
Introduction to higher-order rewriting
Extending RPO to λ-terms

The computability path ordering

(joint work with J.-P. Jouannaud and A. Rubio)

Frédéric Blanqui

Deduc`eam

LSV seminar, 13 January 2015, Cachan, France

The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Goal

automate the proof of termination of higher-order rewrite systems

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Outline

1 Introduction to higher-order rewriting

2 Extending RPO to λ-terms

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Higher-order rewriting = rewriting on λ-terms

x | f | λx .t | tt

(λx .t)u →β tux

λx .tx →η t if x /∈ FV(t)

f~l →R r

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: map function on lists

nil : Lα
cons : α⇒ Lα⇒ Lα
map : (α⇒ β)⇒ Lα⇒ Lβ

map F nil →R nil
map F (cons x l) →R cons (F x) (map F l)

map (λx .2 ∗ x) (cons 5 l)
→R cons ((λx .2 ∗ x) 5) (map (λx .2 ∗ x) l)
→β cons (2 ∗ 5) (map (λx .2 ∗ x) l)
. . .

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: recursor on natural numbers

0 : N
s : N⇒ N
natrec : α⇒ (N⇒ α⇒ α)⇒ N⇒ α

natrec U V 0 →R U
natrec U V (s n) →R V n (natrec U V n)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: recursor on ordinals

0 : O
s : O⇒ O
lim : (N⇒ O)⇒ O
ordrec :
α⇒ (O⇒ α⇒ α)⇒ ((N⇒ O)⇒ (N⇒ α)⇒ α)⇒ O⇒ α

ordrec U V W 0 →R U
ordrec U V W (s x) →R V x (ordrec U V W x)

ordrec U V W (lim F) →R W F (λn.ordrec U V W (F n))

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: dependent choice operator

“Verifying Process Algebra Proofs in Type Theory”, Sellink (1993):

+ : P⇒ P⇒ P
Σ : (D⇒ P)⇒ P
; : P⇒ P⇒ P
. . .

Σ(λd .P) →R P
ΣX + Xd →R ΣX

Σ(λd .Xd + Yd) →R ΣX + ΣY
ΣX ;P →R Σ(λd .Xd ;P)

. . .

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: formal derivation

sin, cos : R⇒ R
+,× : R⇒ R⇒ R
D : (R⇒ R)⇒ (R⇒ R)

. . .

D (λx .V) →R λx .O
D (λx .x) →R λx .1

D (λx .F x + G x) →R λx .D F x + D G x
D (λx .sin (F x)) →R λx .cos (F x)× D F x

. . .

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example: recursor on continuations

D : C
C : ((C⇒ L)⇒ L)⇒ C
contrec :
α⇒ (((C⇒ L)⇒ L)⇒ ((α⇒ L)⇒ L)⇒ α)⇒ C⇒ α

ex : C⇒ L

contrec U V D →R U
contrec U V (C F) →R W F (λx .F (λy .x (contrec U V y)))

ex (C F) →R F ex

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

The higher-order rewriting zoo

CRS Combinatory Reduction Systems 1980 Klop
ERS Expression Reduction Systems 1990 Khasidashvili

HOASL Higher-Order Alg. Spec. Languages 1991 Jouannaud and Okada
HRS Higher-order Rewrite Systems 1991 Nipkow

HORS Higher-Order Rewrite Systems 1994 Van Oostrom

rewrite relations with matching modulo βη:

HRS →R→!
β

CRS →R→∗β
HOASL →R ∪ →β

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Why matching modulo βη?

