# Termination of rewrite relations on $\lambda$-terms using the notion of computability closure 

Frédéric Blanqui

Academia Sinica, 16 November 2012

## Rewriting

Rewriting is a simple yet Turing-complete framework for defining functions and proving equalities on terms.

Given a set $\mathcal{R} \subseteq \mathcal{T} \times \mathcal{T}$ of rewrite rules, $t \rightarrow_{\mathcal{R}} u$ if there are:

- a position $p$ in $t$,
- a substitution $\sigma$,
- a rule $I \rightarrow r \in \mathcal{R}$
such that $\left.t\right|_{p}=I \sigma\left(\left.t\right|_{p}\right.$ matches $\left.I\right)$ and $u=t[r \sigma]_{p}$.



## First-order rewriting

First-order rewriting is rewriting on first-order terms:

$$
t=x \mid f t_{1} \ldots t_{n}
$$

where $f$ belongs to a fixed set of function symbols.
Rewriting theory has a long history: Thue (1914), Post, Markov (1947), Knuth (1967), Huet (1976), Dershowitz (1979), . .

$$
\begin{aligned}
(x \cdot y) \cdot z & \rightarrow x \cdot(y \cdot z) \\
x \cdot 1 & \rightarrow x \\
x \cdot x^{-1} & \rightarrow 1
\end{aligned}
$$

## $\lambda$-terms

$\lambda$-terms form a term algebra for functions (Church 1940)

$$
t=x|\lambda x t| t t
$$

!
Difference wrt first-order terms: substitution is defined modulo $\alpha$-equivalence (renaming of bound variables):

$$
(\lambda x y)_{y}^{x}={ }_{\alpha} \lambda x^{\prime} x
$$

$\Rightarrow$ termination techniques developed for FO rewriting do not generally apply to $\lambda$-calculus

## $\lambda$-calculus

Function evaluation is obtained by using the $\beta$ rule schema:

$$
(\lambda x t) u \rightarrow_{\beta} t_{x}^{u}
$$

It is Turing-complete but does not allow to represent many useful algorithms efficiently.
$\Rightarrow$ Hence the interest of extending it with function symbols f defined by rewrite rules $f l_{1} \ldots I_{n} \rightarrow r$.

## Higher-order rewriting

Higher-order rewriting is rewriting on $\lambda$-terms:

$$
t=x|\lambda x t| t t \mid \mathrm{f}
$$

$$
\begin{aligned}
D(\lambda x y) & \rightarrow \lambda x 0 \\
D(\lambda x x) & \rightarrow \lambda x 1 \\
D(\lambda x \sin (F x)) & \rightarrow \lambda x D F x \times \cos (F x)
\end{aligned}
$$

## Higher-order rewriting - Approach 1

- simply-typed $\lambda$-terms in $\beta$-normal $\eta$-long form
- matching modulo $\alpha \beta \eta$


Combinatory Reduction Systems (CRS) (Klop 1980)
Expression Reduction Systems (ERS) (Khasidashvili 1990)
Higher-order Rewrite Systems (HRS) (Nipkow 1991)

## Simply-typed $\lambda$-calculus

simple types: $T=\mathrm{B} \mid T \Rightarrow T$

$$
x^{U}: U \quad \frac{t: T}{\lambda x^{U} t: U \Rightarrow T} \quad \frac{v: U \Rightarrow T \quad u: U}{v u: T}
$$

$\rightarrow_{\beta \eta}$ and $\rightarrow_{\beta \bar{\eta}}$ terminate and are confluent on typed $\lambda$-terms $\Rightarrow$ every $\lambda$-term has a unique $\beta$-normal $\eta$-long ( $\eta$-short) form

$$
\begin{array}{rlll}
\lambda x(t x) & \rightarrow_{\eta} & t & \text { if } x \notin \operatorname{Var}(t) \\
t & \rightarrow_{\bar{\eta}} & \lambda x(t x) & \text { if } x \notin \operatorname{Var}(t) \text { and } t: U \Rightarrow V \text { is not applied }
\end{array}
$$

## Higher-order rewriting - Approach 1

can encode the untyped $\lambda$-calculus itself:

$$
\begin{aligned}
& \text { App: } \iota \Rightarrow \iota \Rightarrow \iota \\
& \text { Lam: }(\iota \Rightarrow \iota) \Rightarrow \iota
\end{aligned}
$$

