
Math. Struct. in Comp. Science (2005), vol. 15(1), pp. 37�92. c© 2005 Cambridge University
Press

DOI: 10.1017/S0960129504004426 Printed in the United Kingdom

De�nitions by rewriting

in the Calculus of Constructions

Frédéric Blanqui12

1 Laboratoire d'Informatique de l'École Polytechnique (LIX)
91128 Palaiseau Cedex, France
(until 30 September 2003)
2 Institut National de Recherche en Informatique et Automatique (INRIA)
Laboratoire lorrain de Recherche en Informatique et ses Applications (LORIA)
615 rue du Jardin Botanique, BP 101, 54602 Villers-lès-Nancy, France
blanqui@loria.fr (from 1st October 2003)

Received 16 September 2002. Revised 12 November 2003.

Abstract: This paper presents general syntactic conditions ensuring the strong normal-

ization and the logical consistency of the Calculus of Algebraic Constructions, an exten-

sion of the Calculus of Constructions with functions and predicates de�ned by higher-

order rewrite rules. On the one hand, the Calculus of Constructions is a powerful type

system in which one can formalize the propositions and natural deduction proofs of higher-

order logic. On the other hand, rewriting is a simple and powerful computation paradigm.

The combination of both allows, among other things, to develop formal proofs with a re-

duced size and more automation compared with more traditional proof assistants. The

main novelty is to consider a general form of rewriting at the predicate-level which gen-

eralizes the strong elimination of the Calculus of Inductive Constructions.

1. Introduction

This work aims at de�ning an expressive language allowing to specify and prove math-

ematical properties easily. The quest for such a language started with Girard' system F

(Girard 1972) on the one hand and De Bruijn's Automath project (De Bruijn 1968) on the

other hand. Later, Coquand and Huet combined both calculi into the Calculus of Con-

structions (CC) (Coquand 1985). As in system F, in CC, data types are de�ned through

impredicative encodings that are di�cult to use in practice. So, following Martin-Löf's

theory of types (Martin-Löf 1984), Coquand and Paulin-Mohring de�ned an extension of

CC with inductive types and their associated induction principles as �rst-class objects,

the Calculus of Inductive Constructions (CIC) (Coquand and Paulin-Mohring 1988),

which is the basis of the proof-assistant Coq (Coq Development Team 2002).

However, de�ning functions or predicates by induction is not always convenient. More-

over, with such de�nitions, equational reasoning is uneasy and leads to very large proof

terms. Yet, for decidable theories, equational proofs need not to be kept in proof terms.

Frédéric Blanqui 2

This idea that proving is not only reasoning (undecidable) but also computing (decid-

able) has been recently formalized in a general way by Dowek, Hardin and Kirchner with

the Natural Deduction Modulo (NDM) for �rst-order logic (Dowek et al. 1998).

A more convenient and powerful way of de�ning functions and predicates is by using

rewrite rules (Dershowitz and Jouannaud 1990). This notion is very old but its study

really began in the 70's with Knuth and Bendix (Bendix and Knuth 1970) for knowing

whether, in a given equational theory, an equation is valid or not. Then, rewriting was

quickly used as a programming paradigm (see (Dershowitz and Jouannaud 1990)) since

any computable function can be de�ned by rewrite rules.

In the following sub-sections, we present in more details our motivations for extending

CIC with rewriting, the previous works on the combination of λ-calculus and rewriting,

and our own contributions.

1.1. Advantages of rewriting

In CIC, functions and predicates can be de�ned by induction on inductively de�ned

types. The case of the type nat of natural numbers, de�ned from 0 : nat (zero) and

s : nat ⇒ nat (successor function), yields Gödel' system T: a function f : nat ⇒ τ is

de�ned by giving a pair of terms (u, v), written (rec u v), where u : τ is the value of

f(0) and v : nat ⇒ τ ⇒ τ is a function which computes the value of f(n + 1) from n

and f(n). Computations proceeds by applying the following (higher-order) rewrite rules,

called ι-reduction:

rec u v 0 →ι u

rec u v (s n) →ι v n (rec u v n)
For instance, addition can be de�ned by the term λxy.(rec u v x) with u = y and

v = λnr.s(r) (de�nition by induction on x). Then, one can check that:†

2 + 2→∗β rec 2 v 2→ι v 1 (rec 2 v 1)→∗β s(rec 2 v 1)
→ι s(v 0 (rec 2 v 0))→∗β s(s(rec 2 v 0))→ι s(s(2)) = 4

Proofs by induction are formalized in the same way: if P is a predicate on natural

numbers, u a proof of P0 and v a proof of (n : nat)Pn ⇒ P (sn),‡ then rec P u v is a

proof of (n : nat)Pn, and ι-reduction corresponds to the elimination of induction cuts.

In fact, (rec u v) is nothing but a particular case of (rec P u v) with the non-dependent

predicate P = λn.τ .

In addition, deduction steps are made modulo βι-equivalence§, that is, if π is a proof

of P and P =βι Q, then π is also a proof of Q. For instance, if π is a proof of P (2 + 2),
then it is also a proof of P (4), as one would naturally expect. The veri�cation that a

term π is indeed a proof of a proposition P , called type-checking, is decidable since βι is

a con�uent (the order of computations does not matter) and strongly normalizing (there

is no in�nite computation) relation (Werner 1994).

† →∗β is the transitive closure of the β-reduction relation: (λx.t u)→β u{x 7→ t}.
‡ As often in type systems, we denote universal quanti�cation over a type T by (x : T).
§ Re�exive, symmetric and transitive closure of the βι-reduction relation (which is the union of the β
and ι reduction relations).

De�nitions by rewriting in the Calculus of Constructions 3

Although the introduction of inductive types and their induction principles as �rst-

class objects is a big step towards a greater usability of proof assistants, we are going

to see that the restriction of function de�nitions to de�nitions by induction, and the

restriction of type conversion to βι-equivalence, have several important drawbacks. The

use of rewriting, that is, the ability of de�ning functions by giving a set of rewrite rules

R, and the possibility of doing deductions modulo βR-equivalence, can remedy these

problems. It appears that ι-reduction itself is nothing but a particular case of higher-

order rewriting (Klop et al. 1993; Nipkow 1991) where, as opposed to �rst-order rewriting,

the constructions of the λ-calculus (application, abstraction and product) can be used

in the right hand-sides of rules.¶ A common example of a higher-order de�nition is the

function map which applies a function f to each element of a list:

map f nil → nil

map f (cons x `) → cons (f x) (map f `)
where nil stands for the empty list and cons for the function adding an element at the

head of a list.

Easier de�nitions. First of all, with rewriting, de�nitions are easier. For instance,

addition can be de�ned by simply giving the rules:

0 + y → y

(s x) + y → s (x+ y)
Then, we have 2 + 2 → s(2 + 1) → s(s(2 + 0)) → s(s(2)) = 4. Of course, one can make

the de�nitions by induction look like this one, as it is the case in Coq (Coq Development

Team 2002), but this is not always possible. For instance, the de�nition by induction of

the comparison function ≤ on natural numbers requires the use of two recursors:

λx.rec (λy.true) (λnry.rec false (λn′r′.rn′) y) x

while the de�nition by rewriting is simply:

0 ≤ y → true

s x ≤ 0 → false

s x ≤ s y → x ≤ y
More e�cient computations. From a computational point of view, de�nitions by

rewriting can be more e�cient, although the process of selecting an applicable rule may

have a higher cost (Augustsson 1985). For example, since + is de�ned by induction on

its �rst argument, the computation of n + 0 requires n + 1 reduction steps. By adding

the rule x+ 0→ x, this takes only one step.

Quotient types. Rewriting allows us to formalize some quotient types in a simple way,

without requiring any additional extension (Barthe and Geuvers 1995; Courtieu 2001),

by simply considering rewrite rules on constructors, which is forbidden in CIC since

constructors must be free in this system. For instance, integers can be formalized by

taking 0 for zero, p for predecessor and s for successor, together with the rules:

¶ We will not consider higher-order pattern-matching here although it should be possible as we show it
for the simply-typed λ-calculus in (Blanqui 2000).

Frédéric Blanqui 4

s (p x) → x

p (s x) → x

This technique applies to any type whose constructors satisfy a set of equations that

can be turned into a con�uent and strongly normalizing rewrite system (Jouannaud and

Kounalis 1986).

More automation. We previously saw that, in CIC, if P is a predicate on natural

numbers, then P (2 + 2) is βι-equivalent to P (4) and, hence, that a proof of P (2 + 2)
is also a proof of P (4). This means that proving P (4) from P (2 + 2) does not require

any argument: this is automatically done by the system. But, because functions must

be de�ned by induction, this does not work anymore for computations on open terms:

since + is de�ned by induction on its �rst argument, P (x + 2) is not βι-equivalent to

P (s(s(x))). Proving P (s(s(x))) from P (x+2) requires a user interaction for proving that

x+ 2 is equal to s(s(x)), which requires induction.

We may even go further and turn some lemmas into simpli�cation rules. Let us for

instance consider the multiplication on natural numbers:

0× y → 0
(s x)× y → y + (x× y)

Then, the distributivity of the addition over the multiplication can be turned into the

rewrite rule:

(x+ y)× z → (x× z) + (y × z)
hence allowing the system to prove more equalities and more lemmas automatically by

simply checking the βR-equivalence with already proved statements. In the case of an

equality u = v, it su�ces to check whether it is βR-equivalent to the instance u = u

of the identity axiom, which is the same as checking whether u and v have the same

βR-normal form.

Smaller proofs. Another important consequence of considering a richer equivalence

relation on types is that it reduces the size of proofs, which is currently an important

limitation in proof assistants like Coq. For instance, while the proof of P (s(s(x))) requires
the application of some substitution lemma in CIC, it is equal to the proof of P (x + 2)
when rewriting is allowed. The bene�t becomes very important with equality proofs, since

they require the use of many lemmas in CIC (substitution, associativity, commutativity,

etc.), while they reduce to re�exivity with rewriting (if one considers rewriting modulo

associativity and commutativity (Peterson and Stickel 1981)).

More typable terms. The fact that some terms are not βι-equivalent as one would

expect has another unfortunate consequence: some apparently well-formed propositions

are rejected by the system. Take for instance the type list : (n : nat)? of lists of length

n with the constructors nil : list0 and cons : nat ⇒ (n : nat)listn ⇒ list(sn). Let
app : (n : nat)listn ⇒ (n′ : nat)listn′ ⇒ list(n + n′) be the concatenation function on

list. If, as usual, app is de�ned by induction on its �rst argument then, surprisingly, the

following propositions are not typable in CIC:

De�nitions by rewriting in the Calculus of Constructions 5

app n ` 0 `′ = `

app (n+ n′) (app n ` n′ `′) n′′ `′′ = app n ` (n′ + n′′) (app n′ `′ n′′ `′′)
In the �rst equation, the left hand-side is of type list(n+ 0) and the right hand-side is

of type listn. Although one can prove that n+ 0 = n holds for any n in nat, the equality

is not well-typed since n + 0 is not βι-convertible to n (only terms of equivalent types

can be equal).

In the second equation, the left hand-side is of type list((n + n′) + n′′) and the right

hand-side is of type list(n+(n′+n′′)). Again, although one can prove that (n+n′)+n′′ =
n + (n′ + n′′) holds for any n, n′ and n′′ in nat, the two terms are not βι-convertible.

Therefore, the proposition is not well-formed.

On the other hand, by adding the rules x+ 0→ x and (x+ y) + z → x+ (y + z), the
previous propositions become well-typed as expected.

Integration of decision procedures. One can also de�ne predicates by rewrite rules

or having simpli�cation rules on propositions, hence generalizing the de�nitions by strong

elimination in CIC. For example, one can consider the set of rules of Figure 1 (Hsiang

1982) where ⊕ (exclusive �or�) and ∧ are commutative and associative symbols, ⊥ rep-

resents the proposition always false and > the proposition always true.

Fig. 1. Decision procedure for classical propositional tautologies

P ⊕⊥ → P

P ⊕ P → ⊥

P ∧ > → P

P ∧ ⊥ → ⊥
P ∧ P → P

P ∧ (Q⊕R) → (P ∧Q)⊕ (P ∧R)

Hsiang (Hsiang 1982) showed that this system is con�uent and strongly normalizing,

and that a proposition P is a tautology (i.e. is always true) i� P reduces to >. So,
assuming type-checking in CC extended with this rewrite system remains decidable, then,

to know whether a proposition P is a tautology, it is su�cient to submit an arbitrary

proof of > to the veri�cation program. We would not only gain in automation but also

in the size of proofs (any tautology would have a proof of constant size).

We can also imagine simpli�cation rules on equalities like the ones of Figure 2 where

+ and × are associative and commutative, and = commutative.

Fig. 2. Simpli�cation rules on equality

x = x → >
s x = s y → x = y

s x = 0 → ⊥
x+ y = 0 → x = 0 ∧ y = 0

x× y = 0 → x = 0 ∨ y = 0

Frédéric Blanqui 6

1.2. Problems

We saw that rewriting has numerous advantages over induction but it is not clear to

which extent rewriting can be added to powerful type systems like the Calculus of Con-

structions (CC) without compromising the decidability of type-checking and the log-

ical consistency. Furthermore, since rewrite rules are user-de�ned, it is not clear also

whether βR-equivalence/normalization can be made as e�cient as a �xed system with

βι-reduction only (Grégoire and Leroy 2002), although some works on rewriting seem

very promising (Eker 1996; Kirchner and Moreau 2001).

Since we want to consider deductions modulo βR-equivalence, we at least need this

equivalence to be decidable. The usual way of proving the decidability of such an equiv-

alence relation is by proving con�uence and strong normalization of the corresponding

reduction relation. Since these properties are not decidable in general, we will look for

decidable su�cient conditions as general as possible.

As for the logical consistency, we cannot deduce it from normalization anymore as it is

the case in CC (Barendregt 1992), since adding function symbols and rewrite rules is like

adding hypothesis and equality/equivalence axioms. Therefore, for logical consistency

also, we will look for su�cient conditions as general as possible.

In the following sub-section, we present a short history of the di�erent results obtained

so far on the combination of β-reduction and rewriting. Then, we will present our own

contributions.

1.3. Previous works

The �rst work on the combination of typed λ-calculus and (�rst-order) rewriting is due

to Breazu-Tannen in 1988 (Breazu-Tannen 1988). He showed that the combination of

simply-typed λ-calculus and �rst-order rewriting is con�uent if rewriting is con�uent. In

1989, Breazu-Tannen and Gallier (Breazu-Tannen and Gallier 1989), and Okada (Okada

1989) independently, showed that the strong normalization also is preserved. These re-

sults were extended by Dougherty (Dougherty 1991) to any �stable� set of pure λ-terms.

The combination of �rst-order rewriting and Pure Type Systems (PTS) (Geuvers and

Nederhof 1991; Barendregt 1992) was also studied by several authors (Barbanera 1990;

Barthe and Melliès 1996; Barthe and van Raamsdonk 1997; Barthe 1998).

In 1991, Jouannaud and Okada (Jouannaud and Okada 1991) extended the result of

Breazu-Tannen and Gallier to the higher-order rewrite systems satisfying the General

Schema, an extension of primitive recursion to the simply-typed λ-calculus. With higher-

order rewriting, strong normalization becomes more di�cult to prove since there is a

strong interaction between rewriting and β-reduction, which is not the case with �rst-

order rewriting.

In 1993, Barbanera, Fernández and Geuvers (Barbanera et al. 1994; Fernández 1993)

extended the proof of Jouannaud and Okada to the Calculus of Constructions (CC) with

object-level rewriting and simply-typed function symbols. The methods used so far for

non-dependent type systems (Breazu-Tannen and Gallier 1989; Dougherty 1991) cannot

be applied to dependent type systems like CC since, in this case, rewriting is included in

De�nitions by rewriting in the Calculus of Constructions 7

the type conversion rule and, thus, allows more terms to be typable. This was extended

to PTS's in (Barthe and Geuvers 1995).

Other methods for proving strong normalization appeared. In 1993, Van de Pol (Van

de Pol 1993; Van de Pol and Schwichtenberg 1995; Van de Pol 1996) extended to the

simply-typed λ-calculus the use of monotonic interpretations. In 1999, Jouannaud and

Rubio (Jouannaud and Rubio 1999) extended the Recursive Path Ordering (RPO) to

the simply-typed λ-calculus.

In all these works, even the ones on CC, function symbols are always simply typed. It

was Coquand (Coquand 1992) in 1992 who initiated the study of rewriting with depen-

dent and polymorphic symbols. He studied the completeness of de�nitions with dependent

types. He proposed a schema more general than the schema of Jouannaud and Okada

since it allows inductive de�nitions on strictly-positive types, but it does not necessarily

imply strong normalization. In 1996, Giménez (Giménez 1996; Giménez 1998) de�ned

a restriction of this schema for which he proved strong normalization. In 1999, Jouan-

naud, Okada and the author (Blanqui et al. 2002; Blanqui et al. 1999) extended the

General Schema in order to deal with strictly-positive types while still keeping simply-

typed symbols. Finally, in 2000, Walukiewicz (Walukiewicz 2000; Walukiewicz-Chrz¡szcz

2002) extended Jouannaud and Rubio's HORPO to CC with dependent and polymorphic

symbols.

All these works share a strong restriction: rewriting is restricted to the object level.

In 1998, Dowek, Hardin and Kirchner (Dowek et al. 1998) proposed a new approach

to deduction for �rst-order logic: Natural Deduction Modulo (NDM) a congruence ≡ on

propositions representing the intermediate computations between two deduction steps.

This deduction system consists in replacing the usual rules of Natural Deduction by

equivalent rules modulo ≡. For instance, the elimination rule for ⇒ (modus ponens)

becomes:

Γ ` R Γ ` P
Γ ` Q

(R ≡ (P ⇒ Q))

They proved that the simple theory of types (Dowek et al. 2001) and skolemized set

theory can be seen as �rst-order theories modulo congruences using explicit substitutions

(Abadi et al. 1991). In (Dowek and Werner 1998; Dowek and Werner 2000), Dowek and

Werner gave several conditions ensuring strong normalization of cut elimination in NDM.

1.4. Contributions

Our main contribution is to establish general conditions ensuring the strong normal-

ization of the Calculus of Constructions (CC) extended with predicate-level rewriting

(Blanqui 2001). In (Blanqui 2001), we show that these conditions are satis�ed by most

of the Calculus of Inductive Constructions (CIC) and by Natural Deduction Modulo

(NDM) a large class of equational theories.

Our work can be seen as an extension of both NDM and CC, where the congruence not

only includes �rst-order rewriting but also higher-order rewriting since, in CC, functions

and predicates can be applied to functions and predicates.

Frédéric Blanqui 8

It can therefore serve as a basis for a powerful extension of proof assistants like Coq

(Coq Development Team 2002) or LEGO (Luo and Pollack 1992) which allow de�ni-

tions by induction only. For its implementation, it may be convenient to use specialized

rewriting-based applications like CiME (Contejean et al. 2000), ELAN (Borovanský et

al. 2000) or Maude (Clavel et al. 1999). Furthermore, for program extraction (Paulin-

Mohring 1989), one can imagine using rewriting-based languages and hence get more

e�cient extracted programs.

Considering predicate-level rewriting is not completely new. A particular case is the

�strong elimination� of CIC, that is, the ability of de�ning predicates by induction on

some inductively de�ned data type. The main novelty here is to consider arbitrary user-

de�ned predicate-level rewrite rules.

