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To whom to attribute the following “well-known” result?

Given a function f on a set of sets X , the iteration of f :

a0

ak+1 = f (ak)

aω =
⋃
{ak |k < ω}

converges to some fixpoint of f (i.e. f (aω) = aω)
if . . . (some condition is satisfied)
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Example 1: transitive closure of a relation R on some set A

If:

X = P(A× A)

a0 = R

f (S) = R ◦ S where x (R ◦ S) y if (∃z)xRz ∧ zSy

Then:

x ak y if one can go from x to y in k steps exactly

aω is the transitive closure of R.
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Example 2: Kleene first fixpoint theorem

Theorem: given a partial recursive functional F (ζ, x1, . . . , xn)
where ζ ranges over p.r. functions of n variables, there is a
minimal p.r. function ζ s.t. ζ(x1, . . . , xn) = F (ζ, x1, . . . , xn).

X is the set of partial recursive functions of n variables

a0 is the function defined no where
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To whom to attribute the following “well-known” result?

On a poset (X ,≤) such that. . . (some condition), the transfinite
iteration of some function f : X → X :

a0

ak+1 = f (ak)

al = lub{ak |k < l} if l is a limit ordinal

converges to some fixpoint of f if . . . (some condition)

Let A be the set of all the iterates of f from a0.

Let FP(f ) be the set of all the fixpoints of f .
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Nobody because it is trivial?

If f is extensive (x ≤ f (x)), then A is inductive (every chaina has a
lub). By Tuckey’s maximal principle, A has a maximal element ak .
Since f is extensive, ak ≤ f (ak). Since ak is maximal, f (ak) ≤ ak .

aA chain is a totally ordered subset.

Zorn’s maximal principle (1935)

Any inductive set of sets has a maximal element
wrt inclusion.

Tuckey’s maximal principle (1940)

Any inductive poset has a maximal element.

Zorn’s and Tuckey’s maximal principles are both
equivalent to the Axiom of Choice introduced by
Zermelo in 1904.
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Cardinality argument?

“A cannot be bigger than X . . . ”

but cardinal theory is based on the Axiom of Choice. . .
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Searching for a proof not using the Axiom of Choice. . .

Here are useful references I started with:

Fixed point theorems and semantics: a folk tale, J.-L. Lassez,
V. L. Nguyen and E. A. Sonenberg, Information Processing
Letters, 1982.

The origin of “Zorn’s lemma”, P. J. Campbell, Historia
Mathematica, 1978.

but they were not quite sufficient. . .
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Searching for the origins. . . 1909

The oldest reference I found is:1

Kettentheorie und Wohlordnung, Gerhard Hessenberg, Journal für
die reine und angewandte Mathematik (Crelle), 1909.

Hessenberg (1909)

If X is a set of sets, ≤ inclusion and f extensive, then FP(f ) 6= ∅.

I don’t know if Hessenberg says anything about the iterates of f .

1I didn’t check it by myself because it is in German, but this is explained in
English on a mailing list on the history of mathematics in a mail written in 2000
by Felscher, who wrote a paper on this subject in German in 1962. . .
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Searching for the origins. . . 1922

The first paper I found that speaks about the iterates of f is:

Une méthode d’élimination des nombres transfinis
des raisonnements mathématiques, Casimir Kura-
towski, Fundamenta Mathematicae, 1922.

Kuratowski (1922)

If X is a set of sets, ≤ is inclusion and f is extensive then:

A = N, the smallest subset containing a0 and closed by f and 6= ∅ lub’s,

lub(N) ∈ FP(f ),

if f is monotone then lub(N) is the smallest fixpoint of f ≥ a0.

1 lub(N) ≤ f (lub(N)) since f is extensive
2 lub(N) ∈ N since N is closed by non-empty lub’s
⇒ f (lub(N)) ∈ N since N is closed by f
⇒ f (lub(N)) ≤ lub(N) by definition of lub
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Searching for the origins. . . 1927

Un théorème sur les fonctions
d’ensembles, Bronislaw Knaster and
Alfred Tarski, Annales de la Société
Polonaise de Mathématiques, 1928
(one page note).

Knaster and Tarski (1927)

If X is a set of sets, ≤ inclusion and f monotone, then FP(f ) 6= ∅.