$\operatorname{App}(\operatorname{Lam} X) Y \rightarrow_{\mathcal{R}} X Y$ $\operatorname{Lam}(\lambda x \operatorname{App} X x) \rightarrow_{\mathcal{R}} X$
with $w=\operatorname{Lam}(\lambda x \operatorname{Appxx})$
Appww $\rightarrow_{\mathcal{R}}(\lambda x \operatorname{Appxx}) w \downarrow_{\beta \bar{\eta}}=\operatorname{App} w w \rightarrow_{\mathcal{R}} \cdots$

## Higher-order rewriting - Approach 2

- arbitrary $\lambda$-terms
- matching modulo $\alpha$


Higher-order Algebraic Specification Languages (Jouannaud-Okada 1991)

## Problem

Sufficient conditions for the termination of $\rightarrow_{\mathcal{R}}$ or $\rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}}$ ?

- Toyama 1988: $\mathrm{SN}\left(R_{1}\right) \wedge \mathrm{SN}\left(R_{2}\right) \nRightarrow \mathrm{SN}\left(R_{1} \uplus R_{2}\right)$

$$
\mathcal{R}_{1}=\{\mathrm{fab} x \rightarrow \mathrm{fxxx}\} \quad \mathcal{R}_{2}=\left\{\begin{array}{lll}
\mathrm{g} x y & \rightarrow & x \\
\mathrm{~g} x y & \rightarrow & y
\end{array}\right\}
$$

$$
\mathrm{f}(\mathrm{gab})(\mathrm{gab})(\mathrm{gab}) \rightarrow_{\mathcal{R}}^{2} \mathrm{fab}(\mathrm{gab}) \rightarrow_{\mathcal{R}} \mathrm{f}(\mathrm{gab})(\mathrm{gab})(\mathrm{gab}) \rightarrow_{\mathcal{R}} \ldots
$$

- Dougherty 1992: $\rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}}$ terminates on any $\mathcal{R}$-stable set if $\mathcal{R}$ is FO and $\rightarrow_{\mathcal{R}}$ terminates on FO terms
(because FO rewriting cannot create $\beta$-redexes)


## Method 1 for $\rightarrow_{\beta}$ alone

## On simply-typed $\lambda$-terms:

$\rightarrow_{\beta}$ can be proved terminating by a direct induction on the type of the substituted variable (Sanchis 1967, van Daalen 1980)

$$
\left(\lambda x^{A \Rightarrow} U_{x v}\right)\left(\lambda y^{A} u\right) \rightarrow_{\beta}\left(\lambda y^{A} u\right) v
$$

this extends neither to polymorphic types nor to rewriting since, in these cases, the type of substituted variables may not decrease

$$
f(c x) \rightarrow x \text { with } f: B \Rightarrow(B \Rightarrow A) \text { and } c:(B \Rightarrow A) \Rightarrow B
$$

## Method 2 for $\rightarrow_{\beta}$ alone

On simply-typed $\lambda$-terms:
$\lambda /$-terms $(x \in \operatorname{Var}(t)$ in $\lambda x t)$ can be interpreted by hereditarily monotone functions on $\mathbb{N}$ (Gandy 1980)
this can be used to build interpretations (van de Pol 1996, Hamana 2006) but these interpretations can also be obtained from an extended computability proof

## Outline

## Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

## Computability

Computability has been introduced for proving termination of $\beta$-reduction in typed $\lambda$-calculi by Tait (1967) and Girard (1970)


- every type $T$ is mapped to a set $\llbracket T \rrbracket$ of computable terms
- every $t: T$ is proved to be computable, i.e. $t \in \llbracket T \rrbracket$


## Computability predicates

There are different definitions of computability (Tait, Girard, Parigot) but Girard's definition Red is better suited for rewriting.

Let Red be the set of $P$ such that:

- $P \subseteq \operatorname{SN}\left(\rightarrow_{\beta}\right)$
- $\rightarrow_{\beta}(P) \subseteq P$
- if $t$ is neutral and $\rightarrow_{\beta}(t) \subseteq P$ then $t \in P$

Main idea of neutrality: if $t$ is neutral then the reduction of $t u$ does not create new redexes $(\Rightarrow \lambda x u$ is not neutral).

