A new generation of Secure Proof Assistants integrating Small Proof Engines

F. Blanqui¹ J.-P. Jouannaud² P.-Y. Strub²

(1) INRIA - LORIA

(2) Ecole Polytechnique - LIX

Problems and Objectives The Calculi of Constructions The Calculus of Congruent Inductive Constructions Decidability of type-checking in CCIC Security of the kernel

Outline

The proof assistant Coq

- Problems and Objectives
- The Calculi of Constructions
- The Calculus of Congruent Inductive Constructions
- Decidability of type-checking in CCIC
- Security of the kernel

Problems and Objectives The Calculi of Constructions The Calculus of Congruent Inductive Constructions Decidability of type-checking in CCIC Security of the kernel

Proof assistant

- A programming language dedicated to processing mathematics.
- A set of deduction and computation rules characterizing the logic chosen for expressing mathematical statements and their proofs.
- Proof tactics helping the user building proofs.
- A tactic language for writing new tactics.
- Libraries of proved theorems.
- Security of the proof assistant is ensured by a proof-checking algorithm, called the kernel.

Problems and Objectives The Calculi of Constructions The Calculus of Congruent Inductive Constructions Decidability of type-checking in CCIC Security of the kernel

Coq successive frameworks I

 The Calculus of Constructions CC : [Coquand and Huet, 1985]

Paradigm:

readability of a small kernel ensures security.

- The Calculus of Inductive Constructions CIC : [Coquand and Paulin, 1990]
- The Calculus of Guarded Constructions CGC : [Gimenez, 1996]
- The Calculus of Modular Constructions CMC : [Chrzaczsz, 2003]

Paradigm:

provability of a medium-size kernel ensures security.

Problems and Objectives The Calculi of Constructions The Calculus of Congruent Inductive Constructions Decidability of type-checking in CCIC Security of the kernel

Coq successive frameworks II

- The Calculus of Algebraic Constructions CAC : [Blanqui, 2001]
- The Calculus of Compiled Constructions [Gregoire, 2004]

Paradigm:

securiry requires proving a large kernel.

The Calculus of Congruent Inductive Constructions CCIC : [Blanqui, Jouannaud and Strub, 2007]

Paradigm:

incremental provability of a small number of stable medium-size kernels ensures security.

Outline

The proof assistant Coq

- Problems and Objectives
- The Calculi of Constructions
- The Calculus of Congruent Inductive Constructions
- Decidability of type-checking in CCIC
- Security of the kernel

Major problems

- Specifications and proofs should be close to the mathematical practice.
- Proofs may need complex *computations*: the four color theorem completed late 2004 by Georges Gonthier and Benjamin Werner.
- Transparent computations are powerful, change our style of making proofs (proofs by reflexion), and are required for complex tasks [Gonthier]
- Computations should not require user's assistance.
- Despite some important progress, these problems remain unsolved.

Major practical objective

- Close the gap between mathematical practice and development of formal proofs
- by automating proofs of decidable subgoals
- without compromising the security of using Coq.

Automating proofs of decidable subgoals

Building as a black box arbitrary decision procedures with proof certificates into the computational part of the Calculus of Inductive Constructions

Outline

The proof assistant Coq

Problems and Objectives

The Calculi of Constructions

The Calculus of Congruent Inductive Constructions

Decidability of type-checking in CCIC

Security of the kernel

The **Calculus of Constructions** is a higher-order typed calculus integrating polymorphism and dependent types in a Curry-Howard style, and a computation mechanism via its conversion rule:

$$\frac{\Gamma \vdash t: T \quad T \sim_{\Gamma} T'}{\Gamma \vdash t: T'} [\mathsf{CONV}]$$

- ► computation power expressed by ~r
- type checking is decidable as long as \sim_{Γ} is decidable

A more powerful conversion \sim_{Γ} implies

- bigger deduction steps
- hence smaller proofs
- more terms are typable, hence
- more proposition can be expressed, and
- dependent types become usable.
- But big risk to run into undecidability.

Conversion relations (1/4)

- β-convertibility (CC [Coquand, Huet 80])
- β-convertibility + recursors for inductive types (CIC [Paulin 89], [Altenkirch 93], [Werner 94])

$$egin{aligned} \mathsf{nat} &:= 0: \mathsf{nat} \mid S: \mathsf{nat} o \mathsf{nat} \ 0+b \stackrel{\iota}{ o} b & S(a)+b \stackrel{\iota}{ o} S(a+b) \ 2+S(x) \sim_{\Gamma} S^3(x) ext{ but }
eg(x+0 \sim_{\Gamma} x) \ (+ ext{ is defined by induction on its first argument)} \end{aligned}$$

Conversion relations (2/4)

β-convertibility + a rewrite system R
 (CAC [Barbanera 90], [Fernandez, Geuvers 93], [Barthe 98],
 [Blanqui, Jouannaud, Okada 01], [Blanqui 05])

R can be a higher-order rewrite system, contain non-linear patterns, can mimic ι -reduction, rewrite module AC symbols...

