s_j = \phi^{-1}\left(\text{FFT}^{-1}\left(\exp\left(\sum_{x_j=1} \tilde{s}_j\right)\right)\right) \) (coefficients-wise product)
- Use counter mode for a stream cipher
 - Single addition instead of subset-sum
Implementation tricks

SPRING PRF

\[F_{a,s}(x_1, \ldots, x_k) := S \left(a \cdot \prod_{j=1}^{k} s_j^{x_j} \right) \]

- Use FFT for the subset product
 - \[\prod_{x_j=1} s_j = \phi^{-1} \left(\text{FFT}^{-1} \left(\prod_{x_j=1} \text{FFT}(\phi(s_j)) \right) \right) \]
 - Store \(\tilde{s}_{ij} := \log(\tilde{s}_{ij}) \), \(\tilde{s}_j := \text{FFT}(\phi(s_j)) \) (equivalent key)
 - \[\prod_{x_j=1} s_j = \phi^{-1} \left(\text{FFT}^{-1} \left(\exp \left(\sum_{x_j=1} \tilde{s}_j \right) \right) \right) \] (coefficients-wise product)

- Use counter mode for a stream cipher
 - Single addition instead of subset-sum
SPRING over R_{257} ($p = 257, n = 128$)

k-bit input x

1024-bit state (128 8-bit words)

Key s_{ij}

1024($k + 1$) bits

Subset sum

$\sum_j x_j s_{ij}$

$Z_{256} \rightarrow Z_{257}$

$exp \; exp \; exp \; exp \; exp \; exp \; exp$

FFT over $(Z_{257})^{128}$

$x_i \mapsto x_i \times \omega^{-i}$

$Z_{257} \rightarrow Z_2$

128-bit output

$msb \; msb \; msb \; msb \; msb \; msb \; msb$

$x \mapsto \lfloor 2x/257 \rfloor$
SPRING over \(R_{257} \) \((p = 257, \ n = 128) \)

- **Key** \(s_{ij} \)
 - 1024\((k + 1)\) bits

- **Subset sum**
 - \(\sum_j x_j s_{ij} \)
 - \(x \mapsto 3^x \mod 257 \)

- **FFT** over \((\mathbb{Z}_{257})^{128} \)
 - \(x_i \mapsto x_i \times \omega^{-i} \)

- **msb**
 - 128-bit output
 - \(x \mapsto \lfloor 2x/257 \rfloor \)
SPRING over R_{257} ($p = 257, n = 128$)

- **Key s_{ij}**
 - 1024($k + 1$) bits
- **Subset sum**
 - $\sum_j x_j s_{ij}$
 - $x \mapsto 3^x \mod 257$
- **FFT**
 - FFT over $(\mathbb{Z}_{257})^{128}$
 - $x_i \mapsto x_i \times \omega^{-i}$
- **128-bit output**
 - $x \mapsto \lfloor 2x/257 \rfloor$

k-bit input x

- x_1
- x_2
- \vdots
- x_k

1024-bit state

- (128 8-bit words)

$\mathbb{Z}_{256} \rightarrow \mathbb{Z}_{257}$

- $\exp \exp \exp \exp \exp \exp \exp$

$\mathbb{Z}_{257} \rightarrow \mathbb{Z}_2$

- msb msb msb msb msb msb msb
Tweaks to the construction

Problems because of the small parameters

1. Polynomial are non-inversible with high probability
 - Product in a subspace
 - Use only units for the key elements

2. Rounding from \mathbb{Z}_{257} has a bias $1/257$
 - Output bits biased
 - Combine bits to reduce bias: SPRING-BCH
 - Or use \mathbb{Z}_{514}: SPRING-CRT
Tweaks to the construction

Problems because of the small parameters

1. Polynomial are non-inversible with high probability
 - Product in a subspace
 - Use only units for the key elements

2. Rounding from \mathbb{Z}_{257} has a bias $1/257$
 - Output bits biased
 - Combine bits to reduce bias: SPRING-BCH
 - Or use \mathbb{Z}_{514}: SPRING-CRT
Tweaks to the construction

Problems because of the small parameters

1. Polynomial are non-inversible with high probability
 - Product in a subspace
 - Use only units for the key elements

2. Rounding from \(\mathbb{Z}_{257} \) has a bias 1/257
 - Output bits biased
 - Combine bits to reduce bias: SPRING-BCH
 - Or use \(\mathbb{Z}_{514} \): SPRING-CRT
Tweaks to the construction

