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Abstract: Termination is an important property required for total correctness
of programs/algorithms. In particular it is a well studied subject in the area of
term rewriting, where a number of methods and tools for proving termination has
been developed over the years. Ensuring reliability of those tools is an important
and challenging issue. In this paper we present a methodology and a tool for the
automated veri�cation of the results of such automated termination provers. This
is accomplished by means of termination certi�cates, that can be easily generated
by termination provers, and then by the transformation of those certi�cates
into full formal proofs in some proof assistant/checker. This last step is done
by formalizing the proofs of termination criteria used in modern termination
provers. In this paper we describe the formalization of some of these criteria
in the proof assistant Coq and the application of those formalizations in the
transformation of termination certi�cates into termination proofs veri�able by
Coq.
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Véri�cation Automatique de Certi�cats de

Terminaison

Résumé : Termination is an important property required for total correctness
of programs/algorithms. In particular it is a well studied subject in the area of
term rewriting, where a number of methods and tools for proving termination has
been developed over the years. Ensuring reliability of those tools is an important
and challenging issue. In this paper we present a methodology and a tool for the
automated veri�cation of the results of such automated termination provers. This
is accomplished by means of termination certi�cates, that can be easily generated
by termination provers, and then by the transformation of those certi�cates
into full formal proofs in some proof assistant/checker. This last step is done
by formalizing the proofs of termination criteria used in modern termination
provers. In this paper we describe the formalization of some of these criteria
in the proof assistant Coq and the application of those formalizations in the
transformation of termination certi�cates into termination proofs veri�able by
Coq.
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1 Introduction

In this paper we are concerned with termination of �rst-order term rewriting
systems (TRSs) [13]. It is an important and di�cult problem. Many criteria
and tools for proving termination automatically have been developed over the
last years. Such tools (and the proofs they produce) are getting more and more
complex. This makes ensuring their reliability a big challenge. Hence, in order to
be used in proof assistants or in the certi�cation of critical systems, their results
need to be formally veri�ed.

One way to accomplish this goal is to verify the tool itself by proving that
it is correct and hence its results can be trusted. This is a very hard and time-
consuming task. Moreover, every change in the tool requires to redo some of the
proofs. Another approach is to certify the output of the tool, every time it is
used, using some proof assistant/checker. This is simpler, does not depend on the
way the tool is implemented and, indeed, can be used for certifying the results
of other tools. However, this requires that the tool provides enough information
to easily check its results. We opted for the latter approach.

Our �rst contribution is CoLoR: a rich library of termination related results
(55000 lines), developed in the proof assistant/checker Coq [25]. First we de�ned
some general mathematical structures and then, building on that, formalized a
number of modern termination criteria. Some of them were already presented
in [9,29,30], hence in this paper we focus on the ones that were not presented
before. We describe the CoLoR library in Section 4, after introducing general
preliminaries (Section 2) and discussing the general architecture of our approach
(Section 3).

The second contribution is the de�nition of a formal grammar for representing
termination certi�cates. This grammar is independent both of the termination
prover (used to generate a certi�cate) and of the proof assistant (used to verify
the correctness of the certi�cate). We will introduce it in Section 5.

Finally we developed a simple program, Rainbow, that can translate the afore-
mentioned termination certi�cates into full formal proofs that can be checked
by Coq with the use of CoLoR. We will present the evaluation of the certi�ca-
tion results obtained with Rainbow in Section 7 after discussing related work in
Section 6.

More information about this project, as well as the sources of the Rainbow
program and the CoLoR library, can be found on http://color.inria.fr/.

2 Preliminaries

We begin by brie�y recalling a few basic notions and refer to [13] for further
details on term rewriting.

Let V be a set of variables, and Σ be a set of function symbols disjoint from
V, each symbol f ∈ Σ being equipped with a �xed arity ar(f) ≥ 0. A term is
either a variable or a function symbol f ∈ Σ applied to ar(f) terms. We denote
the set of terms by T (Σ,V). A substitution σ is a mapping from variables to
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4 Frédéric Blanqui , Adam Koprowski

terms. Its application to a term t, written tσ, replaces every occurrence of a
variable x in t by σ(x).

A term rewriting system (TRS) R over T (Σ,V) is a set of pairs (`, r) ∈
T (Σ,V)×T (Σ,V), for which ` 6∈ V and all variables of r occur in `. Pairs (`, r)
are called rewrite rules and are usually written as `→ r.

For a TRS R we de�ne a partition of its signature Σ into de�ned symbols (set
D) and constructors (set C): a symbol f ∈ Σ is de�ned if f is the root symbol
of a left hand side of a rule from R.

Given a TRS R, let →R be the smallest relation containing R that is stable
by context, i.e., f(. . . ti . . .)→Rf(. . . t′i . . .) whenever ti→Rt′i, and substitution,
i.e., tσ→Rt′σ whenever t→Rt′. We introduce two restrictions of →R:

�
ε→R where rewriting is allowed only at the root position (top steps) and

�
>ε→R where rewriting is allowed anywhere but at the root position.

