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automate the proof of termination of higher-order rewrite systems
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Introduction to higher-order rewriting

Higher-order rewriting = rewriting on \-terms

’x|f|)\x.t|tt‘

(Mx.t)u —p t
Ax.tx =, tif x € FV(t)

fT —R I
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Introduction to higher-order rewriting

Example: map function on lists

o nil: La
@ cons:a = La= L«
e map: (a=f)=La=1Lp

map F nil —x il
map F (cons x I) —g cons (F x) (map F /)

map (Ax.2 % x) (cons 5 /)
—r cons ((Ax.2 % x) 5) (map (Ax.2x) /)
— g cons (2% 5) (map (Ax.2*x) /)
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Introduction to higher-order rewriting

Example: recursor on natural numbers

e 0:N
@s:N=N
e natrec:a= (N=a=a)=N=«

natrec U V0 —r U
natrec U V (s n) —g V n(natrec U V n)
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Introduction to higher-order rewriting

Example: recursor on ordinals

e 0:0
0s:0=0
o lim:(N=0)=0

@ ordrec :
a=0=a=a0)=(N=0)=(N=a)=a)=0=«

ordrec UV W0 —g U
ordrec UV W (sx) —g V x (ordrec UV W x)
ordrec UV W (lim F) —x W F (An.ordrec U V W (F n))

Frédéric Blanqui (INRIA) The computability path ordering



Introduction to higher-order rewriting

Example: dependent choice operator

“Verifying Process Algebra Proofs in Type Theory”, Sellink (1993):
+: P=>P="P

Y (D=P)=P

T P=P="P

Y(Ad.P) —gr P
YX+Xd —r IX
Y(Ad.Xd+ Yd) —p IX+TY

YX:P —gr Y(\d.Xd;P)
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Introduction to higher-order rewriting

Example: formal derivation

@ sin,cos: R=R
o+, x:R=R=R
e D:(R=R)=(R=R)

D (Ax.V) —r Ax.0
D (Ax.x) —r Ax.1l
D(M.Fx+Gx) —r MxDFx+DGx
D (Ax.sin (F x)) —r  Ax.cos (F x) xD F x
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Introduction to higher-order rewriting

Example: recursor on continuations

e D:C

o C:((C=L)=L)=C

@ contrec :
a=((C=L)=L)=(a=L)=L)=a)=C=a

eex:C=1L

contrec U VD —p U
contrec UV (CF) —r W F (Ax.F(\y.x (contrec U V y)))

ex (CF) —r Fex
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Introduction to higher-order rewriting

The higher-order rewriting zoo

CRS  Combinatory Reduction Systems 1980 Klop
ERS  Expression Reduction Systems 1990 Khasidashvili
HOASL Higher-Order Alg. Spec. Languages 1991 Jouannaud and Okada
HRS Higher-order Rewrite Systems 1991 Nipkow
HORS  Higher-Order Rewrite Systems 1994  Van QOostrom

rewrite relations with matching modulo 57:

HRS —R—g
CRS —>7g—>2§
HOASL —x U —3
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Introduction to higher-order rewriting

Why matching modulo gn?

with the rule D (Ax.sin (F x)) =& Ax.cos (F x) x D F x

#r D sin <—; D (Ax.sin x) <=3 D (Ax.sin ((Ax.x) x)) ==
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Introduction to higher-order rewriting

Automated termination techniques for HOR

@ syntactic recursion schema (Jouannaud and Okada 1991),
computability closure (B., Jouannaud and Okada 1999, B. 2001)

@ polynomial interpretation (Van de Pol 1996, Fuhs and Kop 2012)
@ inclusion in a well-founded relation (Jouannaud and Rubio 1999)

@ size annotations (Giménez 1996, Hughes, Pareto and Sabry
1996, Abel 2002, Barthe et al 2004, B. 2004)

@ size change principle (Jones and Bohr 2004, Wahlstedt 2007)
@ semantic labeling (Hamana 2007, B. and Roux 2009)
e dependency pairs (Kusakari and Sakai 2005, B. 2006, Kop 2010)
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Introduction to higher-order rewriting

Relations between these techniques

@ the notion of computability closure can be extended to handle
size annotations (B. 2004), improve HORPO (Jouannaud and
Rubio 1999) and dependency pairs (Kusakari et al. 2009)

@ size annotations are a particular case of semantic labeling (B.
and Roux 2009)

@ HORPO is the fixpoint of the computability closure (B. 2006)
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Extending RPO to \-terms