Problems because of the small parameters

1. Polynomial are non-inversible with high probability
 - Product in a subspace
 - Use only units for the key elements

2. Rounding from \mathbb{Z}_{257} has a bias $1/257$
 - Output bits biased
 - Combine bits to reduce bias: SPRING-BCH
 - Or use \mathbb{Z}_{514}: SPRING-CRT
SPRING-BCH

- Reduce the bias by combining output bits
 - Piling-up lemma: $\text{bias}(a \oplus b) = \text{bias}(a) \cdot \text{bias}(b)$

- Multiply with the transpose of the generating matrix of a code
 - Syndrome for the dual code
 - Any linear combination of output bits is the sum of d biased bits
 - Bias reduced exponentially in d

- We use an extended BCH code
 - Efficient
 - Best known distance

- Efficiency loss: only 64 output bits
Use the ring $R_{514} = \mathbb{Z}_{514}[X]/(X^n + 1)$
 - Unbiased rounding from \mathbb{Z}_{514}

Chinese Remainder decomposition: $R_{514} \cong R_{257} \times R_2$
 - Compute modulo 257 and modulo 2

Computation in R_2:
 - Efficient algorithms for subset-product in the paper
 - In counter mode: single multiplication using PCLMUL, or tables
Implementation

- Implementation using **SIMD instructions**
 - Compute operations in parallel on vector of data
 - **SSE2** on Intel/AMD x86: desktop (Core) and embedded (Atom)
 - **NEON** on ARM: embedded CPU (Cortex A in smartphones, tablets)

- Subset sum optimized with precomputed tables
 - 2-bit inputs: \([0, s_0, s_1, s_0 + s_1]\)
 - 8-bit inputs: 256 entries

- Multiplication in \(R_2\) using **PCLMUL** instruction (if available), or precomputed tables

- Bottleneck is FFT

G. Leurent ()
FFT implementation tricks

- Reuse efficient FFT from the SIMD hash function
- Decompose FFT as a two-dimensional FFT
 - Parallel FFT on lines and columns
- Elements in \mathbb{Z}_{257} as 16-bit words
- Partial reduction mod257 with $(x \& 256) - (x >> 8)$
 - Output in $[-127, 383]$
- Multiplication in \mathbb{Z}_{257} using 16-bit signed multiplication
 - Reduce operands to $[-128, 128]$ beforehand
Performance

- 20-30 cycle/byte on Core i7 using SSE
 - Slow for a stream cipher, fast enough for practical use

- SPRING-CRT-CTR is about 4.5 times slower than AES-CTR
 - Excluding hardware AES instructions
 - Same ratio on a range of architectures

<table>
<thead>
<tr>
<th></th>
<th>SPRING-BCH</th>
<th>SPRING-CRT</th>
<th>AES-CTR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>CTR</td>
<td>Single</td>
</tr>
<tr>
<td>ARM Cortex A15</td>
<td>220</td>
<td>170</td>
<td>250</td>
</tr>
<tr>
<td>Atom</td>
<td>247</td>
<td>137</td>
<td>235</td>
</tr>
<tr>
<td>Core i7 Nehalem</td>
<td>74</td>
<td>60</td>
<td>76</td>
</tr>
<tr>
<td>Core i7 Ivy Bridge</td>
<td>60</td>
<td>46</td>
<td>62</td>
</tr>
</tbody>
</table>
Conclusion

\textbf{SPRING: Subset Product with Rounding over a ring}

- Strong algebraic structure
 - Simple design
 - Subset sum, table lookup, FFT, table lookup with small output
 - Large linear part good for masking, MPC

- Based on a design with security reduction
 - Security reduction does not apply with small parameters
 - Cryptanalysis is needed to evaluate the security
 - Expected security: about 128 bit

- High parallelism
 - Reasonable performances with vector instructions
 - Good performances in hardware?
Pseudo-code for SPRING

```plaintext
Key: \((\widehat{a}_i)_{i=0}^{127}, (\widehat{s}_{ij})_{i=0}^{127} j=0 \in \mathbb{Z}_{256}\)
Input: \(x_1, x_2, \ldots x_k \in \{0, 1\}\)

1: \text{for } 0 \leq i < k \text{ do}
2: \quad u_i \leftarrow \widehat{a}_i + \sum_j x_j \widehat{s}_{ij} \mod 256
3: \quad u_i \leftarrow 3^{u_i} \mod 257
4: \quad \vec{u} \leftarrow \text{FFT}_{128}^{-1}(\vec{u})
5: \text{for } 0 \leq i < k \text{ do}
6: \quad u_i \leftarrow u_i \cdot \omega^{-i} \mod 257
7: \quad y_i \leftarrow \lfloor 2 \cdot u_i/257 \rfloor
8: \text{return } \vec{y}
```

Implementation