## Computable terms

Red is a complete lattice for set inclusion that is closed by:

$$
a(P, Q)=\{t \mid \forall u \in P, t u \in Q\}
$$

By taking $\llbracket U \Rightarrow V \rrbracket:=a(\llbracket U \rrbracket, \llbracket V \rrbracket)$,
a term $t: U \Rightarrow V$ is computable if:
for every computable term $u: U, t u$ is computable

## Application to rewriting (Jouannaud-Okada 1991)

Given a set $\mathcal{R}$ of rewrite rules, let $\rightarrow=\rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}}$ and $\operatorname{Red}_{\mathcal{R}}$ be the set of $P$ such that:

- $P \subseteq \mathrm{SN}(\rightarrow)$
- $\rightarrow(P) \subseteq P$
- if $t$ is neutral and $\rightarrow(t) \subseteq P$ then $t \in P$ $\mathrm{f} \vec{t}$ is neutral if $|\vec{t}| \geq \sup \{|\overrightarrow{\mid \vec{l}}| \mathrm{f} \vec{l} \rightarrow r \in \mathcal{R}\}$

Theorem: $\rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}}$ terminates if every rule of $\mathcal{R}$ is of the form $\mathrm{f} \vec{l} \rightarrow r$ with $r \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})$, set of terms computable when $\vec{l}$ so are.

## Computability closure

By what operation $\mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})$ can be closed?

$$
\begin{gathered}
(\arg ) I_{i} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l}) \\
(\mathrm{app}) \frac{t: U \Rightarrow V \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l}) \quad u: U \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})}{t u \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})} \\
(\mathrm{red}) \frac{t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l}) \quad t \rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}} t^{\prime}}{t^{\prime} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})}
\end{gathered}
$$

## Dealing with bound variables

Annotate $\mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})$ with a set $X$ of (bound) variables:

$$
\begin{gathered}
(\operatorname{var}) \frac{x \in X}{x \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l})} \\
(\text { lam }) \frac{t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X \cup\{x\}}(\vec{l}) \quad x \notin \mathrm{FV}(\vec{l})}{\lambda x t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l})}
\end{gathered}
$$

## Dealing with subterms

Problem: computability is not preserved by subterm. . . :-( with $\mathrm{c}:(\mathrm{B} \Rightarrow \mathrm{A}) \Rightarrow \mathrm{B}, \mathrm{f}: \mathrm{B} \Rightarrow(\mathrm{B} \Rightarrow \mathrm{A})$ and $\mathcal{R}=\{\mathrm{f}(\mathrm{cx}) \rightarrow x\}$, $\rightarrow_{\beta} \cup \rightarrow_{\mathcal{R}}$ does not terminate (Mendler1987):
with $w=\lambda x^{B_{f}}{ }_{x x}, w(\mathrm{cw}) \rightarrow_{\beta} \mathrm{f}(\mathrm{cw})(\mathrm{cw}) \rightarrow_{\mathcal{R}} w(\mathrm{cw}) \rightarrow_{\beta} \ldots$
$\Rightarrow$ restrictions on subterms (based on types) are necessary:

$$
\text { (sub-app-fun) } \frac{\mathrm{g} \vec{t} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l}) \mathrm{g}: \vec{T} \Rightarrow \mathrm{~B} \quad \operatorname{Pos}\left(\mathrm{~B}, T_{i}\right) \subseteq \operatorname{Pos}^{+}\left(T_{i}\right)}{t_{i} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l})}
$$

## Dealing with subterms

$$
\begin{gathered}
\text { (sub-app-var-l) } \frac{t u \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l}) \quad u \downarrow_{\eta} \in X}{t \in C C_{\mathrm{f}}^{X}(\vec{l})} \\
\text { (sub-app-var-r) } \frac{t u \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l}) \quad t \downarrow_{\eta} \in X \quad t: U \Rightarrow \vec{U} \Rightarrow U}{u \in C C_{\mathrm{f}}^{X}(\vec{l})} \\
\text { (sub-lam) } \frac{\lambda x t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l}) \quad x \notin \mathrm{FV}(\vec{l})}{t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X \cup\{x\}}(\vec{l})} \\
\text { (sub-SN) } \frac{t \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l}) \quad u: \mathrm{B} \unlhd t \quad \mathrm{FV}(u) \subseteq \mathrm{FV}(t) \quad \llbracket \mathrm{B} \rrbracket=\mathrm{SN}}{u \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{X}(\vec{l})}
\end{gathered}
$$

