
Type theory and rewriting
Computability closure

Conclusion and perspectives

Habilitation à diriger des recherches - Universtité Paris 7 Denis Diderot

Functions, rewriting and proofs:

termination and certification

Frédéric Blanqui

13 July 2012

Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Rewriting?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Rewriting!

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Outline

Type theory and rewriting

Computability closure
Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Conclusion and perspectives

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Hardware/software bugs can have dramatic consequences

I 1993: Intel Pentium bug on floating point
number division cost $475 millions

I 1996: Ariane V exploded because of an
overflow

I 2000: 8 patients died because of
miscalculated radiation dosage at the
National Cancer Institute, Panama

I 2008: some investors lost 60% of their
investment because of a bug in Moody’s
software

I 2012: Orange?

I . . .

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Goal of my research work

design tools and methodologies for helping hardware/software
developers to write bug-free systems

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to prove the correctness of a program?

a program is a syntactic object (term) p

proving that p satisfies some property Q requires to have a clear
semantics, i.e. a (partial) function [[p]] : IN→ OUT

⇒ proving the correctness of a program is a particular case of
theorem proving

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to prove the correctness of a program?

a program is a syntactic object (term) p

proving that p satisfies some property Q requires to have a clear
semantics, i.e. a (partial) function [[p]] : IN→ OUT

⇒ proving the correctness of a program is a particular case of
theorem proving

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Is it decidable to find a proof?

In general: NO (Turing 1936)

BUT there are various decidable classes very important in practice:
SAT, linear arithmetic, . . .

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Is it decidable to find check a proof?

proof assistant: tool for defining mathematical objects, stating
theorems and building proofs

I 1967: Automath (De Bruijn)
I 1972: LCF (Milner)
I 1973: Mizar (Trybulec)
I 1979: Nuprl (Bates and Constable)
I 1984: Coq (Coquand and Huet)
I 1986: HOL (Gordon)
I 1986: Isabelle (Paulson)
I 1992: Lego (Luo and Pollack)
I 1992: PVS (Owre, Rushby and Shankar)
I 2005: Matita (Asperti)
I 2007: Agda (Norell) 2009: Dedukti (Boespflug)
I 2010: CoqMT (Strub)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Examples of machine-checked proofs

I 2000: fundamental theorem of algebra (Geuvers et al)

I 2005: 4-color theorem (Gonthier)

I 2006: formal verification of a C compiler back-end (Leroy et al)

I 2006: rewriting theory (CoLoR, Coccinelle, CeTA)

I 2009: formal verification of an OS kernel (NICTA)

I 2012?: 1998 Hales proof of Kepler conjecture (Flyspeck project)

I 2012?: 1962 Feit-Thompson odd order theorem (Gonthier et al)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

What is a proof? Deduction vs Computation

I Purely axiomatic approach: every thing is defined using axioms

(∀x) x + 0 = x
(∀x)(∀y) x + (sy) = s(x + y)

Even a statement like “s0 + s0 = ss0” requires a long proof

I Mixed approach: deduction modulo some decidable congruence

The proof of “s0 + s0 = ss0” reduces to reflexivity
(equality on closed arithmetic expressions is decidable)

• in dependent type systems, more terms are definable

• reduce the gap with informal mathematical practice

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

What is a proof? Deduction vs Computation

I Purely axiomatic approach: every thing is defined using axioms

(∀x) x + 0 = x
(∀x)(∀y) x + (sy) = s(x + y)

Even a statement like “s0 + s0 = ss0” requires a long proof

I Mixed approach: deduction modulo some decidable congruence

The proof of “s0 + s0 = ss0” reduces to reflexivity
(equality on closed arithmetic expressions is decidable)

• in dependent type systems, more terms are definable

• reduce the gap with informal mathematical practice

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

What congruence?

if the object language contains λ-expressions
(Church 1940):

x | λxt | tu

one may consider the β-congruence:

(λxt)u =β tux

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

What congruence?

if the object language contains first-order terms:

x | ft1 . . . tn

one may consider some equational theory E :

l1 = r1 . . . ln = rn

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to prove that a congruence is decidable?

given a congruence E , find a relation R that is (Knuth 1967):

I decidable

I terminating: 6 ∃ infinite R-sequence

I confluent: R-congruent terms are R-joinable

I correct: R-congruent terms are E -congruent

I complete: E -congruent terms are R-congruent

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Rewriting and completion

The basic idea is to orient equations l = r into rewrite rules l → r
(replacement becomes unidirectional)

“Rewrite systems are directed equations used to compute by
repeatedly replacing subterms of a given formula with equal
terms until the simplest form possible is obtained.” (DJ’90)

In 1967, Knuth devised a completion algorithm that, given a set of
first-order equations E , tries to build a set of first-order rules R
that is terminating, confluent, correct and complete

Remark: →β has all the above properties except termination

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Descendants

λ-calculus and first-order rewriting led to two important families of
programming languages:

I functional programming languages: Lisp
(1958), ML (1972), Haskell (1990), OCaml
(1996), F# (2005), . . .

