The computability path ordering

(joint work with J.-P. Jouannaud and A. Rubio)

Frédéric Blanqui

Deduc⊢eam

LSV seminar, 13 January 2015, Cachan, France

The computability path ordering

Introduction to higher-order rewriting Extending RPO to $\lambda\text{-terms}$

automate the proof of termination of higher-order rewrite systems

Introduction to higher-order rewriting Extending RPO to λ -terms

Outline

2 Extending RPO to λ -terms

Introduction to higher-order rewriting Extending RPO to λ -terms

Higher-order rewriting = rewriting on λ -terms

$$x \mid f \mid \lambda x.t \mid tt$$

$$(\lambda x.t)u \rightarrow_{eta} t^{u}_{x}$$

 $\lambda x.tx \rightarrow_{\eta} t \text{ if } x \notin \mathrm{FV}(t)$
 $\mathrm{f}\vec{l} \rightarrow_{\mathcal{R}} r$

Example: map function on lists

• nil : $\mathbb{L}\alpha$

. . .

• $\operatorname{cons}: \alpha \Rightarrow \mathbb{L}\alpha \Rightarrow \mathbb{L}\alpha$

• map :
$$(\alpha \Rightarrow \beta) \Rightarrow \mathbb{L}\alpha \Rightarrow \mathbb{L}\beta$$

$$\begin{array}{rcl} \operatorname{map} F & \operatorname{nil} & \to_{\mathcal{R}} & \operatorname{nil} \\ \operatorname{map} F & (\operatorname{cons} x \ l) & \to_{\mathcal{R}} & \operatorname{cons} (F \ x) & (\operatorname{map} F \ l) \end{array}$$

$$\begin{array}{l} \mathsf{map} \ (\lambda x.2 * x) \ (\mathsf{cons} \ 5 \ l) \\ \rightarrow_{\mathcal{R}} \ \mathsf{cons} \ ((\lambda x.2 * x) \ 5) \ (\mathsf{map} \ (\lambda x.2 * x) \ l) \\ \rightarrow_{\beta} \ \mathsf{cons} \ (2 * 5) \ (\mathsf{map} \ (\lambda x.2 * x) \ l) \end{array}$$

Example: recursor on natural numbers

- 0:ℕ
- $s: \mathbb{N} \Rightarrow \mathbb{N}$
- natrec : $\alpha \Rightarrow (\mathbb{N} \Rightarrow \alpha \Rightarrow \alpha) \Rightarrow \mathbb{N} \Rightarrow \alpha$

natrec
$$U \lor 0 \to_{\mathcal{R}} U$$

natrec $U \lor (s n) \to_{\mathcal{R}} \lor n$ (natrec $U \lor n$)

Example: recursor on ordinals

- 0 : O
- $s: \mathbb{O} \Rightarrow \mathbb{O}$
- $\mathsf{lim}: (\mathbb{N} \Rightarrow \mathbb{O}) \Rightarrow \mathbb{O}$
- ordrec :

$$\alpha \Rightarrow (\mathbb{O} \Rightarrow \alpha \Rightarrow \alpha) \Rightarrow ((\mathbb{N} \Rightarrow \mathbb{O}) \Rightarrow (\mathbb{N} \Rightarrow \alpha) \Rightarrow \alpha) \Rightarrow \mathbb{O} \Rightarrow \alpha$$

ordrec $U \ V \ W \ 0 \rightarrow_{\mathcal{R}} U$ ordrec $U \ V \ W \ (s \ x) \rightarrow_{\mathcal{R}} V \ x \ (ordrec \ U \ V \ W \ x)$ ordrec $U \ V \ W \ (lim \ F) \rightarrow_{\mathcal{R}} W \ F \ (\lambda n.ordrec \ U \ V \ W \ (F \ n))$

Example: dependent choice operator

"Verifying Process Algebra Proofs in Type Theory", Sellink (1993):

$$\bullet \ + : \mathbb{P} \Rightarrow \mathbb{P} \Rightarrow \mathbb{P}$$

- $\Sigma : (\mathbb{D} \Rightarrow \mathbb{P}) \Rightarrow \mathbb{P}$
- ;: $\mathbb{P} \Rightarrow \mathbb{P} \Rightarrow \mathbb{P}$

• . . .

