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Abstract: The notion of computability closure has been introduced for proving the termi-
nation of the combination of higher-order rewriting and beta-reduction. It is also used for
strengthening the higher-order recursive path ordering. In the present paper, we study in
more details the relations between the computability closure and the (higher-order) recursive
path ordering. We show that the �rst-order recursive path ordering is equal to an order-
ing naturally de�ned from the computability closure. In the higher-order case, we get an
ordering containing the higher-order recursive path ordering whose well-foundedness relies
on the correctness of the computability closure. This provides a simple way to extend the
higher-order recursive path ordering to richer type systems.
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(HO)RPO Revisité

Résumé : La notion de clôture de calculabilité a été introduite pour prouver la terminaison
de la combinaison de récriture d'ordre supérieur et de beta-réduction. Elle est aussi utilisée
pour enrichir l'ordre récursif sur les chemins (RPO) à l'ordre supérieur (HORPO). Dans
cet article, nous étudions la relation entre la clôture de calculabilité et (HO)RPO. Nous
montrons que RPO est égal à un ordre naturellement dé�nit à partir de la clôture. A l'ordre
supérieur, nous obtenons un ordre contenant HORPO dont la preuve de bonne fondation
repose sur la correction de la clôture. Cela fournit une manière simple d'étendre HORPO à
des systèmes de types plus riches.

Mots-clés : terminaison, ordre, lambda-calcul, réécriture
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1 Introduction

We are interested in automatically proving the termination of the combination of β-reduction
and higher-order rewrite rules. There are two important approaches to higher-order rewrit-
ing: rewriting on βη-equivalence classes (or βη-normal forms) [22] with higher-order pattern-
matching (higher-order uni�cation on higher-order patterns has been proved decidable in
[23]), and the combination of β-reduction and term rewriting with higher-order pattern-
matching [18]. The relation between both has been studied in [27]. The second approach is
more atomic since a rewrite step in the �rst approach can be directly encoded by a rewrite
step together with β-steps in the second approach. In this paper, we consider the second
approach, restricted to �rst-order pattern-matching (we do not have abstractions in rule
left-hand side).

The combination of β-reduction and rewriting is naturally used in dependent type sys-
tems and proof assistants implementing the proposition-as-type and proof-as-object paradigm.
In these systems, two propositions equivalent modulo β-reduction and rewriting are consid-
ered as equivalent (e.g. P (2 + 2) and P (4)). This is essential for enabling users to formalize
large proofs with many computations, as recently shown by Gonthier and Werner's proof of
the Four Color Theorem in the Coq proof assistant. However, for the system to be able to
check the correctness of user proofs, it must at least be able to check the equivalence of two
terms. Hence, the necessity to have termination criteria for the combination of β-reduction
with a set R of higher-order rewrite rules.

To our knowledge, the �rst termination criterion for such a combination is Jouannaud
and Okada's General Schema [12, 13]. It is based on Tait's technique for proving the strong
normalization of the simply-typed λ-calculus [25]. Roughly speaking, since proving the
strong β-normalization of simply-typed λ-terms by induction on the term structure does not
work directly, Tait's idea was to prove a stronger property that he called strong computabil-
ity. Extending Tait's technique to higher-order rewriting consists in proving that function
symbols are computable too, that is, that every function call is computable whenever its
arguments so are. This naturally leads to the following question: which operations preserve
computability? From a set of such operations, one can de�ne the computability closure of
a term t, written CCR(t), as the set of terms that are computable whenever t so is. Then,

to get normalization, it su�ces to check that, for every rule f~l → r, r belongs to the com-
putability closure of ~l. The General Schema was implicitly doing this. The �rst de�nition
of computability closure appeared in an 1997 unpublished note of Jouannaud and Okada
which served as a basis for [8], an extension to dependent types of the computability closure.
The computability closure was later extended to higher-order pattern-matching [5], type-
level rewriting [2, 7] and rewriting modulo AC [4]. Examples of computability-preserving
operations are:

� application: if u ∈ CCR(t) and v ∈ CCR(t), then uv ∈ CCR(t)).

� abstraction: if u ∈ CCR(t), then λxu ∈ CCR(t)).

� recursive calls on structurally smaller arguments: if ~u ∈ CCR(f~t) and ~u � ~t, then f~u ∈
CCR(f~t).
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4 Frédéric Blanqui

� reduction: if u ∈ CCR(t) and u→R v, then v ∈ CCR(t).

Another way to prove the termination of a set of rules is to �nd a decidable well-founded
rewrite relation containing these rules. A well known such relation in the �rst-order case
is the (inductively de�ned) recursive path ordering [24, 11] whose well-foundedness proof
was initially based on Kruskal theorem [19]. The �rst attempts [20, 21, 15] made for gen-
eralizing this ordering to the higher-order case were not able to orient Gödel system T for
instance. Finally, in 1999, Jouannaud and Rubio succeeded in de�ning such an ordering [14]
by following the termination proof technique developed in [13]. By the way, this provided
the �rst well-foundedness proof of RPO not based on Kruskal theorem. HORPO has also
been extended to dependent types later in [28].