## Dealing with function calls

Consider a relation $\sqsupset$ on pairs $(\mathrm{h}, \vec{v})$, where $\vec{v}$ are computable arguments of $h$, such that $\sqsupset \cup \rightarrow_{\text {prod }}$ is well-founded.

$$
\left(\text { app-fun) } \frac{(\mathrm{f}, \vec{l}) \sqsupset(\mathrm{g}, \vec{t}) \quad \vec{t} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})}{\mathrm{g} \vec{t} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}(\vec{l})}\right.
$$

Example: $(\mathrm{f}, \vec{l}) \sqsupset(\mathrm{g}, \vec{t})$ if either:

- $\mathrm{f}>\mathrm{g}$
- $\mathrm{f} \simeq \mathrm{g}$ and $\vec{l}\left((\triangleright \cup \rightarrow)^{+}\right)_{\text {stat }[f]} \vec{t}$
where $\geq$ is a well-founded quasi-ordering on symbols and $\operatorname{stat}[\mathrm{f}]=\operatorname{stat}[\mathrm{g}] \in\{\mathrm{lex}, \mathrm{mul}\}$


## Outline

## Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

## Dealing with higher-order pattern-matching

$$
\mathrm{f} \vec{t}={ }_{\beta \eta} \mathrm{f} \vec{l} \sigma \rightarrow_{\mathcal{R}} r \sigma
$$

Problem: $\vec{t}$ computable $\Rightarrow \vec{I} \sigma$ computable?

## Dealing with higher-order pattern-matching

Dale Miller (1991): if I is an higher-order pattern (free variables are applied to distinct bound variables) and $I \sigma={ }_{\beta \eta} t$ with $\sigma$ and $t$ in $\beta$-normal $\eta$-long form, then $I \sigma \rightarrow_{\beta_{0}}^{*}={ }_{\eta} t$ where $C[(\lambda x u) v] \rightarrow_{\beta_{0}} C\left[u_{x}^{\nu}\right]$ if $v \in \mathcal{X}$
$\Rightarrow$ consider $\beta_{0}$-normalized rewriting with matching modulo $\beta_{0} \eta$ (subsumes CRS and
 HRS rewriting)!

Theorem: assuming that $\leftarrow \beta_{0} \eta \rightarrow_{\mathcal{R}, \beta_{0} \eta} \subseteq \rightarrow_{\mathcal{R}, \beta_{0} \eta}=\beta_{0} \eta$, if $t$ is computable and $t={ }_{\beta_{0} \eta} / \sigma$ with $/$ an higher-order pattern, then $I \sigma$ is computable.

## Dealing with higher-order pattern-matching

Theorem: $\leftarrow \beta_{0} \eta \rightarrow_{\mathcal{R}, \beta_{0} \eta} \subseteq \rightarrow_{\mathcal{R}, \beta_{0} \eta}{=\beta_{0} \eta}$ if:

- every rule is of the form $\mathrm{f} \vec{l} \rightarrow r$ with $\mathrm{f} \vec{l}$ an higher-order pattern
- if $I \rightarrow r \in \mathcal{R}, I: T \Rightarrow U$ and $x \notin \mathrm{FV}(I)$, then $I x \rightarrow r x \in \mathcal{R}$
- if $I x \rightarrow r \in \mathcal{R}$ and $x \notin \mathrm{FV}(I)$, then $I \rightarrow \lambda x r \in \mathcal{R}$

$$
\begin{aligned}
& s \leftarrow_{\beta_{0}}(\lambda x s) x==_{\beta_{0} \eta} / \sigma x \rightarrow_{\mathcal{R}} r \sigma x \\
& s \leftarrow_{\eta} \lambda x s x=\beta_{0} \eta \lambda x / \sigma \rightarrow_{\mathcal{R}} \lambda x r \sigma
\end{aligned}
$$

$\Rightarrow$ every set of rules of the form $f \vec{f} \rightarrow r$ with $f \vec{l}$ an higher-order pattern can be completed into a set compatible with $\rightarrow_{\beta_{0} \eta}$

## Outline

## Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

## Dealing with rewriting modulo some equational theory

$$
\mathrm{f} \vec{t}=\mathcal{E} u \rightarrow_{\mathcal{R}} v
$$

Problem: $\vec{t}$ computable $\Rightarrow v$ computable?