. . .

$$\begin{array}{rcl} \Sigma(\lambda d.P) & \rightarrow_{\mathcal{R}} & P \\ \Sigma X + Xd & \rightarrow_{\mathcal{R}} & \Sigma X \\ \Sigma(\lambda d.Xd + Yd) & \rightarrow_{\mathcal{R}} & \Sigma X + \Sigma Y \\ \Sigma X; P & \rightarrow_{\mathcal{R}} & \Sigma(\lambda d.Xd; P) \end{array}$$

Example: formal derivation

•
$$\sin, \cos : \mathbb{R} \Rightarrow \mathbb{R}$$

•
$$+, \times : \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R}$$

•
$$\mathsf{D}:(\mathbb{R}\Rightarrow\mathbb{R})\Rightarrow(\mathbb{R}\Rightarrow\mathbb{R})$$

• . . .

. . .

$$\begin{array}{rcl} \mathsf{D}(\lambda x.V) & \to_{\mathcal{R}} & \lambda x.O \\ & \mathsf{D}(\lambda x.x) & \to_{\mathcal{R}} & \lambda x.1 \\ \mathsf{D}(\lambda x.F \; x + G \; x) & \to_{\mathcal{R}} & \lambda x.\mathsf{D} \; F \; x + \mathsf{D} \; G \; x \\ & \mathsf{D}(\lambda x.\sin(F \; x)) & \to_{\mathcal{R}} & \lambda x.\cos(F \; x) \times \mathsf{D} \; F \; x \end{array}$$

Example: recursor on continuations

- D : C
- C : (($\mathbb{C} \Rightarrow \mathbb{L}$) $\Rightarrow \mathbb{L}$) $\Rightarrow \mathbb{C}$
- contrec :

$$\alpha \Rightarrow (((\mathbb{C} \Rightarrow \mathbb{L}) \Rightarrow \mathbb{L}) \Rightarrow ((\alpha \Rightarrow \mathbb{L}) \Rightarrow \mathbb{L}) \Rightarrow \alpha) \Rightarrow \mathbb{C} \Rightarrow \alpha$$

• ex : $\mathbb{C} \Rightarrow \mathbb{L}$

$$\begin{array}{rcl} \text{contrec } U \ V \ \mathsf{D} & \to_{\mathcal{R}} & U \\ \text{contrec } U \ V \ (\mathsf{C} \ F) & \to_{\mathcal{R}} & W \ F \ (\lambda x.F(\lambda y.x \ (\text{contrec } U \ V \ y))) \\ & & \text{ex} \ (\mathsf{C} \ F) & \to_{\mathcal{R}} & F \ \text{ex} \end{array}$$

The higher-order rewriting zoo

- CRS Combinatory Reduction Systems
- ERS Expression Reduction Systems
- HOASL Higher-Order Alg. Spec. Languages
 - HRS Higher-order Rewrite Systems
 - HORS Higher-Order Rewrite Systems

- 1980 Klop
- 1990 Khasidashvili
- 1991 Jouannaud and Okada
- 1991 Nipkow
- 1994 Van Oostrom

rewrite relations with matching modulo $\beta\eta$:

$$\begin{array}{ll} \mathsf{HRS} & \to_{\mathcal{R}} \to_{\beta}^{!} \\ \mathsf{CRS} & \to_{\mathcal{R}} \to_{\beta}^{*} \\ \mathsf{HOASL} & \to_{\mathcal{R}} \cup \to_{\beta} \end{array}$$

Introduction to higher-order rewriting Extending RPO to λ -terms

Why matching modulo $\beta \eta$?

with the rule D ($\lambda x.sin(F x)$) $\rightarrow_{\mathcal{R}} \lambda x.cos(F x) \times D F x$

 $\not\leftarrow_{\mathcal{R}} \mathsf{D} \, \sin \leftarrow_{\eta} \mathsf{D} \, (\lambda x. \sin x) \leftarrow_{\beta} \mathsf{D} \, (\lambda x. \sin \, ((\lambda x. x) \, x)) \rightarrow_{\mathcal{R}}$

Automated termination techniques for HOR

- syntactic recursion schema (Jouannaud and Okada 1991), computability closure (B., Jouannaud and Okada 1999, B. 2001)
- polynomial interpretation (Van de Pol 1996, Fuhs and Kop 2012)
- inclusion in a well-founded relation (Jouannaud and Rubio 1999)
- size annotations (Giménez 1996, Hughes, Pareto and Sabry 1996, Abel 2002, Barthe et al 2004, B. 2004)
- size change principle (Jones and Bohr 2004, Wahlstedt 2007)
- semantic labeling (Hamana 2007, B. and Roux 2009)
- dependency pairs (Kusakari and Sakai 2005, B. 2006, Kop 2010)