For an arbitrary relation → we denote its re�exive and transitive closure by
→∗. A binary relation → is called terminating or strongly normalizing, SN(→),
if it is well-founded, i.e., there exists no in�nite sequence t0, t1, . . . such that
ti → ti+1 for all i ∈ N. A TRS R is called terminating if SN(→R) holds.

A binary relation →1 is called terminating relative to a binary relation →2,
written as SN(→1 /→2), if there is no in�nite sequence t0, t1, . . . such that

� ti →1 ti+1 for in�nitely many values of i, and
� ti →2 ti+1 for all other values of i.

We use the notation →1 /→2 to denote →∗2 · →1, the composition of →∗2 and
→1. Then SN(→1 /→2) coincides with well-foundedness of →∗2 · →1.

3 General architecture

In this section we give an overview of our approach to certi�cation of termination.
Our goal is to verify the results produced by termination provers with the use
of the Coq proof assistant [25,4]. This is achieved by means of certi�cates, that
is a transcription of termination proofs in a dedicated format. There are three
main ingredients to our approach, which we will discuss in more detail in the
remainder of this paper:

� CoLoR (Coq library on Rewriting and Termination): a Coq library consisting
of formalized termination techniques (Section 4),

� TCG (Termination Certi�cates Grammar): a format for termination certi�-
cates (Section 5),

� Rainbow: a simple program transforming termination certi�cates to formal
termination proofs, veri�able by Coq (Section 7).

We now sketch how the certi�cation process looks like. For a given TRS R
some termination prover is called. If it succeeds in proving termination with the
currently supported methods, it outputs a termination certi�cate in the TCG

INRIA
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problem.trs
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Fig. 1. Certifying termination with CoLoR and Rainbow

format. This certi�cate is then given to Rainbow which translates it into a Coq
script containing a formal proof of the claim thatR is terminating. To accomplish
that, Rainbow uses the theorems and tactics of CoLoR. Then Coq is executed on
this script (as a proof checker) to validate that the argument provided by the
termination tool is correct. The information �ow is summarized in Figure 1.

4 CoLoR: a Coq Library of Results on Termination

Coq [25,4] is a proof assistant/checker based on the Calculus of Inductive Con-
structions (CIC) [37], a very rich typed λ-calculus following the proofs-as-objects
principle including simple, inductive, dependent and polymorphic types. It al-
lows to de�ne functions using �xpoints and pattern matching, but recursive calls
must be done on structurally smaller arguments to ensure termination. It also
provides a high-level tactic language allowing to do non-linear pattern-matching
on the current goals and hypotheses [11]. Proofs can then be built by using user-
de�ned and built-in tactics ranging from basic tactics like applying a theorem,
to complex tactics like a decision procedure for Presburger arithmetic.

In this section, we present the Coq formalization of various advanced termi-
nation criteria used in modern automated termination provers. These criteria
are then used to certify termination proofs that make use of them. For doing
this, there are two distinct approaches depending on the way objects (such as
rewrite rules, interpretations, etc.) are formalized in the proof assistant: using
a shallow embedding or a deep embedding. In a shallow embedding, no speci�c
representation of the objects under consideration is developed in the proof as-
sistant. For instance a polynomial is represented by a function, whereas in a
deep embedding, a data type for polynomials is de�ned and a general theory
of polynomials can be developed. Both approaches have their advantages and
disadvantages. A combination of both approaches is also possible.

At the moment CoLoR uses deep embeddings only. This means that, apart
from formalized termination criteria, it also contains developments of various
libraries on mathematical structures, data structures and term structures that
can be of general interest and may be used in other formalization e�orts not
necessarily related to termination and/or rewriting.

Altogether, the CoLoR library has nearly 55000 lines of code (including com-
ments and blank lines) with approximately 1070 de�nitions, 130 tactics and 2800

RR n° 6949



6 Frédéric Blanqui , Adam Koprowski

theorems (many of which being simple but nonetheless necessary). As a com-
parison, the standard library of Coq 8.2 has approximately 127000 lines of code,
2660 de�nitions, 315 tactics and 7000 theorems.

Since the development is huge, we can only give some overall description of it.
We will however describe some of the basic types and some interesting functions.

Finally, it is important to note that all CoLoR theorems are proved construc-
tively. In the literature on termination, proofs are generally classical, deducing
a contradiction from the existence of an in�nite reduction sequence. Finding
a good induction argument for converting a classical proof into a constructive
proof may be non-trivial (if not impossible).

4.1 Libraries on mathematical structures

We currently have two main libraries on mathematical structures: a library on
relations/graphs and a library on semi-rings.

Relations and graphs A relation R on a set A (object of type Type in Coq)
is represented as an object of the functional type A → A → Prop, where Prop
is the type of propositions. Strong normalization of an element x of type A
is de�ned inductively as usual: SN R x if, for all y such that R x y, SN R y
(this is equivalent to Acc (transp R) x in Coq). Then, R is called terminating
(or well-founded, or strongly normalizing) if every term of type A is strongly
normalizing.

As already mentioned in the previous section, relative termination plays an
important role in termination proofs. The termination of R relatively to E is
de�ned as the strong normalization of the relation E∗ · R, where E∗ is the
re�exive and transitive closure of E.

