
Designing a CPU model: from a pseudo-formal document to fast code

F. Blanqui1,2, C. Helmstetter1,2,†, V. Joloboff1,2, J.-F. Monin1,3,4 and X. Shi1,4

1LIAMA-FORMES, 2INRIA, 3CNRS, 4Université de Grenoble 1
†claude.helmstetter@inria.fr

Abstract— For validating low level embedded software, engi-
neers use simulators that take the real binary as input. Like
the real hardware, these full-system simulators are organized
as a set of components. The main component is the CPU
simulator (ISS), because it is the usual bottleneck for the
simulation speed, and its development is a long and repetitive
task. Previous work showed that an ISS can be generated
from an Architecture Description Language (ADL). In the work
reported in this paper, we generate a CPU simulator directly
from the pseudo-formal descriptions of the reference manual.
For each instruction, we extract the information describing
its behavior, its binary encoding, and its assembly syntax.
Next, after automatically applying many optimizations on the
extracted information, we generate a SystemC/TLM ISS. We
also generate tests for the decoder and a formal specification in
Coq. Experiments show that the generated ISS is as fast and
stable as our previous hand-written ISS.

I. INTRODUCTION

Developing a new System-on-Chip (SoC) for some em-
bedded systems requires the design of abstract models [1].
These models ease the design and the validation by providing
a global view of the future system, allowing to certify
protocols, simulate the embedded software, and decide the
correctness of hardware executions.

Like the real hardware, a model of a full system is orga-
nized as a set of components. When a system is simulated,
most of the computation time is spent in the component
modeling the processor. This component is called an ISS
(Instruction Set Simulator). Fast simulations require to im-
plement many optimizations techniques in the ISS, such as
dynamic translation [2]. Even without optimizations, writing
an ISS is a long, tedious then error-prone task because
functional specifications of processors are generally over
500 pages long.

Reference manuals of processors are mainly written in
natural language, but some parts are described with pseudo-
formal descriptions that can be automatically parsed and
interpreted. In this work, we present how to take advantage
of these pseudo-formal sections in order to generate auto-
matically most of the code of a CPU model.

In addition of automatic extraction of the pseudo-formal
sections, we take the most of the intermediate representation,
which can be handled easily by software, to apply many
kinds of analysis and optimizations. Our goal is to generate
an ISS that is as good as an hand-written one, without any
manual modification of the generated code.

We consider the ARMv6 architecture, which is imple-
mented by the ARM11 processor family. The reference
manual [3] of the CPU part (i.e., excluding the memory

management part) counts 617 pages. This manual is mainly
written in natural language, but each instruction is described
by three elements that can be automatically parsed:

• a table describing the instruction binary encoding
• a piece of pseudo-code describing its behavior
• the syntax of the instruction in assembly code.
We have developed a tool chain that extracts the pseudo-

formal parts of the ARMv6 manual, to an easy-to-use inter-
mediate representation. In this intermediate representation,
the instruction behavior is represented by abstract syntax
trees (ASTs). Next, we developed a set of back-ends. In
addition to a formal specification and unit tests, we generate
a fast C/C++ ISS, which is part of the SimSoC open-source
project since the 0.7 release.

Note that the PowerPC, MIPS, and SH2 architecture
reference manuals use a similar structure to describe the
instructions (i.e., encoding plus syntax plus pseudo-code).
The PowerPC and MIPS may be a little more complicated
to parse because they use non-ASCII characters inside the
pseudo-code. On the contrary, parsing SH2 documentation
should be easier because it uses a simple subset of C to
describe the instruction behavior.

Our generated ISS uses the same optimization techniques
as classic hand-written ISSes, such as dynamic translation.
Dynamic translation means that the result of the decoder is
stored, to avoid the decoding time if the same instruction is
executed again. The dynamic translation technique we use is
described in [4]. Generating such an optimized ISS requires
to translate the pseudo-code to C/C++, but also to collect
new data, such as the lists of parameters and local variables,
and to combine data from different sources (see for example
the may branch function discussed in section III-C).

This article is structured as follows. Section II is devoted
to related work. Extraction of interesting parts from the
manual, code transformations needed for correctness and
better performance, and code generation are described in
section III. Section IV presents the results.

