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Abstract: Several authors devised type-based termination criteria for ML-like
languages (polymorphic λ-calculi with inductive types and case analysis), that
allows non-structural recursive calls. We extend these works to general rewriting
and dependent types, hence providing a powerful termination criterion for the
combination of rewriting and β-reduction in the Calculus of Constructions.

1 Introduction

The Calculus of Constructions [19] is a powerful type system allowing polymor-
phic and dependent types. It is the basis of many proof assistants since it allows
one to formalize the proofs of higher-order logic. In this context, it is essential
to allow users to de�ne functions and predicates in the most convenient way and
to be able to decide whether a term is a proof of some proposition, and whether
two terms/propositions are equivalent w.r.t. user de�nitions. As exempli�ed in
[21, 11], a promising approach is rewriting. To this end, we need powerful crite-
ria to check the termination of higher-order rewrite-based de�nitions combined
with β-reduction.

In a previous work [11], we proved that such a combination is strongly nor-
malizing if, on the one hand, �rst-order rewrite rules are strongly normalizing
and non-duplicating1 and, on the other hand, non �rst-order rewrite rules (called
higher-order in the following) satis�es a termination criterion based on the no-
tion of computability closure and similar to higher-order primitive recursion.
Unfortunately, many interesting rewrite systems are either �rst-order and du-
plicating, or higher-order with non-structural recursive calls (e.g. division on
natural numbers23, Figure 1).

∗Laboratoire Lorrain de Recherche en Informatique et Automatique (LORIA) & Institut
National de Recherche en Informatique et Automatique (INRIA), 615 rue du Jardin Botanique,
BP 101, 54602 Villers-lès-Nancy, France, blanqui@loria.fr.

1Strong normalization is not modular in general [38]. It is modular for non-duplicating
�rst-order rewrite systems [35]. Here, we do not have two non-duplicating �rst-order rewrite
systems but a hierarchical combination of a higher-order rewrite system (satisfying strong
termination conditions) built over a non-duplicating �rst-order rewrite system.

2/ x y denotes d x
y+1
e.

3We use curried symbols all over the paper.
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Figure 1: Division on natural numbers

(1) − x 0 → x
(2) − 0 x → 0
(3) − (sx) (sy) → − x y

(4) / 0 x → 0
(5) / (sx) y → s (/ (− x y) y)

Hughes et al [28], Xi [41, 42], Giménez et al [26, 5] and Abel [2] devised
termination criteria able to treat such examples by exploiting the way inductive
types are usually interpreted [31]. Take for instance the addition4 on Brouwer's
ordinals ord (Figure 2) whose constructors are 0 : ord, s : ord ⇒ ord and
lim : (nat⇒ ord)⇒ ord.

Figure 2: Addition on Brouwer's ordinals

(1) + 0 x → x
(2) + (sx) y → s (+ x y)
(3) + (lim f) y → lim ([x : nat](+ (f x) y))

The usual computability-based technique for proving the termination of this
function is to interpret ord by the �xpoint of the following monotone function
ϕ on the powerset of SN , the set of strongly normalizing terms, ordered by
inclusion:5

ϕ(X) = {t ∈ SN | t→∗ su⇒ u ∈ X; t→∗ limf ⇒ ∀u ∈ SN , fu ∈ X}

The �xpoint of ϕ, [[ord]], can be reached by trans�nite iteration and every
t ∈ [[ord]] is obtained after a smallest ordinal o(t) of iterations, the order of t.
This naturally de�nes an ordering: t > u i� o(t) > o(u), with which we clearly
have lim f > fu for all u ∈ SN .

Now, applying this technique to nat, we can easily check that o(−tu) ≤ o(t)
and thus allow the recursive call with −xy in the de�nition of /. First note that
−tu is computable (i.e. belongs to [[nat]]) i� all its reducts are computable (see
Section 5). We proceed by induction on o(t):
� If −tu matches rule (1) then o(−tu) = o(t).
� If −tu matches rule (2) then o(−tu) = 0 ≤ o(t).
� If −tu matches rule (3) then t = st′ and u = su′. By induction hypothesis,
o(−t′u′) ≤ o(t′). Thus, o(−tu) = 1 + o(−t′u′) ≤ 1 + o(t′) = o(t).

� If −tu matches no rule then o(−tu) = 0 ≤ o(t).
4[x : T ]u denotes the function which associates u to every x of type T .
5→∗ is the re�exive and transitive closure of the reduction relation →.
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The idea of the previously cited authors is to add this size/index/stage in-
formation to the syntax in order to prove this automatically. Instead of a single
type nat, they consider a family of types {nata}a∈ω, each type nata being in-
terpreted by the set obtained after a iterations of the function ϕ for nat. And
they de�ne a decidable type system in which minus (de�ned by �xpoint/cases
constructions in their work) can be typed by natα ⇒ natβ ⇒ natα, where α
and β are size variables, meaning that the order of −tu is not greater than the
order of t.

This can also be interpreted as a way to automatically prove theorems on
the size of the result of a function w.r.t. the size of its arguments [39, 25] with
application to complexity and resource bound certi�cation, and compilation
optimization (e.g. bound check elimination [34], vector-based memoisation [16]).

In this paper, we extend this technique to the full Calculus of Algebraic Con-
structions [11] whose type conversion rule depends on the user-de�ned rewrite
rules, and to general rewrite-based de�nitions (including matching on de�ned
symbols and rewriting modulo equational theories [9]) instead of de�nitions
only based on letrec/match (or fixpoint/cases) constructions. Note that our
work makes a heavy use of (and simplify) the techniques developed by Chen for
studying the Calculus of Constructions with subtyping [15].

On the one hand, we allow a richer size algebra than the one in [28, 5, 2] (see
Section 6). On the other hand, we do not allow existential size variables and
conditional rewriting6 that are essential for capturing, for instance, the size-
preserving property of quicksort (Example 5) and Mac Carty's �91� function
(Example 8) respectively, as it can be done in Xi's work [42]. Note however
that Xi is interested in the call-by-value normalization of closed simply-typed
λ-terms, while we are interested in the strong normalization of the open terms
of the Calculus of Constructions.

2 The Calculus of Algebraic Constructions with

Size Annotations

The Calculus of Constructions (CC) is the full Pure Type System with the set
of sorts S = {?,2} and the axiom ? : 2 [4]. ? is intended to be the universe
of types and propositions, while 2 is intended to be the universe of predicate
types. Let X be the set of variables.

The Calculus of Algebraic Constructions (CAC) [11] is an extension of CC
with a set F of function or predicate symbols de�ned by a setR of (higher-order)
rewrite rules [20, 30]. Every variable x (resp. symbol f) is equipped with a sort
sx (resp. sf ). We denote by DF the set of de�ned symbols, that is, the set of

symbols f such that there is a rule l → r ∈ R with l = f~l, and by CF the set
F \ DF of constant symbols. We add a superscript s to restrict these sets to
variables or symbols of sort s.

6The equivalent of if-then-else constructions in functional programming.
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Now, we assume given a (sorted) �rst-order term algebra A = T (H,Z),
called the algebra of size expressions, built from a non-empty set H of size
symbols of �xed arity and a set Z of size variables. We assume that H ∩ F =
Z ∩ X = ∅. Let V(t) be the set of size variables occurring in a term t. A
renaming is an injection from a �nite subset of Z to Z.

We assume that, for every rule l→ r ∈ R, V(l) = V(r) = ∅. Hence, if t→ t′

then, for all size substitution ϕ, tϕ→ t′ϕ.
We also assume that A is equipped with a quasi-ordering ≤A stable by size

substitution (i.e. if a ≤A b then, for all size substitution ϕ, aϕ ≤A bϕ) such
that (A,≤A) has a well-founded model (A,≤A):

De�nition 1 (Size model) A pre-model of A is given by a set A, an ordering
≤A on A and a function hA from An to A for every n-ary size symbol h ∈ H.
A size valuation is a function ν from Z to A, naturally extended to a function
on A. A pre-model is a model if, for all size valuation ν, aν ≤A bν whenever
a ≤A b. Such a model is well-founded if >A is well-founded.

The Calculus of Algebraic Constructions with Size Annotations (CACSA) is
an extension of CAC where constant predicate symbols are annotated by size
expressions. The terms of CACSA are de�ned by the following grammar rule:

t ::= s | x | Ca | f | [x : t]t | (x : t)t | tt

where C ∈ CF2, f ∈ F \ CF2 and a ∈ A. We denote by TA(F ,X ) the set
of terms built from F , X and A. Let T be the set of the underlying CAC
terms and be the function erasing size annotations. Among CAC terms, we
distinguish the following disjoint sets:

� kinds: K ∈ K ::= ? | (x : t)K
� predicates: P ∈ P ::= f ∈ F2 | x ∈ X2 | (x : t)P | [x : t]P | Pt
� objects: o ∈ O ::= f ∈ F? | x ∈ X ? | [x : t]o | ot
where t ∈ T is any CAC term.

Finally, we assume that every symbol f is equipped with a type τf =
(~x : ~T )U ∈ T such that FV(τf ) = ∅, sf = 2 ⇒ V(τf ) = ∅, and f~l → r ∈
R ⇒ |~l| ≤ |~t|.

We also assume that every symbol f is equipped with a set Mon+(f) ⊆ Af =
{1, . . . , |~x|} of monotone arguments and a set Mon−(f) ⊆ Af of anti-monotone
arguments such that Mon+(f) ∩Mon−(f) = ∅. For a size symbol h, Mon+(h)
(resp. Mon−(h)) is taken to be the arguments in which hA is monotone (resp.
anti-monotone).

An environment Γ is a sequence of pairs variable-term. Let t ↓ u i� there is
v such that t→∗ v ∗← u. The typing rules of CACSA are given in Figure 4 and
its subtyping rules in Figure 3. W.l.o.g. we can assume that, for all f , ` τf : sf .
We also assume that, for every rule l → r ∈ R, there exist an environment Γ
and a type T such that Γ ` r : T . This is to make sure that r is not ill-formed
(see Lemma 12 in [11]).
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Since, in the (symb) rule, symbol types are applied to arbitrary size sub-
stitutions ϕ, the name of size variables in symbol types is not relevant (size
variables in symbol types are implicitly universally quanti�ed).

A substitution θ preserves typing between Γ and ∆, written θ : Γ ; ∆, i�
∆ ` xθ : xΓθ for all x ∈ dom(Γ). A type-preserving substitution satis�es the
following important substitution property: if Γ ` t : T and θ : Γ ; ∆ then
∆ ` tθ : Tθ.

Figure 3: Subtyping rules

(re�) T ≤ T

(size) Ca~t ≤ Cb~t (C ∈ CF2, a ≤A b)

(prod)
U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′

(conv)
T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)

(trans)
T ≤ U U ≤ V

T ≤ V

In this paper, we make two important assumptions.

