Computability Closure: Ten Years Later

Frédéric Blanqui

INRIA & LORIA

21 juin 2007

Frédéric Blanqui Computability Closure: Ten Years Later

白 と く ヨ と く ヨ と …

æ

Outline

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

computability has been introduced for proving termination of β

a computability predicate is a set of terms P such that:

•
$$P \subseteq \mathrm{SN}(\rightarrow)$$
 where $\rightarrow = \rightarrow_{eta}$

$$\blacktriangleright \to (P) \subseteq P$$

• if t is neutral $(x\vec{v} \text{ or } (\lambda xt)u\vec{v})$ and $\rightarrow (t) \subseteq P$ then $t \in P$

if *P* and *Q* are computability predicates then the set $P \rightarrow Q = \{t \mid \forall u \in P, tu \in Q\}$ is a computability predicate

向下 イヨト イヨト

every term is computable if every symbol f is computable

向下 イヨト イヨト

- every term is computable if every symbol *f* is computable
- ▶ a symbol f is computable if $f\vec{t}$ is computable whenever \vec{t} are computable

- every term is computable if every symbol f is computable
- ► a symbol f is computable if $f\vec{t}$ is computable whenever \vec{t} are computable
- ► a symbol f is computable if every head-reduct of $f\vec{t}$ is computable whenever \vec{t} are computable

- every term is computable if every symbol f is computable
- ► a symbol f is computable if $f\vec{t}$ is computable whenever \vec{t} are computable
- ► a symbol f is computable if every head-reduct of $f\vec{t}$ is computable whenever \vec{t} are computable
- ► a symbol f is computable if, for every rule $f\vec{l} \rightarrow r$ and substitution σ , $r\sigma$ is computable whenever $\vec{l}\sigma$ are computable

伺下 イヨト イヨト

Outline

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

introduced by Jean-Pierre and Mitsu in a 1997 draft

<u>definition</u>: a function CC mapping every symbol f and terms \vec{l} to a set of terms $CC^f(\vec{l})$ is a *computability closure* if, for all $r \in CC^f(\vec{l})$ and substitution θ , $r\theta$ is computable whenever $\vec{l}\theta$ are computable and θ is computable on $\mathcal{X} \setminus FV(\vec{l})$

<u>theorem</u>: if CC is a computability closure and, for all rule $\vec{I} \rightarrow r$, $r \in CC^{f}(\vec{I})$, then every symbol is computable and $\rightarrow_{\beta} \cup \rightarrow_{R}$ is SN

assuming a precedence $>_{\mathcal{F}}$, statuses (lex or mul) and an ordering > for comparing function arguments:

$$\begin{array}{ll} \text{(arg)} & l_i \in \mathrm{CC}_{>}^{f}(\vec{l}) & \text{(decomp-symb)} & \frac{g\vec{u} \in \mathrm{CC}_{>}^{f}(\vec{l})}{u_i \in \mathrm{CC}_{>}^{f}(\vec{l})} \\ \text{(prec)} & \frac{f >_{\mathcal{F}} g}{g \in \mathrm{CC}_{>}^{f}(\vec{l})} & \text{(app)} & \frac{u \in \mathrm{CC}_{>}^{f}(\vec{l}) & v \in \mathrm{CC}_{>}^{f}(\vec{l})}{uv \in \mathrm{CC}_{>}^{f}(\vec{l})} \\ \text{(call)} & \frac{f \simeq_{\mathcal{F}} g & \vec{u} \in \mathrm{CC}_{>}^{f}(\vec{l}) & \vec{l} >_{\mathrm{stat}_{f}} \vec{u}}{g\vec{u} \in \mathrm{CC}_{>}^{f}(\vec{l})} \\ \text{(var)} & \frac{x \notin \mathrm{FV}(\vec{l})}{x \in \mathrm{CC}_{>}^{f}(\vec{l})} & \text{(lam)} & \frac{u \in \mathrm{CC}_{>}^{f}(\vec{l}) & x \notin \mathrm{FV}(\vec{l})}{\lambda x u \in \mathrm{CC}_{>}^{f}(\vec{l})} \end{array}$$

Outline

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

assuming that *E* is a symmetric set of rules $l \to r$ such that $l = f\vec{l}$ and $FV(r) \subseteq FV(l)$ (excludes $x \cdot 0 = 0$ and x + 0 = x)