(In particular, they use this to prove Cantor-Bernstein theorem. . . )

But nothing is said about the iterates of f . . .
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Searching for the origins. . . 1939

In 1939, Tarski extended his result with Knaster to arbitrary
complete lattices (every subset has a lub and a glb).

A Lattice-theoretical Fixpoint Theorem and its Applications,
A. Tarski, Pacific Journal of Mathematics, 1955.2

Tarski (1939)

If X is a complete lattice and f is monotone, then FP(f ) is a
complete lattice.

Tarski also notes p. 305 that, if X is ω-complete (every countable subset has a

lub and glb) and f is ω-continuous (|X | ≤ ω ⇒ f (
∨

X ) =
∨

f (X )), then

aω ∈ FP(f ). This is also used by Kleene in his first recursion theorem in

Introduction to metamathematics, North-Holland, 1952.

2In the same journal, Davis (a student of Tarski) proves the converse: a
lattice is complete if every monotone map has a fixpoint.
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Searching for the origins. . . 1939

In 1939, Bourbaki extended Hessenberg’s theorem to posets:3

Bourbaki (1939)

If X is a non-empty strictly inductive poset (every non-empty chain
has a lub) and f is extensive, then lub(N) is the least fixpoint of f .

This was later proved by other people: Kneser (1950), Szele
(1950), Witt (1950), Vaughan (1952), Inagaki (1952), . . .

3But the proof was published in 1949 only.
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Searching for the origins. . . 1959

In 1959, using Bourbaki’s theorem, Abian and Brown extended
Knaster and Tarski’s result to strictly inductive posets having a
pre-fixpoint of f :

A theorem on partially ordered sets with applications to fixed point
theorems, Smbat Abian and Arthur B. Brown, Canadian Journal of
Mathematics, 1961.

Abian and Brown (1959)

If X is a non-empty strictly inductive poset, f is monotone and
a0 ≤ f (a0), then FP(f ) 6= ∅.
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Searching for the origins. . . 1963

In their book Equivalents of the Axiom of Choice, Herman Rubin
and Jean E. Rubin prove the result by invoking Hartogs theorem:

Rubin and Rubin (1963)

If X is a set of sets, ≤ is inclusion and f is
extensive, then there is k such that ak+1 = ak .

Hartogs (1915)

For any set A, there is an ordinal k
that cannot be injected into A.

After Hartogs theorem, a|k is not an injection. Therefore, there are
l1 < l2 < k such that al1 = al2 . Since f is extensive, al1+1 = al1 .
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Searching for the origins. . . 1973

In 1973, using Bourbaki’s theorem, Markowsky extended Tarski
and Davis results to inductive posets:

Chain-complete posets and directed sets
with applications, George Markowsky,
Algebra Universalis, 1976.

Markowsky (1973)

If X is inductive and f is monotone, then FP(f ) is inductive.
X is inductive if every monotone map has a least fixpoint.
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Searching for the origins. . . 1977

In 1977, Cousot and Cousot study also some properties of the
iterates of f when f is monotone and X a complete lattice:

Constructive versions of Tarski’s fixed point
theorems, Patrick Cousot and Radhia
Cousot, Pacific Journal of Mathematics,
1979
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To summarize

There are results:

on the existence of a fixpoint (Hessenberg, Knaster-Tarski,
Bourbaki, Abian-Brown, Markowsky, . . . )
on the iterates of f (Kuratowski, Rubin-Rubin, Cousot-Cousot)

Two conditions are considered:

f is extensive (Hessenberg, Kuratowski, Bourbaki, Rubin-Rubin)
f is monotone (Knaster-Tarski, Abian-Brown, Markowsky, Cousot)
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Relation between extensivity and monotony?

1 On a well ordered poset, a strictly monotone function is
extensive (Bourbaki, 1953)

Assume f not extensive. Then E = {x ∈ X |f (x) < x} 6= ∅. Let
ξ be the least element: f (ξ) < ξ. Since f is strictly monotone,
f (f (ξ)) < f (ξ). Thus f (ξ) ∈ E and ξ ≤ f (ξ). Contradiction.

2 a0 ≤ f (a0) and f monotone on A ⇒ f extensive on A

f extensive on A ⇒ a monotone ⇒ f monotone on A
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A condition generalizing both monotony and extensivity?