I rewriting-based languages: OBJ (1976), Elan
(1994), Maude (1996), . . .

“One framework to rule them all?”

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Descendants

λ-calculus and first-order rewriting led to two important families of
programming languages:

I functional programming languages: Lisp
(1958), ML (1972), Haskell (1990), OCaml
(1996), F# (2005), . . .

I rewriting-based languages: OBJ (1976), Elan
(1994), Maude (1996), . . .

“One framework to rule them all?”

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Higher-order rewriting

higher-order rewriting is rewriting on λ-terms

f | x | λxt | tu

I Combinatory Reduction Systems (CRS) (Klop 1980)
I Expression Reduction Systems (ERS) (Khasidashvili 1990)
I Higher-order Rewrite Systems (HRS) (Nipkow 1991)

I simply-typed λ-terms in β-normal η-long form
I matching modulo αβη

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Higher-order rewriting

I Higher-order Algebraic Specification Languages (HOASL)
(Jouannaud, Okada 1991)
I arbitrary terms
I matching modulo α

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

“To infinity ... and beyond!”

I λ-calculus with patterns (van Oostrom 1990)

I ρ-calculus (Cirstea, Kirchner 1998)

I pattern calculus (Jay, Kesner 2004)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

What congruence?

I β-reduction (Church 1940, . . .)

Automath, Coc, Isabelle

I β-reduction + induction (Tait 1967, . . .)

LCF, Nuprl, Coq, HOL, Lego, Matita, Agda

I β-reduction + first-order rewriting (Breazu-Tannen 1988, . . .)

I β-reduction + higher-order rewriting
(Barbanera, Fernández, Geuvers 1993, . . .)

Coq+CiME, Cac, Dedukti

I β-reduction + induction + FO decision procedures
(Owre, Rushby and Shankar 1992, Stehr 2002, Strub 2008)

PVS, CoqMT

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Problem

how to prove the termination of →β ∪ →R?

remark: termination is not modular! (Toyama 1987)

if R is first-order, R cannot create new β-redexes and →β ∪ →R
terminates on all R-stable subset of SN(→β) (a weak form of
typing) (Dougherty 1991)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Problem

how to prove the termination of →β ∪ →R?

remark: termination is not modular! (Toyama 1987)

if R is first-order, R cannot create new β-redexes and →β ∪ →R
terminates on all R-stable subset of SN(→β) (a weak form of
typing) (Dougherty 1991)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Problem

how to prove the termination of →β ∪ →R?

remark: termination is not modular! (Toyama 1987)

if R is first-order, R cannot create new β-redexes and →β ∪ →R
terminates on all R-stable subset of SN(→β) (a weak form of
typing) (Dougherty 1991)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Termination of β-reduction alone?

in the simply-typed λ-calculus:

I →β can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
does not extend to rewriting where the type of substituted variables

can increase, e.g. f(cx)→ x with x : A⇒ B

I λI -terms can be interpreted by hereditarily monotone functions
on N (Gandy 1980)
can be used to build interpretations but these interpretations can also

be obtained from an extended computability proof (van de Pol 1996)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Termination of β-reduction alone?

in the simply-typed λ-calculus:

I →β can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
does not extend to rewriting where the type of substituted variables

can increase, e.g. f(cx)→ x with x : A⇒ B

I λI -terms can be interpreted by hereditarily monotone functions
on N (Gandy 1980)
can be used to build interpretations but these interpretations can also

be obtained from an extended computability proof (van de Pol 1996)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Outline

Type theory and rewriting

Computability closure
Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Conclusion and perspectives

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Computability

computability has been introduced for proving termination of
β-reduction in typed λ-calculi (Tait, 1967) (Girard, 1970)

I every type T is mapped to a set [[T]] of computable terms

I every term t : T is proved to be computable, i.e. t ∈ [[T]]