Therefore, for proving the strong normalization property, we cannot completely follow

the methods of Werner (Werner 1994) and Altenkirch (Altenkirch 1993) since they use in

an essential way the fact that function de�nitions are made by induction. And the meth-

ods used in case of non-dependent �rst-order rewriting (Breazu-Tannen and Gallier 1989;

Barbanera 1990; Dougherty 1991) cannot be applied because higher-order rewriting has

a strong interaction with β-reduction and because, in dependent type systems, rewriting

allows more terms to be typable. Our method is based on the notion of reducibility can-

didates of Tait and Girard (Girard et al. 1988) and extend Geuvers' method (Geuvers

1994) for dealing with rewriting.

Let us mention two other important contributions.

For allowing some quotient types (rules on constructors) and matching on function

symbols, which is not possible in CIC, we use a notion of constructor more general than

the usual one (see Section 5.1).

For ensuring the subject reduction property, that is, the preservation of typing under

reduction, we introduce conditions more general than the ones used so far. In particular,

these conditions allow us to get rid of non-linearities due to typing, which makes rewriting

more e�cient and con�uence easier to prove (see Section 3).

2. The Calculus of Algebraic Constructions

The Calculus of Algebraic Constructions (CAC) is an extension of the Calculus of Con-

structions (CC) (Coquand and Huet 1988) with function and predicate symbols de�ned

by rewrite rules.

2.1. Terms

CC is a particular Pure Type System (PTS) (Barendregt 1992) de�ned from a set S =
{?,2} of sorts. The sort ? is intended to be the type of data types and propositions,

while the sort 2 is intended to be the type of predicate types (also called kinds). For

instance, the type nat of natural numbers is of type ?, ? is of type 2, the predicate ≤ on

natural numbers is of type nat⇒ nat⇒ ?, and nat⇒ nat⇒ ? is of type 2.

De�nitions by rewriting in the Calculus of Constructions 9

The terms of CC are usually de�ned by the following grammar rule:

t ::= s | x | [x : t]t | (x : t)t | tt
where s is a sort, x a variable, [x : t]t an abstraction, (x : t)t a (dependent) product, and
tt an application. We assume that the set X of variables is an in�nite denumerable set

disjoint from S.
We simply extend CC by considering a denumerable set F of symbols, disjoint from S

and X , and by adding the following new construction:

t ::= . . . | f ∈ F
We denote by T (F ,X) the set of terms built from F and X . Note that, in contrast with

(Blanqui 2001), function symbols are curried. No notion of arity is required.

2.2. Notations

Free and bound variables. A variable x in the scope of an abstraction [x : T] or a
product (x : T) is bound. As usual, it may be replaced by any other variable. This is

α-equivalence. A variable which is not bound is free. We denote by FV(t) the set of free
variables of a term t. A term without free variable is closed. We often denote by U ⇒ V

a product (x : U)V with x /∈ FV(V) (non-dependent product). See (Barendregt 1992)

for more details on these notions.

Vectors.We often use vectors (~t, ~u, . . .) for sequences of terms (or anything else). The size

of a vector ~t is denoted by |~t|. For instance, [~x : ~T]u denotes the term [x1 : T1] . . . [xn : Tn]u
where n = |~x|.

Positions. To designate a subterm of a term, we use a system of positions à la Dewey

(words over the alphabet of positive integers). Formally, the set Pos(t) of the positions

in a term t is inductively de�ned as follows:

� Pos(f) = Pos(s) = Pos(x) = {ε},
� Pos((x : t)u) = Pos([x : t]u) = Pos(tu) = 1.Pos(t) ∪ 2.Pos(u),
where ε denotes the empty word and '.' the concatenation. We denote by t|p the subterm
of t at the position p, and by t[u]p the term obtained by replacing t|p by u in t. The

relation �is a subterm of� is denoted by �, and its strict part by �.

We denote by Pos(f, t) the set of positions p in t such that t|p = f , and by Pos(x, t)
the set of positions p in t such that t|p is a free occurrence of x in t.

Substitutions. A substitution θ is an application from X to T whose domain dom(θ) =
{x ∈ X | xθ 6= x} is �nite. Its set of free variables is FV(θ) =

⋃
{FV(xθ) | x ∈ dom(θ)}.

Applying a substitution θ to a term t consists of replacing every variable x free in t

by its image xθ (to avoid variable captures, bound variables must be distinct from free

variables). The result is denoted by tθ. We denote by {~x 7→ ~t} the substitution which asso-
ciates ti to xi, and by θ∪{x 7→ t} the substitution which associates t to x and yθ to y 6= x.

Relations. Let → be a relation on terms. We denote by:

Frédéric Blanqui 10

� →(t) the set of terms t′ such that t→ t′,

� ← the inverse of →,

� →+ the smallest transitive relation containing →,

� →∗ the smallest re�exive and transitive relation containing →,

� ↔∗ the smallest re�exive, transitive and symmetric relation containing →,

� ↓ the relation →∗ ∗← (t ↓ u if there exists v such that t→∗ v and u→∗ v).
If t → t′ then we say that t rewrites to t′. If t →∗ t′ then we say that t reduces to

t′. A relation → is stable by context if u → u′ implies t[u]p → t[u′]p for all term t and

position p ∈ Pos(t). The relation → is stable by substitution if t→ t′ implies tθ → t′θ for

all substitution θ.

The β-reduction (resp. η-reduction) relation is the smallest relation stable by context

and substitution containing [x : U]v u→β v{x 7→ u} (resp. [x : U]tx→η t if x /∈ FV(t)).
A term of the form [x : U]v u (resp. [x : U]tx with x /∈ FV(t)) is a β-redex (resp. η-redex).
A relation → is weakly normalizing if, for all term t, there exists an irreducible term

t′ to which t reduces. We say that t′ is a normal form of t. A relation → is strongly

normalizing (well-founded, n÷therian) if, for all term t, any reduction sequence issued

from t is �nite.

The relation → is locally con�uent if, whenever a term t rewrites to two distinct terms

u and v, then u ↓ v. The relation → is con�uent if, whenever a term t reduces to two

distinct terms u and v, then u ↓ v.
If → is locally con�uent and strongly normalizing then → is con�uent (Newman's

lemma). If→ is con�uent and weakly normalizing then every term t has a unique normal

form denoted by t ↓.

Orderings. A precedence is a quasi-ordering on F whose strict part is well-founded. Let

>1, . . . , >n be orderings on the sets E1, . . . , En respectively. We denote by (>1, . . . , >n)lex

the lexicographic ordering on E1 × . . . × En. Now, let > be an ordering on a set E. We

denote by >mul the ordering on �nite multisets on E. An important property of these

extensions is that they preserve well-foundedness. See (Baader and Nipkow 1998) for

more details on these notions.

2.3. Rewriting

In �rst-order frameworks, that is, in a �rst-order term algebra, a rewrite rule is generally

de�ned as a pair l→ r of terms such that l is not a variable and the variables occurring

in r also occur in l (otherwise, rewriting does not terminate). Then, one says that a term

t rewrites to a term t′ at position p, written t→p t′, if there exists a substitution σ such

that t|p = lσ and t′ = t[rσ]p. See (Dershowitz and Jouannaud 1990) for more details on

(�rst-order) rewriting.

Here, we consider a very similar rewriting mechanism by restricting left-hand sides of

rules to be algebraic. On the other hand, right-hand sides can be arbitrary. This is a

particular case of Combinatory Reduction System (CRS) (Klop et al. 1993) for which it

is not necessary to use higher-order pattern-matching. However, we proved in (Blanqui

De�nitions by rewriting in the Calculus of Constructions 11

2000) that, in case of simply-typed λ-calculus, our termination criteria can be adapted

to rewriting with higher-order pattern-matching.

De�nition 1 (Rewriting) Terms only built from variables and applications of the form

f~t with f ∈ F are said algebraic. A rewrite rule is a pair of terms l → r such that l is

algebraic, distinct from a variable and FV(r) ⊆ FV(l). A rule l → r is left-linear if no

variable occurs more than once in l. A rule l → r is non-duplicating if no variable has

more occurences in r than in l. A rule f~l→ r is compatible with a precedence ≥ if, for all

symbol g occuring in r, f ≥ g.
Let R be a denumerable set of rewrite rules. The R-reduction relation →R is the

smallest relation containing R and stable by substitution and context. A term of the

form lσ with l→ r ∈ R is an R-redex. We assume that →R is �nitely branching.

Given a set G ⊆ F , we denote by RG the set of rules that de�ne a symbol in G, that
is, whose left-hand side is headed by a symbol in G. A symbol f is constant if R{f} = ∅,
otherwise it is (partially) de�ned. We denote by CF the set of constant symbols and by

DF the set of de�ned symbols.

2.4. Typing

We now de�ne the set of well-typed terms. An environment Γ is a list of pairs x : T made

of a variable x and a term T . We denote by ∅ the empty environment and by E(F ,X)
the set of environments built from F and X . The domain of an environment Γ, dom(Γ),
is the set of variables x such that a pair x : T belongs to Γ. If x ∈ dom(Γ) then we

denote by xΓ the �rst term T such that x : T belongs to Γ. The set of free variables in

an environment Γ is FV(Γ) =
⋃
{FV(xΓ) | x ∈ dom(Γ)}. Given two environments Γ and

Γ′, Γ is included in Γ′, written Γ ⊆ Γ′, if all the elements of Γ occur in Γ′ in the same

order.

De�nition 2 (Typing)We assume that every variable x is equipped with a sort sx,

that the set X s of variables of sort s is in�nite, and that α-equivalence preserves sorts.

Let FVs(t) = FV(t) ∩ X s and doms(Γ) = dom(Γ) ∩ X s. We also assume that every

symbol f is equipped with a sort sf and a closed type τf = (~x : ~T)U such that, for all

rule f~l→ r, |~l| ≤ |~x|. We often write f : T for saying that τf = T .

The typing relation of a CAC is the smallest ternary relation `⊆ E × T × T de�ned

by the inference rules of Figure 3 where s, s′ ∈ S. A term t is typable if there exists an

environment Γ and a term T such that Γ ` t : T (T is a type of t in Γ). In the following,

we always assume that ` τf : sf for all f ∈ F .
An environment is valid if a term is typable in it. A substitution θ is well-typed from

Γ to ∆, θ : Γ ; ∆, if, for all x ∈ dom(Γ), ∆ ` xθ : xΓθ. We denote by T CΓ T ′ the fact

that T ↓ T ′ and Γ ` T ′ : s′, and by T CΓ T ′ the fact that T CΓ T ′ and Γ ` T : s.

Compared with CC, we have a new rule, (symb), for typing symbols and, in the type

conversion rule (conv), we have ↓βR (that we simply denote by ↓ in the rest of the paper)

instead of the β-conversion ↔∗β=↓β (since β is con�uent).

Frédéric Blanqui 12

Fig. 3. Typing rules

(ax) ` ? : 2

(symb)
` τf : sf

` f : τf

(var)
Γ ` T : sx

Γ, x : T ` x : T
(x /∈ dom(Γ))

(weak)
Γ ` t : T Γ ` U : sx

Γ, x : U ` t : T
(x /∈ dom(Γ))

(prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U]v : (x : U)V

(app)
Γ ` t : (x : U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(conv)
Γ ` t : T Γ ` T ′ : s′

Γ ` t : T ′
(T ↓βR T ′)

Well-typed substitutions enjoy the following important substitution property: if Γ `
t : T and θ : Γ ; ∆ then ∆ ` tθ : Tθ.
The relations CΓ (not symmetric) and CΓ (symmetric) are useful when inverting typ-

ing judgements. For instance, a derivation of Γ ` uv : W ′ necessarily terminates by an

application of the (app) rule, possibly followed by applications of the rules (weak) and

(conv). Therefore, there exists V and W such that Γ ` u : (x : V)W , Γ ` v : V and

W{x 7→ v} C∗Γ W ′. Since, in the (conv) rule, T is not required to be typable by some

sort s (as it is the case for T ′), it is not a priori the case that W{x 7→ v} is typable and
therefore that, in fact, W{x 7→ v} C∗Γ W ′.

Many of the well-known basic properties of Pure Type Systems (PTS's) (Barendregt

1992) also hold for CAC's. In (Blanqui 2001), we study these properties in an abstract

way by considering a PTS equipped with an unspeci�ed type conversion rule (instead

of ↓β or ↓βR for instance), hence factorizing several previous proofs for di�erent PTS

extensions. The properties we use in this paper are:

(type correctness) If Γ ` t : T then either T = 2 or Γ ` T : s.
(conversion correctness) If Γ ` T : s and T C∗Γ T ′ then Γ ` T ′ : s.
(convertibility of types) If Γ ` t : T and Γ ` t : T ′ then T C∗Γ T ′.

De�nitions by rewriting in the Calculus of Constructions 13

Only convertibility of types requires con�uence (conversion correctness is proved in Sec-

tion 3.2 without using con�uence).

Among well-typed terms, we distinguish:

� The set K of predicate types or kinds made of the terms K such that Γ ` K : 2. It is

easy to check that every predicate type is of the form (~x : ~T)?.
� The set P of predicates made of the terms T such that Γ ` T : K and Γ ` K : 2.

� The set O of objects made of the terms t such that Γ ` t : T and Γ ` T : ?.

3. Subject reduction

Before studying the strong normalization or the logical consistency of our system, we

must make sure that the reduction relation →βR is indeed correct w.r.t. typing, that is,

if Γ ` t : T and t→βR t′ then Γ ` t′ : T . This property is usually called subject reduction.

Once it holds, it can be easily extended to types, environments and substitutions:

� If Γ ` t : T and T → T ′ then Γ ` t : T ′.
� If Γ ` t : T and Γ→ Γ′ then Γ′ ` t : T .
� If θ : Γ ; ∆ and θ → θ′ then θ′ : Γ ; ∆.

In presence of dependent types and rewriting, the subject reduction for β appears to be

a di�cult problem. Indeed, in the case of a head-reduction [x : U ′]v u→β v{x 7→ u} with
Γ ` [x : U ′]v : (x : U)V and Γ ` u : U , we must prove that Γ ` v{x 7→ u} : V {x 7→ u}.
By inversion, we have Γ, x : U ′ ` v : V ′ with (x : U ′)V ′ C∗Γ (x : U)V . We can conclude

that Γ ` v{x 7→ u} : V {x 7→ u} only if:

(x : U ′)V ′ C∗Γ (x : U)V implies U ′ C∗Γ U and V ′ C∗Γ,x:U V ,

a property that we call product compatibility.

This is immediate as soon as →βR is con�uent. Unfortunately, there are very few

results on the con�uence of higher-order rewriting and β-reduction together (see the

discussion after De�nition 29). Fortunately, con�uence is not the only way to prove the

product compatibility. In (Geuvers 1993), Geuvers proves the product compatibility for

the Calculus of Constructions (CC) with↔∗βη as type conversion relation, although→βη

is not con�uent on untyped terms: [x : T]x β← [x : T]([y : U]y x)→η [y : U]y =α [x : U]x
(Nederpelt 1973). And, in (Barbanera et al. 1997), Barbanera, Geuvers and Fernández

prove the product compatibility for CC with ↓β ∪ ↓R as type conversion relation, where

R is a set of simply-typed object-level rewrite rules.

In Section 3.2, we prove the product compatibility, hence the subject reduction of β,

for a large class of rewrite systems, including predicate-level rewriting, without using

con�uence, by generalizing the proof of Barbanera, Fernández and Geuvers (Barbanera

et al. 1997). Before that, we study the subject reduction for rewriting.

3.1. Subject reduction for rewriting

In �rst-order sorted algebras, for rewriting to preserve sorts, it su�ces that both sides of

a rule have the same sort. Carried over to type systems, this condition gives: there exists

Frédéric Blanqui 14

an environment Γ and a type T such that Γ ` l : T and Γ ` r : T . This condition is the

one which has been taken in all previous work combining typed λ-calculus and rewriting.

However, it has an important drawback. With polymorphic or dependent types, it leads

to strongly non left-linear rules, which has two important consequences. First, rewriting

is strongly slowed down because of the necessary equality tests. Second, it is more di�cult

to prove con�uence.

Let us take the example of the concatenation of two polymorphic lists (type list : ?⇒ ?

with the constructors nil : (A : ?)listA and cons : (A : ?)A⇒ listA⇒ listA):

app A (nil A) `′ → `′

app A (cons A x `) `′ → cons A x (app A ` `′)

This de�nition satis�es the usual condition by taking Γ = A : ?, x : A, ` : listA, `′ :
listA and T = listA. But one may wonder whether it is really necessary to do an equality

test between the �rst argument of app and the �rst argument of cons when one wants to

apply the second rule. Indeed, if app A (cons A′ x `) `′ is well-typed then, by inversion,

cons A′ x ` is of type listA and, by inversion again, listA′ is convertible to listA. Thus,

A is convertible to A′.

In fact, what is important is not that the left-hand side of a rule be typable, but that,

if an instance of the left-hand side of a rule is typable, then the corresponding instance

of the right-hand side has the same type. We express this by requiring that there exists

an environment Γ in which the right-hand side is typable, and a substitution ρ which

replaces the variables of the left-hand side not belonging to Γ by terms typable in Γ.
Hence, one can consider the following rules instead:

app A (nil A′) `′ → `′

app A (cons A′ x `) `′ → cons A x (app A ` `′)

by taking Γ = A : ?, x : A, ` : listA, `′ : listA and ρ = {A′ 7→ A}.

De�nition 3 (Well-typed rule) A rule l→ r with l = f~l, f : (~x : ~T)U and γ={~x 7→ ~l}
is well-typed if there exists an environment Γ and a substitution ρ such that:‖

(S3) Γ ` r : Uγρ,
(S4) ∀∆, σ, T , if ∆ ` lσ : T then σ : Γ ; ∆,

(S5) ∀∆, σ, T , if ∆ ` lσ : T then σ ↓ ρσ.
In the following, we write (l→ r,Γ, ρ) ∈ R when the previous conditions are satis�ed.

An example with dependent types is given by the concatenation of two lists of �xed

length (type list : nat ⇒ ? with the constructors nil : list 0 and cons : nat ⇒ (n : nat)
list n⇒ list (s n)) and the function map which applies a function f to every element of

a list:

app : (n : nat)list n⇒ (n′ : nat)list n′ ⇒ list (n+ n′)
map : (nat⇒ nat)⇒ (n : nat)list n⇒ list n

‖ The conditions (S1) dom(ρ) ∩ dom(Γ) = ∅ and (S2) Γ ` lρ : Uγρ given in (Blanqui 2001) are not
necessary for proving the subject reduction property, but they are necessary for proving the strong
normalization property of the higher-order rewrite rules (see De�nition 26).

De�nitions by rewriting in the Calculus of Constructions 15

where app and map are de�ned by:

app 0 ` n′ `′ → `′

app p (cons x n `) n′ `′ → cons x (n+ n′) (app n ` n′ `′)

map f 0 ` → `

map f p (cons x n `) → cons (f x) n (map f n `)
map f p (app n ` n′ `′) → app n (map f n `) n′ (map f n′ `′)

For the second rule of app, we take Γ = x : nat, n : nat, ` : list n, n′ : nat, `′ : list n′ and
ρ = {p 7→ sn}. This avoids checking that p is convertible to sn. For the third rule of map,

we take Γ = f : nat ⇒ nat, n : nat, ` : list n, n′ : nat, `′ : list n′ and ρ = {p 7→ n + n′}.
This avoids checking that p is convertible to n+ n′. The reader will �nd more examples

at the end of Section 5.

