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Abstract. Several authors devised type-based termination criteria for
ML-like languages allowing non-structural recursive calls. We extend
these works to general rewriting and dependent types, hence providing
a powerful termination criterion for the combination of rewriting and
β-reduction in the Calculus of Constructions.

1 Introduction

The Calculus of Constructions (CC) [13] is a powerful type system allowing
polymorphic and dependent types. It is the basis of several proof assistants (Coq,
Lego, Agda, . . . ) since it allows one to formalize the proofs of higher-order logic.
In this context, it is essential to allow users to de�ne functions and predicates
in the most convenient way and to be able to decide whether a term is a proof
of some proposition, and whether two terms/propositions are equivalent w.r.t.
user de�nitions. As exempli�ed in [16,10], a promising approach is rewriting.
To this end, we need powerful criteria to check the termination of higher-order
rewrite-based de�nitions combined with β-reduction.

In [10], we proved that such a combination is strongly normalizing if, on the
one hand, �rst-order rewrite rules are strongly normalizing and non-duplicating
and, on the other hand, higher-order rewrite rules satisfy a termination criterion
based on the notion of computability closure and similar to primitive recursion.
However, many rewrite systems do not satisfy these conditions, as division1 on
natural numbers nat for instance:

(1) − x 0 → x
(2) − 0 x → 0
(3) − (sx) (sy) → − x y

(4) / 0 x → 0
(5) / (sx) y → s (/ (− x y) y)

Hughes et al [20], Xi [26], Giménez et al [18,5] and Abel [2] devised termina-
tion criteria able to treat such examples by exploiting the way inductive types
are usually interpreted [23]. Take for instance the addition on Brouwer's ordinals
ord whose constructors are 0 : ord, s : ord⇒ ord and lim : (nat⇒ ord)⇒ ord:

1 (/ x y) is the lower integer part of x
y+1

.
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(1) + 0 x → x
(2) + (sx) y → s (+ x y)
(3) + (lim f) y → lim ([x : nat](+ (f x) y))

The usual computability-based technique for proving the termination of this
function is to interpret ord as the �xpoint of the following monotone function ϕ
on the powerset of the set of strongly normalizing terms SN ordered by inclusion:

ϕ(X) = {t ∈ SN | t→∗ su⇒ u ∈ X; t→∗ limf ⇒ ∀u ∈ SN , fu ∈ X}

The �xpoint of ϕ, [[ord]], can be reached by trans�nite iteration and every
t ∈ [[ord]] is obtained after a smallest ordinal o(t) of iterations, the order of t.
This naturally de�nes an ordering: t > u i� o(t) > o(u), with which lim f > fu
for all u ∈ SN .

Now, applying this technique to nat, we can easily check that o(−tu) ≤ o(t)
and thus allow the recursive call with −xy in the de�nition of / above. We
proceed by induction on o(t), knowing that −tu is computable (i.e. belongs to
[[nat]]) i� all its reducts are computable:

� If −tu matches rule (1) then o(−tu) = o(t).
� If −tu matches rule (2) then o(−tu) = 0 ≤ o(t).
� If −tu matches rule (3) then t = st′ and u = su′. By induction hypothesis,
o(−t′u′) ≤ o(t′). Thus, o(−tu) = 1 + o(−t′u′) ≤ 1 + o(t′) = o(t).

� If −tu matches no rule then o(−tu) = 0 ≤ o(t).
The idea of the previously cited authors is to add that size/index/stage in-

formation to the syntax in order to prove this automatically. Instead of a single
type nat, they consider a family of types {nata}a∈ω (higher-order types require
ordinals bigger than ω), each type nata being interpreted by the set obtained
after a iterations of the function ϕ for nat. For �rst-order data types, a can be
seen as the maximal number of constructors at the top of a term. Finally, they
de�ne a decidable type system in which − (de�ned by �xpoint/cases construc-
tions in their work) can be typed by natα ⇒ natβ ⇒ natα, where α and β are
size variables, meaning that the order of −tu is not greater than the order of t.

This can also be interpreted as a way to automatically prove theorems on the
size of the result of a function w.r.t. the size of its arguments with applications
to complexity and resource bound certi�cation, and compilation optimization
(e.g. array bound checks elimination and vector-based memoisation).

In this paper, we extend this technique to the full Calculus of Algebraic Con-
structions [10] whose type conversion rule depends on user de�nitions, and to
general rewrite-based de�nitions (including rewriting modulo equational theo-
ries treated elsewhere [7]) instead of de�nitions only based on fixpoint/cases
constructions. However, several questions remain unanswered (e.g. subject re-
duction, matching on de�ned symbol, type inference) and left for future work.

We allow a richer size algebra than the one in [20,5,2] but we do not allow
existential size variables and do not take into account conditionals as it can be
done in Xi's work [26]. Note however that Xi is interested in the call-by-value
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normalization of closed simply-typed λ-terms with �rst-order data types, while
we are interested in the strong normalization of the open terms of CAC.