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Computability predicates

there are different definitions of computability (Tait Sat, Girard
Red, Parigot SatInd, Girard Bi⊥) but Girard’s definition Red is
better suited for handling arbitrary rewriting

let Red be the set of P such that:

I termination: P ⊆ SN(→β)

I stability by reduction: →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

neutral = not head-reducible after application (λxu is not neutral)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Computability predicates

there are different definitions of computability (Tait Sat, Girard
Red, Parigot SatInd, Girard Bi⊥) but Girard’s definition Red is
better suited for handling arbitrary rewriting

let Red be the set of P such that:

I termination: P ⊆ SN(→β)

I stability by reduction: →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

neutral = not head-reducible after application (λxu is not neutral)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Computable terms

Red is a complete lattice for set inclusion closed by:

a(P,Q) = {t | ∀u ∈ P, tu ∈ Q}

by taking [[U ⇒ V]] := a([[U]], [[V]]), a term t : U ⇒ V is
computable if, for every computable u : U, tu is computable

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Application to rewriting (Jouannaud, Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I termination: P ⊆ SN(→)

I stability by reduction: →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P

(taking f~t neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R})

Theorem: Given a set R of rules, the relation →β ∪ →R
terminates if every rule of R is of the form f~l → r with
r ∈ CCR,f(~l), where CCR,f(~l) is a set of terms that are

R-computable whenever ~l so are.

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Application to rewriting (Jouannaud, Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I termination: P ⊆ SN(→)

I stability by reduction: →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P

(taking f~t neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R})

Theorem: Given a set R of rules, the relation →β ∪ →R
terminates if every rule of R is of the form f~l → r with
r ∈ CCR,f(~l), where CCR,f(~l) is a set of terms that are

R-computable whenever ~l so are.

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Computability closure

By what operation CCR,f(~l) can be closed?

(arg) li ∈ CCR,f(~l)

(app)
t : U ⇒ V ∈ CCR,f(~l) u : U ∈ CCR,f(~l)

tu ∈ CCR,f(~l)

(red)
t ∈ CCR,f(~l) t →β ∪ →R t ′

t ′ ∈ CCR,f(~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with bound variables

Annotate CCR,f(~l) with a set X of (bound) variables:

(var)
x ∈ X

x ∈ CCX
R,f(

~l)

(lam)
t ∈ CC

X∪{x}
R,f (~l) x /∈ FV(~l)

λxt ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with subterms

problem: computability is not preserved by subterm. . . :-(

example: with c : (B⇒ A)⇒ B and f : B⇒ (B⇒ A), →β ∪→R
with R = {f(cx)→ x} does not terminate (Mendler 1987)

with w = λxfxx : B⇒ A, w(cw)→β f(cw)(cw)→R w(cw)

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti) ⊆ Pos+(Ti)

ti ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with subterms

problem: computability is not preserved by subterm. . . :-(

example: with c : (B⇒ A)⇒ B and f : B⇒ (B⇒ A), →β ∪→R
with R = {f(cx)→ x} does not terminate (Mendler 1987)

with w = λxfxx : B⇒ A, w(cw)→β f(cw)(cw)→R w(cw)

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti) ⊆ Pos+(Ti)

ti ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with subterms

(sub-app-var-l)
tu ∈ CCX

R,f(
~l) u ↓η ∈ X

t ∈ CCX
f (~l)

(sub-app-var-r)
tu ∈ CCX

R,f(
~l) t ↓η ∈ X t : U ⇒ ~U ⇒ U

u ∈ CCX
f (~l)

(sub-lam)
λxt ∈ CCX

R,f(
~l) x /∈ FV(~l)

t ∈ CC
X∪{x}
R,f (~l)

(sub-SN)
t ∈ CCX

R,f(
~l) u : B � t FV(u) ⊆ FV(t) [[B]] = SN

u ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with function calls

Consider a relation = on pairs (h, ~v), where ~v are computable
arguments of h, such that = ∪ →prod is well-founded.