Kernel can get very big, compromising security

Conversion relations (3/4)

 all terms provably equal are convertible (CCext [Hofmann 95], [Oury 05])

$$\Gamma \vdash t = u \implies t \sim_{\Gamma} u$$

type checking is not decidable subject reduction and type unicity are lost strong normalization of β is lost too

Conversion relations (4/4)

 Open Calculus of Construction (OCC [Stehr 02])

Allow the use of any equational theory in the conversion rule.

Same drawbacks as for ECC

Our Calculus of Congruent Inductive Constructions

A calculus of inductive constructions including:

- $\beta\iota$ -conversion (as in CIC)
- ► an arbitrary first order theory T over equality with decidable entailment, e.g., Presburger arithmetic
- relevant *closed* equational hypotheses from Γ

$$x = y + 2, f(y + 2) = g(x) \in \Gamma \implies f(x) \sim_{\Gamma} g(y)$$

- whose type checking is decidable
- whose conversion relation incorporates entailment in T as a black box procedure.

(i.e. the theory ${\mathcal T}$ is not hard-coded in CCIC)

CCIC has more proofs by reflexivity of equality

$$\begin{split} \mathsf{\Gamma} &= [x \ y \ z \ t : nat], [f : nat \to nat], \\ & [p_1 : t \doteq 2], [p_2 : f \ (x + 3) \doteq x + 2], \\ & [p_3 : f \ (y + t) + 2 \doteq y + z], [p_4 : y = x + 1] \end{split}$$

Under assumptions in Γ , a proof by *reflexivity* of $3 \doteq 3$ should be a proof of $z \doteq S t$.

Not true of Coq, but true of CCIC.

CCIC: has more typable terms

- reverse : $\forall n : nat$, list $n \rightarrow$ list n
- ▶ __: $\forall n_1, n_2 : nat$, list $n_1 \rightarrow$ list $n_2 \rightarrow$ list $(n_1 + n_2)$
- We want to prove that $\forall n_1, n_2 : nat \forall l_1 : \text{list } n_1 \forall l_2 : \text{list } n_2, \text{reverse}(l_1 l_2 l_2 l_1) = l_1 l_2 l_2 l_1$
- But reverse(*II*) = reverse(*I*) reverse(*I*) is typable only if n + n' ~_Γ n' + n since

reverse(*I l'*) has type list(n + n')reverse(*l'*) reverse(*l*) has type list(n' + n)

Typing fails in Coq but succeeds in CCIC.

Outline

The proof assistant Coq

Problems and Objectives

The Calculi of Constructions

The Calculus of Congruent Inductive Constructions

Decidability of type-checking in CCIC

Security of the kernel

Our Calculus: restricted for exposition to

- building in Presburger arithmetic only
- weak recursor over natural numbers

We use the { usual terms of CC symbols for arithmetic

$$t, u, T ::= \overline{s \in \{\star, \Box\} \mid x \in \mathcal{X} \mid t u} | (\forall x : T)u | [\lambda x : T]u$$

$$[nat \mid 0 \mid S \mid \dot{+} \mid \mathsf{Rec}^{\mathcal{W}}_{\mathbb{N}}(t, T) \{t_0, t_S\}] \mid \dot{=} \mid \mathsf{Eq}_{\mathcal{T}}(t)]$$

natural numbers

eq. reasoning

- $\mathbf{F} = \mathbf{is}$ a polymorphic equality symbol
- Eq_T(t) is a proof of $t \doteq_T t$

Typing rules (1/2)

- We keep the usual rules of CC
- Some axioms for typing symbols

 \vdash 0 : nat \vdash S : nat \rightarrow nat

etc...

Recursor rule:

$$\frac{\Gamma \vdash t : nat \quad \Gamma \vdash Q : nat \to \star}{\Gamma \vdash f_0 : nat \quad \Gamma \vdash f_S : \forall (n :^u nat) . Q n \to Q(S n)}{\Gamma \vdash \mathsf{Rec}^{\mathcal{W}}_{\mathbb{N}}(t, Q) \{f_0, f_S\} : Q t} [\iota\text{-}\mathsf{ELIM}]$$

 $\begin{array}{c|c} \mathsf{Eq}\text{-rules:} \\ \hline \Gamma \vdash t_1 : T \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash p : \forall (P : T \to \star). P t_1 \to P t_2 \\ \hline \Gamma \vdash \mathsf{Eq}(p) : t_1 \doteq_T t_2 \end{array} [\mathsf{Eq}\text{-INTRO}] \end{array}$