The paper is organized as follows. Section 2 introduces the Calculus of Al-
gebraic Constructions with Size Annotations (CACSA). Section 3 presents the
termination criterion with some examples. Section 4 gives some elements of the
termination proof (more details can be found in [9]). Finally, Section 5 proposes
an extension (whose justi�cation is ongoing) for capturing more de�nitions.

2 The Calculus of Algebraic Constructions with Size

Annotations

CC is the full Pure Type System with set of sorts S = {?,2} and axiom ? : 2

[4]. The sort ? is intended to be the universe of types and propositions, while 2

is intended to be the universe of predicate types. Let X be the set of variables.
The Calculus of Algebraic Constructions (CAC) [10] is an extension of CC

with a set F of function or predicate symbols de�ned by a set R of (higher-order)
rewrite rules [15,22] whose left hand-sides are built from symbols and variables
only. Every x ∈ X ∪ F is equipped with a sort sx. We denote by DF the set of
de�ned symbols, that is, the set of symbols f with a rule f l → r ∈ R, and by
CF the set F \DF of constant symbols. We add a superscript s to restrict these
sets to objects of sort s.

Now, we assume given a �rst-order term algebra A = T (H,Z), called the
algebra of size expressions, built from a set H of size symbols of �xed arity and
a set Z of size variables. Let V(t) be the set of size variables occurring in a
term t. We assume that H ∩ F = Z ∩ X = ∅, T (H, ∅) 6= ∅ and A is equipped
with a quasi-ordering ≤A stable by size substitution (if a ≤A b then, for all size
substitution ϕ, aϕ ≤A bϕ) such that (A,≤A) has a well-founded model (A,≤A):

De�nition 1 (Size model). A pre-model of A is given by a set A, an ordering
≤A on A and a function hA from An to A for every n-ary size symbol h ∈ H. A
size valuation is a function ν from Z to A, naturally extended to a function on
A. A pre-model is a model if a ≤A b implies aν ≤A bν, for all size valuation ν.
Such a model is well-founded if >A is well-founded.

The Calculus of Algebraic Constructions with Size Annotations (CACSA) is
an extension of CAC where constant predicate symbols are annotated by size
expressions. The terms of CACSA are de�ned by the following grammar rule:

t ::= s | x | Ca | f | [x : t]t | (x : t)t | tt

where C ∈ CF2, f ∈ F\CF2 and a ∈ A. We denote by TA(F ,X ) the set of terms
built from F , X and A. A product (x : T )U with x /∈ FV(U) is written T ⇒ U .
We now assume that rewrite rules are built from annotated terms not containing
size variables. Hence, if t→ t′ then, for all size substitution ϕ, tϕ→ t′ϕ.

We also assume that every symbol f is equipped with a closed type τf =
(x : T )U with no size variable if sf = 2 (size variables are implicitly universally
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quanti�ed otherwise), and |l| ≤ |x| if f l → r ∈ R, a set Mon+(f) ⊆ Af =
{1, . . . , |x|} of monotone arguments and a disjoint set Mon−(f) ⊆ Af of anti-
monotone arguments. For a size symbol h, Mon+(h) (resp. Mon−(h)) is taken
to be the arguments in which hA is monotone (resp. anti-monotone).

Fig. 1. Typing rules

(ax) ` ? : 2

(size)
` τC : 2

` Ca : τC
(C ∈ CF2, a ∈ A)

(symb)
` τf : sf

` f : τfϕ
(f /∈ CF2)

(var)
Γ ` T : sx

Γ, x : T ` x : T
(x /∈ dom(Γ ))

(weak)
Γ ` t : T Γ ` U : sx

Γ, x : U ` t : T
(x /∈ dom(Γ ))

(prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U ]v : (x : U)V

(app)
Γ ` t : (x : U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(sub)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T ≤ T ′)

An environment Γ is a sequence of variable-term pairs. Let t ↓ u i� there is
v such that t→∗ v ∗← u, with→∗ the re�exive and transitive closure of→=→β

∪ →R. The typing rules of CACSA are given in Figure 1 and its subtyping rules
in Figure 2. There are two di�erences with CAC. First, there is a new rule (size)
for typing constant predicate symbols with size annotations, while the usual rule
(symb) for typing symbols is restricted to the other symbols. Second, in CAC,
the condition for (sub) is not T ≤ T ′ but T ↓ T ′. Note that, if → is con�uent
then ↓ is equivalent to ≤ without the subtyping rule (size).

Subtyping is necessary since size annotations are upper bounds. For instance,
in an if-then-else expression, the then-branch does not need to exactly have the
same type as the else-branch. Instead of subtyping, Xi uses singleton types,
existential size variables and re�nement types.
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The way the subtyping relation is de�ned is due to Chen [12]. Replacing (red),
(exp) and (re�) by T ≤ U if T ↓ U would not allow us to prove that (trans) can
be eliminated, which is essential for proving the compatibility of subtyping with
the product construction (if (x : U)V ≤ (x : U ′)V ′ then U ′ ≤ U and V ≤ V ′),
which in turn enables one to prove that β preserves typing. Another consequence
is that subtyping is decidable when applied on weakly normalizing terms. We
refer the reader to [9] for more details on the meta-theory of our type system.