Although the computability closure on one hand, and the recursive path ordering on
the other hand, shares the same computability-based techniques, there has been no precise
comparison between these two termination criteria. In [29], one can �nd examples of rules
that are accepted by one criterion but not the other. And Jouannaud and Rubio themselves
use the notion of computability closure for strengthening their ordering.

In the present paper, we explore the relations between both criteria. We start from the
trivial remark that the computability closure itself de�nes an ordering: t >R u if t = f~t and
u ∈ CCR(~t). Proving the well-foundedness of this ordering simply consists in proving that
the computability closure is correct. Then, we remark that >R is monotone and continuous
for inclusion wrt R. Thus, the computability closure admits a �xpoint which is a well-
founded ordering. In the �rst case order, we prove that this ordering is the recursive path
ordering. In the higher-order case, we prove that we get an ordering containing HORPO.
Although, we do not get in this case a better de�nition, it shows that the well-foundedness
of HORPO can be reduced to the correctness of the computability closure. This also provide
a way to easily strengthen HORPO. Another advantage of this approach is that it can easily
be extended to more complex type systems.

2 First-order case

To illustrate our approach, we �rst begin by presenting the �rst-order case which is inter-
esting on its own.

We assume given a set X of variables and a disjoint set F of function symbols. Let T
be the set of �rst-order algebraic terms built from F and X as usual. Let V(t) (resp. F(t))
be the set of variables (resp. symbols) occurring in t.

We assume given a precedence ≥F on F , that is, a quasi-ordering whose strict part
>F = ≥F \ ≤F is well-founded. Let 'F = ≥F ∩ ≤F be its associated equivalence relation.

A precedence can be seen as a particular case of quasi-ordering on terms looking at top
symbols only. We could extend our results to this more general case, leading to extensions
of the semantic path ordering. See [17] for the �rst-order case, and [10] for the higher-order
case.

INRIA



(HO)RPO Revisited 5

We assume that every symbol f ∈ F is equipped with a status statf ∈ {lex,mul} de�ning
how the arguments of f must be compared: lexicographically (from left to right, or from
right to left) or by multiset. We also assume that statf = statg whenever f 'F g.

De�nition 1 Given a relation > on terms, let (f,~t) >stat (g, ~u) i� either f >F g or f 'F g
and ~t >+

statf
~u.

The ordering >stat is well-founded whenever > so is (>F is well-founded).
As usual, the set Pos(t) of positions in a term t is de�ned as words on positive integers.

If p ∈ Pos(t), then t|p is the subterm of t at position p, and t[u]p is the term t with t|p
replaced by u. Let � be the subterm relation.

A relation > on terms is stable by substitution if tθ > uθ whenever t > u. It is stable
by context if C[t]p > C[u]p whenever t > u. It is a rewrite relation if it is both stable
by substitution and context. Given a relation on terms R, let →R be the smallest rewrite
relation containing R, R+ be the transitive closure of R, and SN(R) be the set of terms that
are strongly normalizing for R.

Figure 1: First-order computability closure

(arg) ti ∈ CCfR(~t)

(decomp)
g~u ∈ CCfR(~t)

ui ∈ CCfR(~t)

(prec)
f >F g ~u ∈ CCfR(~t)

g~u ∈ CCfR(~t)

(call)
f 'F g ~u ∈ CCfR(~t) ~t (→+

R ∪�)statf ~u

g~u ∈ CCfR(~t)

(red)
u ∈ CCfR(~t) u→+

R v

v ∈ CCfR(~t)

Hereafter is a de�nition of computability closure similar to the one given in [8] except
that:

� it is restricted to untyped �rst-order terms,

� we abstracted away the set R of rules and explicitly put it as argument of the computabil-
ity closure,

� we added →+
R for comparing arguments in (call).

RR n° 5972



6 Frédéric Blanqui

The main novelty is the addition of →+
R in (call). This allows us to get the recursive

behavior of RPO: one can use the ordering itself for comparing the arguments of a recursive
call. The fact that this is a computability-preserving operation was implicit in [8]. A
complete proof of this fact for the higher-order case is given in Lemma 17.

De�nition 2 (Computability closure) Let R be a relation on terms. The computability

closure of a term f~t, written CCfR(~t), is inductively de�ned in Figure 1. Let CR(R) be the

set of pairs (f~t, u) such that u ∈ CCfR(~t).

One can easily prove that CR is monotone and ω-sup-continuous for inclusion. It has
therefore a least �xpoint that is reachable by iteration from ∅.

De�nition 3 (Computability ordering) Let the �rst-order recursive computability or-
dering >rco be the least �xpoint of CR.

Note that one gets the same ordering by replacing in (red) →+
R by R, and in (call)

→+
R ∪� by R.

Lemma 4 >rco is a transitive rewrite relation containing subterm.