Typing rules (2/2)

All computations go to the conversion rule

$$\frac{\Gamma \vdash t: T \quad \Gamma \vdash T': s' \quad T \sim_{\Gamma} T'}{\Gamma \vdash t: T'}$$

 \sim_{Γ} will include

- ▶ β-conversion
- ▶ weak recursor for natural numbers $RecW(0, Q){f_0, f_S} \xrightarrow{\iota} f_0$ $RecW(S t, Q){f_0, f_S} \xrightarrow{\iota} f_S t (Rec_N^{\mathcal{W}}(t, Q){f_0, f_S})$
- ► Validity entailment for Presburger arithmetic *T*

Defining \sim_{Γ} (1/3) - Algebraisation

- Needs extracting equations from typing environments
- ${\scriptstyle \blacktriangleright} \implies$ communication between CC and the algebraic world
 - Greenlocations are in the algebraic capRedlocations are alien positions
 - $\begin{array}{rcl} \mathsf{APos}(t) & \to & \textit{alien} \text{ positions of } t \\ \mathsf{CPos}(t) & \to & \textit{algebraic} \text{ positions of } t \end{array}$
 - $\begin{array}{lll} \mathcal{R} & \to & \text{equivalence relation} \\ \pi_{\mathcal{R}}(t) & \to & \text{s.t. } \pi_{R}(t) = \pi_{R}(u) \Leftrightarrow t \, \mathcal{R} \, u \\ & & (\pi_{\mathcal{R}}(t) \text{ in a fresh set of variables}) \end{array}$

$$\operatorname{cap}_{\mathcal{R}}(t) = t[p \leftarrow \pi_{\mathcal{R}}(t_{|p})]_{p \in \operatorname{APos}(t)}$$

Defining \sim_{Γ} (2/3) - Equations extraction

$$\frac{\Gamma, [x:t_1 \doteq t_2] \vdash \circ : u}{\Gamma \vdash \circ : (\forall x:t_1 \doteq t_2)u}$$

 \sim_{Γ} must anticipate the fact that the equation $t_1 \doteq t_2$ will appear in the environment when typing $(\forall x : t_1 \doteq t_2)u$.

i.e. if $u \sim_{\Gamma[x:T]} v$ then $(\forall x:T)u \sim_{\Gamma} (\forall x:T)v$

 \sim_{Γ} is a family of context-dependent congruences.

Inference system defining \sim_{Γ} (3/3)

$$\frac{t =_{\beta_{\iota}} u}{t \sim_{\Gamma} u} [\beta_{\iota}] \qquad \frac{\Gamma = \Gamma_{1}, [z : W], \Gamma_{2} \quad W \xrightarrow{\beta}_{*} u \doteq v}{u \sim_{\Gamma} v} [EQ]$$

$$\frac{\mathcal{T}, \{ \operatorname{cap}_{\sim_{\Gamma}}(u) = \operatorname{cap}_{\sim_{\Gamma}}(v) \mid u \sim_{\Gamma} v \} \vDash \operatorname{cap}_{\sim_{\Gamma}}(s) = \operatorname{cap}_{\sim_{\Gamma}}(t)}{s \sim_{\Gamma} t \quad [\mathcal{T}, \Gamma, s, t]}$$
[DED]

$$\frac{t_1 \sim_{\Gamma} u_1 \quad t_2 \sim_{\Gamma,[x:t_1]} u_2}{(\forall x:t_1)t_2 \sim_{\Gamma} (\forall x:u_1)u_2} [\mathsf{PROD}]$$

+ same rule for abstraction + contextual rules.

Precise definition of CCIC is more complex:

Definition of ~_Γ and calculus must use a set of annotations used for restricting

some kind of applications and equations extraction

which would otherwise lift inconsistencies from the environment to types.

Details in

[Blangui, Jouannaud and Strub : Building decision procedures in the Calculus of Inductive Constructions] [Strub : The Calculus of Congruent Inductive Construction, PhD thesis, april 2008]

Sketch of consistency proof

- Calculus has standard properties of Pure type Systems: Stability by substitution Inversion lemma Subject reduction
- Strong normalization of βι for well formed terms follows from proof irrevelance

[Barthe, ICALP 1998]

. . .

Outline

The proof assistant Coq

Problems and Objectives

The Calculi of Constructions

The Calculus of Congruent Inductive Constructions

Decidability of type-checking in CCIC

Security of the kernel

Decidability

- use a saturation based algorithm a la Nelson-Oppen-Shostak
- equations are purified between the algebraic and non-algebraic worlds
- deductions are propagated between both worlds via equations between variables
- since some hypotheses can appear locally, all literals will be marked with a set of labels indicating their availability.