II. RELATED WORK

Previous work proposed solutions to generate an ISS from
an Architecture Description Language (ADL), mainly for
retargetability issues. In the JACOB system [5] a processor is
described with the MIMOLA language, a low level descrip-
tion. From the MIMOLA input, a C program is generated that
simulates the processor. The MIMOLA compiler generates C
macros using the basic functions have been manually coded
however.

In [6] the processor is described using a Processor De-
scription File, but this is more a kind of pre-processor, as
the language contains C macros like constructs. This work
is doing static compiling simulation, it does not generate a
simulator, it generates a native program for the host computer
simulating the binary on the target processor.

The FACILE language [7] can be used to generate sim-
ulators. The generated simulator has optimization using
partial evaluation techniques similar to the specialization
optimization described in the next section. However, they
target a low abstraction level, more suitable to performance
evaluation than functional validation. Similarly, using the
MADL language, the authors of [8] have generated a cycle
accurate simulator for several architectures.

Other researchers have used a kind of virtual machine
approach, where the processor instruction set is described
in terms of the basic operations. The LISA language [9]
uses this approach. Like FACILE, this work targets a lower
abstraction level than us.

The virtual machine approach is also used in the QEMU
simulator [10] which has been manually coded.

An approach closer to our work is the EXPRESSION-
ADL language [11]. It generates a decoder and static
compiled simulator for the target instructions. They report
a maximum speed of 15 Mips for ARMv4, whereas we
simulates the ARMv6 architecture at 90 Mips or more on
several benchmarks.

In the works mentioned above, some of the systems do
generate decoders for the target binary, and some do not.
In the work presented here, we generate the simulator, the
decoder and some additional tests.

Zhu and Gajski [12] have done a static compilation retar-
getable simulator. The input instructions are first translated
into a virtual machine instructions, with an infinite number of
registers. Then a back end translates the virtual instructions
into host code, using a dedicated register allocator. The result
is a compiled program running on the host. Because it is
static compilation, it is fast, with benchmarks running at 200
Mips (on a 2004 PC). We use dynamic translation instead of
static compilation, because static compilation is not suitable
for dynamically loaded code.

III. THE ISS GENERATOR

Starting from the ARMv6 architecture reference manual
(reference: ARM DDI 0100I), we have built a tool chain
composed of a front-end that extracts and parses the pseudo-
formal parts, and of several back-ends. The main back-end
generates a C/C++ ISS suitable for fast simulations. Another
back-end generates tests and a last one generates a formal
specification in Coq, which can be used to develop proofs.
Fig. 1 describes the overall architecture.

A. Extraction and parsing

The very first step is to run the command pdftotext.
The resulting file is 28500 lines long (excluding parts B, C,
and D, which are not related to the CPU). Next, we extract
three smaller files, each containing one kind of information:

a 2100 lines-long file contains the pseudo-code, another 800
lines-long file contains the binary encoding tables, and the
ASM syntax file is 500 lines long. Each extraction is done
by a small ad-hoc OCaml program. Before extraction, a
patch is applied to the main text file (using the Unix patch

command). This patch fixes some obvious mistakes coming
from the original document, such as misspelling in a function
name, unclosed parenthesis (Thumb STMIA instruction),
missing line (condition check of the CLZ instruction), etc.

Next, each extracted file is parsed with the corresponding
parser. The most complicated parser is for the pseudo-code.
Two preliminary phases solve issues related to line breaks
and indentation, given that indentation defines the blocks in
a Python-like way. Then, a classical lexer-parser combination
builds the abstract syntax trees (ASTs). The whole extraction
and parsing task is performed by 1400 lines of code (OCaml,
OCamlLex, and OCamlYacc).

As the reader can notice, we extract only 10% of the
document. Part of the information that is not extracted
is useless, such as the typical use cases for instructions.
There are redundancies also. However, important pieces of
information must still be taken into account. In particular,
many instructions have additional validity constraints, which
are described only in informal English text. For example,
the Rn register of the UXTAH instruction must not be R15.
Because this information is required by code generators, we
have extracted all validity constraints by hand to an OCaml
file (300 lines of data).

Finally, there is some important information that is neither
extracted nor needed by the generator; the corresponding
C/C++ code is written by hand. Actually, we use a generator
only for parts that are related to the instruction list (255
entities described in a same way). Indeed, it is not worth
using a generator for something that is not repetitive, because
the generator would be longer than the generated code.