Relations between these techniques

- the notion of computability closure can be extended to handle size annotations (B. 2004), improve HORPO (Jouannaud and Rubio 1999) and dependency pairs (Kusakari et al. 2009)
- size annotations are a particular case of semantic labeling (B. and Roux 2009)
- HORPO is the fixpoint of the computability closure (B. 2006)

Outline

Introduction to higher-order rewriting

2 Extending RPO to λ -terms

Recursive path ordering (Dershowitz 1979)

given a well-founded quasi-ordering $\geq_{\mathcal{F}}$ on function symbols

$$\begin{array}{c} \hline t = f\vec{t} > u \\ \hline (\mathcal{F} \rhd) \quad t_i \geq u \text{ for some } i \\ (\mathcal{F} \rhd) \quad u = g\vec{u}, \ f >_{\mathcal{F}} g \text{ and } P: \ (\forall i)[t > u_i] \\ (\mathcal{F}=) \quad u = g\vec{u}, \ f \simeq_{\mathcal{F}} g, \ \vec{t} >_{\text{mul}} \vec{u} \text{ and } P \\ extension to >_{\text{lex}} by \text{ Kamin and Lévy (1980)} \end{array}$$

Termination proofs:

- Dershowitz (1979): Kruskal tree theorem
- Lescanne (1982): inductive proof + axiom of choice
- Buchholtz (1995): inductive proof
- Jouannaud and Rubio (1999): based on Tait and Girard computability predicates (⇔ Buchholtz)

Extension to λ -calculus?

First attempts...

- 1992: Loria-Sáenz and Steinbach
- 1995: Lysne and Piris
- 1996: Jouannaud and Rubio

Importance of types

pattern-matching on negative types leads to non-termination (Mendler 1987):

•
$$c: (\mathbb{T} \Rightarrow \mathbb{B}) \Rightarrow \mathbb{T}$$

• $f: \mathbb{T} \Rightarrow (\mathbb{T} \Rightarrow \mathbb{B})$

$$f(c x) \rightarrow_{\mathcal{R}} x$$

let $\omega : \mathbb{T} \Rightarrow \mathbb{B} := \lambda x.fxx$

$$\mathsf{f}(\mathsf{c}\,\omega)(\mathsf{c}\,\omega) \rightarrow_{\mathcal{R}} \omega(\mathsf{c}\,\omega) \rightarrow_{\beta} \mathsf{f}(\mathsf{c}\,\omega)(\mathsf{c}\,\omega) \dots$$

HORPO-99 (Jouannaud and Rubio 1999)

given a well-founded quasi-ordering $\geq_{\mathcal{F}}$ on function symbols

$$\begin{array}{c} \hline t > u & \text{if } \tau(t) = \tau(u) \text{ and either:} \\ (\mathcal{F} \triangleright) & t = f\vec{t} \text{ and } t_i \geq u \text{ for some } i \\ (\mathcal{F} \succ) & t = f\vec{t}, \ u = g\vec{u}, \ f >_{\mathcal{F}} g \text{ and } P \\ (\mathcal{F} =) & t = f\vec{t}, \ u = g\vec{u}, \ f \simeq_{\mathcal{F}} g, \ \vec{t} \ >_{\text{stat}(f)} \ \vec{u} \text{ and } P \\ (\mathcal{F} \triangleright) & (\mathcal{F} \succ) \ (\mathcal{F} =) \\ (\mathcal{F} \oslash) & (\mathcal{F} =) \\ (\mathcal{F} \oslash) & t = f\vec{t}, \ u = u_1 \dots u_n, \ n \geq 2 \text{ and } P \\ (@=) & t = t_1 t_2, \ u = u_1 u_2 \text{ and } t_1 t_2 >_{\text{mul}} u_1 u_2 \\ (\lambda =) & t = \lambda x.a, \ u = \lambda x.b \text{ and } a > b \\ & \text{where } P \text{ is: } (\forall i) [t > u_i \lor (\exists j) t_j \geq u_i] \end{array}$$

Example with HORPO-99

$$\begin{array}{rcl} \Sigma(\lambda d.Xd + Yd) & \to_{\mathcal{R}} & \Sigma(\lambda d.Xd) + \Sigma(\lambda d.Yd) \\ & \Sigma X; P & \to_{\mathcal{R}} & \Sigma(\lambda d.Xd; P) \end{array}$$

