
Software certification
Some certification tools

Certification of Embedded Systems

F. Blanqui and J.-P. Jouannaud (INRIA)

LIAMA & Tsinghua University, Beijing, China

FORMES project

http://formes.asia

06/10/09, Osaka, Japan

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems

http://formes.asia


Software certification
Some certification tools

Outline

Software certification

Some certification tools

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Software certification

goal: make sure that an executable behaves as expected

problem: it relies on the correctness of many tools

I executable generator: parser, type-checker, compiler,
pretty-printer, assembler, linker

I verification tools: static analyzer, model checker, verification
condition generator, automated theorem prover, proof checker

and on the correctness of hardware. . .

proposal: try to break this vicious circle by using a proof assistant

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Software certification

goal: make sure that an executable behaves as expected

problem: it relies on the correctness of many tools

I executable generator: parser, type-checker, compiler,
pretty-printer, assembler, linker

I verification tools: static analyzer, model checker, verification
condition generator, automated theorem prover, proof checker

and on the correctness of hardware. . .

proposal: try to break this vicious circle by using a proof assistant

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Break the vicious circle

I logicians have shown that proofs can be carried out by using a
small number of deduction rules

I proof assistants like Coq, Isabelle, HOL, Agda, etc. are based on
this idea:

– a kernel checks the correctness of proofs
it is small enough to be checked by hand (and formalized)

– a proof development environment provides tools for building proofs
it does not matter too much that these tools have bugs:
their results are checked by the kernel

proof-
script

→ Proof
assistant

→ proof → Kernel → yes/no

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Proof assistants

generally provide:

I a (non-imperative) programming language for defining functions
that can generally be extracted and compiled as usual programs

I a specification language for defining predicates

I a script language or interface for building proofs

I libraries with usual functions, predicates and tactics

I a module system

I . . .

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

How to certify a software ?

possible approaches:

I prove once and for all that the software has no bug

– hard/tedious for complex/big software
– static analysers and automated theorem provers can help a lot
– must be redone every time the code is changed

I make the software provide, each time it is run, some certificate
that can be used to check the correctness of its output

– does not depend on the way the tool is implemented
– require to develop and prove a certificate verifier
– not adapted for compilers, simulators, etc.
– well adapted for decision procedures (SMT, termination, etc.)

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

input → Tool → output

↓
certificate

↓
Certificate
verifier

→ yes/no

examples:

I certification of termination proofs (CoLoR)

I certification of CoqMT, an extension of Coq with SMT
(Pierre-Yves Strub in FORMES)

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Outline

Software certification

Some certification tools

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

CompCert: http://compcert.inria.fr

I Coq-certified optimized compiler from CLight to ARM/PowerPC

I CLight is a large subset of C with a completely defined semantics

not certified yet:

I parser and type-checker for C

I pretty-printer for ARM/PowerPC

I assembler and linker

see picture. . .

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems

http://compcert.inria.fr


Software certification
Some certification tools

Why: http://why.lri.fr

(partially certified) verification condition generator:

I takes as input a C/Java/ML program with, for each function,
annotations describing pre- and post-conditions and, for each
loop, an invariant and a measure for termination (variant)

I for each instruction of the program, generates all the conditions
that must be satisfied for the instruction to execute correctly
and the pre- and post-conditions of the program to be satisfied

I try to check these conditions automatically by sending them to
various automated theorem provers

I send them to some proof assistant otherwise

see picture. . .

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems

http://why.lri.fr


Software certification
Some certification tools

Example of annotated C code

int index(int t[], int n, int v)

/*@ array_length(t) = n */ {

int i = 0;

while (i < n)

/*@ invariant 0 <= i variant n - i */

if (t[i] == v) break;

i++;

}

return i;

}

/*@ 0 <= result < n -> t[result] = v */

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Frama-C: http://frama-c.cea.fr

(uncertified) suite of tools dedicated to the analysis of C code

I gathers several static analysis techniques (as plugins) in a single
collaborative framework: slicer, dependency analysis, etc.

I allows static analyzers to build upon the results already
computed by other analyzers in the framework

I verification of functional specifications based on Why

see picture. . .

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems

http://frama-c.cea.fr


Software certification
Some certification tools

Application to PLC programs

I formalization in Coq of the various languages used for
programming PLCs together with their semantics
(SFC, IL, ST, FBD, LD, Basic, C)

I development of a Coq-certified compiler for these languages

I extension of Why/Frama-C with time/temporal logic
annotations

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems



Software certification
Some certification tools

Conclusion

I many tools already exist for (partially) certifying programs

I some of these tools need to be themselves certified

I kernel-based proof assistants can help break this vicious circle

I instead of certifying a program, one can use certificates

Thank you!

F. Blanqui and J.-P. Jouannaud (INRIA) Certification of Embedded Systems


	Software certification
	Some certification tools