Lemma 4 If βR is product compatible, f : (~x : ~T)U , θ = {~x 7→ ~t} and Γ ` f~t : T then

θ : Γf ; Γ and Uθ C∗Γ T .

Proof. By inversion, there is a sequence of products (xi : T ′i)Ui (1 ≤ i ≤ n =
|~x|) such that Γ ` ft1 . . . tn−1 : (xn : T ′n)Un, Γ ` tn : T ′n, Unθ C∗Γ T , . . . , Γ `
f : (x1 : T ′1)U1, Γ ` t1 : T ′1, U1θ C∗Γ (x2 : T ′2)U2 and (~x : ~T)U C∗Γ (x1 : T ′1)U1.

Let Vi = (xi+1 : Ti+1) . . . (xn : Tn)U . By product compatibility, T1θ = T1 C∗Γ T ′1 and

V1 C∗Γ,x1:T1
U1. Hence, V1θ = (x2 : T2θ)V2θ C∗Γ U1θ C∗Γ (x2 : T ′2)U2. Therefore, by induc-

tion, T2θ C∗Γ T ′2, . . . , Tnθ C∗Γ T ′n and Uθ C∗Γ Unθ C∗Γ T . Hence, by conversion, Γ ` ti : Tiθ,
that is, θ : Γf ; Γ.

Theorem 5 (Subject reduction for R) If βR is product compatible and R is a set

of well-typed rules then R preserves typing.

Proof. As usual, we prove by induction on ∆ ` t : T that, if t →R t′ then ∆ ` t′ : T ,
and if ∆→R ∆′ then ∆′ ` t : T . We only detail the (app) case. Assume that ∆ ` lσ : T ,
(l → r,Γ, ρ) ∈ R, l = f~l, f : (~x : ~T)U and γ = {~x 7→ ~l}. Let θ = γσ. After Lemma 4,

θ : Γf ; ∆ and Uθ C∗∆ T . By (S4), σ : Γ ; ∆. By (S3), Γ ` r : Uγρ. Therefore, by
substitution, ∆ ` rσ : Uγρσ. By (S5), ρσ ↓ σ. Therefore, by conversion, ∆ ` rσ : Uθ
and ∆ ` rσ : T .

How to check the conditions (S3), (S4) and (S5) ? In all their generality, they are

certainly undecidable. On the one hand, we do not know whether ` and ↓ are decidable
and, on the other hand, in (S4) and (S5), we arbitrarily quantify over ∆, σ and T . It

is therefore necessary to put additional restrictions. In the following, we successively

consider the three conditions.

Let us look at (S3). In practice, the symbols and their de�ning rules are often added

one after another (or by groups but the following argument can be generalized). Let

(F ,R) be a system in which ` is decidable, f /∈ F and Rf a set of rules de�ning f and

whose symbols belong to F ′ = F ∪ {f}. Then, in (F ′,R), ` is still decidable. One can

therefore try to check (S3) in this system. This does not seem an important restriction:

it would be surprising if the typing of a rule requires the use of the rule itself !

We now consider (S4).

Frédéric Blanqui 16

De�nition 6 (Canonical and derived types) Let t be a term of the form lσ with

l = f~l algebraic, f : (~x : ~T)U , n = |~x| = |~l| and γ = {~x 7→ ~l}. The term Uγσ will be

called the canonical type of t. Let p ∈ Pos(l) of the form (1∗2)+. We inductively de�ne

the type of t|p derived from t, τ(t, p), as follows:
� if p = 1n−i2 then τ(t, p) = Tiγσ,

� if p = 1n−i2q and q 6= ε then τ(t, p) = τ(ti, q).

The type of t|p derived from t only depends on the term above t|p.

Lemma 7 (S4) If, for all x ∈ dom(Γ), there is p ∈ Pos(x, l) such that xΓ = τ(l, p), then
(S4) is satis�ed.

Proof. We prove (S4) by induction on the size of l. Assume that ∆ ` lσ : T . We must

prove that, for all x ∈ dom(Γ), ∆ ` xσ : xΓσ. By assumption, there is p ∈ Pos(x, l) such
that xΓ = τ(l, p). Since l = f~l, p = jq. Assume that f : (~x : ~T)U . Let γ = {~x 7→ ~l}
and θ = γσ. If q = ε then x = lj and xΓ = Tjγ. Now, after Lemma 4, θ : Γf ; ∆. So,

∆ ` xjθ : Tjθ, that is, ∆ ` xσ : xΓσ. Assume now that q 6= ε. Since ∆ ` ljσ : Tjθ, lj is
of the form g ~m and xΓ = τ(lj , q), by induction hypothesis, ∆ ` xσ : xΓσ.

For (S5), we have no general result. By inversion, (S5) can be seen as a uni�cation

problem modulo ↓∗. The con�uence of→ (which implies that ↓∗=↓) can therefore be very

useful. Unfortunately, there are very few results on the con�uence of the combination of

higher-order rewriting and β-reduction (see the discussion after De�nition 29). On the

other hand, one can easily prove that local con�uence is preserved.

Theorem 8 (Local con�uence) If R is locally con�uent on algebraic terms then βR
is locally con�uent on any term.

Proof. Assume that t→p t1 and t→q t2. We prove by induction on t that there exists

t′ such that t1 →∗ t′ and t2 →∗ t′. There are three cases:
• p] q (p and q have no common pre�x). The reductions at p and q can be done in

parallel: t1 →q t′1, t2 →p t′2 and t′1 = t′2.

• p = ip′ and q = iq′. We can conclude by induction hypothesis on t|i.
• p = ε or q = ε. By exchanging the roles of p and q, we can assume that p = ε. There

are two cases:

� t = [x : V]u v and t1 = u{x 7→ v}. We distinguish three sub-cases:

◦ q = 11q′ and V →q′ V ′. Then, t′ = t1 works.

◦ q = 12q′ and u→q′ u′. Then, t′ = u′{x 7→ v} works.
◦ q = 2q′ and v →q′ v′. Then, t′ = u{x 7→ v′} works.

� t = lσ, l→ r ∈ R and t1 = rσ. There exists an algebraic term u of maximal size and

a substitution θ such that t = uθ and xθ = yθ implies x = y (u and θ are unique up

to the choice of variables and u has the same non-linearities than t). As the left-hand

sides of rules are algebraic, u = lσ′ and σ = σ′θ. Now, we distinguish two sub-cases:

◦ q ∈ Pos(u). As the left-hand sides of rules are algebraic, we have u →R rσ′ and

De�nitions by rewriting in the Calculus of Constructions 17

u →R v. By local con�uence of →R on algebraic terms, there exists u′ such that

rσ′ →∗ u′ and v →∗ u′. Then, t′ = u′θ works.

◦ q = q1q
′ and u|q1 = x. Let q2, . . . , qn be the positions of the other occurrences of

x in u. If one reduces t2 at each position qiq
′, one obtains a term of the form lσ′θ′

where θ′ is the substitution such that xθ′ is the reduct of xθ, and yθ′ = yθ if y 6= x.

Then, t′ = rσ′θ′ works.

3.2. Subject reduction for β

In this section, we prove the product compatibility, hence the subject reduction of β,

for a large class of rewrite systems, including predicate-level rewrite rules, without using

con�uence, by generalizing the proof of Barbanera, Fernández and Geuvers (Barbanera

et al. 1997). It is worth noting that no result of this section assumes the subject reduction

property for rewriting. They only rely on simple syntactic properties of β-reduction and

rewriting with respect to predicates and kinds (Lemma 11).

The idea is to β-weak-head normalize all the intermediate terms between (x : U ′)V ′

and (x : U)V so that we obtain a sequence of conversions between product terms only.

We �rst show that the subject reduction property can indeed be studied in a system

whose conversion relation is like the one used in (Barbanera et al. 1997).

Lemma 9 Let Λ be a CAC with conversion relation ↓βR and Λ′ be the same CAC but

with conversion relation ↓β ∪ ↓R. If →βR has the subject reduction property in Λ′ then
Λ = Λ′ (and →βR has the subject reduction property in Λ).

Proof. Let ` (resp. `′) be the typing relation of Λ (resp. Λ′). Since ↓β ∪ ↓R⊆↓βR, we
clearly have `′⊆`. We prove by induction on ` that `⊆`′. The only di�cult case is of

course (conv). By induction hypothesis, we have Γ `′ t : T and Γ `′ T ′ : s′. Furthermore,

we have T →∗r1→
∗
r2 . . .

∗
s2←

∗
s1← T ′ with rk, sk ∈ {β,R}. By type correctness, either

T = 2 or there is a sort s such that Γ `′ T : s. If T = 2 then T ′ →∗ 2. But, since →
has the subject reduction property in Λ′, we get that Γ `′ 2 : s′, which is not possible.

Therefore, T and T ′ are typable in Λ′ and, since → has the subject reduction property

in Λ′, all the terms between T and T ′ are also typable in Λ′. Therefore, we can replace

the conversion in Λ by a sequence of conversions in Λ′.

We now prove a series of useful results about kinds and predicates which will allow us

to prove the subject reduction property on types for the β-weak-head reduction relation

h: t→h t
′ if t = [~x : ~T]([x : U]vu~t) and t′ = [~x : ~T](v{x 7→ u}~t). The β-internal reduction

relation will be denoted by 6h. To this end, we introduce several sets of terms.

� K: terms of the form (~x : ~T)?, usually called kinds.

� P: smallest set of terms, called predicates, such that X2 ∪ F2 ⊆ P and, if pt ∈ P or

[x : t]p ∈ P or (x : t)p ∈ P, then p ∈ P.
� W: terms having a subterm of the form [y : W]K or wK, called a bad kind.

� B: terms containing 2.

Frédéric Blanqui 18

Lemma 10 (α) No term in B is typable.

(β) If Γ ` t : 2 then t ∈ K.
(γ) If tθ ∈ B then t ∈ B or xθ ∈ B for some x.

(δ) If tθ ∈ K then t ∈ K or xθ ∈ K for some x.

Proof.

(α) 2 is not typable and every subterm of a typable term is typable.

(β) By induction on the size of t (no conversion can take place since 2 is not typable).

(γ) Trivial.

(δ) If tθ ∈ K and t /∈ K then t = (~x : ~T)x with xθ ∈ K.

Lemma 11 If, for every rule l→ r ∈ R, r /∈ B ∪ K ∪W, then:

(a) If t→ t′ and t′ ∈ B then t ∈ B.
(b) If 2 C∗Γ T then T = 2.

(c) If K ∈ K and Γ ` K : L then L = 2.

(d) No term in W is typable.

(e) If t→ K ∈ K then t ∈ K ∪W.

(f) If t→ t′ ∈ W then t ∈ W.

(g) If Γ ` T : s and T →∗ K ∈ K then T ∈ K and s = 2.

(h) If T C∗Γ K and Γ ` K : 2 then Γ ` T : 2 and T ∈ K.
(i) If (~x : ~T) ? C∗Γ (~y : ~U)? then |~x| = |~y| and, for all i, Ti C∗Γi Ui{~y 7→ ~x} with

Γi = Γ, x1 : T1, . . . , xi : Ti.
(j) If T C∗Γ T ′ and Γ ` T : ? then Γ ` T ′ : ?.
(k) If Γ ` t : T and t ∈ P then T ∈ K.
(l) If Γ ` t : K and Γ ` K : 2 then t ∈ P.

Proof.

(a) Assume that t→p t′ and t′|q = 2. If p] q then t|q = 2 and t ∈ B. Otherwise, p ≤ q.
If t|p = [x : U]v u and t′|p = v{x 7→ u} then, by (γ), v ∈ B or u ∈ B. Thus, t ∈ B.
Now, if t|p = lσ, t′|p = rσ and l→ r ∈ R then, by (γ), r ∈ B or xσ ∈ B for some x.

Since r /∈ B, xσ ∈ B and t ∈ B.
(b) Assume that 2 ↓ T ′ C∗Γ T . Then, T ′ →∗ 2 and Γ ` T ′ : s. By (a), T ′ ∈ B and T ′

cannot be typable. Thus, T = 2.

(c) By induction on the size of K. If K = ? then, by inversion, 2 C∗Γ L and, by (b),

L = 2. If K = (x : T)K ′ then, by inversion, Γ, x : T ` K ′ : s and s C∗Γ L. By

induction hypothesis, s = 2 and, by (b), L = 2.

(d) Assume that Γ ` [y : W]K : T . By inversion, Γ, y : W ` K : L and Γ ` (y : W)L : s.
By (c), L = 2 and (y : W)L cannot be typable. Assume now that Γ ` wK : T . By
inversion, Γ ` w : (x : L)V , Γ ` K : L and Γ ` (x : L)V : s. By (c), L = 2 and

(x : L)V cannot be typable.

(e) Assume that t → K ∈ K and t /∈ K. We prove that t ∈ W by induction on the size

De�nitions by rewriting in the Calculus of Constructions 19

of t. The only possible cases are t = (x : T)u, t = [x : U]v u if t →β K, and t = lσ

with l → r ∈ R if t →R K. If t = (x : T)u then K = (x : T)L and u → L. By

induction hypothesis, u ∈ W. If t = [x : U]v u then K = v{x 7→ u}. By (δ), either

v ∈ K or u ∈ K. In both cases, t ∈ W. Assume now that t = lσ with l → r ∈ R.
Then, K = rσ. By (δ), either r ∈ K or xσ ∈ K for some x. Since r /∈ K, xσ ∈ K and

t = lσ ∈ W since x is the argument of some symbol (l is algebraic).

(f) Assume that t →p t′ ∈ W, t′|q = wK and K ∈ K (the case t′|q = [x : w]K is dealt

with in the same way). There are several cases:

� q] p. Then, t|q = wK and t ∈ W.

� q < p.

◦ p = q1m. Then, t|q = w′K with w′ → w and t ∈ W.

◦ p = q2m. Then, t|q = wu with u→ K ∈ K. By (e), u ∈ K ∪W. Thus, t ∈ W.

� q ≥ p. Then, q = pm. Assume that t|p = lσ, t′|p = rσ and l → r ∈ R (the case

t →β t
′ is dealt with in the same way). Let {p1, . . . , pn} = {p ∈ Pos(x, r) | x ∈

FV(r)}. There are saveral cases:
◦ m] pi for all i, or m < pi for some i. Then, r|mσ = wK, r = uv and vσ = K.

By (δ), v ∈ K or xσ ∈ K for some x. If v ∈ K then r ∈ W, which is not possible.

Thus, xσ ∈ K and lσ ∈ W.

◦ m ≥ pi for some i. Then, there is x ∈ FV(l) such that xσ ∈ W. Thus, t ∈ W.

(g) By (e) and (f), if T →∗ K ∈ K then T ∈ K ∪ W. Since Γ ` T : s, T /∈ W. Thus,

T ∈ K and s = 2.

(h) By induction on the number of conversions between T andK. Assume that Γ ` T : s,
T ↓ K and Γ ` K : 2. Then, there is K ′ ∈ K such that K →∗ K ′ and T →∗ K ′. By
(g), T ∈ K and s = 2.

(i) By (h), all the intermediate well-typed terms between K = (~x : ~T)? and L = (~y : ~U)?
are kinds and, if K ↓ L then, clearly, |~x| = |~y| and Ti ↓ Ui{~x 7→ ~y} for all i.

(j) Immediate consequence of (i).

(k) By induction on Γ ` t : T .
(l) By induction on Γ ` t : K.

Lemma 12 Given a rule l→ r with l = f~l, f : (~x : ~T)U and γ = {~x 7→ ~l}, r /∈ B∪K∪W
if there is an environment Γ and a substitution ρ such that Γ ` lρ : Uγρ and Γ ` r : Uγρ.

Proof. Since r is typable, r /∈ B∪W. We now prove that r /∈ K. Since Γ ` lρ : Uγρ, by
inversion, we get that γρ : Γf ; Γ. Since ` τf : sf , by inversion, we get that Γf ` U : sf .
So, by substitution, Γ ` Uγρ : sf . Now, if r ∈ K then, by (c), Uγρ = 2 but 2 is not

typable. Therefore, r /∈ K.

Theorem 13 (Subject reduction for h) (Barbanera et al. 1997) Assume that no

right hand-side is in B∪K∪W. Then, the restriction βPω of β to the redexes [x : T]U t ∈ P
preserves typing. Therefore, h preserves typing on terms of type ?.

Frédéric Blanqui 20

Proof. The proof is as usual by induction on Γ ` t : T and by proving at the same time

that, if Γ→βPω Γ′, then Γ′ ` t : T . The only di�cult case is the case of a head-reduction

[x : U ′]v u →βPω v{x 7→ u} with Γ ` [x : U ′]v : (x : U)V and Γ ` u : U . We must

prove that Γ ` v{x 7→ u} : V {x 7→ u}. By inversion, we have Γ, x : U ′ ` v : V ′ with
(x : U ′)V ′ C∗Γ (x : U)V . Since v ∈ P, by (k), V ′ ∈ K. Therefore, by Lemma 11 (h) and

(i), (x : U)V ∈ K, U ′ C∗Γ U and V ′ C∗Γ,x:U V . Hence, by environment conversion and

type conversion, Γ, x : U ` v : V and, by substitution, Γ ` v{x 7→ u} : V {x 7→ u}.
Now, if Γ ` t : ? then, by (l), t = [x : U]vu~t ∈ P and v ∈ P. So, if t →h t′ then

t→βPω t
′ and Γ ` t′ : ?.

Lemma 14 (Commutation) If t →∗h u and t →∗R v then there exists w such that

u→∗R w and v →∗h w.

Proof. By induction on the number of h-steps, it su�ces to prove that, if [x : U]v u→h

v{x 7→ u} and [x : U]v u →∗R t, then there exists w such that v{x 7→ u} →∗R w and

t →h w. Since left hand-sides of rules are algebraic, t is of the form [x : U ′]v′ u′ with
U →∗R U ′, v →∗R v′ and u→∗R u′. So, it su�ces to take w = v′{x 7→ u′}.

Lemma 15 (Postponement) Assume that no right hand-side is in B∪K∪W and that

the right hand-side of every type-level rule is either a product or a predicate symbol

application. If Γ ` t : ? and t→∗R u→∗h v then there exists w such that t→∗h w →∗R v.

Proof. By induction on the number of h-steps. Assume that t→∗R u→∗h u′ →h v. By

induction hypothesis, there exists w′ such that t →∗h w′ →∗R u′. By subject reduction

on types, Γ ` w′ : ?. So, by (l), w′ is either of the form (x : U)V , x~t, f~t with f ∈
F2, or [x : B]ab~t. Since w′ →∗R u′ →h v, w′ cannot be of the form (x : U)V or x~t.

Since right hand-sides of type-level rules are either a product or a predicate symbol

application, w′ cannot be of the form f~t. Therefore, w′ = [x : B]ab~t, u′ = [x : B′]a′b′~t′

with B, a, b,~t →∗R B′, a′, b′,~t′, and v = a′{x 7→ b′}~t′. Hence, by taking w = a{x 7→ b}~t,
we have t→h w

′ →h w →∗R v.

Theorem 16 (Subject reduction for β) If no right hand-side is in B∪K∪W and the

right hand-side of every type-level rule is a symbol application then β preserves typing.