- $\Sigma(\lambda d.Xd + Yd) > \Sigma(\lambda d.Xd) + \Sigma(\lambda d.Yd)$ because $\tau(\Sigma(\lambda d.Xd + Yd)) = \tau(\Sigma(\lambda d.Xd) + \Sigma(\lambda d.Yd))$ and, by taking $\Sigma >_{\mathcal{F}} +$, after $(\mathcal{F}>)$:
- $\Sigma(\lambda d.Xd + Yd) > \Sigma(\lambda d.Xd)$ and $\Sigma(\lambda d.Xd + Yd) > \Sigma(\lambda d.Yd)$ because $\tau(\Sigma(\lambda d.Xd + Yd)) = \tau(\Sigma(\lambda d.Xd)$ and, after ($\mathcal{F}=$):
- $\lambda d.Xd + Yd > \lambda d.Xd$ because, after (λ =):
- Xd + Yd > Xd after $(\mathcal{F} \triangleright)$
- $\Sigma X; P \not> \Sigma(\lambda d. Xd; P)$

HORPO-07 (Jouannaud and Rubio 2007)

given: $\ \ \, \bullet \ \,$ a well-founded quasi-ordering $\geq_{\mathcal{F}}$ on function symbols

> a well-founded quasi-ordering ≥_T on types such that ... (a sort can be bigger than an arrow type)

$$\begin{array}{c} \hline t: T > u: U & \text{if } T \geq_{\mathcal{T}} U \text{ and either:} \\ (\mathcal{F} \triangleright) & (\mathcal{F} >) & (\mathcal{F} =) & (\mathcal{F} @) & (@=)' & (\lambda =) \\ (@=)' & t = t_1 t_2, \ u = u_1 \dots u_n, \ n \geq 2 \text{ and } t_1 t_2 >_{\text{mul}} u_1 \dots u_n \\ (\lambda =) & t = \lambda x.a, \ u = \lambda y.b, \ \tau(x) \simeq_{\mathcal{T}} \tau(y), \ x \notin FV(u) \text{ and } a > b_y^x \\ (@\triangleright) & t = t_1 t_2 \text{ and } t_i \geq u \text{ for some } i \\ (\lambda \triangleright) & t = \lambda x.a, \ x \notin FV(u) \text{ and } a \geq u \\ (\mathcal{F} \lambda) & t = ft, \ u = \lambda x.b, \ x \notin FV(b) \text{ and } t > b \\ (@\beta) & t = (\lambda x.a)b \text{ and } a_x^b \geq u \\ (\lambda\eta) & t = \lambda x.ax, \ x \notin FV(a) \text{ and } a \geq u \end{array}$$

CPO (B., Jouannaud and Rubio 2014)

improve HORPO-07 by:

- fixing the conditions on $\geq_{\mathcal{T}}$
- reducing the number of type comparisons
- handling bound variables
- handling recursion on strictly positive inductive types
- handling symbols smaller than application and abstraction
- > is now defined as $>_{ au}^{\emptyset}$ where:
- for any relation >, $t >_{\tau} u$ if t > u and $\tau(t) \geq_{\mathcal{T}} \tau(u)$
- given a finite set X of variables, $>^X$ is defined inductively as...

Admissible type orderings

A relation $\geq_{\mathcal{T}}$ on types is admissible if:

- 1. $\geq_{\mathcal{T}}$ is an ordering containing \triangleright_r , where $T \Rightarrow U \triangleright_r U$
- 2. $>_{\mathcal{T}} \cup \rhd_I$ is well-founded, where $T \Rightarrow U \rhd_I T$
- 3. if $T \Rightarrow U >_{\mathcal{T}} V$ then $U >_{\mathcal{T}} V$ or, $V = T \Rightarrow U'$ and $U >_{\mathcal{T}} U'$

Example: some sub-relation of RPO

given a well-founded ordering $>_{\mathcal{S}}$ on sorts, the smallest ordering $>_{\mathcal{T}}$ containing $>_{\mathcal{S}}$ and \triangleright_r that is right-monotone ($U >_{\mathcal{T}} U'$ implies $T \Rightarrow U >_{\mathcal{T}} T \Rightarrow U'$) is admissible

Core CPO part 1/3

$$t = f\vec{t} >^{X} u$$
 if either:

$$(\mathcal{F} \rhd) \quad t_i \geq_{\tau}^{\emptyset} u \text{ for some } i (\mathcal{F} \rhd) \quad u = g\vec{u}, \text{ f} >_{\mathcal{F}} g \text{ and } P: t >^{\mathcal{X}} u_i \text{ for all } i (\mathcal{F} =) \quad u = g\vec{u}, \text{ f} \simeq_{\mathcal{F}} g, \vec{t} (>_{\tau}^{\emptyset})_{\text{stat}(f)} \vec{u} \text{ and } P (\mathcal{F} @) \quad u = u_1 u_2 \text{ and } P (\mathcal{F} \lambda) \quad u = \lambda x.b \text{ and } t >^{\mathcal{X} \cup \{x\}} b \text{ and } x \notin \text{FV}(t) (\mathcal{F} \mathcal{X}) \quad u \in X$$