Furthermore, various notions are de�ned like the notions of relation iteration,
path, cycle, strongly connected component and adjacency matrix, and various
basic properties are established about them.

Among the most notable things, let us mention:

� As part of a more general work on Nash equilibrium, constructive proofs of
various results on linear extensions [38].

� A function computing the strongly connected components of a �nite relation
(graph), using boolean adjacency matrices [14].

� General theorems about the (relative) strong normalization of the combina-
tion (union and/or composition) of various relations. For instance, R · E∗
terminates if R terminates and E ·R ⊆ R. Or (E ∪E′)∗ · (R∪R′) terminates
if both E∗ ·R and (E ∪R)∗ · (E′ ∪R′) terminate.

Semi-rings A commutative semi-ring [21] consists of a carrier D, two desig-
nated elements d0, d1 ∈ D and two binary operations ⊕,⊗ on D, such that
both (D, d0,⊕) and (D, d1,⊗) are commutative monoids and multiplication dis-
tributes over addition: ∀x, y, z ∈ D : x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).

The Coq standard library contains a notion of a commutative semi-ring cor-
responding to the de�nition presented above that is used for the inner workings

INRIA



Automated Veri�cation of Termination Certi�cates 7

of the ring tactic. CoLoR builds on that but encloses the semi-ring speci�cation
within a module providing a real encapsulation and modularization. This allows
for instance to de�ne matrices over an arbitrary semi-ring of coe�cients, which
we will introduce in the following section. It also allows to prove a number of
results following from the speci�cation of a semi-ring that will automatically be
available for any instantiation to an actual semi-ring. A few such instantiations
are provided:

� standard semi-rings over natural numbers and integers (with standard addi-
tion and multiplication operations);

� arctic semi-ring: natural numbers/integers extended with −∞ with max as
arctic addition and with standard addition, +, as semi-ring multiplication;

� a tropical semi-ring: dual to arctic, i.e., natural numbers extended with +∞
with min and + operations, is work in progress.

4.2 Libraries on data structures

The CoLoR library contains many functions and theorems on basic data struc-
tures like lists, vectors, polynomials, matrices and �nite multisets. We just men-
tion some interesting points.

Vectors vector :Type → N→ Type is the polymorphic and dependent inductive
type whose constructors are Vnil : ∀ (A : Type), vector A 0 and Vcons : ∀ (A :
Type) (n : N),A → vector A n → vector A (n + 1). It corresponds to lists
of �xed length or arrays. The use of dependent types is in general somewhat
di�cult (because of the type constraints generated by the dependencies) but
they are quite powerful. For instance, a term of type vector A n has n elements
by construction. CoLoR provides a rich set of functions on vectors and theorems
about them, that has been reused in a formalization of the spi-calculus [5].

Polynomials The monomial xk11 . . . xknn is represented by the vector of natural
numbers (k1, . . . , kn). A polynomial

∑p
i=1 cimi, where mi is a monomial, is then

represented by a list of pairs (ci,mi). A polynomial can therefore have di�er-
ent representations. The library provides functions to compose and decompose
polynomials as well as all the basic operations on them (addition, multiplication,
power, composition, evaluation on integers) and theorems on monotonicity [23].
In contrast to matrices or multisets, polynomials are not yet de�ned as a func-
tor building a structure for polynomials given a structure for the coe�cients.
We however expect to change this in order to be able to certify proofs using
polynomial interpretations with rational or real coe�cients [34,16].

Multisets Finite multisets have been formalized to prove the well-foundedness
of the higher-order recursive path ordering (HORPO) [26]. The main property
is the fact that the multiset extension of a well-founded relation is well-founded.
This, and all the other results about multisets, are proved axiomatically from a
small set of functions and their speci�cations, using the module system of Coq.
This means that all those results are independent of a particular representation
of multisets. A simple implementation using lists is provided.

RR n° 6949



8 Frédéric Blanqui , Adam Koprowski

Matrices Matrices are implemented as vectors of vectors and are generic, i.e.,
their entries come from an arbitrary semi-ring. A number of operations on ma-
trices is provided (matrix creation, access functions, transposition, addition and
multiplication) along with proofs for a number of matrix properties (such as
associativity of matrix multiplication). Matrices are used for matrix and arctic
interpretations [29,30].

4.3 Libraries on term structures

Ultimately, the CoLoR project is interested in certifying the termination of pro-
grams, for various programming paradigms: string rewrite systems (SRS), term
rewrite systems (TRS), logic programs, functional programs and imperative pro-
grams. For the moment, we mainly considered the �rst two paradigms. Note
however that logic programs and functional programs can be proved terminat-
ing by using techniques developed for rewrite systems [35,18]. To this end, we
formalized various kinds of term structures:

Strings Strings (or words) over an alphabet A are simply represented as lists
of elements of type A. For the moment, few notions have been formalized on
strings: context, string rewrite rule and string rewrite system reversal: an SRS
R terminates i� its inverse R−1 = {(u, v) | (v, u) ∈ R} terminates.

First-order varyadic terms First-order terms over a set Sig of function sym-
bols of varyadic arity are represented by an inductive type term : Set whose
constructors are Var : N → term and Fun : Sig → list term → term. For the
moment, only the notions of context, substitution and rewriting are de�ned.

