
Certification of Haskell programs termination
Intern-ship directed by Frédéric Blanqui

Julien Bureaux

École Normale Supérieure (Paris)

July 17, 2009



Context of this work

I Coq is a formal proof management system. It provides a
formal language to write mathematical definitions, executable
algorithms and theorems together with an environment for
semi-interactive development of machine-checked proofs.
http://coq.inria.fr/

I CoLoR is a Coq library on rewriting and termination with
tactics for automatically checking the conditions of
termination theorems. http://color.inria.fr/

I Haskell is an advanced purely functional programming
language with non-strict semantics.
http://www.haskell.org/

http://coq.inria.fr/
http://color.inria.fr/
http://www.haskell.org/


Introduction

At the moment CoLoR can only handle rewrite systems. The
subject of my intern-ship is to extend it so that it will be able to
certify termination proofs for Haskell programs by adapting
techniques for TRS.

The main part of this work is to formalize and adapt the
techniques described in the article Automated Termination
Analysis for Haskell : From Term rewriting to Programming
Languages written by J. Giesl, S. Swiderski, P. Schneider-Kamp, R.
Thiemann in 2006. This article shows how termination techniques
for ordinary rewriting can be used to handle the features of Haskell
which are missing in term rewriting, especially by using the
technique of dependency pairs.



Some differences

What makes adapting term rewriting termination techniques for
Haskell not so easy ?

I Haskell has a lazy evaluation strategy

I Defining equations are used in the order they are written

I Haskell has polymorphic types

I In programs with infinite data objects, not all functions are
terminating

I Haskell is a high-order language



Part I

Syntax and operational semantics of Haskell



Example of Haskell program

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

p (S Z) = Z
p (S x) = S (p x)

take Z xs = Nil
take n Nil = Nil
take (S n) (Cons x xs) = Cons x (take (p (S n)) xs)

from x = Cons x (from (S x))

For instance we could want to prove the termination of the term

take n (from x)



Some vocabulary

I the symbols Nats, List of arity 0, 1 are called type
constructors,

I the set of types is the smallest set containing (type) variables,
type constructors well-applied to types, and arrow-types
U → V for types U,V .

I The functions symbols p, take, from of arity 1, 2, 1 are said
defined

I whereas Z, S, Nil, Cons of arity 0, 1, 0, 2 are (data)
constructor functions,

I the set of terms is the smallest set containing (term)
variables, function symbols and well-typed application (u v)
for terms u, v ,



Syntax

We consider a subset of Haskell with

I function declaration of the form f l1 . . . ln = r where l1, . . . , ln
are patterns with no variables in common.

I no lambda-abstractions (\t1 . . . tn → t with free variables
x1, . . . , xm can be replaced with f x1 . . . xm where f is a new
function symbol defined by f x1 . . . xm t1 . . . tn = t)

I no built-in types. Only user-defined data-structures are
permitted, like

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

I no let, no cases, [. . . ]



Evaluation position

Given a defining equation l = r in the program, the evaluation
position of t with respect to l el(t) is defined, if it exists, as the
first position in leftmost outermost order for which l and r are
different and such that this position points to a constructor in l ,
and if the subterm at this position in t is either a defined function
symbol or a variable.

Example : if t = take u (from m) and we consider the rule
left-hand side take (S n) (Cons x xs) then we get t|el (t) = u.
For s = take (S n) (from m) we get s|el (s) = from m.

If el(t) is defined we say that the defining equation whose
left-hand side is l is a feasible equation for t.



We now define the evaluation position for a term t by looking for
feasible equations and the corresponding position recursively on the
term.

1. e(t) = 1m−n π if t = f t1 . . . tn . . . tm, f is defined,
m > n = arity(f ), π = e(f t1 . . . tn)

2. e(t) = el(t)π if t = f t1 . . . tn, f is defined, n = arity(f ) ,
there are feasible equation for t and the first is l = r ,
el(t) 6= ε and π = e(t|el (t))

3. else e(t) = ε

Example : with the previous program declaration, if
t = take u (from m) and
s = take (S n) (from (p (S m))), then t|e(t) = u and
s|e(t) = m.