Core CPO part 2/3

$$\begin{array}{c} \hline t = t_1 t_2 >^X u \\ \hline (@ \triangleright) \quad t_1 \ge^X u \text{ or } t_2 \ge^X_{\tau} u \\ \hline (@ \models) \quad u = u_1 u_2, \quad t \quad (>^{\emptyset}_{\tau})_{\text{mul}} \quad \vec{u} \\ \hline (@ \lambda) \quad u = \lambda x.b, \quad x \notin \text{FV}(b) \text{ and } t >^X b \\ \hline (@ \lambda) \quad u \in X \\ \hline (@ \beta) \quad t_1 = \lambda x.a \text{ and } a_x^{t_2} \ge^X u \end{array}$$

Core CPO part 3/3

$$\begin{array}{c} \hline t = \lambda x.a >^{X} u \text{ if either:} \\ (\lambda \triangleright) \ a \geq_{\tau}^{X} u \text{ and } x \notin FV(u) \\ (\lambda =) \ u = \lambda x.b \text{ and } a >^{X} b \\ (\lambda \neq) \ u = \lambda y.b, \ \tau(x) \neq \tau(y), \ y \notin FV(b) \text{ and } t >^{X} u \\ (\lambda \chi) \ u \in X \\ (\lambda \eta) \ a = vx, \ x \notin FV(v) \text{ and } v \geq^{X} u \end{array}$$

Example with Core CPO

•
$$C: ((\mathbb{C} \Rightarrow \mathbb{L}) \Rightarrow \mathbb{L}) \Rightarrow \mathbb{C}$$

• $ex: \mathbb{C} \Rightarrow \mathbb{L}$

$$\mathsf{ex}\;(\mathsf{C}\;\mathsf{F}) \;\; \to_{\mathcal{R}} \;\; \mathsf{F}\;\mathsf{ex}$$

• ex (C F) $>_{\tau}^{\emptyset} F$ ex

because $\tau(ex (C F)) = \tau(F ex)$ and, after ($@ \triangleright$):

- C F >[∅]_τ F ex, because τ(C F) ≥_τ τ(F ex) if one takes C ≥_τ L and, after (F@):
 C F : C >[∅] F : (C ⇒ L) ⇒ L after (F⊳)
- C $F : \mathbb{C} > ex : \mathbb{C} \Rightarrow \mathbb{L}$ after $(\mathcal{F} >)$ if one takes $\mathsf{C} >_{\mathcal{F}} ex$

Tightness of Core CPO part 1/3

 $t = f\vec{t} >^X u$ if either: $(\mathcal{F} \triangleright)$ $t_i \geq_{\tau}^{\emptyset} u$ for some i replacing \geq_{τ}^{\emptyset} by \geq_{τ}^{X} or \geq leads to non-termination $(\mathcal{F}>)$ $u = g\vec{u}$, $f >_{\mathcal{F}} g$ and P $(\mathcal{F}=)$ $u = g\vec{u}$, $f \simeq_{\mathcal{F}} g$, $\vec{t} (>_{\tau}^{\emptyset})_{\text{stat}(f)} \vec{u}$ and Preplacing $>_{\tau}^{\emptyset}$ by $>_{\tau}^{X}$ or > leads to non-termination (\mathcal{F}^{0}) $u = u_1 u_2$ and P replacing $>^X$ by $(>^X)^+$ leads to non-termination $(\mathcal{F}\lambda)$ $u = \lambda x.b$ and $t >^{X \cup \{x\}}$ and $x \notin FV(t)$ $(\mathcal{FX}) \ u \in X$

Tightness of Core CPO part 2/3

$$\begin{array}{c} \hline t = t_1 t_2 >^X u & \text{if either:} \\ (@\triangleright) \quad t_1 \geq^X u \text{ or } t_2 \geq^X_{\tau} u & \text{replacing } \geq^X_{\tau} \text{ by } \geq^X \text{ leads to non-termination} \\ (@=) \quad u = u_1 u_2, \ \vec{t}(>^{\emptyset}_{\tau})_{\text{mul}} \vec{u} & \text{replacing } >^{\emptyset}_{\tau} \text{ by } >^X_{\tau} \text{ or } > \text{ leads to non-termination} \\ (@\lambda) \quad u = \lambda x.b, \ x \notin \text{FV}(b) \text{ and } t >^X b & \text{replacing } >^X \text{ by } >^{X \cup \{x\}} \text{ leads to non-termination} \\ (@\mathcal{X}) \quad u \in X & \\ (@\beta) \quad t_1 = \lambda x.a \text{ and } a_x^{t_2} \geq^X u \end{array}$$