First-order terms with �xed arity Usual �rst-order terms over a set Sig of
function symbols of �xed arity are represented by a dependent inductive type
term : Set whose constructors are Var and Fun de�ned below. This is the most
developed term library. It contains the formalization of many notions like: in-
terpretation (universal algebra), substitution (de�ned as an interpretation on
terms), context, rewriting, (weak) reduction ordering/pair, syntactic uni�cation,
etc. Below we will illustrate the basic notions of this term structure; another ex-
ample can be found in Section A.

To de�ne terms we will represent variables by natural numbers, so V = N
and the signature Σ is de�ned as:

Notation variable := N (only parsing).
Record Signature : Type := mkSignature {

symbol :> Type;
arity : symbol → N;
eq_symbol_dec : ∀ f g : symbol , {f = g }+ {∼f = g }}.

So it is a set of symbols, symbol , an arity function, arity , and a procedure to
decide equality of symbols. So now we can easily de�ne terms, where a term is
either a variable or a function symbol f from Sig applied to arity f terms.

Variable Sig : Signature.
Inductive term : Type :=

INRIA
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| Var : variable → term
| Fun : ∀ f : Sig , vector term (arity f )→ term.

Now a rewrite rule is simply a pair of terms and a TRS is a list of rules. Note
that for a rewrite rule `→ r we do not enforce at this point the usual condition
that ` is not a variable and the variables of r are a subset of variables of `.

Record rule : Type := mkRule {lhs : term; rhs : term }.
Definition trs := list rule.

Simply-typed λ-terms Finally, CoLoR also provides a formalization of simply-
typed λ-terms, using de Bruijn representation for bound variables. This formal-
ization was used in the proof of well-foundedness of HORPO [26]. The library
is quite extensive and contains many de�nitions standard for the simply-typed
λ-calculus along with few less standard ones (like many-variables, typed substitu-
tion or an equivalence relation on terms extending the concept of α-convertibility
to free variables). Many results are provided as well, such as subject reduction
and termination for β-reduction. For more details we refer to [27].

4.4 Termination Results

The focus of CoLoR is on providing formalizations of actual methods for proving
termination. At the moment we can handle three types of termination problems:

� full termination, i.e., SN(→R),
� relative termination, i.e., SN(→R/→S) and
� relative, top termination, i.e., SN( ε→R/→S), used in conjunction with the
dependency pair transformation, see Theorem 1 below.

Interpretation-based methods Currently CoLoR contains the following interpretation-
based termination criteria: polynomial interpretations [33,23], matrix interpre-
tations [15,29], and arctic interpretations [30].

All those methods are formalized in the setting of monotone algebras � a
general framework for interpretation-based termination methods. It is incorpo-
rated in CoLoR in its full generality, making it easier to add further methods
that �t into this setting.

We refer to the original papers for more details on the formalization of those
termination techniques and of monotone algebras.

Dependency Pair Method The dependency pair method [3] is a powerful
transformational method for proving termination of rewriting. It enjoys a number
of extensions that all �t into the dependency pair framework [19].

Now we describe the basic dependency pair transformation. For every de�ned
symbol f ∈ D we add to the signature a new marked symbol f# with the same
arity as f . If f(s1, . . . , sn) → r is a rule in R, g(t1, . . . , tm) is a subterm of
r and g ∈ D, then the rewrite rule f#(s1, . . . , sn) → g#(t1, . . . , tm) is called
a dependency pair of R. The TRS consisting of all dependency pairs of R is
denoted by DP(R).

The �rst main result concerning the dependency pair transformation that
has been formalized in CoLoR is:

RR n° 6949



10 Frédéric Blanqui , Adam Koprowski

Theorem 1 ([3]). Let R be a TRS. Then SN(→R) i� SN( ε→DP(R)/→R).

For proving this theorem, we used the notion of (constructor) cap and (de-
�ned) aliens described in Appendix A. Indeed, a term is strongly normalizing if
all its (de�ned) aliens are strongly normalizing.

Then, an important technique at the core of the dependency pair method
is the analysis of the dependency graph, that is, the possible dependency pairs
that can follow each other [3].

De�nition 2 (Dependency graph [3]). The dependency graph of a TRS R
is the relation G(R) on DP(R) such that (`1 → r1) G (`2 → r2) i� r1σ →∗R `2τ
for some substitutions σ and τ .

The analysis of the dependency graph strongly connected components allows
to split a problem into smaller sub-problems in such a way that the termination
of the original problem follows from the termination of all of its sub-problems:

Theorem 3 ([17]). Let R be a TRS, and SCC1, . . . ,SCCn be all the strongly
connected components of G(R). Then, SN( ε→DP(R)/→R) i� SN( ε→SCCi/→R) for
every i ∈ {1, . . . , n}.

Certifying the use of such a technique raises two important di�culties.
First, since the dependency graph is undecidable in general, termination

provers use over-approximations of it. The most well-known over-approximation
of the graph is based on uni�cation: (`1 → r1) G (`2 → r2) i� r′1 and `2 are uni�-
able, where r′1 is obtained from r1 by �rstly replacing all its subterms with a
de�ned root symbol by a variable (this is the notion of cap described in Appendix
A) and then replacing all variables of such a term with fresh ones (linearization).