Proof. Since CR is ω-sup-continuous and preserves the stability by substitution, >rco

is stable by substitution. For the transitivity, assume that t >rco u >rco v. Then, t must
be of the form f~t and, by (red), t >rco v. For the stability by context, let v = f~at~b and

t >rco u. By (arg), v >rco ~at~b. By (red), v >rco u. Thus, ~at~b (>rco)statf ~au
~b and, by (call),

v >rco f~au~b. Finally, >rco contains subterm by (arg). �
It follows that (decomp) is derivable from (arg) and transitivity. We introduce in Figure 2

an inductive formulation of >rco obtained by replacing in the rules de�ning the computability
closure u ∈ CCfR(~t) by f~t >rco u, and R by >rco.

This simple change in notations clearly shows that rco is equal to >rpo, whose de�nition
is recalled in Figure 3.

3 Preliminaries to the higher-order case

Before presenting the computability closure for the higher-order case, we �rst present the
ingredients of the termination proof. As explained in the introduction, it is based on an
adaptation of Tait's computability technique. First, we interpret each type by a set of
computable terms and prove common properties about computable terms. Then, following
[6], we de�ne some ordering on computable terms that will be used in the place of the
subterm ordering for comparing arguments in recursive calls.

We consider simply-typed λ-terms with curried constants. Let B be a set of base types.
The set T of simple types is inductively de�ned as usual. The set Pos(T ) of positions in a
type T is de�ned as usual as words on {1, 2}. The sets Pos+(T ) and Pos−(T ) of positive and
negative positions respectively are inductively de�ned as follows:

INRIA
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Figure 2: First-order recursive computability ordering

(arg) f~t >rco ti

(prec)
f >F g f~t >rco ~u

f~t >rco g~u

(call)
f 'F g f~t >rco ~u ~t (>rco)statf ~u

f~t >rco g~u

(red)
f~t >rco u u >rco v

f~t >rco v

Figure 3: First-order recursive path ordering

(1)
ti ≥rpo u

f~t >rpo u

(2)
f >F g f~t >rpo ~u

f~t >rpo g~u

(3)
f 'F g ~t (>rpo)statf ~u f~t >rpo ~u

f~t >rpo g~u

� Posδ(B) = {ε}.
� Posδ(T ⇒ U) = 1 · Pos−δ(T ) ∪ 2 · Posδ(U).

Let Pos(B, T ) be the positions of the occurrences of B in T . A base type B occurs only
positively (resp. negatively) in a type T if Pos(B, T ) ⊆ Pos+(T ) (resp. Pos(B, T ) ⊆ Pos−(T )).

Let X be a set of variables and F be a disjoint set of symbols. We assume that every
a ∈ X ∪ F is equipped with a type Ta ∈ T. The sets T T of terms of type T are inductively
de�ned as follows:

� If a ∈ X ∪ F , then a ∈ T Ta .

� If x ∈ X and t ∈ T U , then λxt ∈ T Tx⇒U .

� If v ∈ T T⇒U and t ∈ T T , then vt ∈ T U .
As usual, we assume that, for all type T , the set of variables of type T is in�nite, and

consider terms up to type-preserving renaming of bound variables. In the following, t : T or
tT means that t ∈ T T . Let FV(t) be the set of variables free in t.

RR n° 5972



8 Frédéric Blanqui

De�nition 5 (Accessible arguments) For every f
~T⇒B ∈ F , let Acc(f) = {i ≤ |~T | | Pos(B, Ti) ⊆

Pos+(Ti)}.

De�nition 6 (Rewrite rules) A rewrite rule is a pair of terms (tT , uU ) such that t is of
the form f~t, FV(u) ⊆ FV(t) and T = U .

In the following, we assume given a set R of rewrite rules. Let → = →β ∪→R, SN =

SN(→) and SNT = SN ∩ T T . Let C be the set of symbols c such that, for every rule
(f~t, u) ∈ R, f 6= c. The symbols of C are said constant, while the symbols of D = F \ C are
said de�ned.

3.1 Interpretation of types

De�nition 7 (Interpretation of types) A term is neutral if it is of the form x~u or of
the form (λxt)~u. Let QTR be the set of all sets of terms P such that:

(1) P ⊆ SNT .

(2) P is stable by →.

(3) If t : T is neutral and →(t) ⊆ P , then t ∈ P .
Let IR be the set of functions I from B to

⋃
B∈BQB

R such that, for all B ∈ B, I(B) ∈ QB
R.

Given an interpretation of base types I ∈ IR, we de�ne an interpretation [[T ]]IR ∈ QTR for any
type T as follows:

� [[B]]IR = I(B),

� [[T ⇒ U ]]IR = {v ∈ SNT⇒U | ∀t ∈ [[T ]]IR, vt ∈ [[U ]]IR}.

We also let F IR(B) = {t ∈ SNB | ∀f ~T⇒B~t, t→∗ f~t⇒ ∀i ∈ Acc(f), ti ∈ [[Ti]]
I
R}.

Ordered point-wise by inclusion, IR is a complete lattice.

Lemma 8 FR is a monotone function on IR.

Proof. We �rst prove that P = F IR(B) ∈ QB
R.

(1) P ⊆ SNB by de�nition.