Fig. 2. Subtyping rules

(re�) T ≤ T

(size) Cat ≤ Cbt (C ∈ CF2, a ≤A b)

(prod)
U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′

(red)
T ′ ≤ U ′

T ≤ U (T →∗ T ′, U ′ ∗← U)

(exp)
T ′ ≤ U ′

T ≤ U (T ∗← T ′, U ′ →∗ U)

(trans)
T ≤ U U ≤ V

T ≤ V

In this paper, we make two important assumptions:

(1) β ∪ R is con�uent. This is the case for instance if R is con�uent and left-
linear. Finding other su�cient conditions is an open problem.

(2) R preserves typing: if l → r ∈ R and Γ ` lσ : T then Γ ` rσ : T . Finding
su�cient conditions with subtyping and dependent types does not seem
easy. We leave the study of this problem for future work. With dependent or
polymorphic symbols, requiring the existence of Γ and T such that Γ ` l : T
and Γ ` r : T leads to non left-linear rules. In [10], we give general conditions
avoiding the non-linearities implied by requiring l to be well-typed.

3 Constructor-based systems

We now study the case of CACSA's whose size algebra at least contains the
following expressions:

a ::= α | sa | ∞ | . . .

Following [5], when there is no other symbol, the ordering ≤A on size expres-
sions is de�ned as the smallest congruent quasi-ordering ≤ such that, for all a,
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a < sa and a ≤ ∞, and size expressions are interpreted in A = Ω + 1, where Ω
is the �rst uncountable ordinal, by taking sA(a) = a + 1 if a < Ω, sA(Ω) = Ω
and ∞A = Ω.

One can easily imagine other size expressions like a+ b, max(a, b), . . .
We now de�ne the sets of positive and negative positions in a term, which

will enforce monotonicity and anti-monotonicity properties respectively. Then,
we de�ne the set of admissible inductive types.

De�nition 2 (Positive and negative positions). The set of positions (words
over {L,R, S}) in a term t is inductively de�ned as follows:

� Pos(s) = Pos(x) = Pos(f) = {ε} (empty word)

� Pos((x : u)v) = Pos([x : u]v) = Pos(uv) = L.Pos(u) ∪R.Pos(v)
� Pos(Ca) = {ε} ∪ S.Pos(a)

Let Pos(x, t) (x ∈ F ∪ X ∪ Z) be the set of positions of the free occurrences
of x in t. The set of positive positions in t, Pos+(t), and the set of negative
positions in t, Pos−(t), are simultaneously de�ned by induction on t:

� Posδ(s) = Posδ(x) = {ε | δ = +}
� Posδ((x : U)V ) = L.Pos−δ(U) ∪R.Posδ(V )
� Posδ([x : U ]v) = R.Posδ(v)
� Posδ(tu) = L.Posδ(t) if t 6= ft

� Posδ(ft) = {L|t| | δ = +} ∪
⋃
{L|t|−iR.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)}

� Posδ(Cat) = Posδ(Ct) ∪ {L|t|S | δ = +}.Posδ(a).

where δ ∈ {−,+}, −+ = − and −− = + (usual rules of signs).

De�nition 3 (Constructor-based system). We assume given a precedence
≤F on F and that every C ∈ CF2 with C : (z : V )? is equipped with a set
Cons(C) of constructors, that is, a set of constant symbols f : (y : U)Cav
equipped with a set Acc(f) ⊆ Af of accessible arguments such that:

• If there are D 'F C such that Pos(D,Uj) 6= ∅ then there is α ∈ Z such that
V(τf ) = {α} and a = sα.

• For all j ∈ Acc(c):
� For all D >F C, Pos(D,Uj) = ∅.
� For all D 'F C and p ∈ Pos(D,Uj), p ∈ Pos+(Uj) and Uj |p = Dα.

� For all p ∈ Pos(α,Uj), p = qS, Uj |q = Dα and D 'F C.
� For all x ∈ FV2(Uj), there is ιx with vιx = x and Pos(x, Uj) ⊆ Pos+(Uj).
• For all F ∈ DF2 and F l→ r ∈ R:
� For all G >F F , Pos(G, r) = ∅.
� For all i ∈ Monδ(F ), li ∈ X2 and Pos(li, r) ⊆ Posδ(r).
� For all x ∈ FV2(r), there is κx with lκx = x.

The positivity conditions are usual. The restrictions on a and α are also
present in [5,2]. Section 5 proposes more general conditions. The conditions in-
volving ι and κ mean that we restrict our attention to small inductive types
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for which predicate variables are parameters. See [6] for details about inductive
types and weak/strong elimination.

An example is the inductive-recursive type T : ? with constructors v : nat⇒
T , f : (list T ) ⇒ T and µ : ¬¬T ⇒ T (�rst-order terms with continuations),
where list : ?⇒ ? is the type of polymorphic lists (Mon+(list) = {1}), ¬ : ?⇒ ?
(Mon−(¬) = {1}) is de�ned by the rule ¬ A→ A⇒ ⊥, and ⊥ = (A : ?)A.

