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Rewriting

Rewriting is a simple yet Turing-complete framework for defining
functions and proving equalities on terms.

Given a set R ⊆ T × T of rewrite rules, t →R u if there are:

I a position p in t,

I a substitution σ,

I a rule l → r ∈ R
such that t|p = lσ (t|p matches l) and u = t[rσ]p.
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First-order rewriting

First-order rewriting is rewriting on first-order terms:

t = x | ft1 . . . tn

where f belongs to a fixed set of function symbols.

Rewriting theory has a long history: Thue (1914), Post, Markov
(1947), Knuth (1967), Huet (1976), Dershowitz (1979), . . .

(x · y) · z → x · (y · z)
x · 1 → x

x · x−1 → 1
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λ-terms

λ-terms form a term algebra for functions (Church 1940)

t = x | λxt | tt

Difference wrt first-order terms: substitution
is defined modulo α-equivalence (renaming of bound variables):

(λxy)xy =α λx
′x

⇒ termination techniques developed for FO rewriting
do not generally apply to λ-calculus
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λ-calculus

Function evaluation is obtained by using the β rule schema:

(λxt)u →β tux

It is Turing-complete but does not allow to represent many useful
algorithms efficiently.

⇒ Hence the interest of extending it with function symbols f
defined by rewrite rules fl1 . . . ln → r .
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Higher-order rewriting

Higher-order rewriting is rewriting on λ-terms:

t = x | λxt | tt | f

D(λxy) → λx0
D(λxx) → λx1

D(λx sin(Fx)) → λxDFx × cos(Fx)
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Higher-order rewriting - Approach 1

I simply-typed λ-terms in β-normal η-long form

I matching modulo αβη

Combinatory Reduction Systems (CRS) (Klop 1980)
Expression Reduction Systems (ERS) (Khasidashvili 1990)
Higher-order Rewrite Systems (HRS) (Nipkow 1991)
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Simply-typed λ-calculus

simple types: T = B | T ⇒ T

xU : U
t : T

λxUt : U ⇒ T

v : U ⇒ T u : U

vu : T

→βη and →βη terminate and are confluent on typed λ-terms
⇒ every λ-term has a unique β-normal η-long (η-short) form

λx(tx) →η t if x /∈ Var(t)
t →η λx(tx) if x /∈ Var(t) and t : U ⇒ V is not applied
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Higher-order rewriting - Approach 1

can encode the untyped λ-calculus itself:

App:ι⇒ ι⇒ ι
Lam:(ι⇒ ι)⇒ ι

App(LamX )Y→RXY
Lam(λxAppXx)→RX

with w = Lam(λxAppxx)

Appww →R (λxAppxx)w ↓βη = Appww →R . . .
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Higher-order rewriting - Approach 2

I arbitrary λ-terms

I matching modulo α

Higher-order Algebraic Specification Languages (Jouannaud-Okada 1991)
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Problem

Sufficient conditions for the termination of →R or →β ∪ →R?

I Toyama 1988: SN(R1) ∧ SN(R2) 6⇒ SN(R1 ] R2)

R1 = {fabx → fxxx} R2 =

{
gxy → x
gxy → y

}
f(gab)(gab)(gab)→2

R fab(gab)→R f(gab)(gab)(gab)→R . . .

I Dougherty 1992: →β ∪ →R terminates on any R-stable set
if R is FO and →R terminates on FO terms

(because FO rewriting cannot create β-redexes)
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Method 1 for →β alone

On simply-typed λ-terms:

→β can be proved terminating by a direct induction on the type of
the substituted variable (Sanchis 1967, van Daalen 1980)

(λxA⇒Uxv)(λyAu)→β (λyAu)v

this extends neither to polymorphic types nor to rewriting since, in
these cases, the type of substituted variables may not decrease

f(cx)→ x with f : B⇒ (B⇒ A) and c : (B⇒ A)⇒ B
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Method 2 for →β alone

On simply-typed λ-terms:

λI -terms (x ∈ Var(t) in λxt) can be interpreted by hereditarily
monotone functions on N (Gandy 1980)

this can be used to build interpretations (van de Pol 1996, Hamana
2006) but these interpretations can also be obtained from an
extended computability proof
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Computability

Computability has been introduced for proving termination of
β-reduction in typed λ-calculi by Tait (1967) and Girard (1970)

I every type T is mapped to a set [[T ]] of computable terms

I every t : T is proved to be computable, i.e. t ∈ [[T ]]
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Computability predicates

There are different definitions of computability (Tait, Girard,
Parigot) but Girard’s definition Red is better suited for rewriting.

Let Red be the set of P such that:

I P ⊆ SN(→β)

I →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

Main idea of neutrality: if t is neutral then the reduction of tu
does not create new redexes (⇒ λxu is not neutral).
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Computable terms

Red is a complete lattice for set inclusion that is closed by:

a(P,Q) = {t | ∀u ∈ P, tu ∈ Q}

By taking [[U ⇒ V ]] := a([[U]], [[V ]]),

a term t : U ⇒ V is computable if:
for every computable term u : U, tu is computable
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Application to rewriting (Jouannaud-Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P
f~t is neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R}

Theorem: →β ∪ →R terminates if every rule of R is of the form

f~l → r with r ∈ CCR,f(~l), set of terms computable when ~l so are.
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Computability closure

By what operation CCR,f(~l) can be closed?