(2) Let t ∈ P , t′ ∈ →(v), f : ~T ⇒ B and ~t such that t′ →∗ f~t. We must prove that ~t ∈ [[~T ]]R.
It follows from the facts that t ∈ P and t→∗ f~t.

(3) Let tB neutral such that →(t) ⊆ P . Let f ~T⇒B, ~t such that t→∗ f~t and i ∈ Acc(f). We
must prove that ti ∈ [[Ti]]R. Since t is neutral, t 6= f~t. Thus, there is t′ ∈ →(t) such
that t′ →∗ f~t. Since t′ ∈ P , ti ∈ [[Ti]]R.

For the monotony, let ≤+ = ≤ and ≤− = ≥. Let I ≤ J i�, for all B, I(B) ⊆ J(B). We
�rst prove that [[T ]]IR ⊆δ [[T ]]JR whenever I ≤ J and Pos(B, T ) ⊆ Posδ(T ), by induction on
T .

� Assume that T = C ∈ B. Then, δ = +, [[T ]]IR = I(C) and [[T ]]IR = J(C). Since
I(C) ⊆ J(C), [[T ]]IR ⊆ [[T ]]IR.

INRIA
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� Assume that T = U ⇒ V . Then, Pos(B, U) ⊆ Pos−δ(U) and Pos(B, V ) ⊆ Posδ(V ). Thus,
by induction hypothesis, [[U ]]IR ⊆−δ [[U ]]JR and [[V ]]IR ⊆δ [[V ]]JR. Assume that δ = +. Let
t ∈ [[T ]]IR and u ∈ [[U ]]JR. We must prove that tu ∈ [[V ]]JR. Since [[U ]]IR ⊇ [[U ]]JR, tu ∈ [[V ]]IR.
Since [[V ]]IR ⊆ [[V ]]JR, tu ∈ [[V ]]JR. It works similarly for δ = −.
Assume now that I ≤ J . We must prove that, for all B, F IR(B) ⊆ F JR(B). Let B ∈ B

and t ∈ F IR(B). We must prove that t ∈ F JR(B). First, we have t ∈ SNB since t ∈ F IR(B).

Assume now that t →∗ f ~T⇒B~t and let i ∈ Acc(f). We must prove that ti ∈ [[Ti]]
J
R. Since

t ∈ F IR(B), ti ∈ [[Ti]]
I
R. Since i ∈ Acc(f), Pos(B, Ti) ⊆ Pos+(Ti) and [[Ti]]

I
R ⊆ [[Ti]]

J
R. �

De�nition 9 (Computability) Let IR be the least �xpoint of FR. A term t : T is R-
computable if t ∈ [[T ]]R = [[T ]]IRR .

3.2 Computability properties

Lemma 10 If t, u and t{x 7→ u} are computable, then (λxt)u is computable.

Proof. Since (λxt)u is neutral, it su�ces to prove that every reduct is computable. Since
t and u are SN, we can proceed by induction on (t, u) with →lex as well-founded ordering.
Assume that (λxt)u→ v. If v = t{x 7→ u}, then t′ is computable by assumption. Otherwise,
v = (λxt′)u with t → t′, or v = (λxt)u′ with u → u′. In both cases, we can conclude by
induction hypothesis. �

Lemma 11 A term f~t : B is computable whenever every reduct of f~t is computable and,
for all i ∈ Acc(f), ti is computable.

Proof. Assume that f~t→∗ g~u with g : ~U ⇒ B. Let i ∈ Acc(g). If f~t 6= g~u, then there is
v ∈ →(f~t) such that v →∗ g~u. Since v is computable, ui is computable. Otherwise, ui = ti
is computable by assumption. �

Lemma 12 Every constant symbol is computable.

Proof. Let c
~T⇒B ∈ C and ~t ∈ [[~T ]]R. By Lemma 11, c~t is computable if every reduct of

c~t is computable. Since ~t ∈ SN, we can proceed by induction on ~t with→lex as well-founded
ordering. Assume that c~t → u. Since c ∈ C, u = c~t′ with ~t →lex ~t

′. Thus, by induction
hypothesis, c~t′ is computable. �

Lemma 13 If every de�ned symbol is computable, then every term is computable.

Proof. First note that the identity substitution is computable since variables are com-
putable (they are neutral and irreducible). We then prove that, for every term t and com-
putable substitution θ, tθ is computable, by induction on t.

� Assume that t = f ∈ D. Then, by assumption, tθ = f is computable.

� Assume that t = c ∈ C. Then, by Lemma 12, tθ = c is computable.

RR n° 5972



10 Frédéric Blanqui

� Assume that t = x ∈ X . Then, tθ = xθ is computable since θ is computable.

� Assume that t = λxu. Then, tθ = λxuθ. Let v ∈ [[V ]]R. We must prove that tθv ∈ [[U ]]R.
By induction hypothesis, uθ{x 7→ v} is computable. Since uθ and v are computable too,
by Lemma 10, tθ is computable.