Assumptions:

(1) β ∪ R is con�uent. This is the case for instance if R is con�uent and left-
linear. Finding other su�cient conditions when there are type-level rewrite
rules is an open problem.

(2) R preserves typing: if l → r ∈ R and Γ ` lσ : T then Γ ` rσ : T .
Finding su�cient conditions with subtyping and dependent types does not
seem easy as shown by the following example. We leave the study of this
problem for future work.

Example 1 (Subject reduction) Assume that s ∈ H, nat : ?, s : natα ⇒
natsα, − : natα ⇒ natβ ⇒ natα, and let us prove that the rule −(sx)(sy) →
−xy preserves typing. Assume that Γ ` −(st)(su) : T . We must prove that
Γ ` −tu : T . By inversion, Γ ` −(st) : (z2 : T2)U2, Γ ` su : T2 and U2{z2 7→
su} ≤ T . By inversion again, Γ ` − : (z1 : T1)U1, Γ ` st : T1 and U1{z1 7→ st} ≤
(z2 : T2)U2. Again, nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, Γ ` s : (z3 : T3)U3,
Γ ` t : T3, U3{z3 7→ t} ≤ T1, nat

c ⇒ natsc ≤ (z3 : T3)U3, Γ ` s : (z4 : T4)U4,
Γ ` u : T4, U4{z4 7→ u} ≤ T2 and natd ⇒ natsd ≤ (z4 : T4)U4. By Lemma
4, we have T3 ≤ natc, natsc ≤ U3, T4 ≤ natd, natsd ≤ U4, T1 ≤ nata and
natb ⇒ nata ≤ U1. Again, since U1{z1 7→ st} ≤ (z2 : T2)U2, T2 ≤ natb

and nata ≤ U2. Therefore, since Γ ` t : T3 ≤ natc, Γ ` u : T4 ≤ natd and
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Figure 4: Typing rules

(ax) ` ? : 2

(size)
` τC : 2

` Ca : τC
(C ∈ CF2)

(symb)
` τf : sf
` f : τfϕ

(f /∈ CF2)

(var)
Γ ` T : sx

Γ, x : T ` x : T
(x /∈ dom(Γ))

(weak)
Γ ` t : T Γ ` U : sx

Γ, x : U ` t : T
(x /∈ dom(Γ))

(prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U ]v : (x : U)V

(app)
Γ ` t : (x : U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(sub)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T ≤ T ′)

Γ ` − : natc ⇒ natd ⇒ natc, we have Γ ` −tu : natc. Now, we must prove that
natc ≤ T . First, natc ≤ natsc ≤ U3. Since U3{z3 7→ t} ≤ T1, nat

c ≤ T1. Since
nata ⇒ natb ⇒ nata ≤ (z1 : T1)U1, T1 ≤ nata and natb ⇒ nata ≤ U1. Since
U1{z1 7→ st} ≤ (z2 : T2)U2, nat

b ⇒ nata ≤ (z2 : T2)U2. Therefore, nat
a ≤ U2.

Now, since U2{z2 7→ su} ≤ T , we indeed have natc ≤ T .

3 Properties of subtyping

Lemma 2 If U ≤ V then, for all size substitution ψ, Uψ ≤ V ψ.

Proof. Easy induction. �

We now prove that the subtyping rule (trans) can be eliminated.

Theorem 3 (Transitivity elimination) Let≤t be the subtyping relation ob-
tained without using (trans). Then, ≤t=≤.
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Proof. Section 9. �

This means that, in a subtyping derivation, we can always assume that there
is no application of (trans) and that, in a typing derivation, there is no successive
applications of (sub).

Lemma 4 (Product compatibility) If (x : U)V ≤ (x : U ′)V ′ then U ′ ≤ U
and V ≤ V ′.

Proof. By case on the last rule of (x : U)V ≤ (x : U ′)V ′. By con�uence, we
can assume that there is no successive applications of (conv). This is immediate
for (re�) and (prod). (symb) is not possible. For (conv), we have:

(x : U)V ↓ T ≤ T ′ ↓ (x : U ′)V ′

(x : U)V ≤ (x : U ′)V ′

Then, we reason by case on the last rule of T ≤ T ′.
(re�) In this case, T = T ′. Therefore, by con�uence, (x : U)V ↓ (x : U ′)V ′,
U ↓ U ′ and V ↓ V ′. Thus, U ′ ≤ U and V ≤ V ′.

(symb) Not possible since T = Ca~t has no common reduct with (x : U)V
(since C is constant).

(conv) Excluded.

(prod) In this case, T = (x : U1)V1, T
′ = (x : U2)V2, U2 ≤ U1 and V1 ≤ V2.

By con�uence U ↓ U1, V ↓ V1, U2 ↓ U ′ and V2 ↓ V ′. Therefore, by conversion,
U ′ ≤ U and V ≤ V ′. �

We now prove that the subtyping relation can be further simpli�ed. Consider
the following two admissible rules:

(red)
T →∗ T ′ T ′ ≤ U ′ U ′ ∗← U

T ≤ U

(exp)
T ∗← T ′ T ′ ≤ U ′ U ′ →∗ U

T ≤ U

(conv) can clearly be replaced by both (red) and (exp).

Theorem 5 (Expansion elimination) Let ≤r be the subtyping relation with
(red) instead of (conv). Then, ≤r=≤.

Proof. Section 10. �

Now, let ≤s be the subtyping relation with (re�), (symb) and (prod) only.

Lemma 6 T ≤ U i� there exist T ′ and U ′ such that T →∗ T ′ ≤s U ′ ∗← U .
Furthermore, if T,U ∈ WN then T↓≤s U↓.
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Proof. The if-part is immediate. The only-if-part is easily proved by induc-
tion on T ≤ U . In the (red) case, if T →∗ T ′ ≤ U ′ ∗← U then, by induction
hypothesis, there exist T ′′ and U ′′ such that T ′ →∗ T ′′ ≤s U ′′ ∗← U ′. Therefore,
T →∗ T ′′ ≤s U ′′ ∗← U .

Now, if T,U ∈ WN then T↓≤ U↓. Thus, T↓≤s U↓ since T↓ and U↓ are not
reducible. �

Lemma 7 � For all s ∈ S, if T ≤ s or s ≤ T then T →∗ s.
� For all K ∈ K, if T ≤ K or K ≤ T then T →∗ T ′ ∈ K.

Proof.

� If s ≤ T then s ≤s T ′ ∗← T . The only possible case is T ′ = s. If T ≤ s then
T →∗ T ′ ≤s s. The only possible case is T ′ = s.

� If T ≤ K then T →∗ T ′ ≤s K ′ ∗← K and K ′ ∈ K. Now, one can easily prove
by induction that, if T ′ ≤s K ′, then T ′ ∈ K. If K ≤ T then K →∗ K ′ ≤s
T ′ ∗← T and K ′ ∈ K. One can easily prove by induction that, if K ′ ≤s T ′,
then T ′ ∈ K. �

Theorem 8 (Decidability of subtyping) ≤ is decidable whenever→ is con-
�uent, weakly normalizing and �nitely branching (or con�uent and strongly
normalizing).

Proof. Immediate consequence of Lemma 6.

4 Properties of typing

Lemma 9 If Γ ` t : T then, for all size substitution ψ, Γψ ` tψ : Tψ.

Proof. Easy induction. �

Lemma 10 (Type correctness) If Γ ` t : T then either T = 2 or Γ ` T : s
for some sort s.

Proof. Easy induction. �

Lemma 11 � If T →∗ 2 then T is not typable.

� If Γ ` t : 2 then t ∈ K.
� If K ∈ K and Γ ` K : L then L = 2.

� If T →∗ K ∈ K and Γ ` T : s then T ∈ K and s = 2.

Proof. These properties are proved for CAC in [11] (Lemma 11). Their
proofs need only a few corrections based on Lemma 7 to be valid for CACSA
too. �

Lemma 12 (Narrowing) If Γ, y : A,Γ′ ` t : T , B ≤ A, Γ ` B : sy then
Γ, y : B,Γ′ ` t : T .
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Proof. By induction on Γ, y : A,Γ′ ` t : T . We only detail some cases.

(var) There are two cases. Assume that we have Γ ` A : sy and Γ, y : A ` y : A.
Since Γ ` B : sy, by (var), Γ, y : B ` y : B. Since B ≤ A and Γ ` A : sy, by
(sub), Γ, y : B ` y : A.
Assume now that we have Γ, y : A,Γ′ ` T : sx and Γ, y : A,Γ′, x : T ` x : T .
By induction hypothesis, Γ, y : B,Γ′ ` T : sx. Thus, by (var), Γ, y : B,Γ′, x :
T ` x : T .

(weak) There are two cases. Assume that we have Γ ` t : T , Γ ` A : sy and
Γ, y : A ` t : T . Since Γ ` B : sy, by (weak), Γ, y : B ` t : T .
Assume now that we have Γ, y : A,Γ′ ` t : T , Γ, y : A,Γ′ ` U : sx and
Γ, y : A,Γ′, x : U ` t : T . By induction hypothesis, Γ, y : B,Γ′ ` t : T and
Γ, y : B,Γ′ ` U : sx. Thus, by (weak), Γ, y : B,Γ′, x : U ` t : T . �

Theorem 13 (β-Subject reduction) If Γ ` t : T and t→β t
′ then Γ ` t′ : T .

Proof. By induction on Γ ` t : T , we also prove that, if Γ →β Γ′, then
Γ′ ` t : T . We only detail the case of a β-head reduction. Assume that we
have Γ ` [x : U ′]v : (x : U)V and Γ ` u : U . We must prove that Γ ` v{x 7→
u} : V {x 7→ u}. By inversion, Γ, x : U ′ ` v : V ′, Γ ` (x : U ′)V ′ : s′, (x :
U ′)V ′ ≤ (x : U)V and Γ ` (x : U)V : s. By product compatibility, U ≤ U ′ and
V ′ ≤ V . By inversion, Γ ` U : s1 and Γ ` V ′ : s2. By narrowing and subtyping,
Γ, x : U ` v : V . Therefore, by substitution, Γ ` v{x 7→ u} : V {x 7→ u}. �

Lemma 14 If Γ ` t : T , T ≤ T ′ and Γ ` T ′ : s′ then Γ ` T : s for some s.

Proof. By type correctness, either T = 2 or Γ ` T : s for some s. If T = 2

then, by Lemma 7, T ′ →∗ 2 and, by Lemma 11, T ′ cannot be typable. �

Lemma 15 (Unicity of sorting) If T ≤ T ′, Γ ` T : s and Γ ` T ′ : s′ then
s = s′.