To answer this �rst problem, we formalized in Coq some uni�cation algorithm
and proved its correctness, termination and completeness (the algorithm always
terminates with a solution when two terms are uni�able). For proving its ter-
mination, we used the lexicographic and multiset orderings already formalized
in CoLoR. Then, using the completeness of this uni�cation algorithm, we could
prove the correctness of the over-approximation just described.

The second problem is the computation of strongly connected components.
In a �rst attempt, Léo Ducas formalized in CoLoR an algorithm for computing
strongly connected components by using adjacency matrices [14]. It appeared
that this was not very e�cient in Coq. We then realized that we do not need to
do such computations and formalized the following theorem in CoLoR:

Theorem 4. Let R be a TRS, and [C1; . . . ;Cn] be a valid decomposition, i.e.:

�
⋃n
i=1 Ci = DP(R),

� for all i < j, xi ∈ Ci and xj ∈ Cj, there is no edge in G(R) from xj to xi.

Then, SN( ε→DP(R)/→R) i� SN( ε→Ci/→R) for every i ∈ {1, . . . , n}.

INRIA



Automated Veri�cation of Termination Certi�cates 11

Hence, now, Rainbow can certify termination proofs based on this more gen-
eral theorem. The �rst condition is reduced to testing the inclusion of the ele-
ments of a list into another one, which can be carried out e�ciently in Coq by
using the tactic �intuition�. The second condition is reduced to boolean com-
putations and the use of the uni�cation algorithm, which can be carried out
e�ciently in Coq by using the tactic �vm_compute� [22].

Argument Filtering The argument �ltering method [3] is another transforma-
tional method that consists in removing some arguments of a function symbol,
or replacing a function call by one of its arguments.

De�nition 5 (Argument �ltering [32]). An argument �ltering function is a
function π such that for any f ∈ Σ, π(f) is either an integer i or a list of integers
[i1, . . . , im] (m ≥ 0) such that 0 ≤ i, i1, . . . , im ≤ ar(f). We can naturally extend
π to terms as follows:

π(x) = x

π(f(t1, . . . , tn)) = π(ti) if π(f) = i

π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) if π(f) = [i1, . . . , im]

And to TRSs as: π(R) = {π(`)→ π(r) | `→ r ∈ R}.

Theorem 6 ([3]). Let E and R be TRSs over a signature Σ and π be an argu-
ment �ltering function on Σ. Then, SN( ε→π(R)/→π(E)) implies SN( ε→R/→E).

This method, restricted to non-collapsing argument �ltering functions (i.e.,
every π(f) maps to a list of integers and not to a single integer), has been
formalized in CoLoR. It should not be too di�cult to extend the formalization
in order to get rid of that restriction.

Finally, it is interesting to note that the formalization of termination criteria
represents only 19% of the size of CoLoR: 26% is about data structures, 14% is
about mathematical structures and 41% is about term structures.

5 A Grammar for Termination Certi�cates

It is well known that, for a given problem, it is generally easier to check that a
solution is correct than to try to �nd such a solution. For problems of the form
�Does the object a have the property P?�, where the answer is �Yes� or �No�,
checking the correctness of the answer requires a certi�cate c, that is some piece
of data, some evidence, on which one can do some computations (simpler than
checking whether a has property P ) to check if the answer is correct. And even
if �nding a solution and checking whether a solution is correct lie in the same
complexity class, the di�erence may be important in practice.

Our aim is to provide a high-level grammar (and its semantics) for termina-
tion certi�cates allowing easy transformation of such certi�cates to formal proofs
checkable by some proof assistant. Several constraints guided us in the design of
this grammar:
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12 Frédéric Blanqui , Adam Koprowski

� The certi�cates should provide enough information so that they can be
checked with reasonable complexity.

� The certi�cates should be independent of the tools used to produce them,
and independent of the proof assistants used for checking them.

We developed such a grammar, TCG, for Termination Certi�cates Grammar,
along with Rainbow � a tool to transform proofs in the TCG format into for-
mal Coq proofs using the results from CoLoR. Due to space considerations we
are unable to present the grammar in full detail here and we need to restrict
its presentation to a few general remarks. However, the full TCG (as an XML
schema, as the grammar is implemented using XML) with comments and exam-
ples is available via the web-page of the project, http://color.loria.fr, and
the interested reader is encouraged to consult it.

A termination proof consists of a number of applications of well-known meth-
ods for proving termination, some of which we presented in Section 4.4. Each
theorem can be presented as an inference rule with a number of premises and a
conclusion. This naturally gives a tree structure to any termination proof and
this tree structure is re�ected in the TCG.

Each node in the tree corresponds to an instance of some theorem formalized
in CoLoR. For instance, apart from identifying the theorem to be used it contains
all the information required to instantiate this theorem. For instance, the node
for the matrix interpretation method will contain the dimension for the matrices
and a matrix interpretation for every function symbol in the signature of the
problem under consideration.