with the rule D (λx .sin (F x))→R λx .cos (F x)× D F x

6←R D sin←η D (λx .sin x)←β D (λx .sin ((λx .x) x))→R

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Automated termination techniques for HOR

syntactic recursion schema (Jouannaud and Okada 1991),
computability closure (B., Jouannaud and Okada 1999, B. 2001)

polynomial interpretation (Van de Pol 1996, Fuhs and Kop 2012)

inclusion in a well-founded relation (Jouannaud and Rubio 1999)

size annotations (Giménez 1996, Hughes, Pareto and Sabry
1996, Abel 2002, Barthe et al 2004, B. 2004)

size change principle (Jones and Bohr 2004, Wahlstedt 2007)

semantic labeling (Hamana 2007, B. and Roux 2009)

dependency pairs (Kusakari and Sakai 2005, B. 2006, Kop 2010)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Relations between these techniques

the notion of computability closure can be extended to handle
size annotations (B. 2004), improve HORPO (Jouannaud and
Rubio 1999) and dependency pairs (Kusakari et al. 2009)

size annotations are a particular case of semantic labeling (B.
and Roux 2009)

HORPO is the fixpoint of the computability closure (B. 2006)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Outline

1 Introduction to higher-order rewriting

2 Extending RPO to λ-terms

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Recursive path ordering (Dershowitz 1979)

given a well-founded quasi-ordering ≥F on function symbols

t = f~t > u if either:

(FB) ti ≥ u for some i

(F>) u = g~u, f >F g and P: (∀i)[t > ui]

(F=) u = g~u, f 'F g, ~t >mul ~u and P

extension to >lex by Kamin and Lévy (1980)

Termination proofs:

Dershowitz (1979): Kruskal tree theorem

Lescanne (1982): inductive proof + axiom of choice

Buchholtz (1995): inductive proof

Jouannaud and Rubio (1999): based on Tait and Girard
computability predicates (⇔ Buchholtz)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Extension to λ-calculus?

First attempts. . .

1992: Loria-Sáenz and Steinbach

1995: Lysne and Piris

1996: Jouannaud and Rubio

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Importance of types

pattern-matching on negative types leads to non-termination
(Mendler 1987):

c : (T⇒ B)⇒ T
f : T⇒ (T⇒ B)

f (c x) →R x

let ω : T⇒ B := λx .fxx

f (c ω) (c ω)→R ω (c ω)→β f (c ω) (c ω) . . .

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

HORPO-99 (Jouannaud and Rubio 1999)

given a well-founded quasi-ordering ≥F on function symbols

t > u if τ(t) = τ(u) and either:

(FB) t = f~t and ti ≥ u for some i

(F>) t = f~t, u = g~u, f >F g and P

(F=) t = f~t, u = g~u, f 'F g, ~t >stat(f) ~u and P

(FB) (F>) (F=)

(F@) t = f~t, u = u1 . . . un, n ≥ 2 and P

(@=) t = t1t2, u = u1u2 and t1t2 >mul u1u2

(λ=) t = λx .a, u = λx .b and a > b

where P is: (∀i)[t > ui∨(∃j)tj ≥ ui]

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example with HORPO-99

Σ(λd .Xd + Yd) →R Σ(λd .Xd) + Σ(λd .Yd)
ΣX ;P →R Σ(λd .Xd ;P)

Σ(λd .Xd + Yd) > Σ(λd .Xd) + Σ(λd .Yd)

because τ(Σ(λd .Xd + Yd)) = τ(Σ(λd .Xd) + Σ(λd .Yd)) and,

by taking Σ >F +, after (F>):

Σ(λd .Xd + Yd) > Σ(λd .Xd) and Σ(λd .Xd + Yd) > Σ(λd .Yd)

because τ(Σ(λd .Xd + Yd)) = τ(Σ(λd .Xd) and, after (F=):

λd .Xd + Yd > λd .Xd because, after (λ=):

Xd + Yd > Xd after (FB)

ΣX ;P 6> Σ(λd .Xd ;P)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

HORPO-07 (Jouannaud and Rubio 2007)

given: a well-founded quasi-ordering ≥F on function symbols

a well-founded quasi-ordering ≥T on types such that . . .
(a sort can be bigger than an arrow type)

t : T > u : U if T ≥T U and either:

(FB) (F>) (F=) (F@) (@=)’ (λ=)