Proof. If s = 2 then T ∈ K. By Lemma 7, T ′ →∗ K ∈ K. By Lemma 11,
T ′ ∈ K and s′ = 2. By symmetry, if s′ = 2 then s = 2. So, s = 2 i� s′ = 2.
Since s, s′ ∈ S = {?,2}, s = ? i� s′ = ?. Therefore, s = s′. �

5 Strong normalization

Let SN (resp. WN ) be the set of strongly (resp. weakly) normalizable terms,
and t↓ be the normal form of a term t ∈ WN (→ is assumed con�uent).

De�nition 16 (Reducibility candidates) We assume given a set CT of con-
structor terms.7 A term t is neutral if it is not an abstraction, not a constructor
term, nor of the form f~t with f ∈ DF and |~t| < |~l| for some rule f~l → r ∈ R.
We inductively de�ne the set Rt of the interpretations for the terms of type t,

7CT is de�ned in De�nition 26.
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the ordering ≤t on Rt, the element >t ∈ Rt, and the functions
∧
t and

∨
t from

the powerset of Rt to Rt as follows. If t /∈ K ∪ {2} then:
� Rt = {∅}, ≤t=⊆ and

∧
t(<) =

∨
t(<) = >t = ∅.

Otherwise:

� Rs is the set of all the subsets R of T such that:

(R1) R ⊆ SN (strong normalization).

(R2) If t ∈ R then →(t) ⊆ R (stability by reduction).

(R3) If t is neutral and →(t) ⊆ R then t ∈ R (neutral terms).

Furthermore, ≤s=⊆, >s = SN ,
∨
s(<) =

⋃
<,

∧
s(<) =

⋂
< if < 6= ∅, and∧

s(∅) = >s.
� R(x:U)K is the set of functions R from T × RU to RK such that R(u, S) =
R(u′, S) whenever u→ u′ or u = u′, >(x:U)K(u, S) = >K ,

∧
(x:U)K(<)(u, S) =∧

K({R(u, S) | R ∈ <}),
∨

(x:U)K(<)(u, S) =
∨
K({R(u, S) | R ∈ <}) and

R ≤(x:U)K R′ i� R(u, S) ≤K R′(u, S).

Let (~t, ~S) ≤i (~t′, ~S′) i� ~t = ~t′, Si ≤ S′i and, for all j 6= i, Sj = S′j . A function R ∈
R(~x:~T )? is monotone (resp. anti-monotone) in its ith argument if R( ~Q) ≤ R( ~Q′)

whenever ~Q ≤i ~Q′ (resp. ~Q ≥i ~Q′). Let Rmτf
be the set of functions R ∈ Rτf

such that R is monotone in all its arguments i ∈ Mon+(f), and anti-monotone
in all its arguments i ∈ Mon−(f).

Lemma 17 (Rt,≤t) and (Rmt ,≤t) are complete lattices with >t as their great-
est element and

∧
t(<) as the greatest lower bound of <. Moreover:

� If < is totally ordered then
∨
t(<) is the lowest upper bound of <.

� For all R ∈ Rs, X ⊆ R.
� If Γ ` t : T and θ : Γ ; ∆ then RTθ = RT .
� If Γ ` t : T then RTϕ = RT .
� The smallest element ⊥s =

∧
s(Rs) only contains neutral terms.

Proof. The proof is similar to the one for CAC [11]. �

Lemma 18 If Γ ` T ≤ T ′ : s then RT = RT ′ .

Proof. If s = ? then RT = {∅} = RT ′ . Assume now that s = 2. We
proceed by induction on T ≤ T ′.
(re�) Immediate.

(symb) Not possible.

(prod) R(x:U)V is the set of functions from T ×RU toRV that are invariant by
reduction and size substitution. R(x:U ′)V ′ is the set of functions from T ×RU ′

to RV ′ that are invariant by reduction and size substitution. By induction
hypothesis, RU = RU ′ and RV = RV ′ . Therefore, R(x:U)V = R(x:U ′)V ′ .

(conv) By induction hypothesis, RT ′ = RU ′ . SinceRT = RT ′ andRU = RU ′ ,
we have RT = RU . �
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De�nition 19 (Interpretation schema) A candidate assignment is a func-
tion ξ from X to

⋃
{Rt | t ∈ T }. A candidate assignment ξ validates an

environment Γ or is a Γ-assignment, ξ |= Γ, if, for all x ∈ dom(Γ), xξ ∈ RxΓ.
An interpretation for a symbol C ∈ CF2 is a monotone function I from A

to Rmτf
. An interpretation for a symbol f /∈ CF2 is an element of Rmτf

. An
interpretation for a set G of predicate symbols is a function which, to every
symbol g ∈ G, associates an interpretation for g.

The interpretation of t w.r.t. a candidate assignment ξ, an interpretation I
for F , a substitution θ and a valuation ν, [[t]]I,νξ,θ , is de�ned by induction on t:

� [[t]]I,νξ,θ = >t if t ∈ O ∪ S
� [[F ]]I,νξ,θ = IF if F ∈ DF2

� [[Ca]]I,νξ,θ = IaνC if C ∈ CF2

� [[x]]I,νξ,θ = xξ

� [[(x : U)V ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[U ]]I,νξ,θ ,∀S ∈ RU , tu ∈ [[V ]]I,ν
ξS

x ,θ
u
x
}

� [[[x : U ]v]]I,νξ,θ (u, S) = [[v]]I,ν
ξS

x ,θ
u
x

� [[tu]]I,νξ,θ = [[t]]I,νξ,θ (uθ, [[u]]I,νξ,θ )

where θux = θ ∪ {x 7→ u} and ξSx = ξ ∪ {x 7→ S}.
Let I be an interpretation for F . A symbol f is computable if, for all ν,

f ∈ [[τf ]]I,ν . A substitution θ is adapted to a Γ-assignment ξ and a valuation

ν, ξ, θ |=ν Γ, if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]I,νξ,θ .
The interpretation is invariant by reduction if, for all ν, ξ, θ and t, t′ ∈ WN ,
[[t]]I,νξ,θ = [[t′]]I,νξ,θ whenever t→ t′.

Lemma 20 � If Γ ` t : T and ξ |= Γ then [[t]]I,νξ,θ ∈ RT .
� If θ → θ′ or θ = θ′ then [[t]]I,νξ,θ = [[t]]I,νξ,θ′ .

Proof. The proof is similar to the one for CAC [11]. �

Lemma 21 (Candidate substitution) If Γ ` t : T , γ : Γ ; ∆ and ξ |= ∆
then [[tγ]]I,νξ,σ = [[t]]I,νη,γσ with xη = [[xγ]]I,νξ,σ and η |= Γ.

Proof. The proof is similar to the one for CAC [11]. �

Lemma 22 (Size substitution) If Γ ` t : T then [[tϕ]]I,νξ,θ = [[t]]I,ϕνξ,θ where
α(ϕν) = (αϕ)ν.

Proof. By induction on t.

� If t is an object, a sort or a symbol f ∈ F? then tϕ is of the same kind and
[[tϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ = >t.

� [[Caϕ]]I,νξ,θ = IaϕνC = [[Ca]]I,ϕνξ,θ .

� [[xϕ]]I,νξ,θ = [[x]]I,νξ,θ = xξ.
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� [[(x : Uϕ)V ϕ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[Uϕ]]I,νξ,θ ,∀S ∈ RUϕ, tu ∈ [[V ϕ]]I,ν
ξS

x ,θ
u
x
}. By

induction hypothesis, [[Uϕ]]I,νξ,θ = [[U ]]I,ϕνξ,θ and [[V ϕ]]I,ν
ξS

x ,θ
u
x

= [[V ]]I,ϕν
ξS

x ,θ
u
x
. And

since RUϕ = RU , [[(x : Uϕ)V ϕ]]I,νξ,θ = [[(x : U)V ]]I,νξ,θ .
� If Γ ` [x : U ]v : T then, by inversion, Γ ` [x : U ]v : (x : U)V for some V ,
and Γϕ ` [x : Uϕ]vϕ : (x : Uϕ)V ϕ. Since RUϕ = RU and RV ϕ = RV , [[[x :
Uϕ]vϕ]]I,νξ,θ has the same domain and codomain as [[[x : U ]v]]I,νξ,θ . Furthermore,

[[[x : Uϕ]vϕ]]I,νξ,θ (u, S) = [[vϕ]]I,ν
ξS

x ,θ
u
x

= [[v]]I,ν
ξS

x ,θ
u
x
by induction hypothesis.

� [[tϕuϕ]]I,νξ,θ = [[tϕ]]I,νξ,θ (uϕθ, [[uϕ]]I,νξ,θ ) = [[t]]I,ϕνξ,θ (uθ, [[u]]I,ϕνξ,θ ) by induction hypoth-
esis and invariance by size change. �

We now de�ne the sets of positive and negative positions in a term, which
will enforce monotony and anti-monotony properties respectively.

De�nition 23 (Positive and negative positions) The set of positions in a
term t is inductively de�ned as follows:8

� Pos(s) = Pos(x) = Pos(f) = {ε}
� Pos((x : u)v) = Pos([x : u]v) = Pos(uv) = 1.Pos(u) ∪ 2.Pos(v)
� Pos(Ca) = {ε} ∪ 0.Pos(a)

Let Pos(x, t) be the set of positions of the free occurrences of x in t, and
Pos(f, t) be the set of positions of the occurrences of f in t. The set of posi-
tive positions in t, Pos+(t), and the set of negative positions in t, Pos−(t), are
simultaneously de�ned by induction on t:

� Posδ(s) = Posδ(x) = {ε | δ = +}
� Posδ((x : U)V ) = 1.Pos−δ(U) ∪ 2.Posδ(V )
� Posδ([x : U ]v) = 2.Posδ(v)
� Posδ(tu) = 1.Posδ(t) if t 6= f~t

� Posδ(f~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)}

� Posδ(Ca~t) = Posδ(C~t) ∪ {1|~t|0 | δ = +}.Posδ(a).

where δ ∈ {−,+}, −+ = − and −− = + (usual rule of signs).

Lemma 24 (Monotony) Let ≤+=≤; ≤−=≥; ξ ≤x ξ′ i� xξ ≤ xξ′ and, for all
y 6= x, yξ = yξ′; I ≤f I ′ i� If ≤ I ′f and, for all g 6= f , Ig = I ′g; ν ≤α ν′ i�
αν ≤A αν′ and, for all β 6= α, βν = βν′. Assume that Γ ` t : T and ξ, ξ′ |= Γ.

� If ξ ≤x ξ′ and Pos(x, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I,νξ′,θ.

� If I ≤f I ′ and Pos(f, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I
′,ν
ξ,θ .