Outline

@ Extending RPO to M-terms
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Extending RPO to \-terms

Recursive path ordering (Dershowitz 1979)

given a well-founded quasi-ordering > on function symbols

t =t > u|if either:

(Fr>) ti > u for some i
(F>) u=gi, f >r gand P: (Vi)[t > uj]
(F=) u=gil, f ~r g, t >puu i and P
extension to >x by Kamin and Lévy (1980)

Termination proofs:

@ Dershowitz (1979): Kruskal tree theorem

@ Lescanne (1982): inductive proof + axiom of choice

@ Buchholtz (1995): inductive proof

e Jouannaud and Rubio (1999): based on Tait and Girard
computability predicates (< Buchholtz)
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Extending RPO to \-terms

Extension to \-calculus?

First attempts. ..

@ 1992: Loria-Saenz and Steinbach
@ 1995: Lysne and Piris
@ 1996: Jouannaud and Rubio
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Extending RPO to \-terms

Importance of types

pattern-matching on negative types leads to non-termination
(Mendler 1987):

oc:(T=B)=T
o f:T= (T=B)

f(cx) —-r x
let w: T =B := Ax.fxx

fcw)(cw) —rw(cw)—=sf(cw) (cw)...
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Extending RPO to \-terms

HORPO-99 (Jouannaud and Rubio 1999)

given a well-founded quasi-ordering > on function symbols

(F>) t=ffand t; Zuforsomel
(F>) t=ft, u=gii, f >rgand P
(F=) t=ft u=gil, f~rg t >gtat(r) U and P

t=ft, u=uy...up, n>2and P
t=tity, U= uup and tyty >y UL LD
t=Mx.a, u=XMx.banda>b

where P is: (Vi)[t > u;V(3))t; > uj
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Extending RPO to \-terms

Example with HORPO-99

S(Ad.Xd + Yd) —r  T(Ad.Xd) + Z(A\d.Yd)
YX;P =g Y(\d.Xd;P)

T(\d.Xd + Yd) > T(\d.Xd) + £(\d.Yd)

because 7(X(A\d.Xd + Yd)) = 7(X(A\d.Xd) + £(Ad.Yd)) and,
by taking > >r +, after (F>):

Y (Ad.Xd + Yd) > ¥£(Ad.Xd) and £(Ad.Xd + Yd) > £(Ad.Yd)
because 7(X(A\d.Xd + Yd)) = 7(X(Ad.Xd) and, after (F=):
Ad.Xd + Yd > \d.Xd because, after (A\=):

e Xd+ Yd > Xd after (Fr>)

YX; P % Y(\d.Xd; P)
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Extending RPO to \-terms

HORPO-07 (Jouannaud and Rubio 2007)

given: @ a well-founded quasi-ordering > on function symbols

@ a well-founded quasi-ordering >+ on types such that ...
(a sort can be bigger than an arrow type)

if T >7 U and either:
(F) (F>) (F=) (FO) (0=) (A=)
"t=tft, u=uUi... Uy, N >2and tity >y UL Uy
t

= Ax.a, u=M\y.b, 7(x) =7 7(y), x ¢ FV(u) and a > b}

)
) t = titp and t; > u for some |
) t=Xx.a, x¢FV(u)and a>u
(FA) t=ft, u=AIx.b, x ¢ FV(b) and t > b
) t = (Mx.a)band a2 > u

) t=MAx.ax, x ¢ FV(a) and a > u
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Extending RPO to \-terms

CPO (B., Jouannaud and Rubio 2014)

improve HORPO-07 by:

o fixing the conditions on >

@ reducing the number of type comparisons

@ handling bound variables

@ handling recursion on strictly positive inductive types

@ handling symbols smaller than application and abstraction

> is now defined as > where:
e for any relation >, t >, v if t > v and 7(t) >7 7(u)
e given a finite set X of variables, >* is defined inductively as. ..
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Extending RPO to \-terms

Admissible type orderings

A relation >7 on types is admissible if:

1. > is an ordering containing >,, where T = U, U

2. >7 U is well-founded, where T = U T

3. T=U>7rVthenU>rVor,V=T= U and U > U

Example: some sub-relation of RPO

given a well-founded ordering > on sorts, the smallest ordering
> containing >g and >, that is right-monotone (U >7 U’
implies T = U >7 T = U’) is admissible

Frédéric Blanqui (INRIA) The computability path ordering



Extending RPO to \-terms

Core CPO part 1/3

t = ft >X u|if either:

(F>) t; >? u for some i

(F>) u=gii, f >rgand P: t >% u; forall i
(F=) u=gii f~rg t (>7®')stat(f) g and P
(FO) u= wuy and P

(FA) u=Ax.band t >} pand x ¢ FV(t)
(FX)ueX
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Extending RPO to \-terms

Core CPO part 2/3

t = titp >X ulif either:

() t; >X wortr, >Xu

(0=) u=wu, £ (>D)mu b

(@)\) u=Mx.b, x¢ FV(b) and t >X b
(CX) ue X

(@B) t; = Ax.a and a2 >X u
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Extending RPO to \-terms

Core CPO part 3/3

|

t = Ax.a >X u‘ if either:
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Extending RPO to \-terms

Example with Core CPO

e C:((C=L)=L)=C
o ex:C=1L

ex (CF) —r Fex

ex (C F) > F ex

because 7(ex (C F)) = 7(F ex) and, after (O>):

o C F > F ex, because

7(C F) >7 7(F ex) if one takes C > L and, after (FQ):
CF:C>"F:(C=L)= L after (F>)
CF:C>ex:C=L after (F>) if one takes C >r ex
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Extending RPO to \-terms

Tightness of Core CPO part 1/3

if either:

(F>) t; >? u for some i

replacing 29 by 27)5 or > leads to non-termination
(F>) u=gi, f>rgand P
(F=) u=gii, f ~r g  (>)star(r) U and P

replacing >9 by >X or > leads to non-termination
(FO) u= ujup and P

replacing >X by (>%X)* leads to non-termination
(FA) u=Ax.band t >XUI} and x ¢ FV(t)
(FX)ueX
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Extending RPO to \-terms

Tightness of Core CPO part 2/3

t= t1t2 >X y|if either:

(@D) t1 >7 uort 27)_( u

replacing 25 by >X |eads to non-termination
(@:) u = uypuy, ?(>?—)mul’-7

replacing >?_ by >X or > leads to non-termination
(@)\) u=Mx.b, x¢ FV(b) and t >X b

replacing >X by >XU{x} leads to non-termination
(CX) ue X
(@B) t; = Ax.a and a2 >X u
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Extending RPO to \-terms

Tightness of Core CPO part 3/3

’ t = Ax.a >X u‘ if either:

(A>) a>X uand x ¢ FV(uv)

replacing >% by >X leads to non-termination
(A=) u=AIx.band a >X b
(A#) u=Ay.b, 7(x) #7(y), y ¢ FV(b) and t >X u

replacing >X by >XY} or

removing the condition 7(x) # 7(y) leads to non-termination
(AY) ve X
(A\n) a=vx, x ¢ FV(v) and v >X u
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Extending RPO to \-terms

Handling strictly positive inductive types

t = ft >X u|if either:

(Fr>) tj B3>.>5 u for some i
(F=) u=ugii, f~rg T (G UBE>)ga(r) T and P

D2 and >, are restricted subterm relations
>3 is Coquand’ structurally smaller relation (1992)

they all depend on the types of symbols
(e.g. ff: B>, t;: T; only if B occurs only positively in T;)
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Extending RPO to \-terms

Handling strictly positive inductive types

YX:P —gr ¥(\d.Xd;P)

Y X; P > ¥ (\d.Xd; P) by (F>) if one takes ; >+ ¥ because:
Y X; P >? \d.Xd; P by (F)\) because:

¥ X; P >4} Xd; P by (F=) because:

X > xd
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Extending RPO to \-terms

Handling “small” symbols: F = Fj, & F;

t = titp >X ulif either: ...

(OF,) u=gi, g € Fsand P, t >X u; forall i

’ t = Ix.a >X u‘ if either: ...
(OF;) u=gi, g€ Fs and P;

with f € F, if either:

) ti 29 u for some |

Fs>) u=gi, g€ Fs, f >rgand P,

(Fo=) u=gi, g€ Fs, fr g t (3L U 29)aur) U and P;
)
)

u=uiup and P,
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Extending RPO to \-terms

A few words on the termination proof - Part 1/3

The termination of >?_ is proved by extending the technique of
Tait (1967) and Girard (1972):

1) we interpret every sort B by some set of terms [B]

o the interpretation of arrow types is fixed:
[U= V]={teT|Vue[U],tue[V]}
o aterm t: T is computableif t € [T]
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Extending RPO to \-terms