The grammar is designed such that it is easy to extend it with new methods as
their formalizations are added to the CoLoR library. It is also easy for the authors
of the termination proving tools to use our approach to certify the results of their
tools merely by adding support for TCG as another output format of their tools
and making sure that the theorems they use correspond to the ones available in
CoLoR. For many termination techniques this is not problematic as their theory
is well-established and uniform across all termination provers.

Below we present an example of a TRS, its termination proof expressed in the
TCG format and the resulting Coq termination proof, as generated by Rainbow.

Example 7. Consider the rewrite system AG01/#3.1.trs from TPDB [1]:

minus(x, 0)→ x minus(s(x), s(y))→ minus(x, y)
quot(0, s(y))→ 0 quot(s(x), s(y))→ s(quot(minus(x, y), s(y)))

Using the DP method introduced in Section 4.4 we obtain 3 dependency pairs:

(1) minus#(s(x), s(y))→ minus#(x, y) (2) quot#(s(x), s(y))→ minus#(x, y)

(3) quot#(s(x), s(y))→ quot#(minus(x, y), s(y))

INRIA
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and 2 SCCs in the approximated dependency graph: {(1)} and {(2),(3)}. Both
SCC can be proven terminating using polynomial interpretations [33]; the latter
one with the following interpretation:

s(x) = x+ 2 minus(x, y) = x+ 1
quot#(x, y) = xy + x+ y minus#(x, y) = x+ 1

To deal with this proof formally Rainbow �rst transforms the TPDB speci�-
cation of the TRS in the TCG problem format (see Figure 3 in the appendix).
Then the proof sketched above needs to be represented in the TCG proof format
(see Figure 4 in the appendix for the snippet of this proof; note that the format
is quite verbose but it is not intended to be directly read/written by humans).

Taking those two �les as an input Rainbow automatically produces a Coq
script containing formal termination proof. Such script corresponding to the
proof sketched above is presented in Figure 2.

6 Related Work

In [7,10], it is described another termination proof certi�cation back-end based
on a Coq library called Coccinelle developed for certifying the results of the
automated termination prover CiME [8]. The approach followed in this work
is di�erent from ours. CiME uses shallow embeddings for representing rules, de-
pendency pairs or polynomial interpretations, where as we use deep embeddings.
They use no general theorem like the ones described in the previous sections, the
conditions of which can be checked by doing simple computations and applying
simple tactics. Instead, some adhoc proofs are generated each time. Hence, the
size of Coccinelle is about half of the size of CoLoR, and the Coq scripts gener-
ated by CiME are much longer than the ones generated by CoLoR.1 Debugging a
tool generating such long and complex Coq scripts must be di�cult. In contrast,
the scripts generated by Rainbow are short and clear: �rst, all proof ingredients
(rules, interpretations, etc.) are de�ned; second, in the termination proof itself,
each TCG proof node is translated by a tactic de�ned in CoLoR. Hence, even
non Coq-experts can understand the generated �les and, in case of failure, easily
and precisely localize which theorem application did not succeed and why. See
Appendix 7 for an example of generated proof.

We must also mention the work of Krauss et al on the formalization in the
proof assistant Isabelle/HOL [36] of a termination criterion using lexicographic
comparisons [6] and of Lee, Jones and Ben-Amram's size-change principle [31].
The motivation of Krauss et al is di�erent than ours. They developed implemen-
tations of these termination criteria that directly produce Isabelle/HOL proofs,
in order to automatically check the termination of Isabelle/HOL functions. But
it should be possible for any termination prover using these criteria to produce
some certi�cate from which a proof in Isabelle/HOL could be built.

1 Generated �les and times taken by Coq for checking them can be consulted in [2].
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Module M .(* the set of symbols in the signature *)

Inductive symb : Type :=
| minus : symb
(* ... remaining symbols ... *).

End M .

Definition ar (s : M .symb) : N := (* their arity *)

match s with
| M .minus ⇒ 2
(* ... remaining symbols ... *)

end.

Definition S := nil .(* S is empty *)

Definition R := (* R contains the set rewrite rules *)

R0 (S0 .minus (S0 .succ (V0 0)) (S0 .succ (V0 1)))
(S0 .minus (V0 0) (V0 1))

:: (* ... remaining rules ... *)

(* and we consider the rewrite relation →R/→S *)

Definition rel := ATrs.red_mod S R.

(* polynomial interpretation used to solve SCC {(2), (3)} *)

Module PIS2 <: TPolyInt .
Definition trsInt f :=

match f as f return poly (@ASignature.arity s1 f ) with
| (hd_symb M .minus)⇒ (* minus# mapped to x+1 *)

((1) % Z , (Vcons 1 Vnil))
:: ((1) % Z , (Vcons 0 Vnil))
:: nil

(* ... remaining symbols ... *)

end.
(* Interpretation is weakly monotone *)

Lemma trsInt_wm : ∀ f , pweak_monotone (trsInt f ).
Proof .pmonotone.Qed.

End PIS2 .
Module PI2 := PolyInt PIS2 .