Puntos fijos en conjuntos ordenados, Baltasar R. Salinas,
Publicaciones del Seminario Matematico Garcia de Galdeano,
Facultad de Ciencas de Zaragoza, 1969

Salinas (1969)

On a poset X every 6= ∅ well-ordered subset of which has a lub,
a function f has a fixpoint if:

(P1) a0 ≤ f (a0),
(P2) x ≤ f (x) ≤ y ⇒ f (x) ≤ f (y).

Moreover, under AC, there is k such that ak ∈ FP(f ).

Note that (P2) is satisfied whenever f is monotone or extensive

He also proved the converse: every 6= ∅ well-ordered subset has a
lub if every function satisfying (P1) and (P2) has a fixpoint.

Frédéric Blanqui (INRIA) A point on fixpoints



A condition generalizing both monotony and extensivity?

Puntos fijos en conjuntos ordenados, Baltasar R. Salinas,
Publicaciones del Seminario Matematico Garcia de Galdeano,
Facultad de Ciencas de Zaragoza, 1969

Salinas (1969)

On a poset X every 6= ∅ well-ordered subset of which has a lub,
a function f has a fixpoint if:

(P1) a0 ≤ f (a0),
(P2) x ≤ f (x) ≤ y ⇒ f (x) ≤ f (y).

Moreover, under AC, there is k such that ak ∈ FP(f ).

Note that (P2) is satisfied whenever f is monotone or extensive

He also proved the converse: every 6= ∅ well-ordered subset has a
lub if every function satisfying (P1) and (P2) has a fixpoint.

Frédéric Blanqui (INRIA) A point on fixpoints



My two cents

1 We can prove that FP(f ) ∩ A 6= ∅ without using AC:

a monotone ⇒ FP(f ) ∩ A 6= ∅ (by Hartogs theorem)
f satisfies (P1) and (P2) ⇒ a monotone (by transfinite induction)

2 Using a result of Abian-Brown (1959), we can slightly weaken:

(P2) x ≤ f (x) ≤ y ⇒ f (x) ≤ f (y)
by:

(P2’) x < f (x) ≤ y ∧ ]x , f (x)[ = ∅ ⇒ f (x) ≤ f (y)
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To summarize

1904: Zermelo proves the well order theorem (every set can be
well ordered) using ordinals (and the Axiom of Choice)

1908: Zermelo gives a proof not using ordinals but a generalization

of the notion of “chain” introduced by Dedekind in 1888
1909: Hessenberg does an in-depth study of the notion of chain
and provides the first fixpoint theorem
1922: Kuratowski shows how the notion of chain can be used to
eliminate ordinals in other contexts
1927: Knaster and Tarski show that f does not need to be
extensive but that monotony is enough
1939: Bourbaki generalizes Hessenberg proof to arbitrary posets
1939: Tarski extends his result with Knaster to complete lattices
1959: Abian and Brown extend Knaster-Tarski result to strictly
inductive posets having a pre-fixpoint of f
1969: Salinas extend previous results to functions satisfying
(P1) and (P2)
1973: Markowsky extend Tarski result to inductive posets
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Conclusion: to whom to attribute the well-known result?

If f is extensive and:

X is a set of sets: Kuratowski (1922)
X is a strictly inductive poset: Bourbaki (1939) for lub(N) ∈ FP(f )
and Kuratowski (1922) for N = A

If f is monotone, a0 ≤ f (a0) and:

X is an ω-complete lattice and f is ω-continuous: Tarski (1939)
X is a strictly inductive poset: Abian and Brown (1959) for
lub(N) ∈ FP(f ) and Kuratowski (1922) for N = A

If f satisfies (P2), a0 ≤ f (a0) and X is a strictly inductive poset:
Salinas (1969)

Thank you!
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Abian and Brown (1959)

Definition: A set C ⊆ X is an a0-chain if:

C is well ordered

glb(C ) = a0C has a0 as least element

C is closed by non-empty lub’s

if z ∈ C − {lub(C )} then:

f (z) ∈ C
z < f (z)
]z , f (z)[∩C = ∅

Let W = {lub(C )|C is an a0-chain}.
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Abian and Brown (1959)

Theorem: For any poset (X ,≤), a0 ∈ X and function f : X → X :

W is well ordered

W has a0 as least element

if W has a lub ξ, then W is an a0-chain with ξ has greatest
element and ξ 6< f (ξ)
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