Proof. The proof is as usual by induction on Γ ` t : T and by proving that, if Γ→β Γ′,
then Γ′ ` t : T . The only di�cult case is the case of a head-reduction [x : U ′]v u →β

v{x 7→ u} with Γ ` [x : U ′]v : (x : U)V and Γ ` u : U . We must prove that Γ ` v{x 7→
u} : V {x 7→ u}. We already know that it is true when v is a predicate. We must now

prove it when v is an object, that is, when Γ ` (x : U)V : ?. By inversion, we have

Γ ` [x : U ′]v : (x : U ′)V ′ with (x : U ′)V ′ C∗Γ (x : U)V . By Lemma 11 (j), we have all

the intermediate well-typed terms between (x : U ′)V ′ and (x : U)V of type ?. Without

loss of generality, we can assume that T0 = (x : U ′)V ′ ↓β T1 ↓R T2 ↓β . . . Tn = (x : U)V .
Let T ′i be the common reduct between Ti and Ti+1. We now prove by induction on the

number of conversions that there is a sequence of well-typed product terms π1, . . . , πn
such that π0 = T0 ↓β π1 ↓R π2 ↓β . . . πn = Tn.

De�nitions by rewriting in the Calculus of Constructions 21

Since T0 is a product, π′0 = T ′0 is also a product. Since T1 →∗β π′0, by standardization,

there is a product term π1 such that T1 →∗h π1 →∗6h π′0. Since h has the subject reduction

property on types, π1 is well-typed. Now, since T1 →∗R T ′1, by commutation, there is a

product term π′1 such that π1 →∗R π′1 and T ′1 →∗h π′1. Furthermore, since T2 →∗R T ′1,

by postponement, there is a term t such that T2 →∗h t →∗R π′1. Since h has the subject

reduction property on types, t is a well-typed term of type ?. We now proceed by case

on t.

� If t is an abstraction [x : T]w then, by inversion, there is W such that (y : T)W C∗Γ ?.

By Lemma 11 (h) and (i), this is not possible.

� If t is an application but not a symbol application then, since left hand-sides of rules

are algebraic, π′1 is an application, which is not possible either.

� If t is a symbol application then, since right hand-sides of type-level rules are symbol

applications, π′1 is a symbol application too, which is not possible either.

� Therefore, t is a well-typed product term π2.

Now, since T2 →∗β T ′2 and β is con�uent, there is a product term π′2 such that π2 →∗6h π′2
and T ′2 →∗β π′2, and we can now conclude by induction.

4. Logical consistency

In the case of the pure Calculus of Constructions without symbols and rewrite rules,

logical consistency easily follows from normalization by proving that there can be no

normal proof of ⊥ = (α : ?)α in the empty environment (Barendregt 1992). But, having

symbols and rewrite rules is like having hypothesis and axioms. Thus, in this case, logical

consistency does not directly follow from normalization. We can however give general

conditions ensuring logical consistency:

Theorem 17 (Logical consistency) Assume that→ is con�uent and that every object

symbol f satis�es one of the following conditions:

(1) f : (~x : ~T)C~v with C ∈ CF2,

(2) f : (~x : ~T)Ti,
(3) f : (x1 : T1) . . . (xn : Tn)U with xn /∈ FV2(U) and, for all normal substitution

γ : (~x : ~T) ; (α : ?), f~xγ is reducible.

Then, there is no normal proof of ⊥ = (α : ?)α in the empty environment. Therefore, if

→ is also normalizing, then there is no proof of ⊥ in the empty environment.

Proof. Assume that ` t : ⊥, t is normal and of minimal size, that is, there is no term

u smaller than t such that ` u : ⊥. For typing reasons, t cannot be a sort or a product.

Assume that t is an application. Since t is typable in the empty environment, it cannot

have free variables and, since t is normal, it must be of the form f~t. Assume that |~t| = k

and that f is of type (~x : ~T)U with |~x| = n. Let γi = {x1 7→ t1, . . . , xi 7→ ti} (i ≤ n).
(1) In this case, k ≤ n since f cannot be applied to more than n arguments. Indeed,

if f is applied to n + 1 arguments then, by inversion, ` ft1 . . . tn : (xn+1 : Tn+1)V .
But, since ` ft1 . . . tn : C~vγn, by convertibility of types and con�uence, we must

Frédéric Blanqui 22

have (xn+1 : Tn+1)V ↓ C~vγn, which is not possible. Thus, k ≤ n and (xk+1 :
Tk+1γk) . . . (xn : Tnγk)C~vγk ↓ ⊥, which is not possible either.

(2) There are 2 cases:

• k < n. Since ` f~t : (xk+1 : Tk+1γk) . . . (xn : Tnγk)Tiγk, we must have n = k + 1
and, by taking xn = α, Tnγk ↓ ? and Tiγk ↓ α. Hence Tiγk →∗ α but Tiγk is closed

since FV(Ti) ⊆ {x1, . . . , xi−1}, γk is closed and i − 1 ≤ k. So, Tiγk →∗ α is not

possible.

• k ≥ n. We have ~t = ~u~v with |~u| = n. Let p = k−n. By inversion, there is a sequence
of products (y1 : V1)W1, . . . , (yp : Vp)Wp such that Tiγn = Uγn ↓ (y1 : V1)W1,

for all i < p, Wi{yi 7→ vi} ↓ (yi+1 : Vi+1)Wi+1, and Wp{yp 7→ vp} ↓ ⊥. Then,
` ui~v : ⊥ and ui~v is smaller than t.

(3) If k ≥ n then t is reducible, which is not possible. If k < n then n = k + 1, xn = α

and Uγk →∗ α. But FV(U) ⊆ {x1, . . . , xk, α} and γk is closed. So, xn ∈ FV2(U),
which is excluded.

Assume now that t = [α : T]v. Then, by inversion, we must have α : T ` v : V and

(α : T)V ↓ (α : ?)α. Therefore, T = ?, V = α and α : ? ` v : α. For typing reasons, v

cannot be a sort, a product or an abstraction. Since it is normal, it must be of the form

x~u with x a variable, or of the form f~t. Since α is the only variable that may freely occur

in v, x = α. Since α can be applied to no argument, v = α. Then, we get α : ? ` α : α,
which is not possible. Therefore, v is of the form f~t.

(1) In this case, k ≤ n since f cannot be applied to more than n arguments. Thus,

(xk+1 : Tk+1γk) . . . (xn : Tnγk)C~vγk ↓ α, which is not possible.

(2) If k < n then (xk+1 : Tk+1γk) . . . (xn : Tnγk)Tiγk ↓ α, which is not possible. Thus,
~t = ~u~v with |~u| = n. Let p = k − n. By inversion, there is a sequence of products

(y1 : V1)W1, . . . , (yp : Vp)Wp such that Tiγn = Uγn ↓ (y1 : V1)W1, for all i < p,

Wi{yi 7→ vi} ↓ (yi+1 : Vi+1)Wi+1, and Wp{yp 7→ vp} ↓ α. Then, ` [α : ?]ui~v : ⊥ and

[α : ?]ui~v is smaller than t.

(3) In this case too, k ≥ n. Thus, t is reducible, which is not possible.

Note that, as opposed to the third condition, the �rst two conditions do not care about

the rewrite rules de�ning f .

To see the interest of the third condition, consider the following example. Assume that

the only symbols of the calculus are nat : ?, 0 : nat, s : nat→ nat and rec : (P : nat→ ?)
P0→ ((n : nat)Pn→ P (sn))→ (n : nat)Pn de�ned by the usual rules for recursors:

rec P u v 0 → u

rec P u v (s n) → v n (rec P u v n)

This calculus is con�uent since the combination of an orthogonal system (the recursor

rules) with the β-reduction preserves con�uence. In this calculus, it is possible to express

any function whose existence is provable in intuitionistic higher-order arithmetic.

Now, let us look at the normal terms of type nat in the environment α : ?. Let N be

the set of these terms. A term in N cannot be a sort, a product, an abstraction, nor a

variable. It can only be of the form 0, (s t) with t itself in N , or of the form (rec P u v t ~u)

De�nitions by rewriting in the Calculus of Constructions 23

with t ∈ N also. But the last case is not possible since, at some point, the argument

t of (rec P u v t) must be of the form 0 or (s t′), and hence (rec P u v t) must be

reducible. Therefore, all the normal terms of type nat typable in α : ? must be of the

form 0 or (s t), and if t is such a term then (rec P u v t) is reducible. We also say that

functions de�ned by induction are completely de�ned (Guttag and Horning 1978; Thiel

1984; Kounalis 1985; Coquand 1992). Therefore, after the previous theorem, this calculus

is consistent.

This may certainly be extended to the Calculus of Inductive Constructions and even

to the Calculus of Inductive Constructions extended with functions de�ned by rewrite

rules whenever all the symbols are completely de�ned.

5. Conditions of Strong Normalization

We now present the conditions of strong normalization.

5.1. Inductive types and constructors

Until now we made few hypothesis on symbols and rewrite rules. However, Mendler

(Mendler 1987) showed that the extension of the simply-typed λ-calculus with recursion

on inductive types is strongly normalizing if and only if the inductive types satisfy some

positivity condition.

A base type T occurs positively in a type U if all the occurrences of T in U are on the

left of an even number of ⇒. A type T is positive if T occurs positively in the type of

the arguments of its constructors. Usual inductive types like natural numbers and lists

of natural numbers are positive.

Now, let us see an example of a non-positive type T . Let U be a base type. Assume

that T has a constructor c of type (T ⇒ U)⇒ T . T is not positive because T occurs at a

negative position in T ⇒ U . Consider now the function p of type T ⇒ (T ⇒ U) de�ned
by the rule p(cx) → x. Let ω = λx.(px)x of type T ⇒ U . Then the term ω(cω) of type

U is not normalizable:

ω(cω) →β p(cω)(cω) →R ω(cω) →β . . .

In the case where U = ?, we can interpret this as Cantor's theorem: there is no

surjection from a set T to the set of its subsets T ⇒ ?. In this interpretation, p is the

natural injection between T and T ⇒ ?. Saying that p is surjective is equivalent to saying

(with the Axiom of Choice) that there exists c such that p◦ c is the identity, that is, such
that p(cx) → x. In (Dowek 1999), Dowek shows that such an hypothesis is incoherent.

Here, we show that this is related to the non-normalization of non-positive inductive

types.

Mendler also gives a condition, strong positivity, in the case of dependent and poly-

morphic types. A similar but more restrictive notion, called strict positivity, is used by

Coquand and Paulin in the Calculus of Inductive Constructions (Coquand and Paulin-

Mohring 1988).

Hereafter we introduce the more general notion of admissible inductive structure. In

Frédéric Blanqui 24

particular, we do not consider that a constructor must be constant: it is possible to have

rewrite rules on constructors. This allows us to formalize quotient types like the type int

of integers by taking 0 : int for zero, s : int ⇒ int for successor, and p : int ⇒ int for

predecessor, together with the rules:

s (p x) → x

p (s x) → x

De�nition 18 (Inductive structure) An inductive structure is given by:

• a precedence ≥C on CF2,

• for every C : (~x : ~T)? in CF2, a set Mon(C) ⊆ {i ≤ |~x| | xi ∈ X2} for the monotonic

arguments of C,

• for every f : (~y : ~U)C~v with C ∈ CF2, a set Acc(f) ⊆ {1, . . . , |~y|} for the accessible

positions of f .

For convenience, we assume that Mon(f) = ∅ if f /∈ CF2, and Acc(f) = ∅ if f is not of

type (~y : ~U)C~v with C ∈ CF2.

The accessible positions of f denote the arguments of f that one can use in the right

hand-sides of rules. The monotonic arguments of C denote the parameters in which C is

monotonic.

De�nition 19 (Positive and negative positions) The set of positive positions in t,

Pos+(t), and the set of negative positions in t, Pos−(t), are simultaneously de�ned by

induction on the structure of t:

� Posδ(s) = Posδ(x) = {ε | δ = +},
� Posδ((x : U)V) = 1.Pos−δ(U) ∪ 2.Posδ(V),
� Posδ([x : U]v) = 2.Posδ(v),
� Posδ(tu) = 1.Posδ(t) if t 6= f~t,

� Posδ(f~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posδ(ti) | i ∈ Mon(f)},

where δ ∈ {−,+}, −+ = − and −− = + (usual rule of signs).

De�nition 20 (Admissible inductive structures) An inductive structure is admis-

sible if, for all C ∈ CF2, for all f : (~y : ~U)C~v, and for all j ∈ Acc(f):††

(I3) ∀D ∈ CF2, D =C C ⇒ Pos(D,Uj) ⊆ Pos+(Uj)
(symbols equivalent to C must be at positive positions),

(I4) ∀D ∈ CF2, D >C C ⇒ Pos(D,Uj) = ∅
(no symbol greater than C can occur in Uj),

(I5) ∀F ∈ DF2,Pos(F,Uj) = ∅
(no de�ned symbol can occur in Uj),

†† In (Blanqui 2001), we give 6 conditions, (I1) to (I6), for de�ning what is an admissible inductive
structure. But we found that (I1) can be eliminated if we modify (I2) a little bit. This is why, in the
following de�nition, there is no (I1) and (I2) is placed after (I6).

De�nitions by rewriting in the Calculus of Constructions 25

(I6) ∀Y ∈ FV2(Uj),∃ιY , vιY = Y

(predicate variables must be parameters of C),

(I2) ∀Y ∈ FV2(Uj), ιY ∈ Mon(C)⇒ Pos(Y,Uj) ⊆ Pos+(Uj)
(monotonic arguments must be at positive positions).

For instance, with list : ? ⇒ ?, nil : (A : ?)listA and cons : (A : ?)A ⇒ listA ⇒
listA, Mon(list) = {1}, Acc(nil) = {1} and Acc(cons) = {1, 2, 3} is an admissible

inductive structure. If we add tree : ? and node : list tree⇒ tree with Mon(list) = {1},
Mon(tree) = ∅ and Acc(node) = {1}, we still have an admissible structure.

The condition (I6) means that the predicate arguments of a constructor must be pa-

rameters of their type. A similar condition appears in the works of Stefanova (Stefanova

1998) (�safeness�) and Walukiewicz (Walukiewicz-Chrz¡szcz 2002) (�?-dependency�). On

the other hand, in the Calculus of Inductive Constructions (CIC) (Werner 1994), there

is no such restriction.

We distinguish several kinds of inductive types.

De�nition 21 (Primitive, basic and strictly-positive predicates)

A constant predicate symbol C is:

� primitive if for all D =C C, for all f : (~y : ~U)D~w and for all j ∈ Acc(f), Uj = E~t with

E <C D and E primitive, or Uj = E~t with E =C D.

� basic if for all D =C C, for all f : (~y : ~U)D~w and for all j ∈ Acc(f), if E =C D occurs

in Uj then Uj is of the form E~t.

� strictly positive if for all D =C C, for all f : (~y : ~U)D~w and for all j ∈ Acc(f), if
E =C D occurs in Uj then Uj = (~z : ~V)E~t and no D′ =C D occurs in ~V .

Primitive predicates are basic and basic predicates are strictly positive. Note that

primitive predicates not only include the usual �rst-order data types. They also include

some dependent type like the type of lists of �xed length. On the other hand, the type

of polymorphic lists is basic but not primitive.

The strictly positive predicates are the predicates allowed in the Calculus of Inductive

Constructions (CIC). For example, this includes the type ord of Brouwer's ordinals whose

constructors are 0 : ord, s : ord⇒ ord and lim : (nat⇒ ord)⇒ ord, the process algebra

µCRL which can be formalized as a type proc with a choice operator Σ : (data ⇒
proc) ⇒ proc (Sellink 1993), or the type form of the formulas of �rst-order predicate

calculus whose constructors are ¬ : form ⇒ form, ∨ : form ⇒ form ⇒ form and ∀ :
(term⇒ form)⇒ form.

For the moment, we do not forbid non-strictly positive predicates but the conditions

we describe in the next section do not allow the de�nition of functions by recursion on

such predicates. Yet, these predicates can be very useful as shown in (Matthes 2000)

or in (Abel 2001). In (Matthes 2000), a type cont with the constructors D : cont and
C : ((cont ⇒ list) ⇒ list) ⇒ cont, representing continuations, is used to de�ne a

breadth-�rst label listing function on labelled binary trees. In particular, it uses a function

ex : cont⇒ list de�ned by the rules:

Frédéric Blanqui 26

ex D → nil

ex (C f) → f ex

It is not clear how to de�ne a syntactic condition ensuring the strong normalization

of such a de�nition: in the right hand-side of the second rule, ex is explicitly applied

to no argument smaller than f . And, although ex can only be applied to subterms of

reducts of f , not every subterm of a �computable� term (notion used for proving strong

normalization) is a priori computable (see Section 5.2.2).

5.2. General Schema

5.2.1. Higher-order rewriting Which conditions on rewrite rules would ensure the strong

normalization of→=→R ∪ →β ? Since the works of Breazu-Tannen and Gallier (Breazu-

Tannen and Gallier 1989) and Okada (Okada 1989) on the simply-typed λ-calculus or the

polymorphic λ-calculus, and later the works of Barbanera (Barbanera 1990) on the Cal-

culus of Constructions and of Dougherty (Dougherty 1991) on the untyped λ-calculus, it

is well known that adding �rst-order rewriting to typed λ-calculi preserves strong normal-

ization. This comes from the fact that �rst-order rewriting cannot create β-redexes. We

will prove that this result can be extended to predicate-level rewriting if some conditions

are ful�lled.

However, there are many useful functions whose de�nition do not enter the �rst-order

framework, either because some arguments are not primitive (the concatenation function

app on polymorphic lists), or because their de�nition uses higher-order features like the

function map : (A : ?)(B : ?)(A⇒ B)⇒ listA⇒ listB which applies a function to every

element of a list:

map A B f (nil A′) → nil B

map A B f (cons A′ x `) → cons B (f x) (map A B f `)
map A B f (app A′ ` `′) → app B (map A B f `) (map A B f `′)

This is also the case of recursors like the recursor on natural numbers natrec : (A : ?)
A⇒ (nat⇒ A⇒ A)⇒ nat⇒ A:

natrec A x f 0 → x

natrec A x f (s n) → f n (natrec A x f n)

and of induction principles (recursors are just non-dependent versions of the correspond-

ing induction principles), like the induction principle on natural numbers natind : (P :
nat⇒ ?)P0⇒ ((n : nat)Pn⇒ P (sn))⇒ (n : nat)Pn:

natind P h0 hs 0 → h0

natrec P h0 hs (s n) → hs n (natind P h0 hs n)

The methods used by Breazu-Tannen and Gallier (Breazu-Tannen and Gallier 1989)

or Dougherty (Dougherty 1991) cannot be applied to our calculus since, on the one hand,

higher-order rewriting can create β-redexes and, on the other hand, rewriting is included

in the type conversion rule (conv), hence more terms are typable. But there exists other

methods, available in the simply-typed λ-calculus only or in richer type systems, for

proving the termination of this kind of de�nitions:

De�nitions by rewriting in the Calculus of Constructions 27

• The General Schema, initially introduced by Jouannaud and Okada (Jouannaud and

Okada 1991) for the polymorphic λ-calculus and extended to the Calculus of Construc-

tions by Barbanera, Fernández and Geuvers (Barbanera et al. 1994), is an extension of

the primitive recursion schema: in the right hand-side of a rule f~l → r, the recursive

calls to f must be done on strict subterms of ~l. It can treat object-level rewriting

with simply-typed symbols de�ned on primitive types. It has been reformulated and

extended to strictly-positive types by Jouannaud, Okada and the author for the simply-

typed λ-calculus (Blanqui et al. 2002) and the Calculus of Constructions (Blanqui et

al. 1999).

• The Higher-Order Recursive Path Ordering (HORPO) (Jouannaud and Rubio 1999) is

an extension of RPO (Plaisted 1978; Dershowitz 1982) to the simply-typed λ-calculus.