� Assume that t = uV⇒T v. Then, tθ = uθvθ. By induction hypothesis, uθ ∈ [[V ⇒ T ]]R
and vθ ∈ [[V ]]R. Thus, tθ ∈ [[T ]]R. �

3.3 Size ordering

The least �xpoint of FR, IR, is reachable by trans�nite iteration from the smallest element
of IR. This provides us with the following ordering.

De�nition 14 (Size ordering) For all B ∈ B and t ∈ [[B]]R, let the size of t be the smallest
ordinal oBR(t) = a such that t ∈ F a

R(∅)(B), where F a
R is the trans�nite a-iteration of FR. Let

�R=
⋃
T∈B⇒ �TR, where (�TR)T∈B⇒ is the family of orderings inductively de�ned as follows:

� For all B ∈ B, let t �B
R u i� t, u ∈ [[B]]R and oBR(t) > oBR(u).

� For all T,U ∈ B⇒, let t �T⇒UR u i� t, u ∈ [[T ⇒ U ]]R and, for all v ∈ [[T ]]R, tv �UR uv.

In the �rst-order case, recursive call arguments where compared with the subterm or-
dering. But the subterm ordering is not adapted to higher-order rewriting. Consider for
instance the following simpli�cation rule on process algebra [26]:

(ΣP );x→ Σ(λyPy;x)

where Σ(D⇒P)⇒P is a data-dependent choice operator and ;P⇒P⇒P the sequence operator.
The term Py is not a subterm of ΣP . The interpretation of P gives us the solution: [[P]]R =

{t ∈ SNP | ∀f ~T⇒P~t, t →∗ f~t ⇒ ∀i ∈ Acc(f), ti ∈ [[Ti]]R}. Since P occurs only positively
in D ⇒ P, Acc(Σ) = {1}. Hence, if ΣP ∈ [[P]]R then, for all d ∈ [[D]]R, pd ∈ [[P]]R and
oPR(Pd) < oPR(ΣP ).

We immediately check that the size ordering is well-founded.

Lemma 15 �TR is transitive and well-founded.

Proof. By induction on T . For T ∈ B, this is immediate. Assume now that (ti)i∈N is an
increasing sequence for �T⇒UR . Since variables are computable, let x ∈ [[T ]]R. By de�nition
of �T⇒UR , (tix)i∈N is an increasing sequence for �UR. �

In case of a �rst-order type B, when → is con�uent, the size of tB is the number of
(constructor) symbols at the top of its normal form. So, it is equivalent to using embedding
on normal forms. But, since the ordering is compatible with reduction, in the sense that
t �R u whenever t→ u, it is �ner than the embedding. For instance, by taking the rules:

x− 0 → x
0− x → 0

(sx)− (sy) → x− y

INRIA
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one can prove that t − u �R t. This allows to prove the termination of functions for which
simpli�cation orderings fail like:

0/y → 0
(sx)/y → s((x− y)/y)

However, in practice, the size ordering cannot be used as is. We need a decidable syntactic
approximation. In [6], we assume given an ordered term algebra (A, >A) for representing
operations on ordinals and, for each base type B and expression a ∈ A, we introduce the
subtype Ba of terms of type B whose size is less than or equal to a. Then, in the (call) rule,
the size annotations of ~t and ~u are compared with >A. In [1], we prove that type checking
is decidable, whenever the constraints generated by these comparisons are satis�able, hence
providing a powerful termination criterion. We do not use size annotations here, but it
would de�nitely be a natural and powerful extension. Instead, we are going to de�ne an
approximation like in [7].

4 Higher-order case

We now introduce the size-ordering approximation and the computability closure for the
higher-order case.

De�nition 16 (Computability closure) The computability closure of a term f~t, written

CCfR(~t), and the associated size-ordering approximation, written �
f~t
R , are mutually induc-

tively de�ned in Figures 5 and 4 respectively. Let CR(R) be the set of pairs (f~t, u) such

that u ∈ CCfR(~t), FV(u) ⊆ FV(f~t) and f~t and u have the same type.

Compared to the �rst-order case, we added the rules (var) and (lam) to build abstractions

and, in (call), we replaced →+
R by →+

βR, and � by �
f~t
R . This ordering is a better approxi-

mation of the size ordering than the one given in [7] where, in (�base), ~b ∈ X \ FV(~t). In
this case, the size-ordering approximation can be de�ned independently of the computabil-
ity closure. Note however that, in both cases, the size-ordering approximation contains the
subterms of same type. In the process algebra example, by (�base), we have ΣP � l

R Py
where l = (ΣP );x.

We now prove the correctness of the computability closure.

Lemma 17 If R ⊆ CR(R), then →β ∪→CR(R) is well-founded.