� If ν ≤α ν′ and Pos(α, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I,ν
′

ξ,θ .

� If Γ ` T ≤ T ′ : s, T, T ′ ∈ WN and the interpretation is invariant by reduction
then [[T ]]I,νξ,θ ≤ [[T ′]]I,νξ,θ .

8It is de�ned so that Pos(t) ⊆ Pos(t).
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Proof.

� The �rst two properties are proved for CAC in [11] and their proofs are still
valid.

� We now prove the third property. It uses the same techniques. So, we only

detail the case t = Ca~t. Let R = [[t]]I,νξ,θ and R′ = [[t]]I,ν
′

ξ,θ . R = IaνC (~tθ, ~S)

with ~S = [[~t]]I,νξ,θ , and R′ = Iaν
′

C (~tθ, ~S′) with ~S = [[~t]]I,ν
′

ξ,θ . Let n = |~t| and
i ∈ {1, . . . , n}. If Pos(α, ti) = ∅ then Si = S′i. Otherwise, since Pos(α, t) ⊆
Posδ(t), there is εi such that i ∈ Monεi(f) and Pos(α, ti) ⊆ Posεiδ(ti).
Thus, by induction hypothesis, Si ≤εiδ S′i. Let Qkj = (~tθ, S′j) if j ≤ k,

and Qkj = (~tθ, Sj) if j > k. We have ~Q0 = (~tθ, ~S), ~Qn = (~tθ, ~S′) and, for

all k ∈ {1, . . . , n}, ~Qk−1 ≤εkδ
k

~Qk. Thus, IaνC ( ~Qk−1) ≤ε2kδ IaνC ( ~Qk), that is,
IaνC ( ~Qk−1) ≤δ IaνC ( ~Qk) since ε2

k = + and symbol interpretations are mono-
tone in their monotone arguments and anti-monotone in their anti-monotone
arguments. So, R = IaνC ( ~Q0) ≤δ IaνC ( ~Qn). Now, if Pos(α,Ca) = ∅ then

aν = aν′ and R ≤δ R′ = IaνC ( ~Qn). Otherwise, δ = + and aν ≤A aν′

since Pos(α, a) ⊆ Pos+(a). Thus, R ≤ R′ since symbol interpretations are
monotone functions on A.

� We now prove the last property by induction on T ≤ T ′. Let R = [[T ]]I,νξ,θ and

R′ = [[T ′]]I,νξ,θ ,
(re�) Immediate.

(symb) Let ~Q = (~tθ, [[~t]]I,νξ,θ ). We have R = IaνC ( ~Q) ≤ R′ = IbνC ( ~Q) since
aν ≤A bν and symbol interpretations are monotone on A.

(prod) Let t ∈ R, u ∈ [[U ′]]I,νξ,θ and S ∈ RU ′ . We must prove that tu ∈
[[V ′]]I,ν

ξS
x ,θ

u
x
. By induction hypothesis, [[U ′]]I,νξ,θ ≤ [[U ]]I,νξ,θ . So, u ∈ [[U ]]I,νξ,θ .

Since RU ′ = RU and t ∈ R, tu ∈ [[V ]]I,ν
ξS

x ,θ
u
x
. Now, by induction hypothesis,

[[V ]]I,ν
ξS

x ,θ
u
x
≤ [[V ′]]I,ν

ξS
x ,θ

u
x
. Therefore, tu ∈ [[V ′]]I,ν

ξS
x ,θ

u
x
.

(conv) By induction hypothesis, [[T ′]]I,νξ,θ ≤ [[U ′]]I,νξ,θ . Since T,U ∈ WN and

the interpretation is invariant by reduction, [[T ′]]I,νξ,θ = R and [[U ′]]I,νξ,θ = R′.
Therefore, R ≤ R′. �

Theorem 25 (Strong normalization) If there is an interpretation I invari-
ant by reduction and such that every symbol is computable then every well-typed
term is strongly normalizable.

Proof. One �rst prove by induction that, if Γ ` t : T then, for all ξ, ν and
θ such that ξ |= Γ and ξ, θ |=ν Γ, then tθ ∈ [[T ]]νξ,θ. Then, one prove that, if
xθ = x and xξ = >xΓ, then ξ |= Γ and ξ, θ |=ν Γ. See [11] for details. �

6 Constructor-based systems

We now study the case of CACSA's whose size algebra contains the following
expressions (at least):
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a ::= α | sa | ∞ | . . .

In case that there is no other symbol, the ordering ≤A on size expressions
is de�ned as the smallest quasi-ordering ≤ such that, for all a, a < sa and
a ≤ ∞. We interpret size expressions in the set A = Ω + 1, where Ω is the �rst
uncountable ordinal, by taking:

� sA(a) = a + 1 if a < Ω, and Ω otherwise.

� ∞A = Ω.
One can easily imagine other size expressions like a+ b, max(a, b), . . .

De�nition 26 (Constructor-based system) We assume given a precedence
≤F on F , that is, a quasi-ordering whose strict part >F is well-founded, and
that every C ∈ CF2 with C : (~z : ~V )? is equipped with a set Cons(C) of

constructors, that is, a set of constant symbols f : (~y : ~U)Ca~v equipped with a
set Acc(f) ⊆ {1, . . . , |~y|} of accessible arguments such that:

• If there are D =F C and j ∈ Acc(c) such that Pos(D,Uj) 6= ∅ then V(τf ) =
{α} and a = sα.

• For all j ∈ Acc(c):
� For all D >F C, Pos(D,Uj) = ∅.
� For all D 'F C and p ∈ Pos(D,Uj), p ∈ Pos+(Uj) and Uj |p = Dα.

� For all p ∈ Pos(α,Uj), p = q0, Uj |q = Dα and D 'F C.
� For all x ∈ FV2(Uj), there is ιx with vιx = x and Pos(x, Uj) ⊆ Pos+(Uj).
• For all F ∈ DF2 and F~l→ r ∈ R:
� For all G >F F , Pos(G, r) = ∅.
� For all i ∈ Monδ(F ), li ∈ X2 and Pos(li, r) ⊆ Posδ(r).
� For all x ∈ FV2(r), there is κx with lkx

= x.

A C-constructor term is a term of the form f~u with f ∈ Cons, f : (~y : ~U)Ca~v,
|~u| = |~y| and Acc(f) 6= ∅. Let CT (C) be the set of C-constructor terms.

The conditions involving ιx and κx means that we restrict our attention to
small inductive types. Strong elimination, that is, predicate-level recursion on
big inductive types may lead to non-termination [18]. Yet, weak elimination,
that is, object-level recursion on big inductive types is admissible. As shown
in [8], it is possible to raise this restriction at the price of not being allowed to
match de�ned symbols.

Among constant predicate symbols, we distinguish the class of primitive
types that includes all �rst-order data type like natural numbers, lists of natural
numbers, . . . Primitive types are not polymophic but they can have primitive
dependancies like the type of arrays of natural numbers.

De�nition 27 (Primitive types) A symbol C ∈ CF2 is primitive if τC =
(~z : ~V )?, {~z} ⊆ X ? and, for all D 'F C, for all constructor f : (~y : ~U)Dsα~v
and for all j ∈ Acc(f), either Uj = E∞~t with E <F C and E primitive, or
Uj = Eα~t with E 'F C. The size of a term t in a primitive type C is de�ned
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as follows. If t is a constructor term f~u with f : (~y : ~U)Csα~v and, for all j ∈
Acc(f) such that Pos(α,Uj) 6= ∅, Uj = Cαj ~v

j , then |t|C = 1 +max{|uj |Cj | j ∈
Acc(f),Pos(α,Uj) 6= ∅}. Otherwise, |t|C = 0.

We de�ne the interpretation of predicate symbols by induction on >F .

De�nition 28 (Interpretation of de�ned predicate symbols) Assume

that F : (~x : ~T )U . We take IF (~t, ~S) = [[r]]Iξ,σ if ~t ∈ WN , ~t↓= ~lσ, F~l → r ∈ R
and xξ = Sκx . Otherwise, we take IF (~t, ~S) = >U .

Thanks to Lemma 24, one can easily check that I is monotone in its mono-
tone arguments. The well-foundedness of the de�nition is a consequence of the
correctness of the termination criterion.

We now de�ne the interpretation of a constant predicate symbols by trans-
�nite induction on a ∈ A.

De�nition 29 (Interpretation of constant predicate symbols)

� I0
C(~S)9 is the set of u ∈ SN such that u never reduces to a C-constructor
term.

� Ia+1
C (~S) is the set of terms u ∈ SN such that, if u reduces to a constructor

term f~u with f : (~y : ~U)Csα~v then, for all j ∈ Acc(f), uj ∈ [[Uj ]]
I,ν
ξ,θ with

yξ = Sιy , ~yθ = ~u and αν = a.

� Ib
C =

∧
τC

({Ia
C | a < b}) if b is a limit ordinal.

Let Ka
C(~S) = Ia

C(~S) ∩ CT (C) and, for t ∈ IΩ
C (~S), let oC(~S)(t) be the smallest

ordinal a such that t ∈ Ia
C(~S).

The interpretation is well de�ned thanks to the assumptions made on Uj
when j is accessible.

Lemma 30 If f~u ∈ KΩ
C (~S) then oC(~S)(f~u) is a successor ordinal.

Proof. Assume that a = oC(~S)(f~u) is a limit ordinal. Then, Ia
C(~S) =⋃

{Ib
C(~S) | b < a} and tσ ∈ Ib

C(~S) for some b < a, which is not possible. Now,

a 6= 0 since K0
C(~S) = ∅. Therefore, a is a successor ordinal. �

Lemma 31 I is monotone.

Proof. We prove that a ≤ b⇒ Ia ≤ Ib by induction on a.

• a = 0.
� b = 0. Immediate.

9We do not write ~t since the interpretation does not depend on it.
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� b = b′ + 1. By induction hypothesis, I0 ≤ Ib′
. We now prove that Ib′ ≤

Ib′+1. Let t ∈ Ib′

C (~S). Then, t ∈ SN . Assume now that t reduces to a

constructor term f~u with f : (~y : ~U)Csα~v. By Lemma 30, t ∈ Ic+1
C (~S) for

some c < b′. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]νξ,θ with yξ = Sιy , ~yθ = ~u

and αν = c. After the conditions on Uj , by Lemma 24, [[Uj ]]νξ,θ ⊆ [[Uj ]]
µ
ξ,θ

where αµ = b′. Thus, t ∈ Ib′+1
C (~S).

� b is a limit ordinal. By induction hypothesis, I0 ≤ Ib′
for all b′ < b. Thus,

I0 ≤ Ib.