A few words on the termination proof - Part 2/3

2) we explicit conditions under which a set [ T] satisfies:
(comp-sn) the elements of [T] are strongly normalizing wrt >’
(comp-red) every >?-reduct of t € [T] is computable
np-neutral) t € [T]if t : T is neutral and every >?-reduct of t is computable
comp-lam) Ax.a € [T] if T=U=V and, for every comp. u: U, a¥ is comp.
omp-small) ft € [T]if ft: T, f € Fs and f are computable

Examples:
1. [U = V] satisfies (comp-sn) if
[U] satisfies (comp-neutral) and [V] satisfies (comp-sn)
2. [U] satisfies (comp-small) if [U] satisfies (comp-neutral),
for every U’ <1 U, [U’] satisfies (comp-small),
for every small f : T = U, [T] satisfies (comp-sn) and (comp-red)
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Extending RPO to \-terms

A few words on the termination proof - Part 3/3

3) we prove that, for every type T, [T] satisfies all the
computability properties

To break cyclic dependencies in conditions, we assume that for
every small f: T = U with U= U = B:

1. every sort occurring in T is <rB

2. and either:
° l:J: is empty and B has no unsafe occurrences in every T;
o U is not empty and every T; <4+ U

small symbols are used for proving the termination of an extension of
CPO to dependent types (Jouannaud and Li 2013)
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Extending RPO to \-terms

Conclusion

@ CPO is a new powerful extension of HORPO

o difficult to improve without giving up Tait-Girard's technique
@ Prolog implementation available on Albert Rubio's web page
°

details to appear in Logical Methods in Computer Science
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Extending RPO to \-terms

Tightness of core CPO - Example 1/2

in (F>)t; >? u for some i, replace >? by >X

witha:o>rf:o0=0>rv:0= 0= o:

o fa > (Ax.fx)a, because 7(fa) = 7((Ax.fx)a), (F@) and:
fa >% a, because (F>) and a >? a

fa >% Ax.fx, because (F)) and:

fa >} fx, because (Fr>) and:

a > fx, because 7(a) = 7(fx), (F>) and:
a >3} x, because (FX)

o (Ax.fx)a >? fa, because 7((A\x.fx)a) = 7(fa) and (@3)
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Extending RPO to \-terms

Tightness of core CPO - Example 2/2

in (F>)t; >? u for some i, replace >? by >?

witha:o>rf:0=>0>rv:0= 0= o:

o fa >? (Ax.fx)a, because 7(fa) = 7((A\x.fx)a), (F@) and:
o fa >" a, because (Fr>) and a >% a
o fa >% \x.fx, because (Fr>) and:
o a > \x.fx, because (F\) and:
o a >} fx, because (F>) and:
o a >} x, because (FX)
° (

Ax.fx)a >? fa, because 7((Ax.fx)a) = 7(fa) and (@3)
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Extending RPO to \-terms

Accessible subterms

First, we assume every f:T=B equipped with a set
Acc(f) C{1,...,|T|} such that i € Acc(f) only if:

@ every sort occurring in T; is < B

@ B occurs only positively in T; (wrt =)

o t>juif t>w, FV(u) CFV(t) and 7(u) is a basic sort B, i.e.:
o forall T <r B, T is a basic sort
o forall f: U= B and i€ Acc(f), Ui =B or U; is a basic sort

o ti>,uiftherearef: T = B, £ and i € Acc(f) such that:
t=ftand t;>,u

o t>§ uif there are B, v and X such that
t:B,u:B, u=vX, t>,v, X € X and B doesn't occur in 7(X)
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Extending RPO to \-terms

Unsafe occurrences of a sort A in a type T: SPosa(T)

@ SPos,(B) = NPosy (B) = LPosa(B) = () whatever A and B are
CPosy(A) = {e}
CPos,(B) =0 if B # A

SPosp (U — V) =1-NPosy(U) + 2 - SPosa (V)

NPosa (U — V)
= CPosp (U — V) =1:SPosy(U) 4+ 2 - (LPosa (V) 4+ CPoss(V))

LPosp(U — V) = NPosg (U = V) + 1 NPos, (V)
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Extending RPO to \-terms

Unsafe occurrences of a sort A in a type T: SPosa(T)

Examples of safe types T, i.e. with SPosy(T) = 0:

e o(7T)<1

e T=U= A and A doesn't occur in U (e.g. Coq types)
@ o(T) =2 and A occurs only positively in T

Example of unsafe type: (B = (B=A) = B) = A
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