Tightness of Core CPO part 3/3

$$\begin{array}{c} \hline t = \lambda x.a >^X u & \text{if either:} \\ (\lambda \triangleright) & a \geq_{\tau}^X u \text{ and } x \notin FV(u) \\ \text{replacing} \geq_{\tau}^X by \geq^X \text{ leads to non-termination} \\ (\lambda =) & u = \lambda x.b \text{ and } a >^X b \\ (\lambda \neq) & u = \lambda y.b, \ \tau(x) \neq \tau(y), \ y \notin FV(b) \text{ and } t >^X u \\ \text{replacing} >^X by >^{X \cup \{y\}} \text{ or} \\ \text{removing the condition } \tau(x) \neq \tau(y) \text{ leads to non-termination} \\ (\lambda \mathcal{X}) & u \in X \\ (\lambda \eta) & a = vx, \ x \notin FV(v) \text{ and } v \geq^X u \end{array}$$

Handling strictly positive inductive types

$$t = f\vec{t} >^{X} u$$
 if either:

. . .

 $\begin{array}{l} (\mathcal{F} \rhd) \quad t_i \mathrel{\unrhd}_b \mathrel{\unrhd}_a \geq_{\tau} u \text{ for some } i \\ (\mathcal{F}=) \quad u = \mathsf{g} \vec{u}, \ \mathsf{f} \simeq_{\mathcal{F}} \mathsf{g}, \ \vec{t} \ (>_{\tau}^{\emptyset} \cup \mathrel{\vartriangleright}_{@} \mathrel{\overset{\emptyset}{\sim}_{\tau}})_{\mathrm{stat}(\mathsf{f})} \ \vec{u} \text{ and } P \end{array}$

 \succeq_{b}^{s} and \succeq_{a} are restricted subterm relations

 $\triangleright_{\emptyset}^{X}$ is Coquand' structurally smaller relation (1992)

they all depend on the types of symbols (e.g. $f\vec{t} : \mathbb{B} \triangleright_a t_i : T_i$ only if \mathbb{B} occurs only positively in T_i) Handling strictly positive inductive types

$\Sigma X; P \rightarrow_{\mathcal{R}} \Sigma(\lambda d. Xd; P)$

- ΣX ; $P >_{\tau}^{\emptyset} \Sigma(\lambda d. Xd; P)$ by $(\mathcal{F}>)$ if one takes ; $>_{\mathcal{F}} \Sigma$ because:
- ΣX ; $P >^{\emptyset} \lambda d.Xd$; P by $(\mathcal{F}\lambda)$ because:
- ΣX ; $P > {d} Xd$; P by $(\mathcal{F}=)$ because:
- $\Sigma X \triangleright_{@}^{\{d\}} Xd$

Handling "small" symbols: $\mathcal{F} = \mathcal{F}_b \uplus \mathcal{F}_s$

$$t = t_1 t_2 >^X u$$
 if either: ...

$$(\mathbb{Q}\mathcal{F}_s)$$
 $u = g\vec{u}, g \in \mathcal{F}_s$ and P_{τ} : $t >^X_{\tau} u_i$ for all i

$$\begin{bmatrix} t = \lambda x.a >^{\chi} u \\ 0 \\ \mathcal{F}_{\varsigma} \end{bmatrix} u = g\vec{u}, g \in \mathcal{F}_{\varsigma} \text{ and } P_{\tau}$$

$$\begin{array}{c} \hline t = \mathrm{f}\vec{t} >^{X} u \\ \text{with } \mathrm{f} \in \mathcal{F}_{s} \text{ if either:} \\ (\mathcal{F}_{s} \triangleright) \ t_{i} \geq^{\emptyset}_{\tau} u \text{ for some } i \\ (\mathcal{F}_{s} \triangleright) \ u = \mathrm{g}\vec{u}, \ \mathrm{g} \in \mathcal{F}_{s}, \ \mathrm{f} >_{\mathcal{F}} \mathrm{g} \text{ and } P_{\tau} \\ (\mathcal{F}_{s} =) \ u = \mathrm{g}\vec{u}, \ \mathrm{g} \in \mathcal{F}_{s}, \ \mathrm{f} \simeq_{\mathcal{F}} \mathrm{g}, \ \vec{t} \ (>^{\emptyset}_{\tau} \cup \triangleright^{X}_{\mathbb{Q}} \succeq^{\emptyset}_{\tau})_{\mathrm{stat}(\mathrm{f})} \ \vec{u} \text{ and } P_{\tau} \\ (\mathcal{F}_{s} @) \ u = u_{1}u_{2} \text{ and } P_{\tau} \\ (\mathcal{F}_{s} \mathcal{X}) \ u \in X \end{array}$$