Proof. Let S = CR(R). It su�ces to prove that every term is S-computable. Let

→ = →β ∪→S and SN = SN(→). After Lemma 13, it su�ces to prove that, for all f
~V⇒B

and ~v ∈ [[~V ]]S , f~v ∈ [[B]]S . We prove it by induction on ((f,~v), ~v) with ((�S)stat ,→lex)
as well-founded ordering (~v are computable) (H1). By Lemma 11, it su�ces to prove that
→(f~v) ⊆ [[B]]S . Let v′ ∈ →(f~v). Either v′ = f~v′ with ~v →statf ~v

′, or v = f~tσ, v′ = uσ

RR n° 5972



12 Frédéric Blanqui

Figure 4: Higher-order computability closure

(arg) ti ∈ CCfR(~t)

(decomp)
g~u ∈ CCfR(~t) i ∈ Acc(g)

ui ∈ CCfR(~t)

(prec)
f >F g

g ∈ CCfR(~t)

(call)
f 'F g

~U⇒U ~u
~U ∈ CCfR(~t) ~t (→+

βR ∪�
f~t
R )statf ~u

g~u ∈ CCfR(~t)

(red)
u ∈ CCfR(~t) u→+

βR v

v ∈ CCfR(~t)

(app)
uV⇒T ∈ CCfR(~t) vV ∈ CCfR(~t)

uv ∈ CCfR(~t)

(var)
x /∈ FV(~t)

x ∈ CCfR(~t)

(lam)
u ∈ CCfR(~t) x /∈ FV(~t)

λxu ∈ CCfR(~t)

and u ∈ CCfR(~t). In the former case, ~v′ ∈ [[~V ]]S since [[~V ]]S is stable by →, and ~v(�S)statf~v
′.

Thus, we can conclude by (H1). For the latter case, we prove that, if u ∈ CCfR(~t) then, for
all S-computable substitution θ such that dom(θ) ⊆ FV(u) \ FV(~t), uσθ is S-computable,

by induction on CCfR(~t) (H2).

(arg) tiσ = vi is computable by assumption.

(decomp) By (H2), g~uσθ is computable. Thus, by de�nition of IS , uiσθ is computable.

(prec) By (H1), g is computable.

(call) By (H2), ~uσθ are computable. Since dom(θ) ∩ FV(~t) = ∅, tiσθ = tiσ = vi. Assume
that ti →+

βR uj . Then, vi →+
βR ujσθ. Since R ⊆ S and →+

βS ⊆ �S , vi �S ujσθ. Assume

now that ti�
f
Ruj . We prove that, if a�f

~t
R b then, for all S-computable substitution θ such

that dom(θ) ⊆ FV(b) \ (FV(a) ∪ FV(~t)) and aσθ is S-computable, bσθ is S-computable
and aσθ �S bσθ.

INRIA
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Figure 5: Ordering for comparing function arguments

(�base)
i ∈ Acc(g) ~b ∈ CCfR(~t)

g ~A⇒B~a ~A �
f~t
R a

~B⇒B
i

~b ~B

(�lam)
a�f~t

R bx x /∈ FV(b) ∪ FV(~t)

λxa�f~t
R b

(�red)
a�f~t

R b b→+
βR c

a�f~t
R c

(�trans)
a�f~t

R b b�f~t
R c

a�f~t
R c

(�base) Let a = g
~A⇒B~a

~A and b = a
~B⇒B
i

~b
~B . Let IaS = F a

S (∅). Note that the size of a
term is necessarily a successor ordinal. Thus, oS(aσθ) = a + 1 and, by de�nition of

[[B]]S , aiσθ ∈ [[ ~B ⇒ B]]
IaS
S . Since ~b ∈ CCfR(~t) and dom(θ) ⊆ FV(~b) \FV(~t), by (H2), ~bσθ

are computable. Therefore, aiσθ~bσθ ∈ IaS(B) and oS(bσθ) ≤ a < oS(aσθ).

(�lam) Let w ∈ [[Tx]]S . We must prove that bσθw is computable. Since x /∈ FV(b)∪FV(~t),
x /∈ dom(σθ). W.l.o.g., we can assume that x /∈ codom(σθ). Thus, (λxa)σθ = λxaσθ.
Let θ′ = θ∪{x 7→ w}. Since λxaσθ is computable, aσθ′ is computable. Since dom(θ′) ⊆
FV(bx) \ (FV(a) ∪ FV(~t)), by induction hypothesis, (bx)σθ′ = bσθ′w is computable
and aσθ′ �S bσθ′w. Since x /∈ dom(σ), bσθ′ = bσθ. Thus, bσθ is computable and
(λxa)σθ �S bσθ.

(�red) By induction hypothesis and since →+
βS ⊆ �S .

(�trans) By induction hypothesis and transitivity of �S .
Hence, vi = tiσθ �S ujσθ since dom(θ) ⊆ FV(uj)\(FV(ti)∪FV(~t)) and vi is computable.
Therefore, either ~v(�S)statf~uσθ or ~v →

+
statf

~uσθ and, by (H1), f~uσθ is computable.

(red) By (H2), uσθ ∈ [[U ]]S . Since →+
βR is stable by substitution, uσθ →+

βR vσθ. Since

R ⊆ S, uσθ →+ vσθ. Since [[U ]]S is stable by →, vσθ is computable.

(app) By (H1), uσθ and vσθ are computable. Thus, by de�nition of [[V ⇒ T ]]S , uσθvσθ is
computable.

