
Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Termination of rewrite relations on λ-terms
using the notion of computability closure

Frédéric Blanqui

Academia Sinica, 16 November 2012

Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Rewriting

Rewriting is a simple yet Turing-complete framework for defining
functions and proving equalities on terms.

Given a set R ⊆ T × T of rewrite rules, t →R u if there are:

I a position p in t,

I a substitution σ,

I a rule l → r ∈ R
such that t|p = lσ (t|p matches l) and u = t[rσ]p.

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

First-order rewriting

First-order rewriting is rewriting on first-order terms:

t = x | ft1 . . . tn

where f belongs to a fixed set of function symbols.

Rewriting theory has a long history: Thue (1914), Post, Markov
(1947), Knuth (1967), Huet (1976), Dershowitz (1979), . . .

(x · y) · z → x · (y · z)
x · 1 → x

x · x−1 → 1

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

λ-terms

λ-terms form a term algebra for functions (Church 1940)

t = x | λxt | tt

Difference wrt first-order terms: substitution
is defined modulo α-equivalence (renaming of bound variables):

(λxy)xy =α λx
′x

⇒ termination techniques developed for FO rewriting
do not generally apply to λ-calculus

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

λ-calculus

Function evaluation is obtained by using the β rule schema:

(λxt)u →β tux

It is Turing-complete but does not allow to represent many useful
algorithms efficiently.

⇒ Hence the interest of extending it with function symbols f
defined by rewrite rules fl1 . . . ln → r .

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Higher-order rewriting

Higher-order rewriting is rewriting on λ-terms:

t = x | λxt | tt | f

D(λxy) → λx0
D(λxx) → λx1

D(λx sin(Fx)) → λxDFx × cos(Fx)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Higher-order rewriting - Approach 1

I simply-typed λ-terms in β-normal η-long form

I matching modulo αβη

Combinatory Reduction Systems (CRS) (Klop 1980)
Expression Reduction Systems (ERS) (Khasidashvili 1990)
Higher-order Rewrite Systems (HRS) (Nipkow 1991)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Simply-typed λ-calculus

simple types: T = B | T ⇒ T

xU : U
t : T

λxUt : U ⇒ T

v : U ⇒ T u : U

vu : T

→βη and →βη terminate and are confluent on typed λ-terms
⇒ every λ-term has a unique β-normal η-long (η-short) form

λx(tx) →η t if x /∈ Var(t)
t →η λx(tx) if x /∈ Var(t) and t : U ⇒ V is not applied

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Higher-order rewriting - Approach 1

can encode the untyped λ-calculus itself:

App:ι⇒ ι⇒ ι
Lam:(ι⇒ ι)⇒ ι

App(LamX)Y→RXY
Lam(λxAppXx)→RX

with w = Lam(λxAppxx)

Appww →R (λxAppxx)w ↓βη = Appww →R . . .

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Higher-order rewriting - Approach 2

I arbitrary λ-terms

I matching modulo α

Higher-order Algebraic Specification Languages (Jouannaud-Okada 1991)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Problem

Sufficient conditions for the termination of →R or →β ∪ →R?

I Toyama 1988: SN(R1) ∧ SN(R2) 6⇒ SN(R1] R2)

R1 = {fabx → fxxx} R2 =

{
gxy → x
gxy → y

}
f(gab)(gab)(gab)→2

R fab(gab)→R f(gab)(gab)(gab)→R . . .

I Dougherty 1992: →β ∪ →R terminates on any R-stable set
if R is FO and →R terminates on FO terms

(because FO rewriting cannot create β-redexes)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Method 1 for →β alone

On simply-typed λ-terms:

→β can be proved terminating by a direct induction on the type of
the substituted variable (Sanchis 1967, van Daalen 1980)

(λxA⇒Uxv)(λyAu)→β (λyAu)v

this extends neither to polymorphic types nor to rewriting since, in
these cases, the type of substituted variables may not decrease

f(cx)→ x with f : B⇒ (B⇒ A) and c : (B⇒ A)⇒ B

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Method 2 for →β alone

On simply-typed λ-terms:

λI -terms (x ∈ Var(t) in λxt) can be interpreted by hereditarily
monotone functions on N (Gandy 1980)

this can be used to build interpretations (van de Pol 1996, Hamana
2006) but these interpretations can also be obtained from an
extended computability proof

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Computability

Computability has been introduced for proving termination of
β-reduction in typed λ-calculi by Tait (1967) and Girard (1970)

I every type T is mapped to a set [[T]] of computable terms

I every t : T is proved to be computable, i.e. t ∈ [[T]]

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Computability predicates

There are different definitions of computability (Tait, Girard,
Parigot) but Girard’s definition Red is better suited for rewriting.

Let Red be the set of P such that:

I P ⊆ SN(→β)

I →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

Main idea of neutrality: if t is neutral then the reduction of tu
does not create new redexes (⇒ λxu is not neutral).

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Computable terms

Red is a complete lattice for set inclusion that is closed by:

a(P,Q) = {t | ∀u ∈ P, tu ∈ Q}

By taking [[U ⇒ V]] := a([[U]], [[V]]),

a term t : U ⇒ V is computable if:
for every computable term u : U, tu is computable

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Application to rewriting (Jouannaud-Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P
f~t is neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R}

Theorem: →β ∪ →R terminates if every rule of R is of the form

f~l → r with r ∈ CCR,f(~l), set of terms computable when ~l so are.

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Computability closure

By what operation CCR,f(~l) can be closed?