Decidability

```
We suppose \Gamma \vdash t : T and \Gamma \vdash u : U
```

Does $t \sim_{\Gamma} u$ holds ?

We will deal with configurations [E, A, N] where

- E is a set of mixed literals
- A is a set of pure algebraic literals
- N is a set of non algebraic equations in solved-form

Each literal is annotated with a set of labels taken from a fresh set of variables \mathcal{Y} .

Decidability

- Configurations are reduced by a normalizing and confluent reduction system
- We start with the configuration $[Eq(\Gamma) \cup \{t \neq u\}, \emptyset, \emptyset]$ with $Eq(\Gamma) = \{v_1 = v_2 \mid [x : v_1 \doteq v_2] \in \Gamma_{\downarrow\beta}\}$

in which literals are annotated with an empty set of labels)

► $t \sim_{\Gamma} u$ if and only if $[Eq(\Gamma) \cup \{t \neq u\}]$ reduces to \bot

Example (1/6)

Under Assumption: $\Gamma = [p : y \doteq x + 2]$ prove:

$$[\lambda q: f(y-2) \doteq gy].fx \sim_{\Gamma} [\lambda q: f(y-2) \doteq gy].gy$$

Purification gives:

Ν	A
	$X_1 \neq X_2$
$X_1 \mapsto [\lambda q : E_1]C_1$ $X_2 \mapsto [\lambda q : E_2]C_2$	y = x + 2 $A_1 = f(y - 2)$ $A_2 = f(y - 2)$
$E_1 \mapsto A_1 \doteq B_1$	$B_1 = g(y)$
$E_2 \mapsto A_2 \doteq B_2$	$B_2 = g(y)$ $C_1 = (r_1) f(x)$
	$C_1 = \{E_1\} \ f(x)$ $C_2 = \{E_2\} \ g(y)$

Example (2/6)

Trivial deductions in A yield

We can now substitute A_2 (resp. B_2) by A_1 (resp. B_1) in N, and deduce $E_1 = E_2$ in N.

Example (3/6)

We can now substitute E_2 by E_1 in N and A, getting rid of E_2 .

Example (4/6)

N
 A

$$X_1 \mapsto [\lambda q : E_1]C_1$$
 $X_1 \neq X_2$
 $X_2 \mapsto [\lambda q : E_1]C_2$
 $y = x + 2$
 $A_1 = f(y - 2)$
 $B_1 = g(y)$
 $E_1 \mapsto A_1 \doteq B_1$
 $C_1 =_{\{E_1\}} f(x)$
 $C_2 =_{\{E_1\}} g(y)$

From *N*, the equation $A_1 =_{\{E_1\}} B_1$ is added to *A*:

Example (4/6)

N
 A

$$X_1 \mapsto [\lambda q : E_1] C_1$$
 $X_1 \neq X_2$
 $X_2 \mapsto [\lambda q : E_1] C_2$
 $A_1 = f(y - 2)$
 $B_1 = g(y)$
 $B_1 = g(y)$
 $E_1 \mapsto A_1 \doteq B_1$
 $C_1 =_{\{E_1\}} f(x)$
 $C_2 =_{\{E_1\}} g(y)$
 $A_1 =_{\{E_1\}} B_1$

Example (5/6)

Now, Presburger arithmetic gives us in *A*: $\{y = x + 2, f(y - 2) = g(y)\} \vdash f(x) = g(y)$ hence the new configuration:

Example (6/6)

We now substitute C_2 by C_1 in N:

Then substituting X_2 by X_1 yields the contradiction $X_1 \neq X_1$ in A.

Outline

The proof assistant Coq

Problems and Objectives

The Calculi of Constructions

The Calculus of Congruent Inductive Constructions

Decidability of type-checking in CCIC

Security of the kernel

Certificates

- [_] holds the certificate returned by \sim_{Γ}
- A certificate is issued for each deduction in ${\cal T}$
- Certificate verification becomes part of proof checking
- Certificates are expected to be small and verifiable in linear time
- Security of the system relies on both the kernel and the certificate chechers.
- The kernel does not change over time
- Certificates exist for many first-order decision procedures

Conclusion

- CCC extends to the Calculus of Inductive Constructions, yielding the Calculus of Congruent Inductive Constructions (CCIC)
- Shostak's method can be used for combining decision procedures (incrementality)
- Security will be based on a fixed CIC based checkable kernel plus a certificate checker for Shostak's generic mechanism plus certificate checkers for basic theories

Thank you

Details in Pierre-Yves Strub's coming PhD (before summer) http://pierre-yves.strub.nu/