(@=)’ t = t1t2, u = u1 . . . un, n ≥ 2 and t1t2 >mul u1 . . . un
(λ=) t = λx .a, u = λy .b, τ(x) 'T τ(y), x /∈ FV(u) and a > bxy

(@B) t = t1t2 and ti ≥ u for some i

(λB) t = λx .a, x /∈ FV(u) and a ≥ u

(Fλ) t = f~t, u = λx .b, x /∈ FV(b) and t > b

(@β) t = (λx .a)b and abx ≥ u

(λη) t = λx .ax , x /∈ FV(a) and a ≥ u

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

CPO (B., Jouannaud and Rubio 2014)

improve HORPO-07 by:

fixing the conditions on ≥T
reducing the number of type comparisons

handling bound variables

handling recursion on strictly positive inductive types

handling symbols smaller than application and abstraction

> is now defined as >∅τ where:

for any relation >, t >τ u if t > u and τ(t) ≥T τ(u)

given a finite set X of variables, >X is defined inductively as. . .

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Admissible type orderings

A relation ≥T on types is admissible if:

1. ≥T is an ordering containing Br , where T ⇒ U Br U

2. >T ∪Bl is well-founded, where T ⇒ U Bl T

3. if T ⇒ U >T V then U >T V or, V = T ⇒ U ′ and U >T U ′

Example: some sub-relation of RPO
given a well-founded ordering >S on sorts, the smallest ordering
>T containing >S and Br that is right-monotone (U >T U ′

implies T ⇒ U >T T ⇒ U ′) is admissible

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Core CPO part 1/3

t = f~t >X u if either:

(FB) ti ≥∅τ u for some i

(F>) u = g~u, f >F g and P: t >X ui for all i

(F=) u = g~u, f 'F g, ~t (>∅τ)stat(f) ~u and P

(F@) u = u1u2 and P

(Fλ) u = λx .b and t >X∪{x} b and x /∈ FV(t)

(FX) u ∈ X

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Core CPO part 2/3

t = t1t2 >
X u if either:

(@B) t1 ≥X u or t2 ≥X
τ u

(@=) u = u1u2, ~t (>∅τ)mul ~u

(@λ) u = λx .b, x /∈ FV(b) and t >X b

(@X) u ∈ X

(@β) t1 = λx .a and at2x ≥X u

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Core CPO part 3/3

t = λx .a >X u if either:

(λB) a ≥X
τ u and x /∈ FV(u)

(λ=) u = λx .b and a >X b

(λ 6=) u = λy .b, τ(x) 6= τ(y), y /∈ FV(b) and t >X u

(λX) u ∈ X

(λη) a = vx , x /∈ FV(v) and v ≥X u

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Example with Core CPO

C : ((C⇒ L)⇒ L)⇒ C
ex : C⇒ L

ex (C F) →R F ex

ex (C F) >∅τ F ex

because τ(ex (C F)) = τ(F ex) and, after (@B):

C F >∅τ F ex, because

τ(C F) ≥T τ(F ex) if one takes C ≥T L and, after (F@):

C F : C >∅ F : (C⇒ L)⇒ L after (FB)

C F : C > ex : C⇒ L after (F>) if one takes C >F ex

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Tightness of Core CPO part 1/3

t = f~t >X u if either:

(FB) ti ≥∅τ u for some i
replacing ≥∅τ by ≥X

τ or ≥ leads to non-termination

(F>) u = g~u, f >F g and P

(F=) u = g~u, f 'F g, ~t (>∅τ)stat(f) ~u and P

replacing >∅τ by >X
τ or > leads to non-termination

(F@) u = u1u2 and P
replacing >X by (>X)+ leads to non-termination

(Fλ) u = λx .b and t >X∪{x} and x /∈ FV(t)

(FX) u ∈ X

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Tightness of Core CPO part 2/3

t = t1t2 >
X u if either:

(@B) t1 ≥X u or t2 ≥X
τ u

replacing ≥X
τ by ≥X leads to non-termination

(@=) u = u1u2, ~t(>∅τ)mul~u
replacing >∅τ by >X

τ or > leads to non-termination

(@λ) u = λx .b, x /∈ FV(b) and t >X b
replacing >X by >X∪{x} leads to non-termination

(@X) u ∈ X

(@β) t1 = λx .a and at2x ≥X u

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Tightness of Core CPO part 3/3

t = λx .a >X u if either:

(λB) a ≥X
τ u and x /∈ FV(u)

replacing ≥X
τ by ≥X leads to non-termination

(λ=) u = λx .b and a >X b

(λ 6=) u = λy .b, τ(x) 6= τ(y), y /∈ FV(b) and t >X u
replacing >X by >X∪{y} or
removing the condition τ(x) 6= τ(y) leads to non-termination

(λX) u ∈ X

(λη) a = vx , x /∈ FV(v) and v ≥X u

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Handling strictly positive inductive types

t = f~t >X u if either:

. . .

(FB) ti Ds
bDa≥τ u for some i

(F=) u = g~u, f 'F g, ~t (>∅τ ∪BX
@≥∅τ)stat(f) ~u and P

Ds
b and Da are restricted subterm relations

BX
@ is Coquand’ structurally smaller relation (1992)

they all depend on the types of symbols
(e.g. f~t : BBa ti : Ti only if B occurs only positively in Ti)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Handling strictly positive inductive types

ΣX ;P →R Σ(λd .Xd ;P)

ΣX ;P >∅τ Σ(λd .Xd ;P) by (F>) if one takes ; >F Σ because:

ΣX ;P >∅ λd .Xd ;P by (Fλ) because:

ΣX ;P >{d} Xd ;P by (F=) because:

ΣX B{d}@ Xd

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Handling “small” symbols: F = Fb] Fs

t = t1t2 >
X u if either: . . .

(@Fs) u = g~u, g ∈ Fs and Pτ : t >X
τ ui for all i

t = λx .a >X u if either: . . .

(@Fs) u = g~u, g ∈ Fs and Pτ

t = f~t >X u with f ∈ Fs if either:

(FsB) ti ≥∅τ u for some i

(Fs>) u = g~u, g ∈ Fs , f >F g and Pτ

(Fs=) u = g~u, g ∈ Fs , f 'F g, ~t (>∅τ ∪BX
@ D∅τ)stat(f) ~u and Pτ

(Fs@) u = u1u2 and Pτ

(FsX) u ∈ X

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

A few words on the termination proof - Part 1/3

The termination of >∅τ is proved by extending the technique of
Tait (1967) and Girard (1972):

1) we interpret every sort B by some set of terms [[B]]

the interpretation of arrow types is fixed:
[[U ⇒ V]] = {t ∈ T |∀u ∈ [[U]], tu ∈ [[V]]}
a term t : T is computable if t ∈ [[T]]

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

A few words on the termination proof - Part 2/3

2) we explicit conditions under which a set [[T]] satisfies:

(comp-sn) the elements of [[T]] are strongly normalizing wrt >∅
τ

(comp-red) every >∅
τ -reduct of t ∈ [[T]] is computable

(comp-neutral) t ∈ [[T]] if t : T is neutral and every >∅
τ -reduct of t is computable

(comp-lam) λx .a ∈ [[T]] if T =U⇒V and, for every comp. u : U, aux is comp.
(comp-small) f~t ∈ [[T]] if f~t : T , f ∈ Fs and ~t are computable

Examples:

1. [[U ⇒ V]] satisfies (comp-sn) if
[[U]] satisfies (comp-neutral) and [[V]] satisfies (comp-sn)

2. [[U]] satisfies (comp-small) if [[U]] satisfies (comp-neutral),
for every U ′ <T U, [[U ′]] satisfies (comp-small),

for every small f : ~T ⇒ U, [[~T]] satisfies (comp-sn) and (comp-red)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

A few words on the termination proof - Part 3/3

3) we prove that, for every type T , [[T]] satisfies all the
computability properties