• a = a′ + 1.
� b = 0. Not possible.
� b = b′+ 1. Then, a′ ≤ b′. Let t ∈ Ia

C(~S). Then, t ∈ SN . Assume now that

t reduces to a constructor term f~u with f : (~y : ~U)Csα~v and let j ∈ Acc(f).
Then, uj ∈ [[Uj ]]νξ,θ with yξ = Sιy , ~yθ = ~u and αν = a′. After the conditions

on Uj , by Lemma 24, [[Uj ]]νξ,θ ⊆ [[Uj ]]
µ
ξ,θ where αµ = b′. Thus, t ∈ Ib

C(~S).
� b is a limit ordinal. Then, a′ < b′ for some b′ < b and we can conclude by
induction hypothesis.

• a is a limit ordinal.

� b = 0. Not possible.
� b = b′ + 1. Then, a ≤ b′ and we can conclude by induction hypothesis.

� b is a limit ordinal. Then, for all a′ < a, a′ < b, and we can conclude by
induction hypothesis. �

Lemma 32 (Primitive types) Let C be primitive type. If a ≥ ω then Ia
C =

>τC
. Otherwise, Ia

C(~S) = {t ∈ SN | |t↓|C ≤ a}, that is, oC(~s)(t) = |t↓|C .

Proof. We proceed by induction on C with >F as well-founded ordering.
Let Ja

C = {t ∈ SN | |t↓|C ≤ a}. Since primitive types are not polymorphic,

every Si = ∅. So, we can drop the arguments ~S. Note also that |t|C ≤ |t′|C
whenever t→ t′ (since Cons ⊆ CF).

We �rst prove that, for all a < ω, if oC(t) = a then |t↓|C = a.

� a = 0. If oC(t) = 0 then t ∈ I0
C ⊆ J0

C . Thus, |t↓|C = 0.

� a = a′ + 1. If oC(t) = a′ + 1 then t ∈ Ia′+1
C \ Ia′

C . Since t /∈ I0
C , t reduces to a

constructor term f~u with f : (~y : ~U)Csα~v. Let j ∈ Acc(f). Then, uj ∈ [[Uj ]]νξ,θ
with yξ = Sιy , ~yθ = ~u and αν = a′. Moreover, either Uj = Cαj ~v

j with

Cj 'F C, or Uj = C∞j ~v
j with Cj <F C. In the former case, uj ∈ Ia′

Cj
. Thus,

oCj
(uj) ≤ a′ and, by induction hypothesis, oCj

(uj) = |uj ↓ |Cj
. Therefore,

oC(t) = |t↓|.
Thus oC(t) = |t ↓ |C and, for all a < ω, Ia

C = Ja
C . We now prove that

Iω+1
C = IωC = SN . Let t ∈ Iω+1

C \ IωC . Since t /∈ I0
C , t reduces to a construc-

tor term f~u with f : (~y : ~U)Csα~v and, for all j ∈ Acc(f), uj ∈ [[Uj ]]νξ,θ with
yξ = Sιy , ~yθ = ~u and αν = ω. Thus, for all j ∈ Acc(f), there is aj < ω such
that uj ∈ [[Uj ]]

νj

ξ,θ with ανj = aj . a = max{aj | j ∈ Acc(f) is well de�ned since
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Acc(f) 6= ∅ and a < ω since Acc(f) is �nite. Thus, t ∈ Ia+1
C ⊆ IωC . �

We now give general conditions for every symbol to be computable, based on
the fundamental notion of computability closure. The computability closure of a
term t is a set of terms that can be proved computable whenever t is computable.
If, for every rule f~l→ r, r belongs to the computability closure of ~l, then rules
preserve computability, hence strong normalization.

In [11], the computability closure is inductively de�ned as a typing relation

c̀ similar to ` except for the (symb) case which is replaced by two new cases:
(symb<) for symbols strictly smaller than f , and (symb=) for symbols equivalent

to f whose arguments are structurally smaller than ~l.
Here, we propose to add a new case for symbols equivalent to f whose

arguments have sizes strictly smaller than those of ~l. For comparing the sizes,
one can use metrics like in [42].

De�nition 33 (Ordering on symbol arguments) For every symbol f : (~x :
~T )U , we assume given two well-founded domains, (DAf , >

A
f ) and (DA

f , >
A
f ), and

two measure/metric functions ζAf : An → DAf and ζA
f : An → DA

f (n = |~x|) such
that (DX

f , >
X
f ) = (DX

g , >
X
f ) (X ∈ {A,A}) whenever f 'F g, and we de�ne:

� aif = a if Ti = Ca~v, and aif =∞ otherwise.

� (f, ϕ) >A (g, ψ) i� f >F g or f 'F g and ζAf (~afϕ) >Af ζAg (~agψ).
� (f, ν) >A (g, µ) i� f >F g or f 'F g and ζA

f (~afν) >A
f ζ

A
g (~agµ).

Then, we assume that >A is decidable and that (for all ν) (f, ϕν) >A (g, ψν)
whenever (f, ϕ) >A (g, ψ).

Example 2 (Lexicographic and multiset status) A simple metric is given
by assigning a status to every symbol, that is, a non-empty sequence of �nite
multisets of strictly positive integers, describing a simple combination of lexi-
cographic and multiset comparisons. Given a set D and a status ζ of arity n
(biggest integer occurring in it), we de�ne [[ζ]]D on Dn as follows:

� [[M1 . . .Mk]]D(~x) = ([[M1]]mD(~x), . . . , [[Mk]]mD(~x))
� [[{i1, . . . , ip}]]mD(~x) = {xi1 , . . . , xip} (multiset)
Now, take ζXf = [[ζf ]]X , DX

f = ζXf (Xn) and >Xf = ((>X)mul)lex.

For building the computability closure, one must start from the variables
of the left hand-side. However, one cannot take any variable since not every
subterm of a computable term is computable a priori. To this end, based on
the de�nition of the interpretation of constant predicate symbols, we introduce
the notion of accessibility.

De�nition 34 (Accessibility) We say that u : U is a-accessible10 in t : T ,
written t : T �a u : U , i� t = f~u, f ∈ Cons, f : (~y : ~U)Csα~v, |~u| = |~y|,

10We may not indicate a if it is not relevant.
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u = uj , j ∈ Acc(f), T = Csαϕ~vγ, U = Ujγϕ, γ = {~y 7→ ~u}, ϕ = {α 7→ a} and
Pos(α, ~u) = ∅.

A constructor c : (~y : ~U)Ca~v is �nitely branching11 i�, for all j ∈ Acc(c),
either Pos(α,Uj) = ∅ or there exists D such that Uj = Dα~u. We say that u : U
is strongly a-accessible in t : T , written t : T �· a u : U , i� t : T �a u : U , f is a
�nitely branching constructor and Pos(α,Uj) 6= ∅.

We say that u : U is ∗-accessible modulo ϕ in t : T , written t : T �ϕ u : U ,
i� either t : Tϕ = u : U and ϕ|V(T ) is a renaming, or t : Tϕ�· ∗�ε u : U for some
size variable ε.

De�nition 35 (Termination criterion) Let (f~l → r,Γ, ϕ) ∈ R with f :
(~x : ~T )U and γ = {~x 7→ ~l}. The computability closure associated to this rule
is given by the type system of Figure 5 on the set of terms TA(F ′,X ′) where
F ′ = F ∪ dom(Γ), X ′ = X \ dom(Γ) and, for all x ∈ dom(Γ), τx = xΓ and
x <F f . The termination conditions are:

• Well-typedness: for all x ∈ dom(Γ), c̀ li : Tiϕγ.
• Linearity: Γ is linear w.r.t. size variables.

• Accessibility: for all x ∈ dom(Γ), there are i and β such that li : Tiγ �ϕ x :
xΓ,12 Ti = Cβ~t and V(~t) = ∅.
• Computability closure: c̀ r : Uϕγ.
• Positivity: for all α ∈ V(~T ), Pos(α,U) ⊆ Pos+(U).
• Safeness: γ is an injection from dom2(Γf ) to dom2(Γ).

Note that, if ∆ c̀ t : T then Γ,∆ ` t : T . Hence, the well-typedness
condition implies that γ : Γfϕ ; Γ and thus that the left hand-side is well-

typed: Γ ` f~l : Uϕγ.
The positivity condition on the output type of f w.r.t. size variables appears

in the previous works on sized types too. In [3], Abel gives an example of a
function which is not terminating because it does not satisfy such a condition.
This can be extended to more general continuity conditions [28, 1] and is indeed
necessary (see Example 8).

As for the safeness condition, it simply says that one cannot do matching
or have non-linearities on predicate variables, which is known to lead to non-
termination [27]. It is also part of other works on the Calculus of Constructions
with inductive types [36] and rewriting [40].

The positivity, safeness and accessibility conditions are decidable. For the
conditions based on the computability closure, we prove the strong normaliza-
tion in Section 7.

Let us now see some examples.

Example 3 (Division on natural numbers, Figure 1) Take the types nat :
?, 0 : nat0, s : natα ⇒ natsα, − : natα ⇒ natβ ⇒ natα and / : natα ⇒ natβ ⇒

11Primitive types are �nitely branching.
12This implies in particular that every xΓ is of the form Cε~t with ε ∈ Z.
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Figure 5: Computability closure of f~l→ r with f : (~x : ~T )U and γ = {~x 7→ ~l}

(ax)
c̀ ? : 2

(size)
c̀ τC : 2

c̀ Ca : τC
(C ∈ CF2)

(symb)
c̀ τg : sg (∀i)∆ c̀ yiδ : Uiψδ

∆ c̀ g~yδ : V ψδ
(g /∈ CF2, g : (~y : ~U)V,

(g, ψ) <A (f, ϕ))

(var)
∆ c̀ T : sx

∆, x : T c̀ x : T
(x /∈ dom(∆))

(weak)
∆ c̀ t : T ∆ c̀ U : sx

∆, x : U c̀ t : T
(x /∈ dom(∆))

(prod)
∆, x : U c̀ V : s
∆ c̀ (x : U)V : s

(abs)
∆, x : U c̀ v : V ∆ c̀ (x : U)V : s

∆ c̀ [x : U ]v : (x : U)V

(app)
∆ c̀ t : (x : U)V ∆ c̀ u : U

∆ c̀ tu : V {x 7→ u}

(conv)
∆ c̀ t : T ∆ c̀ T : s ∆ c̀ T

′ : s
∆ c̀ t : T ′

(T ≤ T ′)

natα, with Acc(s) = {1}. All positivity conditions are clearly satis�ed. Safeness
is immediate (there is no predicate variables). For the other conditions, we only
detail (3) and (5).