We now give general conditions for rewrite rules to preserve strong normaliza-
tion, based on the fundamental notion of computability closure. The computabil-
ity closure of a term t is a set of terms that can be proved computable whenever
t is computable. If, for every rule f l→ r, r belongs to the computability closure
of l, then rules preserve computability, hence strong normalization.

In [10], the computability closure is inductively de�ned as a typing relation

c̀ similar to ` except for the (symb) case which is replaced by two new cases:
(symb<) for symbols strictly smaller than f , and (symb=) for symbols equivalent
to f whose arguments are structurally smaller than l.

Here, (symb=) is replaced by a new case for symbols equivalent to f whose
arguments have, from typing, sizes smaller than those of l. For comparing sizes,
one can use metrics, similar to Dershowitz and Hoot's termination functions [14].

De�nition 4 (Ordering on symbol arguments). For every symbol f :
(x : T )U , we assume given two well-founded domains, (DAf , >

A
f ) and (DA

f , >
A
f ),

and two functions ζAf : An → DAf and ζA
f : An → DA

f (n = |x|) such that

(DX
f , >

X
f ) = (DX

g , >
X
g ) (X ∈ {A,A}) whenever f 'F g, and we de�ne:

� aif = a if Ti = Cav, and aif =∞ otherwise.

� (f, ϕ) >A (g, ψ) i� f >F g or f 'F g and ζAf (afϕ) >Af ζAg (agψ).
� (f, ν) >A (g, µ) i� f >F g or f 'F g and ζA

f (afν) >A
f ζ

A
g (agµ).

Then, we assume that >A is decidable and that (f, ϕ) >A (g, ψ) implies (f, ϕν)
>A (g, ψν) for all ν.

A simple metric is given by assigning a status to every symbol, that is, a non-
empty sequence of multisets of positive integers, describing a simple combination
of lexicographic and multiset comparisons. Given a set D and a status ζ of arity
n (biggest integer occurring in it), we de�ne [[ζ]]D on Dn as follows:

� [[M1 . . .Mk]]D(x) = ([[M1]]mD(x), . . . , [[Mk]]mD(x))
� [[{i1, . . . , ip}]]mD(x) = {xi1 , . . . , xip} (multiset)

Now, take ζXf = [[ζf ]]X , DX
f = ζXf (Xn) and >Xf = ((>X)mul)lex.

For building the computability closure, one must start from the variables of
the left hand-side. However, one cannot take any variable since, a priori, not
every subterm of a computable term is computable. To this end, based on the
interpretation of constant predicate symbols, we introduce the following notion:

De�nition 5 (Accessibility). We say that u : U is a-accessible in t : T , writ-
ten t : T �a u : U , i� t = fu, f ∈ Cons(C), f : (y : U)Csαv, |u| = |y|, u = uj,
j ∈ Acc(f), T = Csαϕvγ, U = Ujγϕ, yγ = u, αϕ = a and Pos(α,u) = ∅.

7



A constructor c : (y : U)Cav is �nitely branching2 i�, for all j ∈ Acc(c),
either Pos(α,Uj) = ∅ or there exists D such that Uj = Dαu. We say that u : U
is strongly a-accessible in t : T , written t : T �· a u : U , i� t : T �a u : U , f is a
�nitely branching constructor and Pos(α,Uj) 6= ∅.

We say that u : U is ∗-accessible modulo ϕ in t : T , written t : T �ϕ u : U ,
i� either t : Tϕ = u : U and ϕ|V(T ) is a renaming,3 or t : Tϕ�· ∗ �ε u : U for
some ε ∈ Z.

This seems to restrict matching to constructors as in ML-like languages. How-
ever, one can prove that, for �rst-order data types, computability is equivalent
to strong normalization [9]. Thus, every argument of a �rst-order symbol can
be declared as accessible, and matching on de�ned �rst-order function symbols
is possible. Meanwhile, it may be uneasy to �nd for these symbols output sizes
and measures satisfying all the constraints required for subject reduction and
recursive calls. More research has to be done on this subject.

De�nition 6 (Termination criterion). For every rule f l → r ∈ R with f :
(x : T )U and xγ = l, we assume given a size substitution ϕ. The computability
closure for this rule is given by the type system of Figure 3 on the set of terms
TA(F ′,X ′) where F ′ = F ∪dom(Γ ), X ′ = X \dom(Γ ) and, for all x ∈ dom(Γ ),
τx = xΓ and x <F f . The termination conditions are:

• Well-typedness: for all x ∈ dom(Γ ), c̀ li : Tiϕγ.
• Linearity: Γ is linear w.r.t. size variables.

• Accessibility: for all x ∈ dom(Γ ), there are i and β such that li : Tiγ �ϕ x :
xΓ , Ti = Cβt and V(t) = ∅.
• Computability closure: c̀ r : Uϕγ.
• Positivity: for all α ∈ V(T ), Pos(α,U) ⊆ Pos+(U).
• Safeness: γ is an injection from dom2(Γf ) to dom2(Γ ).