It has been recently extended by Walukiewicz (Walukiewicz 2000) to the Calculus of

Constructions with strictly positive types (Walukiewicz-Chrz¡szcz 2002). It can treat

object-level rewriting with polymorphic and dependent symbols de�ned on strictly

positive types. The General Schema can be seen as a non-recursive version of HORPO.

• It is also possible to look for an interpretation of the symbols such that the interpreta-

tion of a term strictly decreases when a rule is applied. This method, introduced by Van

de Pol for the simply-typed λ-calculus (Van de Pol 1996), extends to the higher-order

framework the method of interpretations known for the �rst-order framework (Zan-

tema 1994). This is a very powerful method but di�cult to use in practice because the

interpretations are themselves higher-order and also because it is not modular: adding

new rules or new symbols may require �nding new interpretations.

For dealing with higher-order rewriting at the predicate-level together with polymor-

phic and dependent symbols and strictly-positive predicates, we have chosen to extend

the method of the General Schema. For �rst-order symbols, we use other conditions like

in (Jouannaud and Okada 1997).

5.2.2. De�nition of the schema This method is based on Tait and Girard's method of re-

ducibility candidates (Tait 1967; Girard et al. 1988) for proving the strong normalization

of simply-typed or polymorphic λ-calculi. This method consists of interpretating each

type as a subset of the strongly normalizable terms, the computable terms, and proving

that each well-typed term is computable. Indeed, a direct proof of strong normalization

by induction on the structure of terms does not go through because of the application

case: if u and v are strongly normalizable then it is not clear how to prove that uv also

is strongly normalizable.

The idea of the General Schema is then, from a left hand-side f~l of rule, to de�ne a set

of terms, called the computability closure of f~l, whose elements are computable whenever

the li's so are. Then, to prove the strong normalization, it su�ces to check that, for each

rule, the right hand-side belongs to the computability closure of the left hand-side.

To build the computability closure, we �rst de�ne a subset of the subterms of ~l, called

the accessible subterms of ~l, that are computable whenever the li's so are (not all the sub-

terms of a computable term are a priori computable). Then, we build the computability

Frédéric Blanqui 28

closure by closing the set of accessible variables of the left hand-side with computability-

preserving operations.

In order to have interesting functions, we must be able to accept recursive calls and, to

preserve strong normalization, recursive calls must decrease in a well-founded ordering.

The strict subterm relation � (in fact, restricted to accessible subterms for preserving

computability) is su�cient for dealing with de�nition on basic predicates. In the de�nition

of map for instance, ` and `′ are accessible subterms of app A′ ` `′. But, for non-basic

predicates, it is not su�cient as exampli�ed by the following addition on Brouwer's

ordinals:

x+ 0 → x

x+ (s y) → s (x+ y)
x+ (lim f) → lim ([n : nat]x+ fn)

Another example is given by the following simpli�cation rule in µCRL (Sellink 1993):

(Σ f) · p → Σ ([d : data]fd · p)
This is why, in our conditions, we use two distinct orderings. The �rst one, >1, is used

for the arguments of basic type and the second one, >2, is used for the arguments of

strictly-positive type.

Finally, to have a �ner control of the comparison of the arguments, to each symbol, we

associate a status describing how to compare the arguments by using a simple combination

of lexicographic and multiset comparisons (Jouannaud and Okada 1997).

De�nition 22 (Accessibility)We say that u : U is accessible modulo ρ in t : T , written
t : T �ρ u : U , if t = f~u, f : (~y : ~U)C~v, C ∈ CF2, u = uj , j ∈ Acc(f), Tρ = C~vγρ,

Uρ = Ujγρ, γ = {~y 7→ ~u} and no D =C C occurs in ~uρ.

For technical reasons, we take into account not only the terms themselves but also

their types. This comes from the fact that we are able to prove that two convertible

types have the same interpretation only if the two types are computable. This may imply

some restrictions on the types of the symbols.

Indeed, accessibility requires the equality (modulo the application of ρ) between canon-

ical types and derived types (see De�nition 6). More precisely, for having t : T �ρ u : U ,
T must be equal (modulo ρ) to the canonical type of t and U must be equal (modulo ρ)

to the type of u derived from t. In addition, if u : U �ρ v : V , then U must also be equal

(modulo ρ) to the canonical type of u.

De�nition 23 Let (xi)i≥1 be an indexed family of variables.

Status. A status is a term of the form (lex m1 . . .mk) with k ≥ 1 and each mi of the

form (mul xk1 . . . xkp) with p ≥ 1. The arity of a status stat is the greatest index i

such that xi occurs in stat.

Status assignment. A status assignment is an application stat which associates a sta-

tus statf to every f ∈ F .
Predicate arguments. Let C : (~z : ~V)? and ~u with |~u| = |~z|. By ~u|C , we denote the

sub-sequence uj1 . . . ujn such that j1 < . . . < jn and {j1, . . . , jn} = {j ≤ |~z| | zj ∈ X2}.

De�nitions by rewriting in the Calculus of Constructions 29

Strictly positive positions. Let f : (~x : ~T)U with statf = lex ~m. The set of strictly

positive positions of f , SP (f), is de�ned as follows. Assume that mi = mul xk1 . . . xkp .

Then, i ∈ SP (f) i� there exist T if = C~a such that C is strictly positive and, for all j,

Tkj = C~u with C ∈ CF2 and ~u|C = ~a|C .
Assignment compatibility. A status assignment stat is compatible with a precedence

≥F if f =F g implies statf = statg, SP (f) = SP (g) and, for all i ∈ SP (f), T if = T ig.

Status ordering. Let > be an ordering on terms and stat = lex ~m be a status of arity

n. The extension of > to the sequences of terms of length n is the ordering >stat
de�ned as follows:

� ~u >stat ~v if ~m{~x 7→ ~u} (>m)lex ~m{~x 7→ ~v},
� mul ~u >m mul ~v if {~u} >mul {~v}.

For instance, if stat = lex(mul x2)(mul x1 x3) then (u1, u2, u3) >stat (v1, v2, v3) i�

({u2}, {u1, u3}) (>mul)lex ({v2}, {v1, v3}). An important property of >stat is that it is

well-founded whenever > is.

We now de�ne the computability closure of a rule R = (l → r,Γ, ρ) with l = f~l,

f : (~x : ~T)U and γ = {~x 7→ ~l}.

De�nition 24 (Ordering on symbol arguments) The ordering >R on arguments of

f is an adaptation of >statf where the ordering > depends on the type (basic or strictly

positive) of the argument. Assume that statf = lex m1 . . .mk. Then:

• ~t : ~T >R ~u : ~U if ~m{~x 7→ (~t : ~T)} (>1, . . . , >k)lex ~m{~x 7→ (~u : ~U)}.
• mul(~t : ~T) >i mul(~u : ~U) if i ∈ SP (f) and {~t : ~T} (>iR)mul {~u : ~U},
• mul(~t : ~T) >i mul(~u : ~U) if i /∈ SP (f) and {~t : ~T} (�+

ρ)mul {~u : ~U},
• t : T >iR u : U if:

� t = f~t, f : (~x : ~T)C~v, γ = {~x 7→ ~t} and no D =C C occurs in ~vγρ,

� u = x~u with x ∈ dom(Γ),
� t : T �+

ρ x : V ,

� V ρ = xΓ = (~y : ~U)C ~w, δ = {~y 7→ ~u}, Uρ = C ~wδ and no D =C C occurs in ~Uδ,

� ~vγρ|C = ~wδ|C .

One can easily check that, for the addition on ordinals, lim f : ord >1
R fn : ord.

Indeed, for this rule, one can take Γ = x : ord, f : nat ⇒ ord and the identity for ρ.

Then, f ∈ dom(Γ), fΓ = nat⇒ ord and lim f : ord�ρ f : nat⇒ ord.

De�nition 25 (Computability closure) Let F ′ = F ∪ dom(Γ), X ′ = X \ FV(l),
T = T (F ′,X ′) and E ′ = E(F ′,X ′). The computability closure of R w.r.t. a precedence ≥F
and a status assignment stat compatible with ≥F is the smallest relation c̀⊆ E ′×T ′×T ′
de�ned by the inference rules of Figure 4 where, for all x ∈ dom(Γ), τx = xΓ and x <F f ,

and where δ : Γg ;c ∆ means that, for all y ∈ dom(Γg), ∆ c̀ xδ : xΓgδ.

Note that the computability closure can easily be extended by adding new inference

rules. Then, for preserving strong normalization, it su�ces to complete the proof of

Frédéric Blanqui 30

Fig. 4. Computability closure of R = (f~l→ r,Γ, ρ) with f : (~x : ~T)U and

γ = {~x 7→ ~l}

(ax)
c̀ ? : 2

(symb<)
c̀ τg : sg

c̀ g : τg
(g <F f)

(symb=)
c̀ τg : sg δ : Γg ;c ∆

∆ c̀ g~yδ : V δ

(g =F f, g : (~y : ~U)V,

~yδ : ~Uδ <R ~xγ : ~Tγ)

(var)
∆ c̀ T : sx

∆, x : T c̀ x : T
(x /∈ dom(∆))

(weak)
∆ c̀ t : T ∆ c̀ U : sx

∆, x : U c̀ t : T
(x /∈ dom(∆))

(prod)
∆, x : U c̀ V : s

∆ c̀ (x : U)V : s

(abs)
∆, x : U c̀ v : V ∆ c̀ (x : U)V : s

∆ c̀ [x : U]v : (x : U)V

(app)
∆ c̀ t : (x : U)V ∆ c̀ u : U

∆ c̀ tu : V {x 7→ u}

(conv)
∆ c̀ t : T ∆ c̀ T : s ∆ c̀ T

′ : s

∆ c̀ t : T ′
(T ↓ T ′)

Theorem 67 where we prove that the rules of the computability closure indeed preserve

computability.

De�nition 26 (Well-formed rule) R is well-formed if:

� Γ ` lρ : Uγρ,
� ∀x ∈ dom(Γ), ∃i, li : Tiγ �∗ρ x : xΓ,
� dom(ρ) ⊆ FV(l) \ dom(Γ).

For instance, consider the rule:

app p (cons x n `) n′ `′ → cons x (n+ n′) (app n ` n′ `′)
with Γ = x : nat, n : nat, ` : listn, n′ : nat, `′ : listn′ and ρ = {p 7→ sn}. We have

Γ ` lρ : list(p + n′)ρ. For x, we have cons x n ` : listp �ρ x : nat. One can easily check

that the conditions are also satis�ed for the other variables.

De�nition 27 (Computable system) R satis�es the General Schema w.r.t. a prece-

dence ≥F and a status assignment stat compatible with ≥F if it is well-formed and if

De�nitions by rewriting in the Calculus of Constructions 31

c̀ r : Uγρ. A set of rules R is computable if there exists a precedence ≥F and a sta-

tus assignment stat compatible with ≥F for which every rule of R satis�es the General

Schema w.r.t. ≥F and stat.

To summarize, the rule (l→ r,Γ, ρ) is well-typed and satis�es the General Schema if:

� Γ ` lρ : Uγρ,
� ∀∆, σ, T , if ∆ ` lσ : T then σ : Γ ; ∆ and σ ↓ ρσ,
� ∀x ∈ dom(Γ), ∃i, li : Tiγ �∗ρ x : xΓ,
� dom(ρ) ⊆ FV(l) \ dom(Γ),
� c̀ r : Uγρ.
Because of the (conv) rule, the relation c̀ may be undecidable. On the other hand, if

we restrict the (conv) rule to a con�uent and strongly normalizing fragment of→, then c̀

becomes decidable (with an algorithm similar to the one for `). This is quite reasonable
since, in practice, the symbols and the rules are often added one after the other (or by

groups, but the argument can be generalized), thus con�uence and strong normalization

can be shown incrementally.

For instance, let (F ,R) be a con�uent and strongly normalizing system, f /∈ F and Rf
be a set of rules de�ning f and whose symbols belong to F ′ = F ∪ {f}. Then, (F ′,R) is
also con�uent and strongly normalizing. Thus, we can check that the rules of Rf satisfy

the General Schema with the rule (conv) restricted to the case where T ↓βR T ′. This

does not seem a big restriction: it would be surprising that the typing of a rule requires

the use of the rule itself !

We now detail the case of app p (cons x n `) n′ `′ → cons x (n + n′) (app n ` n′ `′).
We take statapp = lex(mul x2); app >F cons,+; cons >F nat and + >F s, 0 >F nat.

We have already seen that this rule is well-formed. Let us show that c̀ r : list(sn).
For applying (symb<), we must show that c̀ τcons : ?, c̀ x : nat, c̀ n + n′ : nat and

c̀ app n ` n′ `′ : list(n + n′). The �rst assertions follow from the fact that the same

judgements holds in ` without using app. Hence, we are left to prove the last assertion.

For applying (symb=), we must show that c̀ τapp : ?, c̀ n : nat, c̀ ` : listn, c̀ n
′ : nat,

c̀ `
′ : listn′ and cons x n ` : list(sn) �ρ ` : listn. The �rst assertions follow from the fact

that the same judgements hold in ` without using app. The last assertion has already

been shown when proving that the rule is well-formed.

5.3. Strong normalization conditions

De�nition 28 Let G ⊆ F . The rewrite system (G,RG) is:
• �rst-order if every rule of RG has an algebraic right hand-side and, for all g ∈ G, either
g ∈ F2 or g : (~x : ~T)C~v with C ∈ CF2 primitive.

• primitive if all the rules of RG have a right hand-side of the form [~x : ~T]g~u with g a

symbol of G or a primitive constant predicate symbol.

• simple if there is no critical pair between RG and R.
• small if, for every rule g~l→ r ∈ RG , ∀x ∈ FV2(r), ∃κx, lκx = x.

• positive if, for every g ∈ G, for every rule l→ r ∈ RG , Pos(g, r) ⊆ Pos+(r).

Frédéric Blanqui 32

• safe if for every rule (g~l→ r,Γ, ρ) ∈ RG with g : (~x : ~T)U and γ = {~x 7→ ~l}:
� ∀x ∈ FV2(~TU), xγρ ∈ dom2(Γ),
� ∀x, x′ ∈ FV2(~TU), xγρ = x′γρ⇒ x = x′.‡‡

De�nition 29 (Strong normalization conditions)

(A0) All the rules are well-typed.

(A1) The relation →=→R ∪ →β is con�uent on T .
(A2) There exists an admissible inductive structure.

(A3) There exists a precedence � on DF2 which is compatible with RDF2 and whose

equivalence classes form a system which is either:

(p) primitive,

(q) positive, small and simple,

(r) computable, small and simple.

(A4) There exists a partition F1] Fω of DF (�rst-order and higher-order symbols)

such that:

(a) (Fω,Rω) is computable,

(b) (Fω,Rω) is safe,
(c) no symbol of Fω occurs in the rules of R1,

(d) (F1,R1) is �rst-order,
(e) if Rω 6= ∅ then (F1,R1) is non-duplicating,
(f) →R1 is strongly normalizing on �rst-order algebraic terms.

The condition (A1) ensures, among other things, that β preserves typing. This condi-

tion may seem di�cult to ful�ll since con�uence is often proved by using strong normal-

ization and local con�uence of critical pairs (Nipkow 1991).

We know that→β is con�uent and that there is no critical pair between R and β since

the left hand-sides of rules are algebraic. Müller (Müller 1992) showed that, in this case, if

→R is con�uent and all the rules of R are left-linear, then →R ∪ →β is con�uent. Thus,

the possibility we have introduced of linearizing some rules (substitution ρ) appears to

be very useful (see De�nition 3).

In the case of left-linear rules, and assuming that →R1 is strongly normalizing as it is

required in (f), how can we prove that → is con�uent? In the case where →R1 is non-

duplicating if Rω 6= ∅, we show in Theorem 64 that→R1 ∪ →Rω is strongly normalizing.

Therefore, it su�ces to check that the critical pairs of R are con�uent (without using

any β-reduction).

In (A4), in the case where Rω 6= ∅, we require that the rules of R1 are non-duplicating.

Indeed, strong normalization is not a modular property (Toyama 1987), even with con-

�uent systems (Drosten 1989). On the other hand, strong normalization is modular for

‡‡ All this means that γρ is an injection from FV2(~TU) to dom2(Γ).

De�nitions by rewriting in the Calculus of Constructions 33

disjoint and non duplicating systems (Rusinowitch 1987). Here, R1 and Rω are not dis-

joint but hierarchically de�ned: by (c), no symbol of Fω occurs in the rules of R1. In

(Dershowitz 1994), Dershowitz gathers some results on the modularity of strong normal-

ization for �rst-order rewrite systems. It would be very interesting to study the mod-

ularity of strong normalization in the case of higher-order rewriting and, in particular,

other conditions than non-duplication which, for example, does not allow us to accept

the following de�nition:

0/y → 0
(s x)/y → s((x− y)/y)

0− y → 0
(s x)− 0 → s x

(s x)− (s y) → x− y
This system is a duplicating �rst-order system not satisfying the General Schema: it can

be put neither in R1 nor in Rω. Note that Giménez (Giménez 1998) has developped a

termination criterion for the Calculus of Inductive Constructions that accepts this ex-

ample.

In (A3), the smallness condition for computable and positive systems is equivalent in

the Calculus of Inductive Constructions to the restriction of strong elimination to �small�

inductive types, that is, to the types whose constructors have no other predicate param-

eters than the ones of the type. For example, the type list of polymorphic list is small

since, in the type (A : ?)A⇒ listA⇒ listA of its constructor cons, A is a parameter of

list. On the other hand, a type T having a constructor c of type ?⇒ T is not small. So,

we cannot de�ne a function f of type T ⇒ ? with the rule f(c A) → A. Such a rule is

not small and does not form a primitive system either. In some sense, primitive systems

can always be considered as small systems since they contain no projection and primitive

predicate symbols have no predicate argument. This restriction is not only technical:

elimination on big inductive types may lead to logical inconsistencies (Coquand 1986).

Finally, in (A4), the safeness condition for higher-order symbols means that one cannot

do matching or equality tests on predicate arguments that are necessary for typing other

arguments. In her extension of HORPO (Jouannaud and Rubio 1999) to the Calculus of

Constructions, Walukiewicz (Walukiewicz-Chrz¡szcz 2002) requires a similar condition.

This has to be related to the fact that the polymorphism of CC is essentially parametric,

that is, a polymorphic function uses the same algorithm at all types (Reynolds 1983). Gi-

rard already demonstrated in (Girard 1971) that normalization fails if a non-parametric

operator J : (A : ?)(B : ?)A ⇒ B de�ned by J A A x → x is added to system F. See

(Harper and Mitchell 1999) for an analysis of Girard's J operator. On the other hand,

the rule map A A [x : A]x `→ `, which does not seem problematic, does not satisfy the

safeness condition either (note however that the left hand-side if not algebraic).

We can now state our main result whose proof is the subject of Section 6:

Frédéric Blanqui 34

THEOREM: If a CAC satis�es the conditions of De�nition 29 then its re-

duction relation →=→R ∪ →β preserves typing and is strongly normalizing.