(* termination proof of the system *)

Lemma termination : WF rel .
Proof .
dp_trans. (* apply DP transformation *)

mark . (* mark DP symbols *)

graph_decomp(* ... *). (* graph decomposition *)

dpg_unif _N_correct . (* proof that decomposition is correct *)

(* ... *) (* proof for the first SCC *)

PI2 .prove_termination.(* proof for the second SCC with PI2 *)

termination_trivial . (* then termination trivial *)

Qed.

Fig. 2. Formal Coq script corresponding to the termination proof of Example 7
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7 Evaluation

The termination competition [2] is a forum for termination provers to compete
on a set of problems, the so called termination problems database (TPDB) [1]. It
allows to compare di�erent tools and techniques and stimulates the research in
the area of automated termination. In this competition every tool is run on every
problem from the database and for every problem, unless it gives up, it must
decide whether it is terminating or not and support this claim with an informal
textual description, which, in principle, should provide enough information for
a human to reconstruct the complete termination proof. The database contain
string rewrite systems (SRS), term rewrite systems (TRS), logic programs and
Haskell programs, and some of the termination problems are open.

The competition started back in 2003 and, in 2007, for the �rst time the
certi�ed TRS category was introduced, showing recognition for the importance
of the work in this area. Indeed, every year, several tools are disquali�ed because
some error is found in their answers. In the certi�ed category, every tool must
support its claim with a full proof checkable in some well established proof
assistant/checker. This ensures the highest reliability of the results one can get.

It is di�cult to make a precise, fair comparison between CoLoR and A3PAT
(i.e., the CiME certi�cation tool based on Coccinelle), all the more so since they
do not support the same termination techniques. For instance, Coccinelle sup-
ports lexicographic path ordering and graph decomposition based on uni�cation
(CoLoR supports this now too), while CoLoR supports matrix interpretation. We
however summarized the results of the last two competitions hereafter. Note that
AProVE-cert runs AProVE-CoLoR and AProVE-A3PAT in parallel.

2008 TRS competition
Tool Score/1391 %

AProVE [20]-cert 594 42.7
AProVE-CoLoR 580 41.7
AProVE-A3PAT 532 38.2
CiME [8]-A3PAT 531 38.2

Matchbox [39]-CoLoR 458 32.9

2008 SRS competition
Tool Score/732 %

Matchbox [39]-CoLoR 466 63.7
AProVE [20]-cert 420 57.4
AProVE-CoLoR 415 56.7
AProVE-A3PAT 114 15.6

2007 TRS competition
Tool Score/975 %

TPA [28]-CoLoR 354 36.3
CiME [8]-A3PAT 317 32.5
TTT2 [24]-CoLoR 289 29.6

8 Conclusion and Future Work

In the area of term rewriting, termination of �rst-order TRSs is an important
topic, attracting a lot of research interest. There is a number of tools auto-
matically producing proofs of termination. The complexity of those proofs is
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continuously increasing, which naturally calls for some way of veri�cation. This
has been recognized in the community and in 2007 in the annual termination
competition a new certi�ed category has been introduced.

In this paper we presented an approach to certi�cation of termination proofs.
It consists of a Coq library of formalized termination related results and tech-
niques (CoLoR), a formal grammar for termination certi�cates (TCG) and a pro-
gram transforming proofs in the TCG format to formal Coq proofs (Rainbow).
Rainbow is kept as simple as possible in order not to introduce errors.

This approach turned out to be successful since CoLoR-Rainbow (now used
by four di�erent provers: AProVE, Matchbox, TPA and TTT2) was the best cer-
ti�cation back-end in the last two termination competitions [2].

So far two workshops on certi�ed termination have been organized (Nancy
in 2007 and Leipzig in 2008, see http://termination-portal.org) bringing
together developers of automated termination provers and developers of certi�ed
libraries on termination. Based on the resulting discussions, we expect to carry
on with the CoLoR project in various directions:

� Formalize, or �nish to formalize, other transformational methods and termi-
nation criteria like RPO [12] or semantic labeling [40].

� Add to CoLoR other notions of rewriting like innermost and AC rewriting.
� Improve the e�ciency of the functions used for computing the arguments
and checking the conditions of termination criteria. Although, in the 2007
competition, the average time for Coq to check a proof was about 2 seconds,
few proofs required substantially more time to be veri�ed.

Acknowledgments. We thank everybody who contributed to the CoLoR li-
brary: Solange Coupet-Grimal, William Delobel, Léo Ducas, Jörg Endrullis,
Sébastien Hinderer, Stéphane Le Roux, Johannes Waldmann and Hans Zan-
tema.
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A Example of higher-order dependent program

We illustrate the use of higher-order dependent types by presenting the formal-
ization of the notions of cap and aliens of a term used in CoLoR.

Assume that Sig is the disjoint union of two sets C and D (e.g. constructors
and de�ned symbols). Then, the cap of t is the biggest term (up to variable
renaming) matched by t and whose symbols are all in C. The biggest subterms
of t that are headed by a symbol of D are the alien subterms of t .

These notions are often used in the proofs of modularity results, i.e., when
combining terms of di�erent signatures, and are indeed used in the proof of the
dependency pair theorems described in Section 4. This formalization provides a
nice example of higher-order dependent function.