• For (3), take Γ− = p : natα, q : natβ , ζ−(α, β) = α, Γ = x : natδ, y : natε,
γ = {p 7→ sx, q 7→ sy}, ϕ = {α 7→ sδ, β 7→ sε} and s <F −.
� Well-typedness: By (symb), c̀ x : natδ and c̀ y : natε. Thus, by (symb),

c̀ sx : natsδ and c̀ sy : natsε.
� Accessibility: One can easily check that sx : natsδ �ϕ x : natδ and sysε �ϕ

y : natε.
� Computability closure: By (symb), c̀ x : natδ and c̀ y : natε. By (symb),

c̀ −xy : natδ since ζ−(δ, ε) = δ < ζ−(sδ, sε) = sδ. Thus, by (sub), c̀ −xy :
natsδ.

• For (5), take Γ/ = p : natα, q : natβ , ζ/(α, β) = α, Γ = x : natδ, y : natε,
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γ = {p 7→ sx, q 7→ y}, ϕ = {α 7→ sδ, β 7→ ε} and − <F /.
� Well-typedness: By (symb), c̀ x : natδ and c̀ y : natε. Thus, by (symb),

c̀ sx : natsδ.
� Accessibility: One can easily check that sx : natsδ �ϕ x : natδ and y :
natε �ϕ y : natε.

� Computability closure: By (symb), c̀ x : natδ and c̀ y : natε. By (symb),

c̀ −xy : natδ. By (symb), c̀ /(−xy)y : natδ since ζ/(δ, ε) = δ < ζ/(sδ, ε) =
sδ. Thus, by (symb), c̀ s(/(−xy)y) : natsδ.

Example 4 (Addition on Brouwer's ordinals, Figure 2) Take the types
ord : ?, 0 : nat0, s : natα ⇒ natsα, lim : (nat ⇒ ordα) ⇒ ordsα and + :
natα ⇒ natβ ⇒ nat∞, with Acc(s) = Acc(lim) = {1}. All positivity conditions
are clearly satis�ed. We only detail rule (3). Take Γ+ = p : ordα, q : ordβ ,
ζ+(α, β) = α, Γ = f : nat∞ ⇒ ordδ, y : ordε, γ = {p 7→ limf, q 7→ y},
ϕ = {α 7→ sδ, β 7→ ε} and s, lim <F +.

� Well-typedness: By (symb), c̀ f : nat∞ ⇒ ordδ and c̀ y : ordε. Thus, by
(symb), c̀ limf : ordsδ.

� Accessibility: One can easily check that limf : ordsδ �ϕ f : nat∞ ⇒ ordδ

and y : ordε �ϕ y : ordε.
� Computability closure: By (symb), c̀ f : nat∞ ⇒ ordδ and c̀ y : ordε. Let

∆ = x : nat∞. By (var), ∆ c̀ x : nat∞. By (weak), ∆ c̀ f : nat∞ ⇒ ordδ

and ∆ c̀ y : ordε. By (app), ∆ c̀ fx : ordδ. By (symb), ∆ c̀ +(fx)y : ord∞

since ζ+(δ, ε) = δ < ζ+(sδ, ε) = sδ. By (abs), c̀ [x : nat∞](+(fx)y) : (x :
nat∞)ordδ. Thus, by (symb), c̀ lim([x : nat∞](+(fx)y)) : ordsδ.

Example 5 (Quick sort, Figure 6) Take the types bool : ?, true : bool∞,
false : bool∞, list : ?, nil : list0, cons : nat∞ ⇒ listα ⇒ listsα, blist : ?,
pair : listα ⇒ listβ ⇒ blistmax(α,β), fst : blistα ⇒ listα, snd : blistα ⇒ listα,
≤: nat∞ ⇒ nat∞ ⇒ bool∞, pivot : nat∞ ⇒ listα ⇒ blistα, qs : list∞ ⇒
list∞ ⇒ list∞ and qsort : list∞ ⇒ list∞. We only detail the computability
closure condition of rule (11).

Take ζqs(α, β) = α, Γ = x : nat∞, l : listδ, l′ : listε, ϕ = {α 7→ sδ, β 7→ ε}
and qs >F pivot >F cons, pair, fst , snd. By (symb), c̀ x : nat∞, c̀ l : listδ and
c̀ l
′ : listε. By (symb), c̀ pivot x l : blistδ. By (symb), c̀ u : listδ and c̀ v :

listδ. By (symb), c̀ qs v l
′ : list∞. By (symb), c̀ cons x (qs v l′) : list∞. Thus,

by (symb), c̀ qs u (cons x (qs v l′)) : list∞ since ζqs(δ,∞) = δ < ζqs(sδ, ε) = sδ.
Note that we cannot take qs : listα ⇒ listβ ⇒ listα+β and thus qsort :

listα ⇒ listα since too much information is lost by taking pair : listα ⇒
listβ ⇒ blistmax(α,β). Even though we take pair : listα ⇒ listβ ⇒ blist〈α,β〉

with 〈α, β〉 interpreted as a pair of ordinals, the current setting does not allow
us to say that pivot has type nat∞ ⇒ listα ⇒ blist〈β,γ〉 for some β and γ such
that β + γ = α, as it can be done in Xi's framework [42].

The following examples are taken from [25].
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Figure 6: Quick sort

(1) fst (pair x y) → x
(2) snd (pair x y) → y

(3) ≤ 0 x → true
(4) ≤ (s x) 0 → false
(5) ≤ (s x) (s y) → ≤ x y

(6) if true x y → x
(7) if false x y → y

(8) pivot x nil → pair nil nil
(9) pivot x (cons y l) → if (≤ y x) (pair (cons y u) v) (pair u (cons y v))

where u = fst (pivot x l) and v = snd (pivot x l)

(10) qs nil l → l
(11) qs (cons x l) l′ → qs u (cons x (qs v l′))

where u = fst (pivot x l) and v = snd (pivot x l)

(12) qsort l → qs l nil

Figure 7: Paulson's normalization of if -expressions

(1) nm at → at
(2) nm (if at y z) → if at (nm y) (nm z)
(3) nm (if (if u v w) y z) → nm (if u (nm (if v y z)) (nm (if w y z)))

Example 6 (Paulson's normalization of if -expressions, Figure 7) Take
the types expr : ?, at : expr1, if : exprα ⇒ exprβ ⇒ exprγ ⇒ exprα(1+β+γ) and
nm : exprα ⇒ exprα. We only detail the computability closure condition of rule
(3). Take ζnm(α) = α, Γ = u : exprα, v : exprβ , w : exprγ , y : exprδ, z : exprε,
υ = α(1 + β + γ)(1 + δ + ε), ϕ = {α 7→ υ} and nm >F at, if . Then,
one can check that υ is strictly greater than β(1 + δ + ε), γ(1 + δ + ε) and
α(1 + β(1 + δ+ ε) + γ(1 + δ+ ε)) if variables are interpreted by strictly positive
integers.

Example 7 (Huet and Hullot's reverse function, Figure 8) Take the types
rev1 : nat∞ ⇒ list∞ ⇒ nat∞, rev2 : nat∞ ⇒ listβ ⇒ listβ and rev :
listα ⇒ listα. We only detail the computability closure condition of rule (4).
Take ζrev(α) = 2α, ζrev2(α, β) = 2β + 1, Γ = x : nat∞, y : nat∞, l : listδ,
ϕ = {β 7→ δ + 1} and rev 'F rev2 >F rev1 >F cons, nil. Then, one can
check that ζrev2(∞, δ+ 1) = 2δ+ 3 is strictly greater than ζrev2(∞, δ) = 2δ+ 1,
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Figure 8: Huet and Hullot's reverse function

(1) rev1 x nil → x
(2) rev1 x (cons y l) → rev1 y l

(3) rev2 x nil → nil
(4) rev2 x (cons y l) → rev (cons x (rev (rev2 y l)))

(5) rev nil → nil
(6) rev (cons x l) → cons (rev1 x l) (rev2 x l)

ζrev(δ) = 2δ and ζrev(1 + δ) = 2δ + 2.

Figure 9: Mac Carthy's �91� function

(1) f x → f (f (+ x 11)) if ≤ x 100 = true
(2) f x → − x 10 if ≤ x 100 = false

Example 8 (Mac Carthy's �91� function, Figure 9) Mac Carthy's �91�
function f is de�ned by the following equations: f(x) = f(f(x+11)) if x ≤ 100,
and f(x) = x − 10 otherwise. In fact, one can prove that f is equal to the
function F such that F (x) = 91 if x ≤ 100, and F (x) = x − 10 otherwise.
A way to formalize this in CACSA would be to use conditional rewrite rules
(see Figure 9) and take13 f : natα ⇒ natF (α) and ζXf (x) = max(0, 101 − x) as
measure function, as it can be done in Xi's framework. Then, by taking into
account the rewrite rule conditions, one could prove that, if Γ = x : natδ and
≤ x 100 = true, then δ ≤ 100, ζf (δ + 11) < ζf (δ) and ζf (F (δ)) < ζf (δ).

7 Termination proof

We �rst prove some lemmas for proving the correctness of accessibility w.r.t.
computability (accessible subterms of a computable term are computable). Then,
we prove the correctness of the computability closure (every term of the com-
putability closure is computable) and the computability of every symbol, hence
the strong normalization of every well-typed term.

Lemma 36 (Accessibility properties)

(1) If t : T �· k u : De~u then T = Cs
ke~t.

(2) If t : Cβ~t�ϕ u : U then there are ε ∈ Z and k ≥ 0 such that βϕ = skε.

13Note that F (α) is monotone w.r.t. α.
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(3) If t : T � u : U , tσ ∈ Kb
C(~S) then oC(~S)(t) is a successor ordinal.

(4) If t : T �· u : U and tσ ∈ Ib
C(~S) then uσ ∈ Ib

D(~S′) for some D and ~S′.

(5) Let f : (~y : ~U)Csα~v be a �nitely branching constructor such that, if

j ∈ Acc(f) and Pos(α,Uj) 6= ∅ then Uj = Cαj ~v
j . If f~u ∈ Ka

C(~S) then
oC(~S)(f~u) = max{oCj(~Sj)(uj) | j ∈ Acc(f),Pos(α,Uj) 6= ∅} + 1, where
~Sj = [[~vj ]]νξ,θ, yξ = Sιy , ~yθ = ~u and αν = a.

(6) If t : T �· k � u : U and tσ ∈ Kb
C(~S) then oC(~S)(t) = a + k + 1 for some a.

(7) If t : T �∗ u : U and tσ ∈ [[T ]]µξ,σ then uσ ∈ [[U ]]µξ,σ.

Proof.

(1) By induction on k. For k = 0, this is immediate. Assume now that t :
T �· k v : V �· a u : De~u. Then, a = e and V = Ese~vγ. Therefore, by

induction hypothesis, T = Cs
k+1e~t.