(arg) li ∈ CCR,f(~l)

(app)
t : U ⇒ V ∈ CCR,f(~l) u : U ∈ CCR,f(~l)

tu ∈ CCR,f(~l)

(red)
t ∈ CCR,f(~l) t →β ∪ →R t ′

t ′ ∈ CCR,f(~l)
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Dealing with bound variables

Annotate CCR,f(~l) with a set X of (bound) variables:

(var)
x ∈ X

x ∈ CCX
R,f(

~l)

(lam)
t ∈ CC

X∪{x}
R,f (~l) x /∈ FV(~l)

λxt ∈ CCX
R,f(

~l)
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Dealing with subterms

Problem: computability is not preserved by subterm. . . :-(

with c : (B⇒ A)⇒ B, f : B⇒ (B⇒ A) and R = {f(cx)→ x},
→β ∪→R does not terminate (Mendler1987):

with w = λxBfxx , w(cw)→β f(cw)(cw)→R w(cw)→β . . .

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti ) ⊆ Pos+(Ti )

ti ∈ CCX
R,f(

~l)
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Dealing with subterms

(sub-app-var-l)
tu ∈ CCX

R,f(
~l) u ↓η ∈ X

t ∈ CCX
f (~l)

(sub-app-var-r)
tu ∈ CCX

R,f(
~l) t ↓η ∈ X t : U ⇒ ~U ⇒ U

u ∈ CCX
f (~l)

(sub-lam)
λxt ∈ CCX

R,f(
~l) x /∈ FV(~l)

t ∈ CC
X∪{x}
R,f (~l)

(sub-SN)
t ∈ CCX

R,f(
~l) u : B � t FV(u) ⊆ FV(t) [[B]] = SN

u ∈ CCX
R,f(

~l)
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Dealing with function calls

Consider a relation = on pairs (h, ~v), where ~v are computable
arguments of h, such that = ∪ →prod is well-founded.

(app-fun)
(f,~l) = (g,~t) ~t ∈ CCR,f(~l)

g~t ∈ CCR,f(~l)

Example: (f,~l) = (g,~t) if either:

I f > g

I f ' g and ~l ((� ∪→)+)stat[f] ~t

where ≥ is a well-founded quasi-ordering on symbols
and stat[f] = stat[g] ∈ {lex,mul}
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Dealing with higher-order pattern-matching

f~t =βη f~lσ →R rσ

Problem: ~t computable ⇒ ~lσ computable?
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Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern (free variables are applied to distinct
bound variables) and lσ =βη t with σ and t
in β-normal η-long form, then lσ →∗β0=η t
where C [(λxu)v ] →β0 C [uvx ] if v ∈ X

⇒ consider β0-normalized rewriting with
matching modulo β0η (subsumes CRS and
HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η,
if t is computable and t =β0η lσ with l an higher-order pattern,
then lσ is computable.
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Dealing with higher-order pattern-matching

Theorem: ←β0η→R,β0η ⊆ →R,β0η=β0η if:

I every rule is of the form f~l → r with f~l an higher-order pattern

I if l → r ∈ R, l : T ⇒ U and x /∈ FV(l), then lx → rx ∈ R
I if lx → r ∈ R and x /∈ FV(l), then l → λxr ∈ R

s ←β0 (λxs)x=β0η lσx→Rrσx

s ←η λxsx=β0ηλxlσ→Rλxrσ

⇒ every set of rules of the form f~l → r with f~l an higher-order
pattern can be completed into a set compatible with →β0η
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Dealing with rewriting modulo some equational theory

f~t =E u →R v

Problem: ~t computable ⇒ v computable?
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Dealing with rewriting modulo some equational theory

First, we need SN(→β) to be closed by =E . For instance:

Theorem: →β=E ⊆ =E→β if:

I E is linear (no variable occurs twice)

I E is regular (∀l = r ∈ E ,FV(l) = FV(r))

I E is algebraic (no abstraction nor applied variable)

x × 0 = 0

x × (y + z) = (x × y) + (x × z)

∀(λx∀(λyPxy)) = ∀(λy∀(λxPxy))
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Dealing with rewriting modulo some equational theory

Given a set E of equations and a set R of rewrite rules, let now
→ =→β ∪=E→R and RedER be the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P and =E (P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P
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Dealing with rewriting modulo some equational theory

Theorem: assuming that →β=E ⊆ =E→β, the relation
→β ∪=E→R terminates if:

I every rule of R is of the form h~n→ r with r ∈ CCER,h(~n),

I every equation of E is of the form f~l = g~m
with ~m ∈ CCER,f(

~l) and ~l ∈ CCER,g(~m).

f~t = f~lσ ↔E g~mσ ↔E . . .↔E h~nθ →R rθ = v

~t computable ⇒ ~mσ computable ⇒ . . .⇒ v computable
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Examples:

I commutativity: +xy = +yx

{y , x} ⊆ CC+(xy)

I associativity: +(+xy)z = +x(+yz)

{x ,+yz} ⊆ CC+((+xy)z)
{+xy , z} ⊆ CC+(x(+yz))
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To know more on computability closure

I how to deal with constructors having functional arguments

I how to deal with conditional rewriting

I what is the relation with RPO

I what is the relation with dependency pairs

I what is the relation with semantic labelling

see https://who.rocq.inria.fr/Frederic.Blanqui/

Thank you!
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