(lam) W.l.o.g, we can assume that x /∈ dom(θ)∪ codom(σθ). Thus, (λxu)σθ = λxuσθ. Let
v : Tx computable and θ′ = θ ∪ {x 7→ v}. If x /∈ FV(u), then uσθ′ = uσθ is computable.
Otherwise, since dom(θ′) = dom(θ)∪ {x}, dom(θ) ⊆ FV(λxu) \FV(~t) and x /∈ FV(~t), we
have dom(θ′) ⊆ FV(u) \ FV(~t). Thus, by (H2), uθ′ is computable. Hence, by Lemma 10,
λxuθ is computable.
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14 Frédéric Blanqui

(var) Since x /∈ FV(~t), xσθ = xθ is computable by assumption on θ. �

Like in the �rst-order case, one can easily check that the functions �f~t, CCf (~t) and CR
are monotone and ω-sup-continuous for inclusion.

De�nition 18 (Higher-order recursive computability ordering) Let the weak higher-
order recursive computability ordering >whorco be the least �xpoint of CR, and the higher-
order recursive computability ordering >horco be the closure by context of >whorco.

In the following, let �whorco = �>whorco
and CC = CC>whorco

. The well-foundedness of
→β ∪ >horco immediately follows from Lemma 17 and the facts that >whorco ⊆ CR(>whorco)
and →>whorco

= >horco.

Theorem 19 →β ∪ >horco is a well-founded rewrite relation.

Before comparing >horco with the monomorphic version of >horpo [14] whose de�nition
is recalled in Figure 6, let us give some examples.

Example 1 (Di�erentiation) Taken from [9] (Example 10 in [16]). Consider the symbols
0R, 1R, +R⇒R⇒R, ×R⇒R⇒R, and D(R⇒R)⇒R⇒R. The rule:

DλxFx×Gx→ λxDFx×Gx+ Fx×DGx

is both in >horco and >horpo. Take D >F ×,+. By (prec), t = DλxFx × Gx > +,×. By
(var), t > x. By (arg), t > λxFx×Gx. By (app), t > (λxFx×Gx)x. By (red), t > Fx×Gx.
Since Acc(×) = {1, 2}, by (decomp), t > Fx,Gx. By (�base), Fx × Gx � Fx,Gx. By
(�lam), λxFx × Gx � F,G. By (call), t > DF,DG. By several applications of (app),
t > DFx×Gx+ Fx×DGx. Finally, by (abs), t > λxDFx×Gx+ Fx×DGx.

We now give two examples included in >horco but not in >horpo.

Example 2 (Process Algebra) Taken from [26] (Example 5 in [14]). The rule:

(ΣP );x→ Σ(λyPy;x)

is in >horco but not in >horpo. Take Σ <F ; and stat; = lex. By (arg), t = (ΣP );x > ΣP, x.
Since Acc(Σ) = {1}, by (decomp), t > P . By (var), t > y. By (app), t > Py. By (�base),
ΣP � Py. By (call), t > Py;x. By (lam), t > λyPy;x. Thus, by (prec), t > ΣλyPy;x.

Example 3 (Lists of functions) This is Example 6 in [14]. Consider the symbols fcons(B⇒B)⇒L⇒L

and lapplyB⇒L⇒B. The rule:

lapply x (fcons F l)→ F (lapply x l)

is in >horco but not in >horpo. Take statlapply = lex (from right to left). By (arg), t =
lapply x (fcons F l) > x, fcons F l. Since Acc(fcons) = {1, 2}, by (decomp), t > F, l. By
(�base), fcons F l � l. By (call), t > lapply x l. Thus, by (app), t > F (lapply x l).

INRIA
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5 Comparison with HORPO

Before proving that >horpo ⊆ >+
horco, we study some properties of >horco.

Lemma 20 (1) >whorco is stable by substitution.

(2) >whorco→+ ⊆ >whorco.

(3) If t >whorco u, then t~w >whorco u~w.

(4) If t→+ u, then f~at~b >whorco f~au~b.

(5) >whorco is transitive.

(6) >+
horco>whorco ⊆ >whorco.

From (2) and (6), it follows that any sequence of >horco-steps with at least one >whorco-
step, in fact corresponds to a >whorco-step. So, >horco is not far from being transitive.

Figure 6: HORPO [14]

P (f,~t, u) = f~t >horpo u ∨ (∃j) tj ≥horpo u

(1)
ti ≥horpo u

f ~T⇒T~t~T >horpo uT

(2)
f >F g P (f,~t, ~u)

f ~T⇒T~t~T >horpo g
~U⇒T~u~U

(3)
f 'F g statf = mul ~t (>horpo)statf ~u

f ~T⇒T~t~T >horpo g
~U⇒T~u~U

(4)
f 'F g statf = lex ~t (>horpo)statf ~u P (f,~t, ~u)

f ~T⇒T~t~T >horpo g
~U⇒T~u~U

(5)
P (f,~t, ~u)

f ~T⇒T~t >horpo ~uT

(6)
{t1, t2} (>horpo)mul {u1, u2}

tU⇒T1 tU2 > uV⇒T1 uV2

(7)
t >horpo u

λxt >horpo λxu

We now compare >horco with the monomorphic version of >horpo de�ned in Figure 6.
For the case (6), let us list all the cases that may be possible a priori :

RR n° 5972



16 Frédéric Blanqui

(a) t1 ≥horpo u1 and t1 ≥horpo u2. This case is not possible since then we would have
U ⇒ T = V ⇒ T = V .