(2) There are two cases.

� t : Cβϕ = u : U and ϕ|V(T ) is a renaming. Take ε = βϕ and k = 0.
� t : Cβϕ�· k v : V �ε u : U . Then, V = Dsε~v and, by (1), βϕ = sk+1ε.

(3) By Lemma 30.

(4) By (3), we can assume that tσ ∈ Ia+1
C (~S). By De�nition 29, uj ∈ [[Uj ]]νξ,θ

with yξ = Sιy , ~yθ = ~u and αν = a. By de�nition of �· , Uj = Dα~u. Thus,

uj ∈ Ia
D(~S′) with ~S′ = [[~u]]νξ,θ.

(5) By (3), we can assume that f~u ∈ Ia+1
C (~S). By (4), for all j ∈ Acc(f) such

that Pos(α,Uj) 6= ∅, uj ∈ Ia
Cj

(~Sj). Let aj = oCj(~Sj)(uj). Since a is as small

as possible, we must have max{aj | j ∈ Acc(f),Pos(α,Uj) 6= ∅} = a.

(6) By induction on k. For k = 0, this is (3). Assume now that t : T �· u :
U �· k � v : V . By (4), for all j ∈ Acc(f), ujσ ∈ Ia

Dj
(~Sj). Let aj =

oCj(~Sj)(ujσ). By induction hypothesis, aj = bj + k + 1. Therefore, by (5),

oC(~S)(tσ) = bj + k + 2 for some bj .

(7) By induction on the number of �-steps. If there is no step, this is immedi-
ate. Assume now that t : T�au : U�∗v : V and αϕ = a. Since T = Csαϕ~vγ,
[[T ]]µξ,σ = Iαϕµ+1

C (~S) with ~S = [[~vγ]]µξ,σ. Therefore, uσ ∈ [[Uj ]]ϕµη,γσ with

yη = Sιy . Since vιy = y, yη = [[yγ]]ϕµξ,σ = [[yγ]]µξ,σ since Pos(α, γ) = ∅. So,

by candidate substitution, [[Uj ]]ϕµη,γσ = [[Ujγ]]ϕµξ,σ = [[U ]]µξ,σ. Therefore, by

induction hypothesis, vσ ∈ [[V ]]µξ,σ. �

Theorem 37 (Accessibility correctness) If t : T �ϕ u : U , T = Cβ~t,
V(~t) = ∅ and tσ ∈ [[T ]]µξ,σ then there exists ν such that βϕν ≤ βµ and
uσ ∈ [[U ]]νξ,σ.

Proof. There are two cases:

• t : Tϕ = u : U and ϕ|V(T ) is a renaming. Let ν = ϕ−1
|V(T )µ. βϕν = βµ and

uσ = tσ ∈ [[T ]]µξ,σ = [[Tϕ]]νξ,σ.
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• t : Tϕ�· ∗u : U �ε v : V . By de�nition of �ε, U = Dsε~u. By Lemma 36
(1), βϕ = sk+1ε. By (6), there exists a such that a + k + 1 ≤ βµ and

tσ ∈ Ia+k+1
C (~S). Let εν = a. Then, βϕν = sk+1εν = a + k + 1 ≤ βµ,

tσ ∈ [[Tϕ]]νξ,σ and, by (7), uσ ∈ [[Tϕ]]νξ,σ. �

Theorem 38 (Correctness of the computability closure) Let (f~l→ r,Γ,
ϕ) ∈ R, f : (~x : ~T )U and γ = {~x 7→ ~l}. Assume that, for all (g, µ) <A (f, ϕν),
g ∈ [[τg]]µ. If ∆ c̀ t : T and ξ, σ |=ν Γ,∆ then tσ ∈ [[T ]]νξ,σ.

Proof. By induction on ∆ c̀ t : T . We only detail the case (symb). Since
(g, ψ) <A (f, ϕ), (g, ψν) <A (f, ϕν). Hence, by assumption, g ∈ [[τg]]ψν . Now,

by induction hypothesis, ~yδσ ∈ [[~Uψδ]]νξ,σ. By candidate substitution, there

exists η such that [[~Uψδ]]νξ,σ = [[~Uψ]]νη,δσ. By size substitution, [[~Uψ]]νη,δσ =
[[~U ]]ψνη,δσ. Therefore, g~yδσ ∈ [[V ]]ψνη,δσ = [[V ψδ]]νξ,σ.

Lemma 39 (Computability of symbols) For all f and µ, f ∈ [[τf ]]µ.

Proof. Assume that τf = (~x : ~T )U with U distinct from a product. f ∈
[[τf ]]µ i�, for all η, θ such that η, θ |=µ Γf , f~xθ ∈ [[U ]]µη,θ. We prove it by induction

on ((f, µ), θ) with (>A,→)lex as well-founded ordering. Let ti = xiθ and t = f~t.

By assumption, for every rule f~l → r ∈ R, |~l| ≤ |~t|. So, if f /∈ Cons then t is
neutral and it su�ces to prove that →(t) ⊆ [[U ]]µη,θ. Otherwise, [[U ]]µη,θ = IaµC (~S)
with ~S = [[~v]]µη,θ. Since η, θ |=µ Γf , tj ∈ [[Tj ]]

µ
η,θ. Therefore, in this case too, it

su�ces to prove that →(t) ⊆ [[U ]]µη,θ.
If the reduction takes place in one ti then we can conclude by induction

hypothesis. Assume now that there exist (l → r,Γ, ϕ) ∈ R and σ such that

t = lσ. Then, l = f~l and θ = γσ with γ = {~x 7→ ~l}.
We now de�ne ξ such that [[U ]]µη,γσ = [[Uγ]]µξ,σ and [[~T ]]µη,γσ = [[~Tγ]]µξ,σ. By

safeness, γ is an injection from dom2(Γf ) to dom2(Γ). Let y ∈ dom2(Γ).
If there exists x ∈ dom(Γf ) (necessarily unique) such that y = xγ, we take
yξ = xη. Otherwise, we take yξ = >yΓ.

We check that ξ |= Γ. If y 6= xγ, yξ = >yΓ ∈ RyΓ. If y = xγ then yξ = xη.
Since η |= Γf , xη ∈ RxΓf

. Since γ : Γfϕ ; Γ, Γ ` y : xΓfϕγ. Therefore,
yΓ ≤ xΓfϕγ and RyΓ = RxΓfϕγ = RxΓf

. So, ξ |= Γ.
Now, by candidate substitution, [[Uγ]]µξ,σ = [[U ]]µη′,γσ with xη′ = [[xγ]]ξ,σ. Let

x ∈ FV(~TU). By safeness, xγ = y ∈ dom2(Γ) and xη′ = yξ = xη. Therefore,
η′ = η.

We now prove that ξ, σ |=ν Γ for some valuation ν such that ϕν ≤ µ. Let
x ∈ dom(Γ). By assumption, there exists i such that li : Tiγ �ϕ x : xΓ,
Tiγ = Cβx~u and V(~u) = ∅. By Lemma 36 (2), there is εx and kx such that
βxϕ = skxεx. Since liσ ∈ [[Tiγ]]ξ,σ, by Theorem 37, there exists νx such that
xσ ∈ [[xΓ]]νx

ξ,σ and βxϕνx ≤ βxµ. Since Γ is linear w.r.t. size variables, εx 6= εy
whenever x 6= y. So, we can de�ne ν by taking εxν = εxνx. Then, βxϕν =
skxεxν = skxεxνx = βxϕνx ≤ βxµ.
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Therefore, since c̀ r : Uϕγ, by correctness of the computability closure, rσ ∈
[[Uϕγ]]νξ,σ = [[Uϕ]]νη,θ = [[U ]]ϕνη,θ ≤ [[U ]]µη,θ since, for all α, Pos(α,U) ⊆ Pos+(U).�

Theorem 40 (Strong normalization) Every well-typed term is strongly nor-
malizable.

Proof. The invariance by reduction is proved in [11]. Hence, we can con-
clude by Theorem 25 and Lemma 39. �

8 Conclusion

The notion of computability closure, �rst introduced in [12] and further extended
to higher-order pattern-matching [10], higher-order recursive path ordering [29],
type-level rewriting [7] and rewriting modulo equational theories [9], again shows
to be essential for extending to rewriting and dependent types type-based termi-
nation criteria for (polymorphic) λ-calculi with inductive types and case analysis
[28, 42, 5, 2]. In contrast with what is suggested in [5], this notion, which is
expressed as a sub-system of the whole type system (by restricting the size of
arguments in function calls in some computability-preserving way, see Figure
5), allows pattern-matching and does not su�er from limitations one could �nd
in systems relying on external guard predicates for recursive de�nitions.

Moreover, we allow a richer size algebra than the one in [28, 5, 2] (see Section
6). But, we do not allow existential size variables and conditional rewriting that
are essential for capturing for instance the size-preserving property of quicksort
(Example 5) and Mac Carty's �91� function (Example 8) respectively, as it can
be done in Xi's work [42]. Such extensions should allow us to subsume Xi's work
completely. More generally, it is important to have a better understanding
of the di�erences between Xi's work which does not use subtyping (but has
existential size variables and singleton types) and the other works that are based
on subtyping.

In this work, we assume that users provide appropriate sized types for func-
tion symbols and then check by our technique that the rewrite rules de�ning
these function symbols are compatible with their types. An important exten-
sion would be to infer these types. Works in this direction for ML-like languages
are [32, 43, 17]. The exact relations between these works and with re�nement
types also [33, 22] still have to be investigated. Note also that deciding the
non-size-increasing property of some functions is investigated in [23, 24].

We made two important assumptions that also need further research. First,
the con�uence of β ∪ R, which is still an open problem when R is con�uent,
terminating, non left-linear and contains type-level rewrite rules. Second, the
preservation of typing under rewriting (subject reduction for R), for which we
need to �nd decidable su�cient conditions (see Example 1).

Finally, by combining rewriting and subtyping in the Calculus of Construc-
tions, this work may also be seen as an important step towards the integration of
membership equational logic [13] and dependent type systems. Previous works
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in this direction are [6, 14, 37].
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9 Elimination of transitivity

In this section, we prove Theorem 3 by following Chen's technique [15].