A few words on the termination proof - Part 1/3

The termination of $>_{\tau}^{\emptyset}$ is proved by extending the technique of Tait (1967) and Girard (1972):

- 1) we interpret every sort $\mathbb B$ by some set of terms $\llbracket \mathbb B \rrbracket$
 - the interpretation of arrow types is fixed: $\llbracket U \Rightarrow V \rrbracket = \{t \in \mathcal{T} | \forall u \in \llbracket U \rrbracket, tu \in \llbracket V \rrbracket\}$
 - a term t : T is computable if $t \in \llbracket T \rrbracket$

A few words on the termination proof - Part 2/3

2) we explicit conditions under which a set $\llbracket T \rrbracket$ satisfies:

```
(comp-sn) the elements of \llbracket T \rrbracket are strongly normalizing wrt >_{\tau}^{\emptyset}
(comp-red) every >_{\tau}^{\emptyset}-reduct of t \in \llbracket T \rrbracket is computable
mp-neutral) t \in \llbracket T \rrbracket if t : T is neutral and every >_{\tau}^{\emptyset}-reduct of t is computable
(comp-lam) \lambda x.a \in \llbracket T \rrbracket if T = U \Rightarrow V and, for every comp. u : U, a_x^u is comp.
omp-small) f \vec{t} \in \llbracket T \rrbracket if f \vec{t} : T, f \in \mathcal{F}_s and \vec{t} are computable
```

Examples:

- 1. $\llbracket U \Rightarrow V \rrbracket$ satisfies (comp-sn) if $\llbracket U \rrbracket$ satisfies (comp-neutral) and $\llbracket V \rrbracket$ satisfies (comp-sn)
- [[U]] satisfies (comp-small) if [[U]] satisfies (comp-neutral), for every U' <_T U, [[U']] satisfies (comp-small), for every small f : T ⇒ U, [[T]] satisfies (comp-sn) and (comp-red)

A few words on the termination proof - Part 3/3

 we prove that, for every type T, [T] satisfies all the computability properties

To break cyclic dependencies in conditions, we assume that for every small f : $\vec{T} \Rightarrow U$ with $U = \vec{U} \Rightarrow \mathbb{B}$:

- 1. every sort occurring in \vec{T} is $\leq_{\mathcal{T}} \mathbb{B}$
- 2. and either:
 - \vec{U} is empty and \mathbb{B} has no *unsafe occurrences* in every T_i
 - \vec{U} is not empty and every $T_i \leq_{\mathcal{T}} U$

small symbols are used for proving the termination of an extension of CPO to dependent types (Jouannaud and Li 2013)

Conclusion

- CPO is a new powerful extension of HORPO
- difficult to improve without giving up Tait-Girard's technique
- Prolog implementation available on Albert Rubio's web page
- details to appear in Logical Methods in Computer Science

Tightness of core CPO - Example 1/2

in
$$(\mathcal{F} arDiscription) t_i \geq^{\emptyset}_{ au} u$$
 for some i , replace $\geq^{\emptyset}_{ au}$ by $\geq^{X}_{ au}$

with a : $o >_{\mathcal{F}} f : o \Rightarrow o >_{\mathcal{F}} \gamma : o \Rightarrow o \Rightarrow o$:

• fa
$$>_{\tau}^{\emptyset} (\lambda x.fx)a$$
, because $\tau(fa) = \tau((\lambda x.fx)a)$, (\mathcal{F} @) and:

• fa
$$>^{\emptyset}$$
 a, because $(\mathcal{F} \rhd)$ and a \geq^{\emptyset}_{τ} a

• fa
$$>^{\emptyset} \lambda x.fx$$
, because $(\mathcal{F}\lambda)$ and:

• fa
$$>^{\{x\}}_{\{x\}}$$
 fx, because $(\mathcal{F} \triangleright)$ and:

• a
$$>_{\tau}^{\{x\}}$$
 fx, because $\tau(a) = \tau(fx)$, ($\mathcal{F}>$) and:

• a
$$>^{\{x\}} x$$
, because (\mathcal{FX})