B. Transformations and optimizations

Before generating the code for the fast SystemC/TLM
ISS, several transformations and analysis are applied to the
OCaml internal representation. There are two categories of
transformations: some are required for the correctness of
the generated code, others improve the simulation speed
without modifying the behavior. We present some of these
transformations in the remaining of this sub-section: three of
each category. All the transformations are implemented by a
total of 1200 lines of code.

1) Symbolic expression as parameter: The reference man-
ual contains some pseudo-code that looks like this:

V Flag = OverflowFrom(Rn + shift_op + C Flag)

This is not a function call taking one integer as a param-
eter, but a function that takes the symbolic expression Rn +

shift op + C Flag as a parameter. Indeed, computing the
overflow bit requires to know which operator is used (addi-
tion or subtraction), and each operand value. We recognize
such calls in the ASTs and replace them by:

V Flag = OverflowFromAdd3(Rn,shift_op,C Flag)

generator
Coq code

ARMv6
Reference
Manual

pdftotext

arm v6.txt

patch & extractpatch & extract

encoding

patch & extract

pseudo-code

integrated in

MMU

test generator

decoder tests

components
other

(C++/SystemC)

SimSoC

optimizations

code generator

(Coq code)
specification

merge & preprocess

internal OCaml representation:
ASTs + binary coding tables

equiv. proof
(further work)

ASM syntax
profiling data

ARM
v6

ISS
(C/C++)
fast ISS

Fig. 1. Overall Architecture

Similar transformations are applied to CarryFrom,
BorrowFrom, and SignedSat.

2) Addressing mode variants: Many ARM instructions
are described in two parts: the instruction body and the
addressing mode or shifter operand. For example, the third
argument of an addition can be either an immediate value,
a register, or a shifted value. Each addressing mode case is
described in the same way as a normal instruction, with an
encoding table, a syntax, and a piece of pseudo-code.

One difficulty is that some instructions, such as SRS and
RFE, use a variant of the addressing mode pseudo-code.
For example, after extraction and parsing, we know that the
pseudo-code of IA addressing mode should be:

start_address = Rn
end_address = Rn+(NbOfSetBitsIn(reglist)*4)-4
if ConditionPassed(cond) and W==1 then

Rn = Rn+(NbOfSetBitsIn(reglist)*4)

However, the textual description of SRS explains that there
are some differences in the above code when this code is used
with this particular instruction:

• Rn is replaced by the banked version of register R13 for
a mode given as parameter.

• the register list length is 2.
Thus, we provide a remedial patch function that applies

these two transformations. Another patch function fixes the
RFE instruction. Note that these patch functions are very
simple. Indeed, the SRS patch function looks like:

let code1 = replace_exp code0
(* replace... *)(Reg (Var "n", None))

(* ... by... *) (Reg (Num "13", Some (Var "mode")))
in let code2 = replace_exp code1

(Fun "NbOfSetBitsIn", [Var "reglist"])
(Num "2") in...

3) Register write-back and data aborts: Load and store
instructions read the base address from a register. Under
some conditions, the contents of this base register is incre-
mented or decremented by an offset. In the extracted pseudo-
code, this write-back to the base register is done before the
memory access itself. However, if the memory access fails
and thus raises a data abort exception, then the base register
must keep its original value. As for addressing mode variants,
this rule is only explained using informal text.

Our generated ISS manages data aborts using C++ excep-
tion mechanism. As a consequence, moving the statement
doing the write-back at the end of the instruction code (and
so after any possible throw) is sufficient to keep the base
register unchanged in case of exception. Considering the IA
pseudo-code shown above, we need to move this statement:

if ConditionPassed(cond) and W==1 then
Rn = Rn+(NbOfSetBitsIn(reglist)*4)

It is not as simple as it looks, because some instructions
such as LDM(3) modify the processor mode, thus changing
the meaning of “Rn”. In this case, the write-back must affect
a banked version of Rn instead of the current version.

4) Instruction flattening: The initial intermediate repre-
sentation contains elements that describe either an instruction
or an addressing mode case. For each instruction A that can
use an addressing mode B, we generate a new instruction
AB, where the data structures of A have been instantiated
with the data of B. The benefits are twofold: the following
generation steps become simpler; and the generated code is

faster. After this transformation, called flattening, we have
slightly more than twice as many instructions.