In (Blanqui 2001), we prove that most of CIC can be encoded into a CAC satisfying

our conditions, and that our conditions can also be applied to prove the cut-elimination

property in Natural Deduction Modulo (Dowek and Werner 1998). But let us give a more

concrete example:

¬> → ⊥
¬⊥ → >

P ∨ > → >
P ∨ ⊥ → P

P ∧ > → P

P ∧ ⊥ → ⊥

x+ 0 → x

0 + x → x

x+ (s y) → s(x+ y)
(s x) + y → s(x+ y)

(x+ y) + z → x+ (y + z)

x× 0 → 0
0× x → 0

x× (s y) → (x× y) + x

(s 0)× x → x

x× (s 0) → x

eq A 0 0 → >
eq A 0 (s x) → ⊥
eq A (s x) 0 → ⊥

eq A (s x) (s y) → eq nat x y

app A (nil A′) ` → `

app A (cons A′ x `) `′ → cons A x (app A ` `′)
app A (app A′ ` `′) `′′ → app A ` (app A `′ `′′)

len A (nil A′) → 0
len A (cons A′ x `) → s (len A `)
len A (app A′ ` `′) → (len A `) + (len A `′)

in A x (nil A′) → ⊥
in A x (cons A′ y l) → (eq A x y) ∨ (in A x l)

incl A (nil A′) l → >
incl A (cons A′ x l) l′ → (in A x l′) ∧ (incl A l l′)

sub A (nil A′) l → >
sub A (cons A′ x l) (nil A′′) → ⊥

sub A (cons A′ x l) (cons A′′ x′ l′) → ((eq A x x′) ∧ (sub A l l′))
∨(sub A (cons A x l) l′)

eq L (nil A) (nil A′) → >
eq L (nil A) (cons A′ x l) → ⊥
eq L (cons A′ x l) (nil A) → ⊥

eq L (cons A x l) (cons A′ x′ l′) → (eq A x x′) ∧ (eq (list A) l l′)

This rewriting system is computable, simple, small, safe and con�uent (this can be

automatically proved by CiME (Contejean et al. 2000)). Since the rules are left-linear, the

combination with→β is also con�uent. Therefore, the conditions of strong normalization

are satis�ed. For example, for the last rule, take Γ = A : ?, x : A, x′ : A, ` : listA, `′ : listA

De�nitions by rewriting in the Calculus of Constructions 35

and ρ = {A′ 7→ A,L 7→ listA}. The rule is well-formed (cons(A′, x′, `′) : L �ρ x′ : A′,
. . .) and satis�es the General Schema ({cons(A, x, `) : L, cons(A′, x′, `′) : L} (�ρ)mul {x :
A, x′ : A′} and {` : listA, `′ : listA}).
However, the system lacks several important rules to get a complete decision proce-

dure for classical propositional tautologies (Figure 1 in Section 1) or other simpli�cation

rules on the equality (Figure 2 in Section 1). To accept these rules, we must consider

rewriting modulo associativity and commutativity and get rid of the simplicity condi-

tions. Moreover, the distributivity rule P ∧ (Q ⊕ R) → (P ∧Q) ⊕ (P ∧ R) is not small.

Rewriting modulo AC does not seem to be a di�cult extension, except perhaps in the

case of predicate-level rewriting. On the other hand, con�uence, simplicity and smallness

seem di�cult problems.

From strong normalization, we can deduce the decidability of the typing relation,

which is the essential property on which proof assistants like Coq (Coq Development

Team 2002) or LEGO (Luo and Pollack 1992) are based.

Theorem 30 (Decidability of type-checking) Let Γ be a valid environment and T

be 2 or a term typable in Γ. In a CAC satisfying the conditions of De�nition 29, checking

whether a term t is of type T in Γ is decidable.

Proof. Since Γ is valid, it is possible to say whether t is typable and, if so, it is possible

to infer a type T ′ for t. Since types are convertible, it su�ces to check that T and T ′ have

the same normal form. The reader is invited to look at (Coquand 1991; Barras 1999) for

more details.

6. Correctness of the conditions

Our strong normalization proof is based on Tait and Girard's method of computability

predicates and reducibility candidates (Girard et al. 1988). The idea is to interpret each

type T as a set [[T]] of strongly normalizable terms and to prove that every term of type T

belongs to [[T]]. The reader not familiar with these notions is invited to read the Chapter

3 of the Ph.D. thesis of Werner (Werner 1994) for an introduction, and the paper of

Gallier for a more detailed presentation (Gallier 1990).

It is worth noting several di�erences with previous strong normalization proofs:

� The present proof is an important simpli�cation of the proof given in (Blanqui 2001),

which uses candidates à la Coquand and Gallier (Coquand and Gallier 1990) where

only well-typed terms are considered. Here, candidates are made of well-typed and not

well-typed terms. This leads to simpler notations and less properties to be care of.

� In (Geuvers 1994), Geuvers uses candidates with possibly not well-typed terms too.

However, the way dependent types are interpreted does not allow this proof to be

extended to type-level rewriting. Indeed, in this proof, dependencies are simply ignored

but, if one has a predicate symbol F : nat ⇒ ? de�ned by F0 → nat and F (sn) →
nat⇒ nat, then one expects F0 to be interpreted as nat, and F (sn) as nat⇒ nat.

� In (Werner 1994), Werner uses candidates with (not well-typed) pure λ-terms, that

Frédéric Blanqui 36

is, terms without type annotation in abstractions, in order to deal with η-conversion,

whose combination with β is not con�uent on annotated terms. As a consequence, he

has to de�ne a translation from annotated terms to pure terms that implies the strong

normalization of annotated terms. Here, we give a direct proof.

6.1. Reducibility candidates

We denote by:

� SN the set of strongly normalizable terms,

� WN the set of weakly normalizable terms,

� CR the set of terms from which reductions are con�uent.

De�nition 31 (Neutral terms) A term t is neutral if it is not of the following form:

� abstraction: [x : T]u,
� partial application: f~t with f ∈ DF and |~t| < |~l| for some rule f~l→ r ∈ R,
� constructor: f~t with f : (~x : ~T)C~v and C ∈ CF2.

Let N be the set of neutral terms.

Note that, if t is neutral, then tu is neutral and not head-reducible.

De�nition 32 (Reducibility candidates)We inductively de�ne the set Rt of the in-
terpretations for the terms of type t, the ordering ≤t on Rt, the element >t ∈ Rt, and
the operation

∧
t from the powerset of Rt to Rt as follows. If t 6= 2 and Γ 6` t : 2 then:

� Rt = {∅}, ≤t=⊆, >t = ∅ and
∧
t(<) = >t.

Otherwise:

� Rs is the set of all the subsets R of T such that:

(R1) R ⊆ SN (strong normalization).

(R2) If t ∈ R then →(t) ⊆ R (stability by reduction).

(R3) If t ∈ N and →(t) ⊆ R then t ∈ R (neutral terms).

Furthermore, ≤s=⊆, >s = SN ,
∧
s(<) =

⋂
< if < 6= ∅, and

∧
s(∅) = >s.

� R(x:U)K is the set of functions R from T × RU to RK such that R(u, S) = R(u′, S)
whenever u → u′, >(x:U)K(u, S) = >K ,

∧
(x:U)K(<)(u, S) =

∧
K({R(u, S) | R ∈ <}),

and R ≤(x:U)K R′ i�, for all (u, S), R(u, S) ≤K R′(u, S).

Lemma 33 V = {x~t ∈ T | x ∈ X ,~t ∈ SN} 6= ∅ and, for all R ∈ Rs, V ⊆ R.

Proof. V 6= ∅ since X 6= ∅. Let R ∈ Rs. We prove that x~t ∈ R by induction on ~t

with →lex as well-founded ordering (~t ∈ SN). Since x~t ∈ N , it su�ces to prove that

→(x~t) ⊆ R, which is the induction hypothesis.

Lemma 34 (a) If T C∗Γ T ′ then RT = RT ′ .
(b) If Γ ` T : s and θ : Γ ; ∆ then RT = RTθ.

Proof.

De�nitions by rewriting in the Calculus of Constructions 37

(a) By induction on the size of T . If Γ ` T : ? then Γ ` T ′ : ? and RT = {∅} = RT ′ .
Assume now that Γ ` T : 2. If T = ? then T ′ = ? and RT = RT ′ . If T = (x : U)K
then T ′ = (x : U ′)K ′ with U C∗Γ U ′ and K C∗Γ,x:U K ′. By induction hypothesis,

RU = RU ′ and RK = RK′ . Therefore, RT = RT ′ .
(b) By induction on the size of T . If Γ ` T : ? then ∆ ` Tθ : ? and RT = {∅} = RTθ.

Assume now that Γ ` T : 2. If T = ?, this is immediate. If T = (x : U)K then

Tθ = (x : Uθ)Kθ. By induction hypothesis, RU = RUθ and RK = RKθ. Therefore,
RT = RTθ.

Lemma 35 (Completeness of the candidates lattice) (Rt,≤t) is a complete lattice

with greatest element >t and the lower bound of < ⊆ Rt given by
∧
t(<).

Proof. It su�ces to prove that (Rt,≤t) is a complete inf-semi-lattice and that >t is
its greatest element. One can easily check by induction on t that ≤t is an ordering (i.e.

is re�exive, transitive and anti-symmetric), >t is the greatest element of Rt, and
∧
t(<)

is the lower bound of < ⊆ Rt.

Lemma 36 (Smallest element) Let ⊥0 =∅ and ⊥i+1 =⊥i ∪{t ∈ N | →(t) ⊆ ⊥i}. The
set ⊥s=

⋃
{⊥i | i < ω} is the smallest element of Rs: ⊥s =

⋂
Rs.

Proof. Let R ∈ Rs. We prove by induction on i that ⊥i ⊆ R. For i = 0, this is

immediate. Assume that ⊥i ⊆ R and let t ∈ ⊥i+1 \ ⊥i. We have t ∈ N and →(t) ⊆ R

by induction hypothesis. Therefore, by (R3), t ∈ R and ⊥s ⊆ R for all R ∈ Rs. Thus,
⊥s ⊆

⋂
Rs.

We now prove that ⊥s ∈ Rs, hence that ⊥s =
⋂
Rs.

(R1) We prove that ⊥i ⊆ SN by induction on i. For i = 0, this is immediate. Assume

that ⊥i ⊆ SN and let t ∈ ⊥i+1 \ ⊥i. We have →(t) ⊆ SN by induction hypothesis.

Therefore, t ∈ SN .

(R2) Let t ∈ ⊥s. Since ⊥0 = ∅, t ∈ ⊥i+1 \ ⊥i for some i. So, →(t) ⊆ ⊥i ⊆ ⊥s.
(R3) Let t ∈ N with →(t) ⊆ ⊥s. Since → is assumed to be �nitely branching, →(t) =
{t1, . . . , tn}. For all i, there exists ki such that ti ∈ ⊥ki . Let k be the max of

{k1, . . . , kn}. We have →(t) ⊆ ⊥k and thus t ∈ ⊥k+1 ⊆ ⊥s.

6.2. Interpretation schema

The interpretation [[t]] of a term t is de�ned by using a candidate assignment ξ for the

free variables and an interpretation I for the predicate symbols. The interpretation of

constant predicate symbols will de de�ned in Section 6.3, and the interpretation of de�ned

predicate symbols in Section 6.5.

De�nition 37 (Interpretation schema) A candidate assignment is a function ξ from

X to
⋃
{Rt | t ∈ T }. A candidate assignment ξ validates an environment Γ or is a

Frédéric Blanqui 38

Γ-assignment, written ξ |= Γ, if, for all x ∈ dom(Γ), xξ ∈ RxΓ. An interpretation of a

symbol f is an element of Rτf . An interpretation of a set G of symbols is a function

which, to each symbol g ∈ G, associates an interpretation of g.

The interpretation of t w.r.t. a candidate assignment ξ, an interpretation I and a

substitution θ, is de�ned by induction on t as follows:

• [[t]]Iξ,θ = >t if t is an object or a sort,

• [[f]]Iξ,θ = If ,

• [[x]]Iξ,θ = xξ,

• [[(x : U)V]]Iξ,θ = {t ∈ T | ∀u ∈ [[U]]Iξ,θ,∀S ∈ RU , tu ∈ [[V]]IξSx ,θux},
• [[[x : U]v]]Iξ,θ(u, S) = [[v]]IξSx ,θux ,

• [[tu]]Iξ,θ = [[t]]Iξ,θ(uθ, [[u]]Iξ,θ),
where θux = θ ∪ {x 7→ u} and ξSx = ξ ∪ {x 7→ S}. In the case where Γ ` t : s, the
elements of [[t]]Iξ,θ are called computable. A substitution θ is adapted to a Γ-assignment

ξ if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]Iξ,θ. A pair (ξ, θ) is Γ-valid,
written ξ, θ |= Γ, if ξ |= Γ and θ is adapted to ξ.

After Lemma 33, the identity substitution is adapted to any Γ-candidate assignment.

Lemma 38 (Correctness of the interpretation schema) If Γ ` t : T and ξ |= Γ
then [[t]]Iξ,θ ∈ RT . Moreover, if θ → θ′ then [[t]]Iξ,θ = [[t]]Iξ,θ′ .

Proof. By induction on Γ ` t : T .
(ax) [[?]]Iξ,θ = >? = SN ∈ R2 and [[?]]Iξ,θ does not depend on θ.

(symb) [[f]]Iξ,θ = If ∈ Rτf by assumption on I and [[f]]Iξ,θ does not depend on θ.

(var) [[x]]Iξ,θ does not depend on θ. Now, if x ∈ X ? then [[x]]Iξ,θ = ∅ ∈ RT = {∅}.
Otherwise, [[x]]Iξ,θ = xξ ∈ RT since ξ |= Γ, x : T .

(weak) By induction hypothesis.

(prod) R = [[(x : U)V]]Iξ,θ = {t ∈ T | ∀u ∈ [[U]]Iξ,θ,∀S ∈ RU , tu ∈ [[V]]IξSx ,θux} ∈ Rs if it
satis�es the properties (R1) to (R3):

(R1) Strong normalization. Let t ∈ R. By induction hypothesis, [[U]]Iξ,θ ∈ Rs′ for
some s′, and [[V]]IξSx ,θux ∈ Rs. Therefore, X ⊆ [[U]]Iξ,θ and [[V]]IξSx ,θux ⊆ SN . Take

u = x ∈ X . Then, tx ∈ [[V]]IξSx ,θ and t ∈ SN .

(R2) Stability by reduction. Let t ∈ R and t′ ∈ →(t). Let u ∈ [[U]]Iξ,θ and S ∈
RU . Then, tu ∈ [[V]]IξSx ,θux which, by induction hypothesis, is stable by reduction.

Therefore, since t′u ∈ →(tu), t′u ∈ [[V]]IξSx ,θux and t′ ∈ R.
(R3) Neutral terms. Let t be a neutral term such that →(t) ⊆ R. Let u ∈ [[U]]Iξ,θ and

S ∈ RU . Since t is neutral, tu is neutral and, by induction hypothesis, tu ∈ R′ =
[[V]]IξSx ,θux if →(tu) ⊆ R′. We prove it by induction on u with → as well-founded

ordering (u ∈ SN by induction hypothesis). Since t is neutral, tu is not head-

reducible and a reduct of tu is either of the form t′u with t′ ∈ →(t), or of the form
tu′ with u′ ∈ →(u). In the former case, t′u ∈ R′ by assumption. In the latter case,

we conclude by induction hypothesis.

De�nitions by rewriting in the Calculus of Constructions 39

Assume now that θ → θ′. Let R′ = [[(x : U)V]]Iξ,θ′ = {t ∈ T |∀u ∈ [[U]]Iξ,θ′ ,∀S ∈ RU , tu ∈
[[V]]IξSx ,θ′ux}. By induction hypothesis, [[U]]Iξ,θ′ = [[U]]Iξ,θ and [[V]]IξSx ,θ′ux = [[V]]IξSx ,θux . There-
fore, R′ = R.

(abs) Let R = [[[x : U]v]]Iξ,θ. R(u, S) = [[v]]IξSx ,θux . By induction hypothesis, R(u, S) ∈
RV . Assume now that u → u′. Then, R(u′, S) = [[v]]I

ξSx ,θ
u′
x
. By induction hypothesis,

[[v]]I
ξSx ,θ

u′
x

= [[v]]IξSx ,θux . Therefore, R ∈ R(x:U)V . Assume now that θ → θ′. Let R′ = [[[x :

U]v]]Iξ,θ′ . R
′(u, S) = [[v]]IξSx ,θ′ux . By induction hypothesis, R′(u, S) = R(u, S). Therefore,

R = R′.

(app) Let R = [[tu]]Iξ,θ = [[t]]Iξ,θ(uθ, [[u]]Iξ,θ). By induction hypothesis, [[t]]Iξ,θ ∈ R(x:U)V and

[[u]]Iξ,θ ∈ RU . Therefore, [[tu]]Iξ,θ ∈ RV = RV {x7→u} by Lemma 34. Assume now that

θ → θ′. Then, R′ = [[tu]]Iξ,θ′ = [[t]]Iξ,θ′(uθ
′, [[u]]Iξ,θ′). By induction hypothesis, [[t]]Iξ,θ′ =

[[t]]Iξ,θ and [[u]]Iξ,θ′ = [[u]]Iξ,θ. Finally, since [[t]]Iξ,θ is stable by reduction and uθ →∗ uθ′,
we have R = R′.

(conv) By induction hypothesis since, by Lemma 34, RT = RT ′ .

Lemma 39 Let I and I ′ be two interpretations equal on the predicate symbols occurring

in t, ξ and ξ′ be two candidate assignments equal on the predicate variables free in t,

and θ and θ′ be two substitutions equal on the variables free in t. If Γ ` t : T and ξ |= Γ
then [[t]]I

′

ξ′,θ′ = [[t]]Iξ,θ.

Proof. By induction on t.

Lemma 40 (Candidate substitution) If Γ ` t : T , σ : Γ ; ∆ and ξ |= ∆ then, for all

θ, [[tσ]]Iξ,θ = [[t]]Iξ′,σθ with xξ
′ = [[xσ]]Iξ,θ and ξ

′ |= Γ.

Proof. We �rst check that ξ′ |= Γ. Let x ∈ dom(Γ). xξ′ = [[xσ]]ξ,θ. By Lemma 38,

xξ′ ∈ RxΓσ since ∆ ` xσ : xΓσ and ξ |= ∆. By Lemma 34, RxΓσ = RxΓ since Γ ` xΓ : sx
and σ : Γ ; ∆. We now prove the lemma by induction on t. If t is an object then tσ

is an object too and [[tσ]]Iξ,θ = ∅ = [[t]]Iξ′,σθ. If t is not an object then tσ is not an object

either. We proceed by case on t:

• [[sσ]]Iξ,θ = >s = [[s]]Iξ′,σθ.
• [[fσ]]Iξ,θ = If = [[f]]Iξ′,σθ.
• [[xσ]]Iξ,θ = xξ′ = [[x]]Iξ′,σθ.
• Let R = [[(x : Uσ)V σ]]Iξ,θ = {t ∈ T | ∀u ∈ [[Uσ]]Iξ,θ,∀S ∈ RUσ = RU , tu ∈ [[V σ]]IξSx ,θux}
and R′ = [[(x : U)V]]Iξ′,σθ = {t ∈ T | ∀u ∈ [[U]]Iξ′,σθ,∀S ∈ RU , tu ∈ [[V]]I

ξ′Sx ,(σθ)
u
x
}.

By induction hypothesis, [[Uσ]]Iξ,θ = [[U]]Iξ′,σθ and [[V σ]]IξSx ,θux = [[V]]Iξ′′,σ(θux) with yξ
′′ =

[[yσ]]ξSx ,θux . Since σ(θux) = (σθ)ux (x /∈ dom(σ) ∪ dom(θ) ∪ FV(σ)) and ξ′′ = ξ′
S
x (x /∈

dom(σ) ∪ FV(σ)), we have R = R′.