The positivity condition on the output type of f w.r.t. size variables appears
in the previous works on sized types too. It may be extended to more general
continuity conditions [20,1]. In [3], Abel gives an example of a function which is
not terminating because it does not satisfy such a condition.

As for the safeness condition, it simply says that one cannot do matching
or have non-linearities on predicate variables, which is known to lead to non-
termination in some cases [19]. It is also part of other works on CC with inductive
types [24] and rewriting [25].

The linearity, positivity, safeness and accessibility conditions are decidable.
We think that the other conditions are decidable too, under the assumption
that the satis�ability of inequality constraints in A is decidable. To this end, we
prove the strong normalization of well-typed terms in Section 4, and describe a
type inference algorithm in [9]. In practice, like Xi, we can restrict size expres-
sions to linear arithmetic, for which the satis�ability of inequality constraints is
decidable.
2 Constructors of usual �rst-order data types are �nitely branching.
3 An injection from a �nite subset of Z to Z.
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Fig. 3. Computability closure of (f l→ r, Γ, ϕ) with f : (x : T )U and xγ = l

(ax)
c̀ ? : 2

(size)
c̀ τC : 2

c̀ Ca : τC
(C ∈ CF2)

(symb)
c̀ τg : sg (∀i)∆ c̀ yiδ : Uiψδ

∆ c̀ gyδ : V ψδ

(g /∈ CF2, g : (y : U)V,
(g, ψ) <A (f, ϕ))

(var)
∆ c̀ T : sx

∆,x : T c̀ x : T
(x /∈ dom(∆))

(weak)
∆ c̀ t : T ∆ c̀ U : sx

∆,x : U c̀ t : T
(x /∈ dom(∆))

(prod)
∆,x : U c̀ V : s

∆ c̀ (x : U)V : s

(abs)
∆,x : U c̀ v : V ∆ c̀ (x : U)V : s

∆ c̀ [x : U ]v : (x : U)V

(app)
∆ c̀ t : (x : U)V ∆ c̀ u : U

∆ c̀ tu : V {x 7→ u}

(conv)
∆ c̀ t : T ∆ c̀ T : s ∆ c̀ T

′ : s

∆ c̀ t : T ′
(T ≤ T ′)

Note that, with polymorphic or dependent function symbols, the well-typed-
ness condition makes the rules non left-linear. For instance, with concatenation
on polymorphic list: app A (cons A′ x l) l′ → cons A x (app A l l′), we need to
take A′ = A. In [10], we proved that, in CAC, this condition can be relaxed by
relativizing the previous conditions with the substitution {A′ 7→ A}. The same
technique should apply to CACSA.

We now give some examples satisfying these conditions:

Example 1 (Division on natural numbers). Take nat : ?, 0 : nat0, s : natα ⇒
natsα, − : natα ⇒ natβ ⇒ natα and / : natα ⇒ natβ ⇒ natα.

• For rule (3), take ζ−(α, β) = α, Γ = x : natδ, y : natε, ϕ = {α 7→ sδ, β 7→ sε}
and s <F −. By (symb), c̀ x : natδ and c̀ y : natε. By (symb), c̀ −xy : natδ

since ζ−(δ, ε) = δ < ζ−(sδ, sε) = sδ. Thus, by (sub), c̀ −xy : natsδ.
• For rule (5), take ζ/(α, β) = α, Γ = x : natδ, y : natε, γ = {p 7→ sx, q 7→ y},
ϕ = {α 7→ sδ, β 7→ ε} and − <F /. By (symb), c̀ x : natδ and c̀ y : natε.
By (symb), c̀ −xy : natδ. By (symb), c̀ /(−xy)y : natδ since ζ/(δ, ε) = δ <

ζ/(sδ, ε) = sδ. Thus, by (symb), c̀ s(/(−xy)y) : natsδ.
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Example 2 (Addition on Brouwer's ordinals). Take ord : ?, 0 : nat0, s : natα ⇒
natsα, lim : (nat⇒ ordα)⇒ ordsα and + : natα ⇒ natβ ⇒ nat∞. For rule (3),
take ζ+(α, β) = α, Γ = f : nat∞ ⇒ ordδ, y : ordε, ϕ = {α 7→ sδ, β 7→ ε} and
s, lim <F +. By (symb), c̀ f : nat∞ ⇒ ordδ and c̀ y : ordε. Let ∆ = x : nat∞.
By (var), ∆ c̀ x : nat∞. By (weak), ∆ c̀ f : nat∞ ⇒ ordδ and ∆ c̀ y : ordε.
By (app), ∆ c̀ fx : ordδ. By (symb), ∆ c̀ +(fx)y : ord∞ since ζ+(δ, ε) =
δ < ζ+(sδ, ε) = sδ. By (abs), c̀ [x : nat∞](+(fx)y) : (x : nat∞)ordδ. Thus, by
(symb), c̀ lim([x : nat∞](+(fx)y)) : ordsδ. This does not enter Xi's framework.