(arg) li ∈ CCR,f(~l)

(app)
t : U ⇒ V ∈ CCR,f(~l) u : U ∈ CCR,f(~l)

tu ∈ CCR,f(~l)

(red)
t ∈ CCR,f(~l) t →β ∪ →R t ′

t ′ ∈ CCR,f(~l)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with bound variables

Annotate CCR,f(~l) with a set X of (bound) variables:

(var)
x ∈ X

x ∈ CCX
R,f(

~l)

(lam)
t ∈ CC

X∪{x}
R,f (~l) x /∈ FV(~l)

λxt ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with subterms

Problem: computability is not preserved by subterm. . . :-(

with c : (B⇒ A)⇒ B, f : B⇒ (B⇒ A) and R = {f(cx)→ x},
→β ∪→R does not terminate (Mendler1987):

with w = λxBfxx , w(cw)→β f(cw)(cw)→R w(cw)→β . . .

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti) ⊆ Pos+(Ti)

ti ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with subterms

(sub-app-var-l)
tu ∈ CCX

R,f(
~l) u ↓η ∈ X

t ∈ CCX
f (~l)

(sub-app-var-r)
tu ∈ CCX

R,f(
~l) t ↓η ∈ X t : U ⇒ ~U ⇒ U

u ∈ CCX
f (~l)

(sub-lam)
λxt ∈ CCX

R,f(
~l) x /∈ FV(~l)

t ∈ CC
X∪{x}
R,f (~l)

(sub-SN)
t ∈ CCX

R,f(
~l) u : B � t FV(u) ⊆ FV(t) [[B]] = SN

u ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with function calls

Consider a relation = on pairs (h, ~v), where ~v are computable
arguments of h, such that = ∪ →prod is well-founded.

(app-fun)
(f,~l) = (g,~t) ~t ∈ CCR,f(~l)

g~t ∈ CCR,f(~l)

Example: (f,~l) = (g,~t) if either:

I f > g

I f ' g and ~l ((� ∪→)+)stat[f] ~t

where ≥ is a well-founded quasi-ordering on symbols
and stat[f] = stat[g] ∈ {lex,mul}

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with higher-order pattern-matching

f~t =βη f~lσ →R rσ

Problem: ~t computable ⇒ ~lσ computable?

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern (free variables are applied to distinct
bound variables) and lσ =βη t with σ and t
in β-normal η-long form, then lσ →∗β0=η t
where C [(λxu)v] →β0 C [uvx] if v ∈ X

⇒ consider β0-normalized rewriting with
matching modulo β0η (subsumes CRS and
HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η,
if t is computable and t =β0η lσ with l an higher-order pattern,
then lσ is computable.

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with higher-order pattern-matching

Theorem: ←β0η→R,β0η ⊆ →R,β0η=β0η if:

I every rule is of the form f~l → r with f~l an higher-order pattern

I if l → r ∈ R, l : T ⇒ U and x /∈ FV(l), then lx → rx ∈ R
I if lx → r ∈ R and x /∈ FV(l), then l → λxr ∈ R

s ←β0 (λxs)x=β0η lσx→Rrσx

s ←η λxsx=β0ηλxlσ→Rλxrσ

⇒ every set of rules of the form f~l → r with f~l an higher-order
pattern can be completed into a set compatible with →β0η

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with rewriting modulo some equational theory

f~t =E u →R v

Problem: ~t computable ⇒ v computable?

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with rewriting modulo some equational theory

First, we need SN(→β) to be closed by =E . For instance:

Theorem: →β=E ⊆ =E→β if:

I E is linear (no variable occurs twice)

I E is regular (∀l = r ∈ E ,FV(l) = FV(r))

I E is algebraic (no abstraction nor applied variable)

x × 0 = 0

x × (y + z) = (x × y) + (x × z)

∀(λx∀(λyPxy)) = ∀(λy∀(λxPxy))

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with rewriting modulo some equational theory

Given a set E of equations and a set R of rewrite rules, let now
→ =→β ∪=E→R and RedER be the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P and =E (P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with rewriting modulo some equational theory

Theorem: assuming that →β=E ⊆ =E→β, the relation
→β ∪=E→R terminates if:

I every rule of R is of the form h~n→ r with r ∈ CCER,h(~n),

I every equation of E is of the form f~l = g~m
with ~m ∈ CCER,f(

~l) and ~l ∈ CCER,g(~m).

f~t = f~lσ ↔E g~mσ ↔E . . .↔E h~nθ →R rθ = v

~t computable ⇒ ~mσ computable ⇒ . . .⇒ v computable

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Dealing with rewriting modulo some equational theory

Examples:

I commutativity: +xy = +yx

{y , x} ⊆ CC+(xy)

I associativity: +(+xy)z = +x(+yz)

{x ,+yz} ⊆ CC+((+xy)z)
{+xy , z} ⊆ CC+(x(+yz))

Frédéric Blanqui (INRIA) Computability closure

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

To know more on computability closure

I how to deal with constructors having functional arguments

I how to deal with conditional rewriting

I what is the relation with RPO

I what is the relation with dependency pairs

I what is the relation with semantic labelling

see https://who.rocq.inria.fr/Frederic.Blanqui/

Thank you!

Frédéric Blanqui (INRIA) Computability closure

https://who.rocq.inria.fr/Frederic.Blanqui/

	Computability
	Dealing with higher-order pattern-matching
	Dealing with rewriting modulo some equational theory