The flattening step operates on the four elements:
• The mode case pseudo-code is inlined at the beginning

of the instruction pseudo-code.
• The validity constraint lists, which have been extracted

manually, are appended.
• The ASM syntax of the instruction contains a special

parameter that must be replaced by the mode case
syntax. For example, the syntax:
ADC{〈cond〉}{S} 〈Rd〉,〈Rn〉,〈shifter operand〉,
combined with the syntax: 〈Rm〉,LSL#〈shift imm〉,
yields the flattened syntax:
ADC{〈cond〉}{S} 〈Rd〉,〈Rn〉,〈Rm〉,LSL#〈shift imm〉.

• The encoding tables are merged, keeping the most spe-
cific option for each bit: a constant replaces a parameter,
short parameters replace long parameters. An example
is given by Fig. 2.

5) Pre-computation of static sub-expressions: Because we
use dynamic translation, an instruction is generally decoded
once and executed many times. So, if a sub-expression
depends only upon the instruction parameters but not the
processor state, we can accelerate the simulation by moving
this sub-expression from the execute function to the decoder.

For example, the IA addressing mode contains the
sub-expression NbOfSetBitsIn(reglist)*4. The vari-
able reglist is a 16-bits value stored in the instruction
encoding, and NbOfSetBitsIn is a pure function (Hamming
weight), so it can be pre-computed. An optimization function
replaces this expression by a new parameter nb reg x4, and
additional code is generated in the decoder to compute it.

We provide manually a list of patterns to be pre-computed
to the OCaml optimizer, which then applies automatically the
transformations.

6) Specialization: The ARM instructions accepts gener-
ally many options and flags. The ADC instruction takes
on optional condition and the flag S decides whether the sta-
tus register must be updated. Checking whether the options
are present takes a little time at each execution, whereas
most of the time the options are absent (i.e., the condition is
“Always” and S is false).

Instead of generating one generic ADC instruction, we
generate many specialized instructions. Firstly, we duplicate
the pseudo-code: in one version, we replace the specialized
flag (e.g., S) by 1, and in the other we replace it by 0.
A simple subsequent pass removes the obvious dead code,
knowing that more complicated optimizations will be done
by the C++ compiler itself. Furthermore, for each conditional
instruction, we generate an unconditional variant, in which
the condition check is removed.

Specialization can increase dramatically the number of
instructions, and thus the size of the generated code. Among
the consequences, the compilation time may become huge
and the ISS binary load time will increase. To solve this
problem, we simulate some benchmarks on the generated
ISS, record how many time each instruction is executed,
and inject these data back into the ISS generator. Thus,

the specialization pass knows each instruction weight and
whether it is worth to specialize it.

C. Code generation

The following elements are generated and included in the
final ISS:

1) The types used to store an instruction after decoding.
2) Two decoders: one for the main ARM instruction set

and another for the Thumb instruction set.
3) The semantics function, corresponding to the extracted

and optimized pseudo-code. This is quite straight-
forward because pseudo-code ambiguities have been
solved before.

4) The may branch function that detects basic block
terminators (i.e., branch instructions).

5) The ASM printers, used to print debug traces.
An instruction is stored in a struct type containing

an identifier, a pointer to the semantics function, and an
union field containing the instruction parameters. The list
of the instruction parameters is computed automatically by
analysing the pseudo-code. There are 80 distinct parameter
lists; for each of them, we generate a struct type, which
is referenced in the union field.

The generation of the decoder is somewhat tricky, due
to some features of the ARM instruction set. In particular,
looking at the encoding tables is not enough, because some
binary words match many instruction tables. For example,
any UXTH instruction matches the encoding tables of LDRB,
LDRBT, and UXTAH; trying to decode the addressing mode
eliminates the LDRB and LDRBT candidates, and checking
the validity constraint of UXTAH (Rn6=R15) eliminates this
third candidate. To solve this issue, our decoders work in
two phases: the first phase selects the candidates using a
switch statement, the second phase evaluates the validity
constraints.

The dynamic translation technique we use requires to
recognize the basic blocks (i.e., a sequence of instructions
always executed in a row). An instruction is a basic-block
terminator if it may branch for some states of the processor.
Some particular instructions are managed manually, but the
may-branch condition is computed automatically for most
instructions, using a small static analyser.