• Let R = [[[x : Uσ]vσ]]Iξ,θ and R′ = [[[x : U]v]]Iξ′,σθ. By Lemma 34, R and R′ have the

same domain T × RU and the same codomain RV . Moreover, R(u, S) = [[vσ]]IξSx ,θux
and R′(u, S) = [[v]]I

ξ′Sx ,(σθ)
u
x
. By induction hypothesis, R(u, S) = [[v]]Iξ′′,σ(θux) with yξ

′′ =

[[yσ]]ξSx ,θux . Since σ(θux) = (σθ)ux and ξ′′ = ξ′
S
x , we have R = R′.

Frédéric Blanqui 40

• Let R = [[tσuσ]]Iξ,θ = [[tσ]]Iξ,θ(uσθ, [[uσ]]Iξ,θ) and R′ = [[tu]]Iξ′,σθ = [[t]]Iξ′,σθ(uσθ, [[u]]Iξ′,σθ).
By induction hypothesis, [[tσ]]Iξ,θ = [[t]]Iξ′,σθ and [[uσ]]Iξ,θ = [[u]]Iξ′,σθ. Therefore, R = R′.

6.3. Interpretation of constant predicate symbols

Like Mendler (Mendler 1987) or Werner (Werner 1994), we de�ne the interpretation of

constant predicate symbols as the �xpoint of some monotonic function on a complete

lattice. The monotonicity is ensured by the positivity conditions of admissible inductive

structures (De�nition 20). The main di�erence with these works is that we have a more

general notion of constructor since it includes any function symbol whose output type is a

constant predicate symbol. This allows us to de�ne functions and predicates by matching

not only on constant constructors but also on de�ned symbols.

De�nition 41 (Monotonic interpretation) Let I be an interpretation of C : (~x : ~T)?,
~a = (~t, ~S)§§ and ~a′ = (~t′, ~S′) be arguments of I. Let ~a ≤i ~a′ i� ~t = ~t′, Si ≤ S′i and, for all
j 6= i, Sj = S′j . We say that I is monotonic if, for all i ∈ Mon(C), ~a ≤i ~a′ ⇒ I(~a) ≤ I(~a′).

We de�ne the monotonic interpretation I of CF2 by induction on >C (A2). Let C ∈
CF2 and assume that we already de�ned a monotonic interpretation K for every symbol

smaller than C. Let I (resp. Im) be the set of (resp. monotonic) interpretations of

{D ∈ CF2 | D =C C}, and ≤ be the relation on I de�ned by I ≤ I ′ i�, for all D =C C,
ID ≤τD I ′D. For simplicity, we denote [[t]]K∪I by [[t]]I .

Lemma 42 (Im,≤) is a complete lattice.

Proof. First of all, ≤ is an ordering since, for all D =C C, ≤τD is an ordering.

The function I> de�ned by I>D = >τD is the greatest element of I. We show that

it belongs to Im. Let D =C C with D : (~x : ~T)U , i ∈ Mon(D) and ~a ≤i ~a′. Then,
I>D(~a) = >U = I>D(~a′).
We now show that every part of Im has an inf. Let = ⊆ Im and I∧ be the function

de�ned by I∧D =
∧
τD

(<D) where <D = {ID | I ∈ =}. We show that I∧ ∈ Im. LetD =C C
with D : (~x : ~T)U , i ∈ Mon(D) and ~a ≤i ~a′. Then, I∧D(~a) =

∧
U{ID(~a) | I ∈ =} and

I∧D(~a′) =
∧
U{ID(~a′) | I ∈ =}. Since each ID is monotonic, ID(~a) ≤U ID(~a′). Therefore,

I∧D ≤τD I∧D.

We are left to show that I∧ is the inf of =. For all I ∈ =, I∧ ≤ I since, for all D =C C,
I∧D is the inf of <D. Assume now that there exists I ′ ∈ Im such that, for all I ∈ =,
I ′ ≤ I. Then I ′ ≤ I∧ since I∧D is the inf of <D.

De�nition 43 (Interpretation of constant predicate symbols) Let ϕ be the func-

tion which, to I ∈ Im, associates the interpretation ϕI ∈ Im such that ϕID(~t, ~S) is the

set of terms u ∈ SN such that if u reduces to f~u with f : (~y : ~U)D~v and |~u| = |~y| then,

§§ For simplicity, we write (~t, ~S) instead of (t1, S1), . . . , (tn, Sn).

De�nitions by rewriting in the Calculus of Constructions 41

for all j ∈ Acc(f), uj ∈ [[Uj]]Iξ,θ with θ = {~y 7→ ~u} and yξ = Sιy . We show hereafter that

ϕ is monotonic. Therefore, we can take I = lfp(ϕ), the least �xpoint of ϕ.

Since ϕID(~t, ~S) does not depend on ~t, we may sometimes write ID(~S) instead of ID(~t, ~S).
The aim of this de�nition is to ensure the correctness of the accessibility relations (Lemma

53): if f~u is computable then each accessible uj is computable. This will allow us to ensure

the computability of the variables of the left hand-side of a rule if the arguments of the

left hand-side are computable, and thus the computability of the right hand-sides that

belong to the computability closure.

Lemma 44 ϕI is a well de�ned interpretation.

Proof. We �rst prove that ϕI is well de�ned. The existence of ιy is the hypothesis (I6).

The interpretations necessary for computing [[Uj]]ξ,θ are all well de�ned. The interpreta-
tion of constant predicate symbols smaller than D is K. The interpretation of constant

predicate symbols equivalent to D is I. By (I4) and (I5), constant predicate symbols

greater than D and de�ned predicate symbols do not occur in Uj . Finally, we must make

sure that ξ |= Γ where Γ is the environment made of the declarations yi : Ui such that

yi ∈ FV2(Uj) for some j. Let y ∈ dom(Γ). We must prove that yξ ∈ RyΓ. Assume that

D : (~x : ~T)U . Then, yξ = Sιy ∈ RTιy . Let γ = {~x 7→ ~v}. Since γ : ΓD ; Γf , by Lemma

34, RTιy = RTιyγ . By (I6), vιy = y. So, Γf ` y : Tιyγ and Tιyγ C∗Γf yΓ. Therefore, by
Lemma 34, RTιyγ = RyΓ and yξ ∈ RyΓ.

We now prove that ϕID ∈ RτD . It is clearly stable by reduction since it does not depend

on ~t. Furthermore, R = ϕID(~t, ~S) satis�es the properties (R1) to (R3):

(R1) Strong normalization. By de�nition.

(R2) Stability by reduction. Let u ∈ R and u′ ∈ →(u). Since u ∈ SN , u′ ∈ SN . Assume

furthermore that u′ →∗ f~u with f : (~y : ~U)D~v. Then, u →∗ f~u. Therefore, for all
j ∈ Acc(f), uj ∈ [[Uj]]ξ,θ and u′ ∈ R.

(R3) Neutral terms. Let u be a neutral term such that →(u) ⊆ R. Then, u ∈ SN .

Assume now that u→∗ f~u with f : (~y : ~U)D~v. Since u is neutral, u 6= f~u and there

exists u′ ∈ →(u) such that u′ →∗ f~u. Therefore, for all j ∈ Acc(f), uj ∈ [[Uj]]ξ,θ and
u ∈ R.

Lemma 45 Let ≤+=≤, ≤−=≥ and ξ ≤x ξ′ i� xξ ≤ xξ′ and, for all y 6= x, yξ = yξ′. If

I is monotonic, ξ ≤x ξ′, Pos(x, t) ⊆ Posδ(t), Γ ` t : T and ξ, ξ′ |= Γ then [[t]]Iξ,θ ≤δ [[t]]Iξ′,θ.

Proof. By induction on t.

• [[s]]Iξ,θ = >s = [[s]]Iξ′,θ.
• [[x]]Iξ,θ = xξ ≤ xξ′ = [[x]]Iξ′,θ and δ = + necessarily.

• [[y]]Iξ,θ = yξ = yξ′ = [[y]]Iξ′,θ (y 6= x).

• Let R = [[F~t]]Iξ,θ and R
′ = [[F~t]]Iξ′,θ. R = IF (~a) with ai = (tiθ, [[ti]]Iξ,θ) and R

′ = IF (~a′)
with a′i = (tiθ, [[ti]]Iξ′,θ). Posδ(F~t) = {1|~t| | δ = +}∪

⋃
{1|~t|−i2.Posδ(ti) | i ∈ Mon(F)}. If

i ∈ Mon(F) then Pos(x, ti) ⊆ Posδ(ti) and, by induction hypothesis, [[ti]]Iξ,θ ≤δ [[ti]]Iξ′,θ.

Frédéric Blanqui 42

Otherwise, Pos(x, ti) = ∅ and [[ti]]Iξ,θ = [[ti]]Iξ′,θ. Therefore, in both cases, R ≤δ R′ since
IF is monotonic.

• Let R = [[(x : U)V]]Iξ,θ and R′ = [[(x : U)V]]Iξ′,θ. R = {t ∈ T | ∀u ∈ [[U]]Iξ,θ,∀S ∈
RU , tu ∈ [[V]]IξSx ,θux}. R

′ = {t ∈ T | ∀u ∈ [[U]]Iξ′,θ,∀S ∈ RU , tu ∈ [[V]]I
ξ′Sx ,θ

u
x
}. Since

Posδ((x : U)V) = 1.Pos−δ(U) ∪ 2.Posδ(V), Pos(x, U) ⊆ Pos−δ(U) and Pos(x, V) ⊆
Posδ(V). Therefore, by induction hypothesis, [[U]]Iξ,θ ≤−δ [[U]]Iξ′,θ and [[V]]IξSx ,θux ≤

δ

[[V]]I
ξ′Sx ,θ

u
x
. So, R ≤δ R′. Indeed, if δ = +, t ∈ R and u ∈ [[U]]Iξ′,θ ⊆ [[U]]Iξ,θ then

tu ∈ [[V]]IξSx ,θux ⊆ [[V]]I
ξ′Sx ,θ

u
x
and t ∈ R′. If δ = −, t ∈ R′ and u ∈ [[U]]Iξ,θ ⊆ [[U]]Iξ′,θ then

tu ∈ [[V]]I
ξ′Sx ,θ

u
x
⊆ [[V]]IξSx ,θux and t ∈ R.

• Let R = [[[x : U]v]]Iξ,θ and R′ = [[[x : U]v]]Iξ′,θ. R and R′ have the same domain

T ×RU and the same codomain RV . R(u, S) = [[v]]IξSx ,θux and R′(u, S) = [[v]]I
ξ′Sx ,θ

u
x
. Since

Posδ([x : U]v) = 2.Posδ(v), Pos(x, v) ⊆ Posδ(v). Therefore, by induction hypothesis,

R(u, S) ≤δ R′(u, S) and R ≤δ R′.
• Let R = [[tu]]Iξ,θ and R′ = [[tu]]Iξ′,θ (t 6= f~t). R = [[t]]Iξ,θ(uθ, S) with S = [[u]]Iξ,θ. R

′ =
[[t]]Iξ′,θ(uθ, S

′) with S′ = [[u]]Iξ′,θ. Since Posδ(tu) = 1.Posδ(t), Pos(x, t) ⊆ Posδ(t) and

Pos(x, u) = ∅. Therefore, S = S′ and, by induction hypothesis, [[t]]Iξ,θ ≤δ [[t]]Iξ′,θ. So,
R ≤δ R′.

Lemma 46 ϕI is monotonic.

Proof. Let D =C C with D : (~x : ~T)U , i ∈ Mon(D) and ~a ≤i ~a′ with ~a = (~t, ~S)
and ~a′ = (~t, ~S′). We have to show that ϕID(~a) ⊆ ϕID(~a′). Let u ∈ ϕID(~a). We prove

that u ∈ ϕID(~a′). First, we have u ∈ SN . Assume now that u reduces to f~u with

f : (~y : ~U)D~v. Let j ∈ Acc(f). We have to prove that uj ∈ [[Uj]]ξ′,θ with θ = {~y 7→ ~u}
and, for all y ∈ FV2(Uj), yξ′ = S′ιy . Since u ∈ ϕ

I
D(~a), we have uj ∈ [[Uj]]ξ,θ with, for

all y ∈ FV2(Uj), yξ = Sιy . If, for all y ∈ FV2(Uj), ιy 6= i, then ξ and ξ′ are equal on

FV2(Uj). Therefore, [[Uj]]ξ,θ = [[Uj]]ξ′,θ and uj ∈ [[Uj]]ξ′,θ. If there exists y ∈ FV2(Uj)
such that ιy = i then ξ ≤y ξ′. By (I2), Pos(y, Uj) ⊆ Pos+(Uj). Therefore, by Lemma 45,

ϕID(~a) ⊆ ϕID(~a′) and uj ∈ [[Uj]]ξ′,θ.

Lemma 47 Let I ≤F I ′ i� IF ≤ I ′F and, for all G 6= F , IG = I ′G. If I is monotonic,

I ≤F I ′, Pos(F, t) ⊆ Posδ(t), Γ ` t : T and ξ |= Γ then [[t]]Iξ,θ ≤δ [[t]]I
′

ξ,θ.

Proof. By induction on t.

• [[s]]Iξ,θ = >s = [[s]]I
′

ξ,θ.

• [[x]]Iξ,θ = xξ = [[x]]I
′

ξ,θ.

• Let R = [[G~t]]Iξ,θ and R
′ = [[G~t]]I

′

ξ,θ. R = IG(~a) with ai = (tiθ, [[ti]]Iξ,θ). R
′ = I ′G(~a′) with

a′i = (tiθ, [[ti]]I
′

ξ,θ). Posδ(G~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posδ(ti) | i ∈ Mon(G)}. If

i ∈ Mon(G) then Pos(F, ti) ⊆ Posδ(ti) and, by induction hypothesis, [[ti]]Iξ,θ ≤δ [[ti]]I
′

ξ,θ.

Otherwise, Pos(F, ti) = ∅ and [[ti]]Iξ,θ = [[ti]]I
′

ξ,θ. Therefore, IG(~a) ≤δ IG(~a′) since IG is

De�nitions by rewriting in the Calculus of Constructions 43

monotonic. Now, if G = F then δ = + and IG(~a) ≤ IG(~a′) = IF (~a′) ≤ I ′F (~a′) = I ′G(~a′).
Otherwise, IG(~a) ≤δ IG(~a′) = I ′G(~a′).
• Let R = [[(x : U)V]]Iξ,θ and R

′ = [[(x : U)V]]I
′

ξ,θ. R = {t ∈ T | ∀u ∈ [[U]]Iξ,θ,∀S ∈ RU , tu ∈
[[V]]IξSx ,θux} and R′ = {t ∈ T | ∀u ∈ [[U]]I

′

ξ,θ,∀S ∈ RU , tu ∈ [[V]]I
′

ξSx ,θ
u
x
}. Since Posδ((x :

U)V) = 1.Pos−δ(U) ∪ 2.Posδ(V), Pos(F,U) ⊆ Pos−δ(U) and Pos(F, V) ⊆ Posδ(V).
Therefore, by induction hypothesis, [[U]]Iξ,θ ≤−δ [[U]]I

′

ξ,θ and [[V]]IξSx ,θux ≤
δ [[V]]I

′

ξSx ,θ
u
x
. So,

[[t]]Iξ,θ ≤δ [[t]]I
′

ξ,θ. Indeed, if δ = +, t ∈ R and u ∈ [[U]]I
′

ξ,θ ⊆ [[U]]Iξ,θ then tu ∈ [[V]]IξSx ,θux ⊆
[[V]]I

′

ξSx ,θ
u
x
and t ∈ R′. If δ = −, t ∈ R′ and u ∈ [[U]]Iξ,θ ⊆ [[U]]I

′

ξ,θ then tu ∈ [[V]]I
′

ξSx ,θ
u
x
⊆

[[V]]IξSx ,θux and t ∈ R.

• Let R = [[[x : U]v]]Iξ,θ and R′ = [[[x : U]v]]I
′

ξ,θ. R and R′ have the same domain

T × RU and same codomain RV . R(u, S) = [[v]]IξSx ,θux and R′(u, S) = [[v]]I
′

ξSx ,θ
u
x
. Since

Posδ([x : U]v) = 2.Posδ(v), Pos(F, v) ⊆ Posδ(v). Therefore, by induction hypothesis,

R(u, S) ≤δ R′(u, S) and R ≤δ R′.
• Let R = [[tu]]Iξ,θ and R′ = [[tu]]I

′

ξ,θ (t 6= f~t). R = [[t]]Iξ,θ(uθ, S) with S = [[u]]Iξ,θ. R
′ =

[[t]]I
′

ξ,θ(uθ, S
′) with S′ = [[u]]I

′

ξ,θ. Since Posδ(tu) = 1.Posδ(t), Pos(F, t) ⊆ Posδ(t) and

Pos(F, u) = ∅. Therefore, S = S′ and, by induction hypothesis, [[t]]Iξ,θ ≤δ [[t]]I
′

ξ,θ. So,

R ≤δ R′.

Lemma 48 ϕ is monotonic.

Proof. Let I, I ′ ∈ Im such that I ≤ I ′. We have to prove that, for all D =C C, ϕID ≤
ϕI
′

D, that is, ϕ
I
D(~a) ⊆ ϕI′D(~a) for all ~a. Let u ∈ ϕID(~a). We prove that u ∈ ϕI′D(~a). First, we

have u ∈ SN . Assume now that u reduces to f~u with f : (~y : ~U)D~v. Let j ∈ Acc(f). We

have to prove that uj ∈ [[Uj]]I
′

ξ,θ with θ = {~y 7→ ~u} and, for all y ∈ FV2(Uj), yξ = Sιy .

Since u ∈ ϕID(~a), we have uj ∈ [[Uj]]Iξ,θ. Since j ∈ Acc(f), by (I3), for all E =C D,

Pos(E,Uj) ⊆ Pos+(Uj). Now, only a �nite number of symbols E =C D can occur in Uj ,

say E0, . . . , En−1. Let I
0 = I and, for all i < n, Ii+1

D = IiD if D 6= Ei, and I
i+1
D = I ′Ei

otherwise. We have I = I0 ≤E0 I
1 ≤E1 . . . I

n−1 ≤En−1 I
n = I ′. Hence, by Lemma 47,

[[Uj]]Iξ,θ ≤ [[Uj]]I
′

ξ,θ and u ∈ ϕI
′

D(~a).

Since (Im,≤) is a complete lattice, ϕ has a least �xpoint I which is an interpretation

for all the constant predicate symbols equivalent to C. Hence, by induction on >C , we

obtain an interpretation I for all the constant predicate symbols.

In the case of a primitive constant predicate symbol, the interpretation is simply the

set of strongly normalizable terms of this type:

Lemma 49 (Interpretation of primitive constant predicate symbols) If C is a

primitive constant predicate symbol then IC = >τC .