(b) t2 ≥horpo u1 and t2 ≥horpo u2. This case is not possible since then we would have
U = V ⇒ T = V .

(c) t1 ≥horpo u1 and t2 ≥horpo u2. This case is possible.

(d) t2 ≥horpo u1 and t1 ≥horpo u2. This case is not possible since then we would have
U = V ⇒ T and U ⇒ T = V , and thus U = (U ⇒ T )⇒ T .

Hence, only (c) is in fact possible. We now prove that >horpo ⊆ >+
horco.

Theorem 21 >horpo ⊆ >+
horco.

Proof. We �rst prove that f~t > v whenever f~t >+
horco v or tj >

∗
horco v (*). Assume that

tj >
∗
horco v. By (arg), f~t > tj . Thus, by (red), f~t > v. Assume now that f~t >horco u >

∗
horco

v. There are 2 cases:

� f~t = f~atk~b, u = f~at′k
~b and tk >horco t

′
k. By Lemma 20 (4), f~t >whorco u. By Lemma 20

(2), f~t >whorco v. Thus, f~t > v.

� f~t = f~lσ~b, u = rσ~b and f~lσ >whorco rσ. By Lemma 20 (3), f~t >whorco u. By Lemma 20
(2), f~t >whorco v. Thus, f~t > v.

We now prove the theorem by induction on >horpo.

(1) By induction hypothesis, ti >
∗
horco u. By (arg), f~t > ti. Since ti >horpo u and f~t >horpo

u, (f~t, ti) is a rule. Thus, f~t >whorco ti and, by Lemma 20 (2), f~t >whorco u.

(2) By induction hypothesis, for all i, f~t >+
horco ui or tj >

∗
horco ui. Hence, by (*), f~t > ~u.

By (prec), f~t > g. Thus, by (app), f~t > g~u. Since (f~t, g~u) is a rule, f~t >whorco g~u.

(3) By induction hypothesis, ~t (>+
horco)mul ~u. Hence, by (*), f~t > ~u. Thus, by (call),

f~t > g~u. Since (f~t, g~u) is a rule, f~t >whorco g~u.

(4) By induction hypothesis, ~t (>+
horco)statf ~u and, for all i, f~t >+

horco ui or tj >
∗
horco ui.

Hence, by (*), f~t > ~u. Thus, by (call), f~t > g~u. Since (f~t, g~u) is a rule, f~t >whorco g~u.

(5) By induction hypothesis, for all i, f~t >+
horco ui or tj >

∗
horco ui. Hence, by (*), f~t > ui

for all i. Thus, by (app), f~t > ~u. Since (f~t, ~u) is a rule, f~t >whorco ~u.

(6) As previously remarked, t1 ≥horpo u1 and t2 ≥horpo u2. Thus, by induction hypothesis,
t1 >

∗
horco u1 and t2 >

∗
horco u2. Hence, by monotony, t1t2 >

∗
horco u1t2 >

∗
horco u1u2.

(7) By induction hypothesis, t >horco u. Thus, by context, λxt >horco λxu. �

From the proof, we observe that, if (6) were restricted to (t1 >horpo u1 ∧ t2 = u2)∨ (t1 =
u1 ∧ t2 >horpo u2), then we would get >horpo ⊆ >horco, since this is the only case requiring
transitivity.

In [14], the authors strengthen their de�nition of HORPO by adding in P (f,~t, ~u) the

case ui ∈ CC(f~t), where CC(f~t) is similar to CCf∅(
~t) with the subterm ordering � instead of

�f in (call). Thus, (*) is still satis�ed and >horpo ⊆ >+
horco in this case too.
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In [16], the authors add a few new cases to HORPO and extend the computability closure
a little bit. But, again, this does not make any essential di�erence. And, indeed, they rec-
ognize they are not satis�ed with their treatment of abstractions. Taking our interpretation
of base types solve these problems.

6 Conclusion

We proved that the recursive path ordering is strictly included (equal in the �rst-order case)
to the recursive computability ordering, an ordering naturally de�ned from the notion of
computability closure. In the higher-order case, this does not provide us with a very practi-
cal de�nition. However, the well-foundedness proof is reduced to proving the correctness of
the computability closure. This therefore provides us with a way to easily extend HORPO
to richer type systems. For instance, in [7], we proved the correctness of the computability
closure for a polymorphic and dependent type system with both object and type level rewrit-
ing. This would generalize Walukiewicz' extension of HORPO [28]. In [3], we de�ned an
extension of the computability closure accepting non-simply terminating systems. Finally,
in [4], we proved that the computability closure proves the termination of rewriting modulo
AC as well.
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