We illustrate the principle of this static analyser on the LDR
instruction combined with the register pre-indexed address-
ing mode. First, we go trough the AST, searching for assign-
ments to the PC, which, on ARM, is the register R15. We
encounter three register assignments: 1) Rn=address (code
of the addressing mode), 2) PC=data AND..., 3) Rd=data.
Then, we associate a condition to each assignment. From the
first assignment, we conclude that the instruction may branch
if n==15. The second (respectively third) assignment appears
on the then side (resp. else side) of an if statement whose
condition is Rd is R15. So the assignment 2) yields the
condition d==15, and the latter yields the condition false

(obtained by reduction of d==15&&d!=15). At this point
we have the global may-branch condition n==15||d==15.
However, one of the validity constraint associated with this

(a) binary encoding of the ADC instruction
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . 0
cond 0 0 I 0 1 0 1 S Rn Rd shifter operand

(b) binary encoding of the “logical shift left by immediate” operand
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 7 6 . . . 4 3 . . . 0
cond 0 0 0 opcode S Rn Rd shift imm 0 0 0 Rm

(a+b) resulting binary encoding of the flattened instruction
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 7 6 . . . 4 3 . . . 0
cond 0 0 0 0 1 0 1 S Rn Rd shift imm 0 0 0 Rm

Fig. 2. Flattening the ADC instruction with the shift left by immediate operand

instruction is n!=15, so the final may-branch condition is
simplified to d==15. This condition will be evaluated at
decode-time once the value of d in known, deciding whether
it is the end of the current basic-block.

The whole OCaml extractor-generator is 5400 lines long,
and it generates 74,000 lines of C/C++. Note that the ISS
is mainly written in C because we have started some formal
verification work using tools not compatible with C++.

To allow full system simulation, we integrated our ISS
in a SystemC/TLM module (4000 LoC in addition of the
generated code), and added this module to the open-source
SimSoC project [4]. The generated code is already released
as part of the version 0.7 of SimSoC1, and we plan to release
the generator itself in a near future.

Additionally, we generate a formal specification of the
ARMv6 in Coq, which is used by another work investigating
the certification of simulators. The Coq code generation uses
the same techniques than the C++ generator, excepted that
optimizations are disabled, and imperative code is translated
to functional code using monadic specifications [13]. Our
Coq specification is similar to the HOL specification of [14].

D. Automatic test generation

In order to validate the SimSoC decoder, we prepare
massive binary tests. We built an automatic test generator
that generates all possible instructions which are neither
undefined nor unpredictable. We generate two files. The
first contains the instruction binary, in the ELF format. The
second contains the expected assembly code. Both files are
generated according to the instruction encoding and syntax
as extracted from the reference manual.

The parameter values are chosen with respect to the
validity constraints to ensure that the instruction is defined
and predictable. The validity constraints are dealt with during
the parameter generation. For example, Rn in instruction
LDRBT cannot be R15, so we chose directly a value between 0
and 14. Continuing the example of LDRBT, another constraint
states that Rd and Rn must be different: the generator
produces two different values from the previous table and
assigns them to Rd and Rn.

The generated binary instructions are given as input to
the SimSoC decoder. The latter prints the corresponding
assembly code which is then compared with the generated

1SimSoC URL:http://gforge.inria.fr/projects/simsoc/

assembly code using the Unix command diff. Minor issues
have been detected and fixed in this way. We did also
compare the result with the one of the GNU disassembler
(arm-elf-objdump -d), but as the GNU syntax is slightly
different, comparison must be done by hand.

IV. RELIABILITY AND PERFORMANCES

A. Validation

An ISS for the ARMv5 architecture was already available
in SimSoC. Thanks to backward compatibility, all the tests
running on ARMv5 can be used to test our new ARMv6 ISS.

The new ISS passes all the tests written to validate the
previous ARMv5 ISS of SimSoC. In particular, the new
ARMv6 ISS can simulate Linux running on two boards based
on the ARMv5 architecture (the SPEArPlus600 from STMi-
croelectronics and the TI AM1707 from Texas Instrument).

Using a generator avoids many typo-like errors. However,
other kinds of errors remain possible. Here are the last
bugs we found and fixed while trying to boot Linux on the
SPEArPlus600 SoC simulator:

• After the execution of an LDRBT instruction, the
content of the base register (Rn) was wrong. It was due
to a bug in the reference manual itself; the last line of
the pseudo-code has to be deleted2.

• After a data abort exception, the base register write-
back was not canceled, because we did not notice this
rule during our first reading of the manual. We fix this
issue as explained in section III-B.3.