<u>definition</u>: $t \to_{R,E} u$ if there are $p \in \text{Pos}(t)$, $l \to r \in R$ and σ such that $t|_p \to_E^* l\sigma$ and $u = t[r\sigma]_p$

<u>theorem</u>: $\rightarrow_{\beta} \cup \rightarrow_{R,E}$ is terminating if:

- for all rule $f\vec{l} \to g\vec{r} \in E$, $\vec{r} \in \mathrm{CC}^f_>(\vec{l})$
- for all rule $f\vec{l} \rightarrow r \in R$, $r \in \mathrm{CC}^{f}_{>}(\vec{l})$

example: associativity and commutativity

A B K A B K

assuming that rule left-hand sides are patterns à la Miller:

<u>definition</u>: $t \to_{R,\beta\eta} u$ if there are $p \in \text{Pos}(t)$, $l \to r \in R$ and σ β -normal such that $t|_p$ is β -normal, $t|_p =_{\beta\eta} l\sigma$ and $u = t[r\sigma]_p$

<u>theorem</u>: a symbol f is computable if, for every rule $f\vec{l} \rightarrow r \in R$ and substitution σ , $r\sigma$ is computable whenever $\vec{l}\sigma$ are computable

uses the following facts: – if I is a pattern, σ and t are β -normal and $t =_{\beta\eta} I\sigma$, then $t =_{\eta} \leftarrow_{\beta_0}^* I\sigma$ where $(\lambda xt)x \rightarrow_{\beta_0} t$ – computability is preserved by η -equivalence and β_0 -expansion

remark: implies termination of CRS and HRS

(日本)(日本)(日本)

additional decomposition rules for patterns à la Miller:

$$\begin{array}{l} (\text{decomp-lam}) \quad \displaystyle \frac{\lambda y u \in \operatorname{CC}_{>}^{f}(\vec{l}) \quad y \notin \operatorname{FV}(\vec{l})}{u \in \operatorname{CC}_{>}^{f}(\vec{l})} \\ (\text{decomp-app-left}) \quad \displaystyle \frac{u y \in \operatorname{CC}_{>}^{f}(\vec{l}) \quad y \notin \operatorname{FV}(\vec{l}) \cup \operatorname{FV}(u)}{u \in \operatorname{CC}_{>}^{f}(\vec{l})} \end{array}$$

< □ > < @ > < 注 > < 注 > ... 注

the function CR mapping > to the relation $\{(\vec{fl}, r) \mid r \in CC_{>}^{f}(\vec{l}), \tau(r) = \tau(\vec{fl}), FV(r) \subseteq FV(\vec{l})\}$ is monotone !

let $>_{\rm whorco}$ (weak HORCO) be the least fixpoint of $\rm CR$ let $>_{\rm horco}$ be the closure by context of $>_{\rm whorco}$

properties:

 \triangleright >_{whorco} is transitive

the function CR mapping > to the relation $\{(\vec{fl}, r) \mid r \in CC_{>}^{f}(\vec{l}), \tau(r) = \tau(\vec{fl}), FV(r) \subseteq FV(\vec{l})\}$ is monotone !

let $>_{\rm whorco}$ (weak HORCO) be the least fixpoint of $\rm CR$ let $>_{\rm horco}$ be the closure by context of $>_{\rm whorco}$

properties:

>_{whorco} is transitive

$$\triangleright$$
 >_{horpo} \subseteq >⁺_{horco}

the function CR mapping > to the relation $\{(\vec{fl}, r) \mid r \in CC_{>}^{f}(\vec{l}), \tau(r) = \tau(\vec{fl}), FV(r) \subseteq FV(\vec{l})\}$ is monotone !

let $>_{\rm whorco}$ (weak HORCO) be the least fixpoint of $\rm CR$ let $>_{\rm horco}$ be the closure by context of $>_{\rm whorco}$

p<u>roperties:</u>

- \blacktriangleright >_{whorco} is transitive
- $\blacktriangleright >_{\rm horpo} \subseteq >^+_{\rm horco}$
- \blacktriangleright on first-order terms, $>_{\rm horco} = >_{\rm whorco} = >_{\rm rpo}$!

Inductive definition of HORCO

▲圖▶ ▲屋▶ ▲屋▶

æ

integration of HORPO and HORCO ?

(1日) (日) (日)

æ

- integration of HORPO and HORCO ?
- see "HORPO with computability closure: a reconstruction" with Jean-Pierre and Albert

on http://www.loria.fr/~blanqui/ ! :-)

伺下 イヨト イヨト