To break cyclic dependencies in conditions, we assume that for
every small f : ~T ⇒ U with U = ~U ⇒ B:

1. every sort occurring in ~T is ≤T B
2. and either:

~U is empty and B has no unsafe occurrences in every Ti
~U is not empty and every Ti ≤T U

small symbols are used for proving the termination of an extension of

CPO to dependent types (Jouannaud and Li 2013)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Conclusion

CPO is a new powerful extension of HORPO

difficult to improve without giving up Tait-Girard’s technique

Prolog implementation available on Albert Rubio’s web page

details to appear in Logical Methods in Computer Science

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Tightness of core CPO - Example 1/2

in (FB)ti ≥∅τ u for some i , replace ≥∅τ by ≥X
τ

with a : o >F f : o ⇒ o >F γ : o ⇒ o ⇒ o:

fa >∅τ (λx .fx)a, because τ(fa) = τ((λx .fx)a), (F@) and:

fa >∅ a, because (FB) and a ≥∅
τ a

fa >∅ λx .fx , because (Fλ) and:
fa >{x} fx , because (FB) and:

a >
{x}
τ fx , because τ(a) = τ(fx), (F>) and:

a >{x} x , because (FX)

(λx .fx)a >∅τ fa, because τ((λx .fx)a) = τ(fa) and (@β)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Tightness of core CPO - Example 2/2

in (FB)ti ≥∅τ u for some i , replace ≥∅τ by ≥∅

with a : o >F f : o ⇒ o >F γ : o ⇒ o ⇒ o:

fa >∅τ (λx .fx)a, because τ(fa) = τ((λx .fx)a), (F@) and:

fa >∅ a, because (FB) and a ≥∅ a
fa >∅ λx .fx , because (FB) and:
a >∅ λx .fx , because (Fλ) and:
a >{x} fx , because (F>) and:
a >{x} x , because (FX)

(λx .fx)a >∅τ fa, because τ((λx .fx)a) = τ(fa) and (@β)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Accessible subterms

First, we assume every f : ~T ⇒ B equipped with a set
Acc(f) ⊆ {1, . . . , |~T |} such that i ∈ Acc(f) only if:

every sort occurring in Ti is ≤ B

B occurs only positively in Ti (wrt ⇒)

t Ds
b u if t D u, FV(u) ⊆ FV(t) and τ(u) is a basic sort B, i.e.:

for all T <T B, T is a basic sort
for all f : ~U ⇒ B and i ∈ Acc(f), Ui = B or Ui is a basic sort

t Ba u if there are f : ~T ⇒ B, ~t and i ∈ Acc(f) such that:
t = f~t and ti Da u

t BX
@ u if there are B, v and ~x such that

t : B, u : B, u = v~x , t Ba v , ~x ∈ X and B doesn’t occur in τ(~x)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Unsafe occurrences of a sort A in a type T : SPosA(T)

SPosA(B) = NPosA(B) = LPosA(B) = ∅ whatever A and B are

CPosA(A) = {ε}

CPosA(B) = ∅ if B 6= A

SPosA(U → V) = 1 ·NPosA(U) + 2 · SPosA(V)

NPosA(U → V)
= CPosA(U → V) = 1 · SPosA(U) + 2 · (LPosA(V) + CPosA(V))

LPosA(U → V) = NPosA(U ⇒ V) + 1 ·NPosA(U)

Frédéric Blanqui (INRIA) The computability path ordering

Introduction to higher-order rewriting
Extending RPO to λ-terms

Unsafe occurrences of a sort A in a type T : SPosA(T)

Examples of safe types T , i.e. with SPosA(T) = ∅:

o(T) ≤ 1

T = ~U ⇒ A and A doesn’t occur in ~U (e.g. Coq types)

o(T) = 2 and A occurs only positively in T

Example of unsafe type: (B⇒ (B⇒ A)⇒ B)⇒ A

Frédéric Blanqui (INRIA) The computability path ordering

	Introduction to higher-order rewriting
	Extending RPO to -terms