Once Linux was booting on the SPEArPlus600, Linux
booted at the first try on the TI AM1707 SoC simulator (the
other components were already validated using the previous
hand-written ARMv5 ISS).

B. Simulation Speed

The ISS has two levels of dynamic translation. First, the
instructions are decoded and stored in an array of instruction
objects. Filling this array is quick (between 5 and 10 Mips),
and then simulating one basic block is done by calling the
instructions functions one by one.

We compared the speed of the generated ARMv6 ISS
with the hand-written ARMv5 ISS. We wanted to know
whether our approach based on extraction, transformation

2This error is fixed in the ARMv7 reference manual, which is now the
recommended manual for the ARMv6 architecture.

TABLE I
COMPARISON OF THE SIMULATION SPEEDS

ARMv6 ARMv5
generated ISS hand-written

speed and relative gain speed

arm32-crypto-O0
Linux 64 104.78 Mi/s +2.6% 102.16 Mi/s
MacOSX 89.08 Mi/s +7.4% 82.98 Mi/s
Linux 32 76.74 Mi/s -10.8% 86.03 Mi/s

arm32-crypto-O3
Linux 64 89.97 Mi/s +2.4% 87.89 Mi/s
MacOSX 74.65 Mi/s +4.6% 71.39 Mi/s
Linux 32 70.91 Mi/s -5.1% 74.70 Mi/s

arm32-loop
Linux 64 124.85 Mi/s -1.2% 126.38 Mi/s
MacOSX 108.50 Mi/s +1.9% 106.52 Mi/s
Linux 32 88.89 Mi/s -5.8% 94.39 Mi/s

arm32-sorting-O0
Linux 64 82.18 Mi/s -0.5% 82.61 Mi/s
MacOSX 74.40 Mi/s +8.6% 68.49 Mi/s
Linux 32 62.42 Mi/s -11.3% 70.37 Mi/s

arm32-sorting-O3
Linux 64 106.41 Mi/s -1.0% 107.54 Mi/s
MacOSX 97.51 Mi/s +5.6% 92.35 Mi/s
Linux 32 83.39 Mi/s -1.0% 84.27 Mi/s

thumb-crypto-O0
Linux 64 117.80 Mi/s +2.3% 115.15 Mi/s
MacOSX 100.22 Mi/s -0.5% 100.71 Mi/s
Linux 32 84.56 Mi/s -8.1% 91.98 Mi/s

thumb-crypto-O3
Linux 64 111.67 Mi/s +7.1% 104.30 Mi/s
MacOSX 98.48 Mi/s +6.5% 92.46 Mi/s
Linux 32 84.33 Mi/s -2.9% 86.87 Mi/s

thumb-loop
Linux 64 133.95 Mi/s +4.3% 128.44 Mi/s
MacOSX 108.24 Mi/s +3.2% 104.86 Mi/s
Linux 32 75.96 Mi/s -24.2% 100.16 Mi/s

thumb-sorting-O0
Linux 64 79.61 Mi/s 0.0% 79.61 Mi/s
MacOSX 74.17 Mi/s +1.4% 73.13 Mi/s
Linux 32 62.24 Mi/s -9.5% 68.78 Mi/s

thumb-sorting-O3
Linux 64 121.39 Mi/s +26.5% 95.98 Mi/s
MacOSX 97.19 Mi/s +8.2% 89.83 Mi/s
Linux 32 89.55 Mi/s +15.1% 77.81 Mi/s

average
Linux 64 107.26 Mi/s +4.1% 103.00 Mi/s
MacOSX 92.24 Mi/s +4.5% 88.27 Mi/s
Linux 32 77.90 Mi/s -6.8% 83.54 Mi/s

global average 92.47 Mi/s +0.9% 91.60 Mi/s

and generation allows to reach the same speed ISS written
and optimized by hand. We used three benchmarks “loop”,
“sorting”, and “crypto”. We compiled them targeting either
the ARM or the Thumb variant of the ARMv5 instruction
set, a first time with optimization (-O3) and a second without
(-O0). Three different computers were used: a 32-bit Linux,
a 64-bit Linux, and a MacBook pro (64-bit).