(app-fun)
(f,~l) = (g,~t) ~t ∈ CCR,f(~l)

g~t ∈ CCR,f(~l)

Example: (f,~l) = (g,~t) if either:

I f > g

I f ' g and ~l ((� ∪→)+)stat[f] ~t

where ≥ is a well-founded quasi-ordering on symbols
and stat[f] = stat[g] ∈ {lex,mul}

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Outline

Type theory and rewriting

Computability closure
Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Conclusion and perspectives

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with matching modulo βη

f~t =βη g~lσ →R rσ

Problem: ~t computable ⇒ ~lσ computable?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern and lσ =βη t with σ and t in β-
normal η-long form, then lσ →∗β0=η t where
C [(λxu)v] →β0 C [uv

x] if v ∈ X

⇒ consider β0-normalized rewriting with matching modulo β0η
(subsumes CRS and HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η,
if t is computable and t =β0η lσ with l an higher-order pattern,
then lσ is computable.

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern and lσ =βη t with σ and t in β-
normal η-long form, then lσ →∗β0=η t where
C [(λxu)v] →β0 C [uv

x] if v ∈ X

⇒ consider β0-normalized rewriting with matching modulo β0η
(subsumes CRS and HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η,
if t is computable and t =β0η lσ with l an higher-order pattern,
then lσ is computable.

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

Theorem: ←β0η→R,β0η ⊆ →R,β0η=β0η if:

I every rule is of the form f~l → r with f~l an higher-order pattern

I if l → r ∈ R, l : T ⇒ U and x /∈ FV(l), then lx → rx ∈ R
I if lx → r ∈ R and x /∈ FV(l), then l → λxr ∈ R

s ←β0 (λxs)x=β0η lσx→Rrσx

s ←η λxsx=β0ηλxlσx→Rλxrσ

⇒ every set of rules of the form f~l → r with f~l an higher-order
pattern can be completed into a set compatible with →β0η

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Outline

Type theory and rewriting

Computability closure
Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Conclusion and perspectives

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

RPO

RPO is a well-founded quasi-ordering (WFQO) on terms extending
a WFQO on symbols (Plaisted, Dershowitz 1978)

(1)
ti ≥rpo u

f~t >rpo u
(2)

(f,~t) = (g, ~u) f~t >rpo ~u

f~t >rpo g~u

where (f,~t) = (g, ~u) if f > g ∨ (f ' g ∧~t (>rpo)stat[f] ~u)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

HORPO

HORPO is a (non-transitive) extension of RPO to λ-terms
(Jouannaud, Rubio 1999)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

What is the relation between CC and HORPO?

I both are based on computability

I there are even extensions of HORPO using CC

I CC is defined for a fixed R

but CC itself is a relation!

replace t ∈ CCR,f(~l) by f~l >CC(R) t

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

What is the relation between CC and HORPO?

I both are based on computability

I there are even extensions of HORPO using CC

I CC is defined for a fixed R

but CC itself is a relation!

replace t ∈ CCR,f(~l) by f~l >CC(R) t

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

(arg) f~l >CC(R) li

(red)
f~l >CC(R) t t →β ∪ →R t ′

f~l >CC(R) t ′

(app-fun)
(f,~l) = (g,~t) f~l >CC(R) ~t

f~l >CC(R) g~t

(f,~l) = (g,~t) if f > g ∨ (f ' g ∧~l ((� ∪→β ∪→R)+)stat[f] ~t)

. . .

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

R 7→ {(f~l , r) | r ∈ CC∅R,f , type(f~l) = type(r)}

is a monotone function on the complete lattice of relations

the monotone closure of its fixpoint (Tarski 1955):

I contains HORPO

I is equal to RPO when restricted to FO terms!

⇒ provide a general method to get a powerful termination
ordering for any type system

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

R 7→ {(f~l , r) | r ∈ CC∅R,f , type(f~l) = type(r)}

is a monotone function on the complete lattice of relations

the monotone closure of its fixpoint (Tarski 1955):

I contains HORPO

I is equal to RPO when restricted to FO terms!

⇒ provide a general method to get a powerful termination
ordering for any type system

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Revisiting (HO)RPO

R 7→ {(f~l , r) | r ∈ CC∅R,f , type(f~l) = type(r)}

is a monotone function on the complete lattice of relations

the monotone closure of its fixpoint (Tarski 1955):

I contains HORPO

I is equal to RPO when restricted to FO terms!

⇒ provide a general method to get a powerful termination
ordering for any type system

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

What else?

I rewriting modulo some equational theory

I conditional rewriting (Riba 2006)

I size-based termination

I semantic labelling (Roux 2009)

I dependency pairs

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Outline

Type theory and rewriting

Computability closure
Computability
Dealing with matching modulo βη
Revisiting (HO)RPO

Conclusion and perspectives

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Conclusion

I deduction modulo is essential for doing large proofs

I deduction modulo rewriting is simple and powerful

I we have criteria/tools for checking termination and confluence
(see results of last termination competition!)