Example 3 (Huet and Hullot's reverse function). Take list : ?, nil : list0, cons :
nat∞ ⇒ listα ⇒ listsα, rev1 : nat∞ ⇒ list∞ ⇒ nat∞, rev2 : nat∞ ⇒ listβ ⇒
listβ and rev : listα ⇒ listα.

(1) rev1 x nil → x
(2) rev1 x (cons y l) → rev1 y l

(3) rev2 x nil → nil
(4) rev2 x (cons y l) → rev (cons x (rev (rev2 y l)))

(5) rev nil → nil
(6) rev (cons x l) → cons (rev1 x l) (rev2 x l)

For rule (4), take ζrev(α) = 2α, ζrev2(α, β) = 2β + 1, Γ = x : nat∞, y :
nat∞, l : listδ, ϕ = {β 7→ δ + 1} and rev 'F rev2 >F rev1 >F cons, nil. Then,
one can check that ζrev2(∞, δ+1) = 2δ+3 is strictly greater than ζrev2(∞, δ) =
2δ + 1, ζrev(δ) = 2δ and ζrev(1 + δ) = 2δ + 2.

4 Termination proof

The termination proof follows the computability-based method of [10]. For lack
of space, we just state the most important theorems. See [9] for details.

Let Rt be the set of possible interpretations for the terms of type t. Rs is
made of sets of strongly normalizable terms. R(x:T )U is made of the functions
from T ×RT to RU that are invariant by reduction or size substitution. Rmt is
the subset of Rt made of the functions that are monotone (resp. anti-monotone)
in their monotone (resp. anti-monotone) arguments.

We �rst de�ne the interpretation of types. Then, we prove monotonicity prop-
erties, the correctness of accessibility w.r.t. computability (accessible subterms of
a computable term are computable), the correctness of the computability closure
(every term of the computability closure is computable) and the computability
of every symbol, hence the strong normalization of every well-typed term.

De�nition 7 (Interpretation schema). A candidate assignment is a func-
tion ξ from X to

⋃
{Rt | t ∈ T }. A candidate assignment ξ is a Γ -assignment,

written ξ |= Γ , if, for all x ∈ dom(Γ ), xξ ∈ RxΓ .
An interpretation for a symbol C ∈ CF2 is a monotone function I from

A to Rmτf
. An interpretation for a symbol f /∈ CF2 is an element of Rmτf

. An
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interpretation for a set G of predicate symbols is a function which, to every
symbol g ∈ G, associates an interpretation for g.

The interpretation of t w.r.t. a candidate assignment ξ, an interpretation I
for F , a substitution θ and a valuation ν, [[t]]I,νξ,θ , is de�ned by induction on t:

� [[t]]I,νξ,θ = ∅ if t is an object or a sort

� [[F ]]I,νξ,θ = IF if F ∈ DF2

� [[Ca]]I,νξ,θ = IaνC if C ∈ CF2

� [[x]]I,νξ,θ = xξ

� [[(x : U)V ]]I,νξ,θ = {t ∈ T | ∀u ∈ [[U ]]I,νξ,θ ,∀S ∈ RU , tu ∈ [[V ]]I,ν
ξS

x ,θ
u
x
}

� [[[x : U ]v]]I,νξ,θ (u, S) = [[v]]I,ν
ξS

x ,θ
u
x

� [[tu]]I,νξ,θ = [[t]]I,νξ,θ (uθ, [[u]]
I,ν
ξ,θ )

where θux = θ∪{x 7→ u} and ξSx = ξ ∪{x 7→ S}. A substitution θ is adapted to a
Γ -assignment ξ and a valuation ν, written ξ, θ |=ν Γ , if dom(θ) ⊆ dom(Γ ) and,

for all x ∈ dom(θ), xθ ∈ [[xΓ ]]I,νξ,θ .

We de�ne the interpretation of predicate symbols by induction on >F . The
de�nition of de�ned predicate symbols can be found in [10]. We now de�ne the
interpretation of constant predicate symbols by trans�nite induction on a ∈ A.

De�nition 8 (Interpretation of constant predicate symbols).

� I0
C(t,S)4 is the set of u ∈ SN that never reduces to a term of the form fu

with f ∈ Cons(C), f : (y : U)Cav, |u| = |y| and Acc(f) 6= ∅.
� Ia+1

C (t,S) is the set of terms u ∈ SN such that, if u reduces to a constructor

term fu with f : (y : U)Csαv then, for all j ∈ Acc(f), uj ∈ [[Uj ]]
I,ν
ξ,θ with

yξ = Sιy , yθ = u and αν = a.

� Ib
C =

∧
τC

({Ia
C | a < b}) if b is a limit ordinal.

For t ∈ IΩC (S), let oC(S)(t) be the smallest ordinal a such that t ∈ Ia
C(S).

The interpretation is well de�ned thanks to the assumptions made on con-
structors, and the following properties of the interpretation schema:

Lemma 1 (Monotonicity). Let ≤+=≤; ≤−=≥; ξ ≤x ξ′ i� xξ ≤ xξ′ and, for
all y 6= x, yξ = yξ′; I ≤f I ′ i� If ≤ I ′f and, for all g 6= f , Ig = I ′g; ν ≤α ν′ i�
αν ≤A αν′ and, for all β 6= α, βν = βν′. Assume that Γ ` t : T and ξ, ξ′ |= Γ .