Let Cap be the set of triples (k , f , v) such that:

� k : N is the number of aliens,
� f : terms k → term is a function which, given a vector v of k terms, returns
the cap of t with the i -th alien replaced by the i -th term of v ,

� v : terms k is the vector of the k aliens.

Consider also the following auxiliary functions:

� sum :∀ n,Caps n → N be the function computing the total number of aliens
of a vector cs of Cap's (ki, fi, vi): sum cs= k1 + . . .+ kn;

� conc : ∀ (n : N) cs,Caps n → terms (sum cs) be the function concatenating
all the alien vectors of a vector cs of Cap's (ki, fi, vi): conc cs= v1@ . . .@vn;

� Vmap_sum : ∀ (n : N) (cs : Caps n), terms (sum cs) → terms n be the
function that, given a vector of Cap's (ki, fi, vi), breaks a vector of (sum cs)
terms into n vectors wi of size ki, apply fi to wi and concatenate all the
results: Vmap_sum cs =f1(w1)@ . . .@fn(wn).

Then the function cap de�ned below is such that, if cap (t) = (k , f , v), then
t = f (v). The usual de�nition of cap is obtained by applying f to fresh variables.

Fixpoint cap (t : term) : Cap :=
match t with
| Var x ⇒ mkCap (λ ⇒ t ,Vnil)
| Fun f ts ⇒

let fix caps n (ts : terms n) {struct ts } : Caps n :=
match ts in vector n return Caps n with
| Vnil ⇒ Vnil
| Vcons t n ′ ts ′ ⇒ Vcons (cap t) (caps n ′ ts ′) end

in if condition f then
mkCap (λv ⇒ Vnth v (lt_O_Sn 0),Vcons t Vnil)

else let cs := caps (arity f ) ts in
mkCap (λv ⇒ Fun f (Vmap_sum cs v), conc cs) end.

If t is a variable, then there is no alien and the cap of t the constant function
equal to t . If t is headed by a symbol f ∈ D, then t is an alien and the cap of t
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is the �rst projection. And if t is headed by a symbol f ∈ C, then the aliens are
obtained by concatening the aliens of each of the subterms of t , and the cap of
t is obtained by using Vmap_sum.

B XML �les in the TCG format

<problem>
<t r s>
<algebra>
<s i gna tu r e>
<mapping>
<fun>minus</ fun>
<a r i t y>2</ a r i t y>

</mapping>
<!−− ar i t y mapping for remaining symbols −−>

</ s i gna tu r e>
</ a lgebra>
<ru l e s>
<ru l e>
<lh s>
<app><fun>minus</ fun>
<arg><app><fun>s</ fun>

<arg><var>0</var></arg></app></arg>
<arg><app><fun>s</ fun>

<arg><var>1</var></arg></app></arg>
</app>

</ lh s>
<rhs> <!−− righ−hand s ide of the ru l e −−> </ rhs>

</ ru l e>
<!−− remaining ru l e s −−>

</ ru l e s>
</ t r s>

</problem>

Fig. 3. TCG description of the TRS introduced in Example 7
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<proo f>
<dp> <!−− (1) apply DP transformation −−>
<proo f> <!−− proof a f t e r performing (1) −−>
<mark_symbols> <!−− (2) mark the DP symbols (#) −−>
<proo f>
<decomp> <!−− (3) perform the graph −−>
<graph> <!−− decomposition using graph −−>
<un i f /> <!−− approx . v ia un i f i c a t i on −−>

</graph>
<component> <!−−(4a) proof for the f i r s t SCC −−>

< . . .> <!−− omitted −−>
</component>
<component> <!−−(4b ) the second SCC −−>
<ru l e s> <!−− spec . of the component −−>
< . . .> <!−− ( l i s t of i t s ru l e s ) −−>

</ ru l e s>
<proo f> <!−− proof of i t s termination −−>
<manna_ness> <!−− we use Manna−Ness c r i t e r i on −−>
<order>
<poly_int> <!−− with polynomial i n t e rp r e t . −−>
<mapping> <!−− we map: −−>

<fun>
<hd_mark> <!−− minus_#(x , y ) −−>
minus

</hd_mark>
</ fun>
<polynomial> <!−− to the polynomial (1*x + 1) −−>
<monomial> <!−− f i r s t monomial (1*x ) −−>
<coe f>1</ coe f> <!−− 1* −−>
<var>1</var> <!−− x^1* −−>
<var>0</var> <!−− y^0 −−>

</monomial>
<monomial> <!−− second monomial: (1) −−>
<coe f>1</ coe f>
<var>0</var>
<var>0</var>

</monomial>
</polynomial>

</mapping>
< . . .> <!−− mapping of remaining symbols −−>

</poly_int>
</ order>
<proo f> <!−− a f t e r PI there are no more −−>
<t r i v i a l /> <!−− ru l e s so termination i s −−>

</proo f> <!−− t r i v i a l −−>
</manna_ness>

</ proo f>
</component>

</decomp>
</proo f>

</mark_symbols>
</ proo f>

</dp>
</proo f>

Fig. 4. Termination proof presented in Example 7 in the TCG format
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