Reduction

Then, the evaluation relation is just an interpretation of this
specific evaluation strategy. →H is defined by

I If t rewrites to s on position e(t) using the first equation
whose left-hand side matches t|e(t) then t →H s.

I If t = c t1 . . . tn for a constructor c of arity n,
s = c t1 . . . ti−1 si ti+1 . . . tn, and ti → Hsi for some
1 ≤ i ≤ n then t →H s.

For example :

p (S Z )→H Z

take (S n) (from (p (S Z )))→H take (S n) (from Z )

from Z →H Cons Z (from (S Z ))→H . . .



Termination

The set of H-terminating ground terms is the smallest set of
ground terms t with

I t does not start an infinite sequence of reductions

I if t →∗H f t1 . . . tn for a defined symbol f with n < arity f ,
and the term t ′ is H-terminating, then f t1 . . . tnt

′ is also
H-terminating

I if t →∗H c t1 . . . cn for a constructor c , then t1, . . . , tn are
also terminating.

A term t is H-Terminating iff tσ is H-terminating for all
substitutions σ with H − terminating ground terms.

For example from is not H-terminating because from Z has an
infinite evaluation. However take u (from m) is H-terminating
since it is so when instantiating u and m with H-terminating
ground terms.



Part II

Formalization in Coq



Terms and Types

We currify everything so that we can define the Haskell-signature
of a program using the ASignature type of CoLoR :

For terms, we declare an applicative algebra with a nullary symbol
for each function and a binary symbol App for function application

Inductive applicative_term : Type :=
| Symb : S -> applicative_term
| App : applicative_term.

Definition applicative_arity f :=
match f with Symb _ => 0 | App => 2 end.



For types, an applicative algebra with a binary symbol Arrow and
a symbol for each type constructor with the corresponding arity

Inductive type_symbol : Type :=
| Constr : S -> type_symbol
| Arrow : type_symbol.

Definition type_arity T :=
match T with

| Constr c -> arity c
| Arrow -> 2

end.

We also need a function type of from function symbols to types.



Typing relation

An environment E is an association table mapping variables to
types. This leads to the following rule

(x ,T ) ∈ E

E ` x : T
(Var)

Denoting by τf the type associated to f by type of, for every
function symbol f and every type substitution ϕ we have the rule

E ` f : τf ϕ
(Symb)

Finally we give a rule for function application.

E ` t : U → V E ` u : U

E ` t u : V
(App)



Coq code for typing

This can be easily implemented in Coq as an inductive predicate :

Inductive typing : henv -> hterm -> htype -> Prop :=
| Tvar : forall E x T,

MapsTo x T E -> typing E (hvar x) T
| Tsymb : forall E f phi ,

typing E (hsymb f) (sub phi (type_of_symbol f))
| Tapp : forall E t U V u,

typing E t (tarrow U V) -> typing E u U ->
typing E (happ t u) V.



Evaluation position

In order to define the evaluation position of t with respect to l we
first search for a candidate position in leftmost outermost order
using a recursive function, and if it exists, we check if this position
correspond to a constructor symbol. For such a search it is very
practical to use the option types of Coq.

Definition pos_wrt t l :=
match candidate_pos t l with

| Some (ps, h) =>
if hconstructor h then None else Some ps

| None => None
end.

Then we define fpos the evaluation position corresponding to the
first feasible equation in the program (option types are very useful
here too).



These functions allow us to declare more concisely the evaluation
position function epos.

Function epos {wf subterm t} : position :=
match unhapps t with

| cons u tm =>
if negb (hdefined u) then nil else

let n := htarity u in let m := length tm in
match nat_compare n m with

| Eq =>
match fpos t R with

| Some ps =>
match subterm_pos t ps with

| None => ps
| Some x => ps ++ epos x

...

Note : we must here use Function instead of Fixpoint and specify
the well-founded order to consider (here subterm). It introduces
some new goals to prove in order to complete the definition.