� If ξ ≤x ξ′ and Pos(x, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I,νξ′,θ.

� If I ≤f I ′ and Pos(f, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I
′,ν
ξ,θ .

� If ν ≤α ν′ and Pos(α, t) ⊆ Posδ(t) then [[t]]I,νξ,θ ≤δ [[t]]I,ν
′

ξ,θ .

� If Γ ` T ≤ T ′ :s, T, T ′∈WN , [[t]]=[[t′]] whenever t→ t′, then [[T ]]I,νξ,θ ≤ [[T ′]]I,νξ,θ .

4 In the following, we do not write t since the interpretation does not depend on it.
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Theorem 1 (Accessibility correctness). If t : T �ϕ u : U , T = Cβt,
V(t) = ∅ and tσ ∈ [[T ]]µξ,σ then there is ν such that βϕν ≤ βµ and uσ ∈ [[U ]]νξ,σ.

Theorem 2 (Correctness of the computability closure). Let (f l → r, Γ ,
ϕ) ∈ R, f : (x : T )U and xγ = l. Assume that, for all (g, µ) <A (f, ϕν),
g ∈ [[τg]]µ. If ∆ c̀ t : T and ξ, σ |=ν Γ,∆ then tσ ∈ [[T ]]νξ,σ.

Proof. By induction on ∆ c̀ t : T . We only detail the case (symb). Since
(g, ψ) <A (f, ϕ), (g, ψν) <A (f, ϕν). Hence, by assumption, g ∈ [[τg]]ψν . Now, by
induction hypothesis, yδσ ∈ [[Uψδ]]νξ,σ. By candidate substitution, there exists

η such that [[Uψδ]]νξ,σ = [[Uψ]]νη,δσ. By size substitution, [[Uψ]]νη,δσ = [[U ]]ψνη,δσ.
Therefore, gyδσ ∈ [[V ]]ψνη,δσ = [[V ψδ]]νξ,σ. ut

Lemma 2 (Computability of symbols). For all f and µ, f ∈ [[τf ]]µ.

Proof. Assume that τf = (x : T )U with U distinct from a product. f ∈ [[τf ]]µ

i�, for all η, θ such that η, θ |=µ Γf , fxθ ∈ [[U ]]µη,θ. We prove it by induction on

((f, µ), θ) with (>A,→)lex as well-founded ordering. ut

Theorem 3 (Termination). β ∪R is well-founded on well-typed terms.

5 Towards another extension: sized constructors

By de�nition, constructors are restricted to types of the form (y : U)Csαv with
every occurrence of a type D 'F C in U of the form Dα (this is so in [5,2] too).
However, some functions need more general size annotations [17]:

Example 4 (Paulson's normalization procedure of if -expressions). By taking the
types expr : ?, at : expr0, if : exprα ⇒ exprβ ⇒ exprγ ⇒ expr(α+1)(β+γ+3) and
nm : exprα ⇒ exprα, one can prove the termination conditions for the rules:

(1) nm at → at
(2) nm (if at y z) → if at (nm y) (nm z)
(3) nm (if (if u v w) y z) → nm (if u (nm (if v y z)) (nm (if w y z)))

For rule (3), take ζnm(α) = α, Γ = u : exprα, v : exprβ , w : exprγ , y :
exprδ, z : exprε, υ = (α+1)(β+γ+3)(δ+ε+3), ϕ = {α 7→ υ} and nm >F at, if .
Then, one can check that υ is strictly greater than (β+1)(δ+ε+3), (γ+1)(δ+ε+3)
and (α+ 1)((β + 1)(δ + ε+ 3) + (γ + 1)(δ + ε+ 3) + 3).

The conditions on constructors imply also that non-recursive arguments are
of size ∞ (i.e. unde�ned). So, there is no way to give di�erent sizes to the terms
of a non-recursive type. Yet, it may be very useful as shown by the type blist in
the following example.

Example 5 (Quick sort). Take bool : ?, true : bool∞, false : bool∞, blist : ?,
pair : listα ⇒ listβ ⇒ blistmax(α,β) or pair : listα ⇒ listα ⇒ blistα, fst :
blistα ⇒ listα, snd : blistα ⇒ listα, ≤: nat∞ ⇒ nat∞ ⇒ bool∞, pivot : nat∞ ⇒
listα ⇒ blistα, qs : list∞ ⇒ list∞ ⇒ list∞ and qsort : list∞ ⇒ list∞.
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(1) fst (pair x y)→ x
(2) snd (pair x y)→ y

(3) ≤ 0 x→ true
(4) ≤ (s x) 0→ false
(5) ≤ (s x) (s y)→ ≤ x y

(6) if true x y → x
(7) if false x y → y

(8) pivot x nil→ pair nil nil
(9) pivot x (cons y l)→ if (≤ y x) (pair (cons y u) v) (pair u (cons y v))

where u = fst (pivot x l) and v = snd (pivot x l)