Lemma 41 ≤ is equivalent to the relation ≤′ where (symb) is replaced by:

(symb')
Cb~t ≤ T
Ca~t ≤ T

(a ≤A b)

Proof. ≤⊆≤′: Assume that a ≤A b. By (re�), Cb~t ≤′ Cb~t. Hence, by
(symb'), Ca~t ≤′ Cb~t. ≤′⊆≤: Assume that Ca~t ≤′ T since Cb~t ≤′ T and a ≤A b.
By induction hypothesis, Cb~t ≤ T . By (symb), Ca~t ≤ Cb~t. Therefore, by
(trans), Ca~t ≤ T . �

Note that the following two subtyping rules are clearly admissible:

(left)
T ↓ T ′ T ′ ≤ U

T ≤ U

(right)
T ≤ U ′ U ′ ↓ U

T ≤ U

For representing the subtyping deductions, we introduce the following term
algebra:

d ::= ⊥ | I | Sd | Cd | Ld | Rd | Pdd | Tdd

where ⊥ stands for some impossible case, I for (re�), S for (symb'), C for (conv),
L for (left), R for (right), P for (prod), and T for (trans).

We now prove that the transformation rules of Figure 10 are valid, that is, a
deduction matching a left hand-side can be replaced by the corresponding right
hand-side.

(a) Cx→ R(Lx)
T ↓ T ′ T ′ ≤ U ′ U ′ ↓ U

C
T ≤ U
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can be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ U

(b) R(Rx)→ Rx

T ≤ U ′ U ′ ↓ U
R

T ≤ U U ↓ U ′′
R

T ≤ U ′′
can be transformed into:

T ≤ U ′ U ′ ↓ U ′′
R

T ≤ U ′′
by con�uence of →.

(c) L(Lx)→ Lx
Like (b).

(d) L(Rx)→ R(Lx)

T ↓ T ′
T ′ ≤ U ′ U ′ ↓ U

R
T ′ ≤ U

L
T ≤ U

can be transformed into:
T ↓ T ′ T ′ ≤ U ′

L
T ≤ U ′ U ′ ↓ U

R
T ≤ U

Note that the inverse transformation R(Lx)→ L(Rx) is valid too.

(e) TIx→ x

I
T ≤ T T ≤ U

T
T ≤ U

can be transformed into:

T ≤ U

(f) T (Sx)y → S(Txy)

Cb~t ≤ T
S

Ca~t ≤ T T ≤ U
T

Ca~t ≤ U
can be transformed into:

Cb~t ≤ T T ≤ U
T

Cb~t ≤ U
S

Ca~t ≤ U
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(g) T (Lx)y → L(Txy)
T ↓ T ′ T ′ ≤ U

L
T ≤ U U ≤ V

T
T ≤ V

can be transformed into:

T ↓ T ′
T ′ ≤ U U ≤ V

T
T ′ ≤ V

L
T ≤ V

(h) T (RI)x→ Lx

I
T ≤ T T ↓ T ′

R
T ≤ T ′ T ′ ≤ U

T
T ≤ U

can be transformed into:
T ↓ T ′ T ′ ≤ U

L
T ≤ U

(i) T (R(Sx))y → S(T (Rx)y)

Cb~t ≤ T
S

Ca~t ≤ T T ↓ T ′
R

Ca~t ≤ T ′ T ′ ≤ U
T

Ca~t ≤ U
can be transformed into:

Cb~t ≤ T T ↓ T ′
R

Cb~t ≤ T ′ T ′ ≤ U
T

Cb~t ≤ U
S

Ca~t ≤ U
(j) T (R(Lx))y → L(T (Rx)y)
By combination of (g) and the inverse of (d).

(k') TxI → x
Like (e).

(l) T (R(Pxy))(Sz)→ ⊥
U ′ ≤ U V ≤ V ′

P
(x : U)V ≤ (x : U ′)V ′ (x : U ′)V ′ ↓ Ca~t

R
(x : U)V ≤ Ca~t

Cb~t ≤ T
S

Ca~t ≤ T
T

(x : U)V ≤ T
is not possible since (x : U ′)V ′ and Ca~t have no common reduct since C is
constant.
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(n') Tx(Ry)→ R(Txy)

T ≤ U

U ≤ V ′ V ′ ↓ V
R

U ≤ V
T

T ≤ V
can be transformed into:

T ≤ U U ≤ V ′
T

T ≤ V ′ V ′ ↓ V
R

T ≤ V
(m') T (Rx)(Ly)→ Tx(Ly)

T ≤ U U ↓ U ′
R

T ≤ U ′
U ′ ↓ U ′′ U ′′ ≤ V

L
U ′ ≤ V

T
T ≤ V

can be transformed into:

T ≤ U

U ↓ U ′′ U ′′ ≤ V
L

U ≤ V
T

T ≤ V
by con�uence of →.

(p) T (R(Pxy))(Pzt)→ P (Tz(Lx))(Ty(Lt))

U2 ≤ U1 V1 ≤ V2
P

(x : U1)V1 ≤ (x : U2)V2 (x : U2)V2 ↓ (x : U3)V3
R

(x : U1)V1 ≤ (x : U3)V3

U4 ≤ U3 V3 ≤ V4
P

(x : U3)V3 ≤ (x : U4)V4
T

(x : U1)V1 ≤ (x : U4)V4

can be transformed into:

U4 ≤ U3

U3 ↓ U2 U2 ≤ U1
L

U3 ≤ U1
T

U4 ≤ U1

V1 ≤ V2

V2 ↓ V3 V3 ≤ V4
L

V2 ≤ V4
T

V1 ≤ V4
P

(x : U1)V1 ≤ (x : U4)V4

(r) T (Pxy)(Sz)→ ⊥
Like (l).

(s') Tx(LI)→ Rx
Like (h).

(t) T (Pxy)(L(Sz))→ ⊥
Like (l).

(u) T (Pxy)(L(Pzt))→ P (Tz(Lx))(Ty(Lt))
Like (p).

(w) T (Pxy)(Pzt)→ P (Tzx)(Tyt)
Like (p).
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The above rules form a terminating rewrite system. For L and R, the recur-
sive calls are strictly smaller (take L < R). For Tuv, the measure (|u|+ |v|, |v|),
where |u| is the size of u, strictly decreases lexicographically. Now, it is easy to
see that T occurs in no normal form of Tuv if u and v are closed terms (T is com-
pletely de�ned). We proceed by induction on the measure. The only unde�ned
cases for T are T (R(Pxy))(Tzt), T (Pxy)(L(Tzt)), T (Pxy)(Tzt) and T (Txy)z.
By induction hypothesis, T occurs in no normal form of Tzt or Txy. Therefore,
we fall in the de�ned cases and we can conclude by induction hypothesis.

10 Expansion elimination

In this section, we prove Theorem 5 by following Chen's technique [15]. We
introduce the following term algebra for representing the subtyping deductions:

d ::= I | S | Ed | Rd | Pdd

where ⊥ stands for some impossible case, I for (re�), S for (symb), C for (conv),
E for (exp), R for (red), and P for (prod).

We now prove that the following transformation rules are valid, that is, a
deduction matching a left hand-side can be replaced by the corresponding right
hand-side.

(a) E(Rx) → R(Ex)
(b) E(Pxy) → P (Ex)(Ey)
(c) EI → RI
(d) ES → RS
(e) E(Ex) → Ex

(a) E(Rx)→ R(Ex)
Assume that we have the following deduction:

T ′ →∗ T ′′ ≤ U ′′ ∗← U ′

R
T ∗← T ′ ≤ U ′ →∗ U

E
T ≤ U

By con�uence, there exist T ′′′ and U ′′′ such that T →∗ T ′′′ ∗← T ′′ and
U →∗ U ′′′ ∗← U ′′. So, the deduction can be transformed into:

T ′′′ ∗← T ′′ ≤ U ′′ →∗ U ′′′
E

T →∗ T ′′′ ≤ U ′′′ ∗← U
R

T ≤ U
(b) E(Pxy)→ P (Ex)(Ey)

Assume that we have the following deduction:

C ≤ A B ≤ D
P

T ∗← (x : A)B ≤ (x : C)D →∗ U
E

T ≤ U
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Then, T = (x : A′)B′ with A →∗ A′ and B →∗ B′, and U = (x : C ′)D′

with C →∗ C ′ and D →∗ D′. So, the deduction can be transformed into:

C ′ ∗← C ≤ A→∗ A′
E

C ′ ≤ A′
B′ ∗← B ≤ D →∗ D′

E
B′ ≤ D′

P
T ≤ U

(c) EI → RI
By con�uence, as in (a) but with T ′ = T ′′ = U ′′ = U ′.

(d) ES → RS
Assume that we have the following deduction:

a ≤A b
S

T ∗← Ca~t ≤ Cb~t→∗ U
E

T ≤ U
Then, T = Ca~u with ~t →∗ ~u and U = Cb~v with ~t →∗ ~v. By con�u-
ence, there exists ~w such that ~u →∗ ~w ∗← ~v. So, the deduction can be
transformed into:

a ≤A b
S

T →∗ Ca ~w ≤ Cb ~w ∗← U
R

T ≤ U
(e) E(Ex)→ Ex

Immediate.

Now, the rewrite system de�ned by these transformation rules is clearly ter-
minating and con�uent (there is no critical pair). Since it de�nes E completely,
no normal form of a closed term may contain E.
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Figure 10: Transformation rules for eliminating transitivity

(a) Cx → R(Lx)
(b) R(Rx) → Rx
(c) L(Lx) → Lx
(d) L(Rx) → R(Lx)

(e) TIx → x

(f) T (Sx)y → S(Txy)

(g) T (Lx)y → L(Txy)

(h) T (RI)x → Lx
(i) T (R(Sx))y → S(T (Rx)y)
(j) T (R(Lx))y → L(T (Rx)y)
(k) T (R(Pxy))I → R(Pxy)
(l) T (R(Pxy))(Sz) → ⊥

(m) T (R(Pxy))(Lz) → T (Pxy)(Lz)
(n) T (R(Pxy))(Rz) → R(T (R(Pxy))z)
(p) T (R(Pxy))(Pzt) → P (Tz(Lx))(Ty(Lt))

(q) T (Pxy)I → Pxy
(r) T (Pxy)(Sz) → ⊥
(s) T (Pxy)(LI) → R(Pxy)
(t) T (Pxy)(L(Sz)) → ⊥
(u) T (Pxy)(L(Pzt)) → P (Tz(Lx))(Ty(Lt))
(v) T (Pxy)(Rz) → R(T (Pxy)z)
(w) T (Pxy)(Pzt) → P (Tzx)(Tyt)

(1) S⊥ → ⊥
(2) L⊥ → ⊥
(3) R⊥ → ⊥
(4) P⊥x → ⊥
(5) Px⊥ → ⊥
(6) T⊥x → ⊥
(7) Tx⊥ → ⊥

Some of these rules are particular instances of the following more general trans-
formations:

(k′)(q′) TxI → x
(n′)(v′) Tx(Ry) → R(Txy)

(m′) T (Rx)(Ly) → Tx(Ly)
(s′) Tx(LI) → Rx
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