•
$$(\lambda x. {
m f} x)$$
a $>^{\emptyset}_{ au}$ fa, because $au((\lambda x. {
m f} x)$ a $)= au({
m f} a)$ and $({ @}eta)$

Tightness of core CPO - Example 2/2

in
$$(\mathcal{F} arDiscrip) t_i \geq^{\emptyset}_{ au} u$$
 for some i , replace $\geq^{\emptyset}_{ au}$ by \geq^{\emptyset}

with a : $o >_{\mathcal{F}} f : o \Rightarrow o >_{\mathcal{F}} \gamma : o \Rightarrow o \Rightarrow o$:

- a > $^{\emptyset} \lambda x.fx$, because ($\mathcal{F}\lambda$) and:
- a $>^{\{x\}}$ fx, because ($\mathcal{F}>$) and:
- a >{x} x, because (\mathcal{FX})

• $(\lambda x.fx)a >_{\tau}^{\emptyset} fa$, because $\tau((\lambda x.fx)a) = \tau(fa)$ and $(@\beta)$

Accessible subterms

First, we assume every $f : \vec{T} \Rightarrow \mathbb{B}$ equipped with a set $Acc(f) \subseteq \{1, \ldots, |\vec{T}|\}$ such that $i \in Acc(f)$ only if:

- every sort occurring in T_i is $\leq \mathbb{B}$
- \mathbb{B} occurs only positively in T_i (wrt \Rightarrow)
- $t \succeq_b^s u$ if $t \succeq u$, $FV(u) \subseteq FV(t)$ and $\tau(u)$ is a basic sort \mathbb{B} , i.e.:
 - for all $T \leq_{\mathcal{T}} \mathbb{B}$, T is a basic sort
 - for all $f: \vec{U} \Rightarrow \mathbb{B}$ and $i \in Acc(f)$, $U_i = \mathbb{B}$ or U_i is a basic sort
- $t \triangleright_a u$ if there are $f : \vec{T} \Rightarrow \mathbb{B}$, \vec{t} and $i \in Acc(f)$ such that: $t = f\vec{t}$ and $t_i \triangleright_a u$
- $t \triangleright_{@}^{X} u$ if there are \mathbb{B} , v and \vec{x} such that $t : \mathbb{B}$, $u : \mathbb{B}$, $u = v\vec{x}$, $t \triangleright_{a} v$, $\vec{x} \in X$ and \mathbb{B} doesn't occur in $\tau(\vec{x})$

Unsafe occurrences of a sort A in a type $T: \operatorname{SPos}_{\mathbb{A}}(T)$

- $\operatorname{SPos}_{\mathbb{A}}(\mathbb{B}) = \operatorname{NPos}_{\mathbb{A}}(\mathbb{B}) = \operatorname{LPos}_{\mathbb{A}}(\mathbb{B}) = \emptyset$ whatever \mathbb{A} and \mathbb{B} are
- $\operatorname{CPos}_{\mathbb{A}}(\mathbb{A}) = \{\varepsilon\}$
- $\operatorname{CPos}_{\mathbb{A}}(\mathbb{B}) = \emptyset$ if $\mathbb{B} \neq \mathbb{A}$
- $\operatorname{SPos}_{\mathbb{A}}(U \to V) = 1 \cdot \operatorname{NPos}_{\mathbb{A}}(U) + 2 \cdot \operatorname{SPos}_{\mathbb{A}}(V)$
- $\operatorname{NPos}_{\mathbb{A}}(U \to V)$ = $\operatorname{CPos}_{\mathbb{A}}(U \to V) = 1 \cdot \operatorname{SPos}_{\mathbb{A}}(U) + 2 \cdot (\operatorname{LPos}_{\mathbb{A}}(V) + \operatorname{CPos}_{\mathbb{A}}(V))$
- $\operatorname{LPos}_{\mathbb{A}}(U \to V) = \operatorname{NPos}_{\mathbb{A}}(U \Rightarrow V) + 1 \cdot \operatorname{NPos}_{\mathbb{A}}(U)$

Unsafe occurrences of a sort A in a type $T: \operatorname{SPos}_{\mathbb{A}}(T)$

Examples of safe types T, i.e. with $SPos_{\mathbb{A}}(T) = \emptyset$:

- o(T) ≤ 1
 T = U ⇒ A and A doesn't occur in U (e.g. Coq types)
- o(T) = 2 and A occurs only positively in T

Example of unsafe type: $(\mathbb{B} \Rightarrow (\mathbb{B} \Rightarrow \mathbb{A}) \Rightarrow \mathbb{B}) \Rightarrow \mathbb{A}$