The results are detailed in Table I. Globally, we obtained
a small improvement of less than 1%. That is smaller than
the measurement accuracy, and so we can only conclude that
both ISSes run roughly at the same speed. However, we can
note that the new ISS behaves better on 64-bits machine;
indeed, figures about 32-bits machines are not a real issue
because such machines become less and less common among
people doing simulation.

V. CONCLUSION

We have combined two techniques to generate an ISS:
1) automatic extraction of pseudo-formal descriptions, 2)
automatic analysis and transformation of an intermediate
representation of the target program. We have obtained an
ISS for ARMv6 that is as good as the previous hand-
written one for ARMv5, and the development time has been
significantly reduced. Moreover, trying a new optimization

or targetting another ISS architecture is clearly much easier
with this approach.

The effort to write our tool chain would have been even
smaller if we had used the ARMv7 reference manual. Indeed,
the small bugs we noticed in the ARMv6 manual are fixed
in the ARMv7 manual, and the description of the instruction
set is much more formal in the new reference manual. Thus,
much of the remedial transformation steps could be avoided.

Among the transformations steps, some are specific to
the ARM architecture, but others could be reused for other
architectures such as MIPS or PowerPC. Reusing code would
require to agree on an abstract architecture-independent
language, and to group the interesting functions in a library.

We have currently three back-ends: the fast ISS back-end,
the tests for the decoder, and the Coq formal specification.
Moreover, we have almost finished another backend allowing
LLVM-based dynamic translation. The intermediate repre-
sentation contains data that could be useful to generate an
assembler. We could also generate descriptions in other ADL
languages, and use the associated tools.

REFERENCES

[1] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC. TLM
Concepts and Applications for Embedded Systems. Springer, June
2005, iSBN 0-387-26232-6.

[2] J. Zhu and D. D. Gajski, “A retargetable, ultra-fast instruction set
simulator,” in DATE’99. New York, NY, USA: ACM, 1999, p. 62.

[3] ARM, ARM Architecture Reference Manual DDI 0100I. ARM, 2005.
[4] C. Helmstetter, V. Joloboff, and H. Xiao, “SimSoC: A full system

simulation software for embedded systems,” in OSSC’09, IEEE, Ed.,
2009.

[5] R. Leupers, J. Elste, B. Landwehr, and B. L, “Generation of interpre-
tive and compiled instruction set simulators,” in in: Asia and South
Pacific Design Automation Conference (ASP-DAC), 1999, pp. 339–
342.

[6] F. Engel, J. Nührenberg, and G. P. Fettweis, “A generic tool set
for application specific processor architectures,” in Proceedings of
the eighth international workshop on Hardware/software codesign,
ser. CODES ’00. New York, NY, USA: ACM, 2000, pp. 126–130.
[Online]. Available: http://doi.acm.org/10.1145/334012.334036

[7] E. C. Schnarr, M. D. Hill, and J. R. Larus, “Facile: a language and
compiler for high-performance processor simulators,” in PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation. New York, NY, USA: ACM,
2001, pp. 321–331.

[8] W. Qin, S. Rajagopalan, and S. Malik, “A formal concurrency model
based architecture description language for synthesis of software
development tools,” SIGPLAN Not., vol. 39, pp. 47–56, June 2004.
[Online]. Available: http://doi.acm.org/10.1145/998300.997171

[9] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann, “A universal technique for fast and flexible instruction-
set architecture simulation,” in DAC ’02: Proceedings of the 39th
conference on Design automation. New York, NY, USA: ACM, 2002,
pp. 22–27.

[10] F. Bellard, “Qemu, a fast and portable dynamic translator,” in ATEC
’05: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference. Berkeley, CA, USA: USENIX Association, 2005,
pp. 41–41.

[11] M. Reshadi, N. Dutt, and P. Mishra, “A retargetable framework for
instruction-set architecture simulation,” ACM Trans. Embed. Comput.
Syst., vol. 5, no. 2, pp. 431–452, 2006.

[12] J. Zhu and D. D. Gajski, “An ultra-fast instruction set simulator,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 10, no. 3, pp. 363–373, 2002.

[13] T. Schrijvers, P. Stuckey, and P. Wadler, “Monadic constraint program-
ming,” J. Funct. Program., vol. 19, no. 6, pp. 663–697, 2009.

[14] A. C. J. Fox and M. O. Myreen, “A Trustworthy Monadic Formal-
ization of the ARMv7 Instruction Set Architecture,” in ITP, 2010, pp.
243–258.