Equivalent definition of Termination

In fact, the definition given by Giesl of H-terminating terms is not
well adapted to formalization in Coq because it introduces odd
occurrences of the inductive predicate in its own definition. We
better deal with a more natural equivalent definition connected to
the notion of reducibility : a ground term t of type T is said to be
reducible if and only if it does not start an infinite sequence of
reductions and either

I T is a base type (that is to say a well-applied type
constructor), or

I T is an arrow type U → V and for all ground term u, if u : U
is reducible then so is (t u) : V .



This leads to the following declaration for ground terms :

Fixpoint gRed (T : htype) t : Prop :=
SN hred t /\ typing henv_empty t T /\
match T with

| Fun f Ts =>
match f,Ts with

| Constr _, _ => True
| Arrow , Vcons V _ (Vcons W _ _) =>

forall v, gRed V v -> gRed W (happ t v)
| _, _ => False

end
| _ => False

end.

We get the notion of termination for all terms by considering
substitutions with ground terms.

Definition Red E T t := typing E t T /\ forall s,
wt_sub henv_empty E s -> gRed T (sub s t).



The technique of Giesl for proving that a term t is terminating
start by expanding a finite graph from this term using certain rules
that mime the previous definitions by adding new children :

I the Eval rule links a term to its reduced term,

I the Case rule destructs a variable at the evaluation position by
creating a new child for each constructor of the right type
replacing the variable

I the VarExp rule applies a new variable when a function is
under-applied

I the ParSplit rule splits the parameters of a constructor

I the Ins rule look if the current term can be expressed as an
instantiation of a previous one, and it that case links them
together

Remark : if one disregards the last rule the graph created would be
a tree.



Termination Graph

We start defining generic double-labelled trees and a few functions
to deal with positions. The first label of a node is the value of the
node, the second is its sort.

Inductive tree : Type :=
Node : A -> B -> list tree -> tree.

Following Giesl the sorts of node that we consider are :

Inductive node_sort :=
| EvalNode : node_sort
| CaseNode : list substitution -> node_sort
| VarExpNode : node_sort
| ParSplitNode : node_sort
| InsNode : position -> node_sort
| Leaf : node_sort.

Definition graph :=
tree (hterm * htype * henv) node_sort.



Expansion relation
We now define the relation that expresses the fact that a graph G
can be expanded to another graph G ′ (denoted G ⇒ G ′) as an
inductive predicate :

Inductive expands : graph -> graph -> Prop :=
| evalrule : forall g t t’ ps f ts,

leaf_pos g ps t ->
happs f ts = t -> (* t = f t1 t2 ... tn *)
hdefined f = true ->
length ts >= htarity f ->
hred t t’ ->
expands g (add_leaf (leaf t’) EvalNode ps g)

| varexprule : forall g ps t f ts,
let lf := leaf (happ t (fvar t)) in

leaf_pos g ps t ->
happs f ts = t ->
hdefined f = true ->
length ts < htarity f ->
expands g (add_leaf lf VarExpNode ps g)



| parsplitrule : forall g ps t c ts,
let add g t :=

add_leaf (leaf t) ParSplitNode ps g in
let g’ := fold_left add ts g in

leaf_pos g ps t ->
happs c ts = t ->
hconstructor c = true ->
expands g g’

| caserule : ...
| insrule : ...

.

If Gt,T ,E denotes the graph containing as only node the leaf
(t,T ,E ), G is a termination graph for t (E ` t : T ) if and only if
Gt,T ,E ⇒∗ G .



Conclusion and future work

At this point we have ended the formalization in Coq of Haskell
programs, of the Haskell evaluation strategy and of the definition
of termination. We also have started to go deeper in the analyse of
termination by defining termination graphs and their expansion
rules.

But there are still many things to do :

I prove that a node terminates if and only if all its children
terminate

I connecting Termination Graphs with Dependency Pairs
Problems


	Syntax and operational semantics of Haskell
	Formalization in Coq