## Dealing with rewriting modulo some equational theory

First, we need $\operatorname{SN}\left(\rightarrow_{\beta}\right)$ to be closed by $=\mathcal{E}$. For instance:
Theorem: $\rightarrow_{\beta}=\mathcal{E} \subseteq=\mathcal{E} \rightarrow_{\beta}$ if:

- $\mathcal{E}$ is linear (no variable occurs twice)
- $\mathcal{E}$ is regular $(\forall I=r \in \mathcal{E}, \mathrm{FV}(I)=\mathrm{FV}(r))$
- $\mathcal{E}$ is algebraic (no abstraction nor applied variable)
(x) $x \times 0=0$
( $x \times(y+z)=(x \times y)+(x \times z)$
(c) $\forall(\lambda x \forall(\lambda y P x y))=\forall(\lambda y \forall(\lambda x P x y))$


## Dealing with rewriting modulo some equational theory

Given a set $\mathcal{E}$ of equations and a set $\mathcal{R}$ of rewrite rules, let now $\rightarrow=\rightarrow_{\beta} \cup=\mathcal{E}^{\rightarrow_{\mathcal{R}}}$ and $\operatorname{Red}{ }_{\mathcal{R}}^{\mathcal{E}}$ be the set of $P$ such that:

- $P \subseteq \operatorname{SN}(\rightarrow)$
- $\rightarrow(P) \subseteq P$ and $={ }_{\mathcal{E}}(P) \subseteq P$
- if $t$ is neutral and $\rightarrow(t) \subseteq P$ then $t \in P$


## Dealing with rewriting modulo some equational theory

Theorem: assuming that $\rightarrow_{\beta}=\mathcal{E} \subseteq=\mathcal{E} \rightarrow_{\beta}$, the relation $\rightarrow_{\beta} \cup={ }_{\mathcal{E}} \rightarrow_{\mathcal{R}}$ terminates if:

- every rule of $\mathcal{R}$ is of the form $\mathrm{h} \vec{n} \rightarrow r$ with $r \in \mathrm{CC}_{\mathcal{R}, \mathrm{h}}^{\mathcal{E}}(\vec{n})$,
- every equation of $\mathcal{E}$ is of the form $\mathrm{f} \vec{l}=\mathrm{g} \vec{m}$ with $\vec{m} \in \mathrm{CC}_{\mathcal{R}, \mathrm{f}}^{\mathcal{E}}(\vec{l})$ and $\vec{l} \in \mathrm{CC}_{\mathcal{R}, \mathrm{g}}^{\mathcal{E}}(\vec{m})$.

$$
\mathrm{f} \vec{t}=\mathrm{f} \vec{l} \sigma \leftrightarrow_{\mathcal{E}} \mathrm{g} \vec{m} \sigma \leftrightarrow_{\mathcal{E}} \ldots \leftrightarrow_{\mathcal{E}} \mathrm{h} \vec{n} \theta \rightarrow_{\mathcal{R}} r \theta=v
$$

$\vec{t}$ computable $\Rightarrow \vec{m} \sigma$ computable $\Rightarrow \ldots \Rightarrow v$ computable

## Dealing with rewriting modulo some equational theory

## Examples:

- commutativity: $+x y=+y x$

$$
\{y, x\} \subseteq \mathrm{CC}_{+}(x y)
$$

- associativity: $+(+x y) z=+x(+y z)$

$$
\begin{aligned}
& \{x,+y z\} \subseteq \mathrm{CC}_{+}((+x y) z) \\
& \{+x y, z\} \subseteq \mathrm{CC}_{+}(x(+y z))
\end{aligned}
$$

## To know more on computability closure

- how to deal with constructors having functional arguments
- how to deal with conditional rewriting
- what is the relation with RPO
- what is the relation with dependency pairs
- what is the relation with semantic labelling
see https://who.rocq.inria.fr/Frederic.Blanqui/


## Thank you!