⇒ we can check the decidability of proof-checking

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to increase our confidence in such a proof system?

I use a machine-checked proof-checker kernel
Coq (Barras 97), CoqMT (Strub 2010), . . .

⇒ one can use unproved tools to build proofs

I one can check system properties (termination, confluence, . . .)
by using external tools providing certificates

and use machine-checked certificate verifiers
Rainbow, CiME3 (2006), CeTA (2009)

can we go further?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to increase our confidence in such a proof system?

I use a machine-checked proof-checker kernel
Coq (Barras 97), CoqMT (Strub 2010), . . .

⇒ one can use unproved tools to build proofs

I one can check system properties (termination, confluence, . . .)
by using external tools providing certificates

and use machine-checked certificate verifiers
Rainbow, CiME3 (2006), CeTA (2009)

can we go further?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

How to increase our confidence in such a proof system?

I use a machine-checked proof-checker kernel
Coq (Barras 97), CoqMT (Strub 2010), . . .

⇒ one can use unproved tools to build proofs

I one can check system properties (termination, confluence, . . .)
by using external tools providing certificates

and use machine-checked certificate verifiers
Rainbow, CiME3 (2006), CeTA (2009)

can we go further?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Modules and computation

Module Type Group_Sig.

Parameter t : Type.

Parameter zero : t.

Parameter opp : t -> t.

Parameter add : t -> t -> t.

Parameter law1 : forall x, add x (opp x) = zero.

...

End Nat_Sig.

Module Group_Theory (G : Group_Sig).

(* the equational properties of add are not part of the congruence! *)

Theorem Feit_Thompson : ...

...

End Group_Theory.

Module Group_X <: Group_Sig.

Definition t := ...

...

Lemma law1 : forall x, add x (opp x) = zero. Proof. ... Qed.

...

End Group_X.

Module Group_X_Theory := Group_Theory Group_X.

Use completion! ⇒ the congruence becomes dynamic [Dedukti]

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Modules and computation

Module Type Group_Sig.

Parameter t : Type.

Parameter zero : t.

Parameter opp : t -> t.

Parameter add : t -> t -> t.

Parameter law1 : forall x, add x (opp x) = zero.

...

End Nat_Sig.

Module Group_Theory (G : Group_Sig).

(* the equational properties of add are not part of the congruence! *)

Theorem Feit_Thompson : ...

...

End Group_Theory.

Module Group_X <: Group_Sig.

Definition t := ...

...

Lemma law1 : forall x, add x (opp x) = zero. Proof. ... Qed.

...

End Group_X.

Module Group_X_Theory := Group_Theory Group_X.

Use completion! ⇒ the congruence becomes dynamic [Dedukti]

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Unorientable equations

some equations may be unorientable (commutativity/associativity)

⇒ use rewriting with matching modulo some equational theory

and/or canonical elements only (by construction)

related works:

I canonizers (Shostak 1984)

I normalized types (Courtieu 2001)

I the open calculus of constructions (Stehr 2002)

I construction functions for quotient types [Moca!]
(B., Hardin, Weis 2007)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Unorientable equations

some equations may be unorientable (commutativity/associativity)

⇒ use rewriting with matching modulo some equational theory

and/or canonical elements only (by construction)

related works:

I canonizers (Shostak 1984)

I normalized types (Courtieu 2001)

I the open calculus of constructions (Stehr 2002)

I construction functions for quotient types [Moca!]
(B., Hardin, Weis 2007)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Unorientable equations

some equations may be unorientable (commutativity/associativity)

⇒ use rewriting with matching modulo some equational theory

and/or canonical elements only (by construction)

related works:

I canonizers (Shostak 1984)

I normalized types (Courtieu 2001)

I the open calculus of constructions (Stehr 2002)

I construction functions for quotient types [Moca!]
(B., Hardin, Weis 2007)

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

Type theory and rewriting
Computability closure

Conclusion and perspectives

Questions?

Frédéric Blanqui (INRIA) - Habilitation Functions, rewriting and proofs: termination and certification

	Type theory and rewriting
	Computability closure
	Computability
	Dealing with matching modulo
	Revisiting (HO)RPO

	Conclusion and perspectives