(10) qs nil l→ l
(11) qs (cons x l) l′ → qs u (cons x (qs v l′))

where u = fst (pivot x l) and v = snd (pivot x l)

(12) qsort l→ qs l nil

For rule (11), take ζqs(α, β) = α, Γ = x : nat∞, l : listδ, l′ : listε, ϕ = {α 7→
sδ, β 7→ ε} and qs >F pivot >F cons, pair, fst , snd. By (symb), c̀ x : nat∞, c̀ l :
listδ and c̀ l

′ : listε. By (symb), c̀ pivot x l : blistδ. By (symb), c̀ u : listδ and
c̀ v : listδ. By (symb), c̀ qs v l

′ : list∞. By (symb), c̀ cons x (qs v l′) : lists∞. By
(sub), c̀ cons x (qs v l′) : list∞. Thus, by (symb), c̀ qs u (cons x (qs v l′)) : list∞

since ζqs(δ,∞) = δ < ζqs(sδ, ε) = sδ.

Therefore, we naturally come to the following more general conditions, whose
justi�cation is ongoing.

De�nition 9 (Sized constructors). A type C is non-recursive if, for all con-
structor f : (y : U)Cav and j ∈ Acc(f), no D ' C occurs in Uj. The �rst, third
and fourth conditions of De�nition 3 are replaced by the following ones:

� For all j ∈ Acc(f), D 'F C and p ∈ Pos(D,Uj), p ∈ Pos+(Uj) and Uj |p =
Dα for some α <A a (α ≤A a if C is non-recursive).

� For all j ∈ Acc(f), α ∈ V(Uj) and p ∈ Pos(α,Uj), there is D 'F C and
q ∈ Pos(D,Uj) such that p = qS.

Note however that it still does not allow us to take qs : listα ⇒ listβ ⇒
listα+β and thus qsort : listα ⇒ listα since too much information is lost by
taking pair : listα ⇒ listβ ⇒ blistmax(α,β). A solution would be to take pair :
listα ⇒ listβ ⇒ blist〈α,β〉 with 〈α, β〉 interpreted as a pair of ordinals, and to
say that pivot has type nat∞ ⇒ listα ⇒ blist〈β,γ〉 for some β and γ such that
β + γ = α, as it can be done in [26].

Another interest of Xi's framework is to take into account the semantics of
conditional statements:

Example 6 (Mc Carthy's �91� function). Mc Carthy's �91� function f is de�ned
by the following equations: f(x) = f(f(x + 11)) if x ≤ 100, and f(x) = x − 10
otherwise. In fact, f is equal to the function F such that F (x) = 91 if x ≤ 100,
and F (x) = x − 10 otherwise. A way to formalize this in CACSA would be to
use conditional rewrite rules:

(1) f x → f (f (+ x 11)) if ≤ x 100 = true
(2) f x → − x 10 if ≤ x 100 = false
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and take f : natα ⇒ natF (α) and ζXf (x) = max(0, 101−x) as measure function,
as it can be done in Xi's framework. Then, by taking into account the rewrite
rule conditions, one could prove that, if Γ = x : natδ and ≤ x 100 = true, then
δ ≤ 100, ζf (δ + 11) < ζf (δ) and ζf (F (δ)) < ζf (δ).

6 Conclusion

The notion of computability closure, �rst introduced in [11] and further ex-
tended to higher-order pattern-matching [8], higher-order recursive path order-
ing [21,25], type-level rewriting[10] and rewriting modulo equational theories [7],
shows to be essential for extending to rewriting and dependent types type-based
termination criteria for (polymorphic) λ-calculi with inductive types and case
analysis [20,26,5,2]. In contrast with what is suggested in [5], this notion, which
is expressed as a sub-system of the whole type system (see Figure 3), allows
pattern-matching and does not su�er from limitations one could �nd in systems
relying on external guard predicates for recursive de�nitions.

We allow a richer size algebra than the one in [20,5,2] but do not allow
existential size variables and conditional rewriting that are essential for capturing
some size-preserving properties or some de�nitions as it can be done in [26]. Such
extensions should allow us to subsume Xi's work completely.

Some questions also need further research. In particular, matching on de�ned
symbols and decidability of type-checking. For type-checking, we believe that it
is decidable if solving inequations in A is decidable. We already have preliminary
results in this direction [9].

We made two important assumptions that also need further research. First,
the con�uence of β ∪R, which is still an open problem when R is con�uent, ter-
minating and non left-linear. Second, the preservation of typing under rewriting
for which we need to �nd decidable su�cient conditions.

We also assume that users provide appropriate sized types for function sym-
bols and then check by our technique that the rewrite rules de�ning these func-
tion symbols are compatible with their types. An important extension would be
to infer these types. Works in this direction already exist for ML-like languages.

Finally, by combining rewriting and subtyping in CC, this work may also be
seen as an important step towards a better integration of membership equational
logic and dependent type systems. Following [21,25], we also think that it can
serve as a basis for a higher-order extension of the General Path Ordering [14].
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