Proof. Since IC ≤ >τC , it su�ces to prove that >τC ≤ IC . Since, by assumption,

` τC : 2, τC is of the form (~x : ~T)?. If ~a are arguments of >τC then >τC (~a) = >? = SN
and it su�ces to prove that, for all u ∈ SN , C primitive and ~a arguments of IC , u ∈ IC(~a),

Frédéric Blanqui 44

by induction on u with → ∪� as well-founded ordering. Assume that u →∗ f~u with

f : (~y : ~U)C~v. If u →+ f~u, we can conclude by induction hypothesis. So, assume that

u = f~u. In this case, we have to prove that, for all j ∈ Acc(f), uj ∈ [[Uj]]ξ,θ with

θ = {~y 7→ ~u} and, for all y ∈ FV2(Uj), yξ = Sιy . By de�nition of primitive constant

predicate symbols, for all j ∈ Acc(f), Uj is of the form D~w with D primitive too. Hence,

[[Uj]]ξ,θ = ID(~a′) with a′i = (wiθ, [[wi]]ξ,θ). Since uj ∈ SN , by induction hypothesis,

uj ∈ ID(~a′). Therefore, u ∈ IC(~a).

6.4. Computability ordering

In this section, we assume given an interpretation J for de�ned predicate symbols and

denote [[T]]I∪J by [[T]]. The �xpoint of the function ϕ de�ned in the previous section can

be reached by trans�nite iteration from the smallest element of Im, ⊥C(~t, ~S) = ⊥?. Let
Ia be the interpretation reached after a iterations of ϕ.

De�nition 50 (Order of a computable term) The order of a term t ∈ IC(~S), writ-
ten oC(~S)(t), is the smallest ordinal a such that t ∈ Ia

C(~S).

This notion of order will enable us to de�ne a well-founded ordering in which recur-

sive de�nitions on strictly positive predicates strictly decrease. Indeed, in this case, the

subterm ordering is not su�cient. In the example of the addition on ordinals, we have

the rule:

x+ (lim f) → lim ([n : nat]x+ fn)

We have a recursive call with (fn) as argument, which is not a subterm of (lim f).
However, thanks to the de�nition of the interpretation for constant predicate symbols

and products, we can say that, if (lim f) is computable then f is computable and thus

that, for all computable n, (fn) is computable. So, the order of (lim f) is greater than
the one of (fn): o(lim f) > o(fn).

De�nition 51 (Computability ordering) Let f ∈ F with statf = lex m1 . . .mk. Let

Θf be the set of tuples (g, ξ, θ) such that g =F f and ξ, θ |= Γg. We equip Θf with the

ordering Af de�ned by:

• (g, ξ, θ) Af (g′, ξ′, θ′) if ~mθ (A1,m
f , . . . ,Ak,m

f)lex ~mθ′,

• mul ~t Ai,m
f mul ~t′ if {~t} (Ai

f)mul {~t′},
• t Ai

f t
′ if i ∈ SP (f), T if = C~a, [[~a]]ξ,θ = [[~a]]ξ′,θ′ = ~S and oC(~S)(t) > oC(~S)(t

′),

• t Ai
f t
′ if i /∈ SP (f) and t (→ ∪�) t′.

We equip Θ =
⋃
{Θf | f ∈ F} with the computability ordering A de�ned by (f, ξ, θ) A

(f ′, ξ′, θ′) if f >F f ′ or, f =F f ′ and (f, ξ, θ) Af (f ′, ξ′, θ′).

Lemma 52 The computability ordering is well-founded and compatible with→, that is,

if θ → θ′ then (g, ξ, θ) w (g, ξ, θ′).

De�nitions by rewriting in the Calculus of Constructions 45

Proof. The computability ordering is well-founded since ordinals are well-founded and

lexicographic and multiset orderings preserve well-foundedness. It is compatible with →
by de�nition of the interpretation of constant predicate symbols.

We check hereafter that the accessibility relation is correct, that is, an accessible sub-

term of a computable term is computable. Then, we check that the ordering on arguments

is correct too, that is, if t >iR u and t is computable then u is computable and o(t) > o(u).

Lemma 53 (Correctness of accessibility) If t : T �ρ u : U and tσ ∈ [[Tρ]]I
a

ξ,σ with a

as small as posssible then a = b + 1 and uσ ∈ [[Uρ]]I
b

ξ,σ.

Proof. By de�nition of �ρ, we have t = f~u, f : (~y : ~U)C~v, C ∈ CF2, u = uj ,

j ∈ Acc(f), Tρ = C~vγρ, Uρ = Ujγρ, γ = {~y 7→ ~u} and no D =C C occurs in ~uρ. Hence,

tσ ∈ [[C~vγρ]]I
a

ξ,σ = Ia
C(~S) with ~S = [[~vγρ]]I

a

ξ,σ. Assume that a = 0. Then, Ia
C(~S) = ⊥?.

But f~u /∈ ⊥? since f~u is not neutral (see Lemma 36). So, a 6= 0. Assume now that a

is a limit ordinal. Then, Ia
C(~S) =

⋃
{Ib
C(~S) | b < a} and tσ ∈ Ib

C(~S) for some b < a,

which is not possible since a is as small as possible. Therefore, a = b + 1 and, by

de�nition of IC , ujσ ∈ [[Uj]]I
b

ξ′,γρσ with yξ′ = Sιy . By (I6), vιy = y. Thus, yξ′ = [[yγρ]]I
a

ξ,σ.

Now, since no D =C C occurs in ~uρ, yξ′ = [[yγρ]]I
b

ξ,σ. Hence, by candidate substitution,

[[Uj]]I
b

ξ′,γρσ = [[Ujγρ]]I
b

ξ,σ and uσ ∈ [[Uρ]]I
b

ξ,σ since Uρ = Ujγρ.

Lemma 54 (Correctness of the ordering on arguments) Assume that t : T >iR
u : U as in De�nition 24, tσ ∈ [[Tρ]]ξ,σ and ~uσ ∈ [[~Uδ]]ξ,σ. Then, uσ ∈ [[Uρ]]ξ,σ and

oC(~S)(tσ) > oC(~S)(uσ) with ~S = [[~vγρ]]ξ,σ.

Proof. Since t : T �+
ρ x : V , Tρ = C~vγρ. Hence, tσ ∈ Ia

C(~S) with a = oC(~S)(tσ). By

Lemma 53, a = b+1 and xσ ∈ [[V ρ]]I
b

ξ,σ. Since noD =C C occurs in ~Uδ, [[~Uδ]]ξ,σ = [[~Uδ]]I
b

ξ,σ.

Since V ρ = (~y : ~U)C ~w and ~uσ ∈ [[~Uδ]]I
b

ξ,σ, uσ ∈ [[C ~w]]I
b

ξ
~R
~y
,σ~uσ
~y

with ~R = [[~u]]I
b

ξ,σ. By candidate

substitution, [[C ~w]]I
b

ξ
~R
~y
,σ~uσ
~y

= [[C ~wδ]]I
b

ξ,σ = Ib
C(~S′) with ~S′ = [[~wδ]]I

b

ξ,σ. Since ~wδ|C = ~vγρ|C ,

~S′ = [[~vγρ]]I
b

ξ,σ. Since no D =C C occurs in ~vγρ, ~S′ = ~S. Therefore, uσ ∈ Ib
C(~S) and

oC(~S)(tσ) > oC(~S)(uσ).

6.5. Interpretation of de�ned predicate symbols

We de�ne the interpretation J for de�ned predicate symbols by induction on � (A3). Let

F be a de�ned predicate symbol and assume that we already de�ned an interpretation

K for every symbol smaller than F . There are three cases depending on the fact that

the equivalence class of F is primitive, positive or computable. For simplicity, we denote

[[T]]I∪K∪J by [[T]]J .

6.5.1. Primitive systems

De�nition 55 For every G ' F , we take JG = >τG .

Frédéric Blanqui 46

6.5.2. Positive, small and simple systems Let J be the set of interpretations of the

symbols equivalent to F and ≤ be the relation on J de�ned by J ≤ J ′ if, for all G ' F ,
JG ≤τG J ′G. Since (RτG ,≤τG) is a complete lattice, it is easy to see that (J ,≤) is a

complete lattice too.

De�nition 56 Let ψ be the function which, to J ∈ J and G ' F with G : (~x : ~T)U ,
associates the interpretation ψJG de�ned by:

ψJG(~t, ~S) =

{
[[r]]Jξ,σ if ~t ∈ WN∩ CR, ~t↓= ~lσ and (G~l→ r,Γ, ρ) ∈ R

>U otherwise

where xξ = Sκx . We show hereafter that ψ is monotonic. So, we can take J = lfp(ψ).

Lemma 57 ψJ is a well de�ned interpretation.

Proof. By simplicity, at most one rule can be applied at the top of G(~t↓). The existence
of κx is the smallness condition (q). We now prove that ψJG ∈ RτG . By (S3), Γ ` r : Uγρ
with γ = {~x 7→ ~l}. Now, we prove that ξ |= Γ. Let x ∈ FV2(r), xξ = Sκx ∈ Rxσ since

Sκx ∈ Rtκx and, by smallness, tκx = lκxσ = xσ. Therefore, by Lemma 38, [[r]]ξ,σ ∈
RUγρ = RU . We are left to check that ψJG is stable by reduction. Assume that ~t→ ~t′. By

(A1), → is con�uent. Therefore, {~t} ⊆ WN i� {~t′} ⊆ WN . Furthermore, if {~t} ⊆ WN ,

then ~t↓= ~t′ ↓ and ψJG(~t, ~S) = ψJG(~t′, ~S).

Lemma 58 ψ is monotonic.

Proof. As in Lemma 48.

6.5.3. Computable, small and simple systems Let D be the set of tuples (G,~t, ~S) such

that G ' F , and {~x 7→ ~S}, {~x 7→ ~t} |= ΓG. We equip D with the well-founded ordering

(G,~t, ~S) AD (G′,~t′, ~S′) i� (G, {~x 7→ ~S}, {~x 7→ ~t}) A (G′, {~x 7→ ~S′}, {~x 7→ ~t′}) (see

De�nition 51).

De�nition 59We �rst de�ne J ′ on D by induction on AD . Let G ' F with G : (~x : ~T)U .

J ′G(~t, ~S) =

{
[[r]]J

′

ξ,σ if ~t ∈ WN∩ CR, ~t↓= ~lσ and (G~l→ r,Γ, ρ) ∈ R

>U otherwise

where xξ = Sκx . Then, JG(~t, ~S) = J ′G(~t ↓, ~S) if ~t ∈ WN ∩ CR, and JG(~t, ~S) = >U
otherwise.

Lemma 60 J is a well de�ned interpretation.

Proof. As in Lemma 57. The well-foundedness of the de�nition comes from Lemma 68

and Theorem 67. In Lemma 68, we show that, starting from a sequence in D, we can

apply Theorem 67 where we show that, in a recursive call G′~t′, (G,~t, ~S) A (G′,~t′, ~S′) for
some ~S′.

De�nitions by rewriting in the Calculus of Constructions 47

6.6. Correctness of the conditions

De�nition 61 (Cap and aliens) Let ζ be an injection from classes of terms modulo↔∗
to X . The cap of a term t w.r.t. a set G of symbols is the term capG(t) = t[x1]p1 . . . [xn]pn
such that, for all i, xi = ζ(t|pi) and t|pi is not of the form g~t with g ∈ G. The t|pi 's are
the aliens of t. We denote by aliensG(t) their multiset.

Lemma 62 (Pre-computability of �rst-order symbols) If f ∈ F1 and ~t ∈ SN then

f~t ∈ SN .

Proof. We prove that every reduct t′ of t = f~t is in SN . Hereafter, cap = capF1 .

Case Rω 6= ∅. By induction on (aliens(t), cap(t))lex with ((→ ∪�)mul,→R1)lex as

well-founded ordering (the aliens are strongly normalizable and, by (f), →R1 is strongly

normalizing on �rst-order algebraic terms).

If the reduction takes place in cap(t) then this is a R1-reduction. By (c), no symbol

of Fω occurs in the rules of R1. And, by (d), the right hand-sides of the rules of R1 are

algebraic. Therefore, cap(t) →R1 cap(t
′). By (e), the rules of R1 are non duplicating.

Therefore, aliens(t) �mul aliens(t′) and we can conclude by induction hypothesis.

If the reduction takes place in an alien then aliens(t) (→ ∪�)mul aliens(t′) and we

can conclude by induction hypothesis.

Case Rω = ∅. Since the ti's are strongly normalizable and no β-reduction can take

place at the top of t, t has a β-normal form. Let capβ(t) be the cap of its β-normal form.

We prove that every immediate reduct t′ of t is strongly normalizable, by induction on

(βcap(t), aliens(t))lex with (→R1 , (→ ∪�)mul)lex as well-founded ordering (the aliens are

strongly normalizable and, by (f), →R1 is strongly normalizing on �rst-order algebraic

terms).

If the reduction takes place in cap(t) then this is a R1-reduction. By (d), the right

hand-sides of the rules of R1 are algebraic. Therefore, t′ has a β-normal form and

capβ(t) →R1 capβ(t′). Hence, we can conclude by induction hypothesis. If the reduc-

tion is a β-reduction in an alien then capβ(t) = capβ(t′) and aliens(t) (→ ∪�)mul

aliens(t′). Hence, we can conclude by induction hypothesis.

We are left with the case where the reduction is a R1-reduction taking place in an

alien u. Then, aliens(t) →mul aliens(t′), capβ(t) →∗R1
capβ(t′) and we can conclude by

induction hypothesis. To see that capβ(t)→∗R1
capβ(t′), it su�ces to remark that, if we

β-normalize u, then all the residuals of the R1-redex are still reducible (left and right

hand-sides of �rst-order rules are algebraic).

Lemma 63 (Computability of �rst-order symbols) For all f ∈ F1, f ∈ [[τf]].

Proof. Assume that f : (~x : ~T)U . f ∈ [[τf]] i�, for all Γf -valid pair (ξ, θ), f~xθ ∈ R =
[[U]]ξ,θ. For �rst-order symbols, U = ? or U = C~v with C primitive. If U = ? then

R = >? = SN . If U = C~v with C : (~y : ~U)V then R = IC(~a) with ai = (viθ, [[vi]]ξ,θ).
Since C is primitive, by Lemma 49, IC = >τC and R = >V . By assumption, ` τC : 2

and ` τf : sf . After Lemma 11, sf = ? and V = ?. Therefore, R = >? = SN . Now,

since ξ, θ |= Γf , we have xiθ ∈ [[Ti]]ξ,θ ⊆ SN by (R1). Hence, by pre-computability of

�rst-order symbols, f~xθ ∈ [[U]]ξ,θ.

Frédéric Blanqui 48

Theorem 64 (Strong normalization of →R) The relation →R=→R1 ∪ →Rω is

strongly normalizing.

Proof. By induction on the structure of terms. The only di�cult case is f~t. If f is

�rst-order, we use the Lemma of pre-computability of �rst-order symbols. If f is higher-

order, we have to show that, if ~t ∈ SNR, then t = f~t ∈ SNR, where SNR is the set of

terms that are strong normalizable w.r.t. →R.
Let $(t) = 0 if t is not of the form g~u and $(t) = 1 otherwise. We prove that

every reduct t′ of t is strongly normalizable by induction on (f,$(~t),~t,~t) with (>F , (>N
)statf , (�∪ →R)statf , (→R)lex)lex as well-founded ordering. Assume that t′ = f~t′ with

ti →R t′i and, for all j 6= i, tj = t′j . Then, ~t (→R)lex ~t
′ and $(ti) ≥ $(t′i) since if ti is

not of the form g~u then t′i is not of the form g~u either.

Assume now that there exists f~l → r ∈ Rω such that ~t = ~lσ and t′ = rσ. By (a),

r belongs to the computability closure of l. It is then easy to prove that rσ is strongly

normalizable by induction on the structure of r. Again, the only di�cult case is g~u. But

then, either g is smaller than f , or g is equivalent to f and its arguments are smaller

than ~l. If li >1 uj then li � uj and FV(uj) ⊆ FV(li). Therefore liσ � ujσ and $(liσ) =
1 ≥ $(ujσ). If now li >2 uj then uj is of the form x~v and $(liσ) = 1 > $(ujσ) = 0.

Lemma 65 (Invariance by reduction) If Γ ` t : T , t→ t′, ξ |= Γ and tθ ∈ WN then

[[t]]ξ,θ = [[t′]]ξ,θ.

Proof. By induction on t. If t is an object then t′ is an object too and [[t]]ξ,θ = ∅ = [[t′]]ξ,θ.
Otherwise, we proceed by case on t and t′:

• Let R = [[F~lσ]]ξ,θ and R′ = [[rσ]]ξ,θ with (F~l → r,Γ0, ρ) ∈ R. R = IF (~a) with ai =
(liσθ, [[liσ]]ξ,θ). By (A3), there are two sub-cases:

� F belongs to a primitive system. Then, IF = >τF and r is of the form [~x : ~T] G~u
with G ' F or G a primitive constant predicate symbol. In both cases, IG = >τG .
Therefore, R = R′.

� F belongs to a positive or computable, small and simple system. Since

liσθ ∈ WN , by (A1), liσθ has a unique normal form ti. By simplicity, the symbols

in ~l are constant. Therefore, ti is of the form liθ
′ with σθ →∗ θ′, and R = [[r]]ξ′,θ′

with xξ′ = [[lκxσ]]ξ,θ. By smallness, lκx = x and xξ′ = [[xσ]]ξ,θ. By Lemma 38,

[[r]]ξ′,θ′ = [[r]]ξ′,σθ. By (S4), σ : Γ0 ; Γ. Therefore, by candidate substitution, R = R′.

• Let R = [[[x : U]v u]]ξ,θ and R′ = [[v{x 7→ u}]]ξ,θ. Let S = [[u]]ξ,θ. R = [[[x :
U]v]](uθ, S) = [[v]]ξSx ,θ′ with θ

′ = θuθx = {x 7→ u}θ. Since {x 7→ u} : (Γ, x : U) → Γ, by
candidate substitution, R′ = [[v]]ξSx ,θ′ = R.

• Let R = [[tu]]ξ,θ and R′ = [[t′u′]]ξ,θ with t → t′ and u → u′. R = [[t]]ξ,θ(uθ, [[u]]ξ,θ) and

R′ = [[t′]]ξ,θ(u′θ, [[u′]]ξ,θ). By induction hypothesis, [[t]]ξ,θ = [[t′]]ξ,θ and [[u]]ξ,θ = [[u′]]ξ,θ.
Finally, since candidates are stable by reduction, R = R′.

• Let R = [[[x : U]v]]ξ,θ and R′ = [[[x : U ′]v′]]ξ,θ with U → U ′ and v → v′. Since

RU = RU ′ , R and R′ have the same domain T × RU and codomain RV , where V is

the type of v. R(u, S) = [[v]]ξSx ,θux and R′(u, S) = [[v′]]ξSx ,θux . By induction hypothesis,

R(u, S) = R′(u, S). Therefore, R = R′.

De�nitions by rewriting in the Calculus of Constructions 49

• Let R = [[(x : U)V]]ξ,θ and R′ = [[(x : U ′)V ′]]ξ,θ. R = {t ∈ T | ∀u ∈ [[U]]ξ,θ,∀S ∈
RU , tu ∈ [[V]]ξSx ,θux} and R′ = {t ∈ T | ∀u ∈ [[U ′]]ξ,θ,∀S ∈ RU , tu ∈ [[V ′]]ξSx ,θux}. By
induction hypothesis, [[U]]ξ,θ = [[U ′]]ξ,θ and [[V]]ξSx ,θux = [[V ′]]ξSx ,θux . Therefore, R = R′.

Lemma 66 (Pre-computability of well-typed terms) Assume that, for all f , f ∈
[[τf]]. If Γ ` t : T and ξ, θ |= Γ then tθ ∈ [[T]]ξ,θ.

Proof. By induction on Γ ` t : T .
(ax) ?θ = ? ∈ [[2]]ξ,θ = >2 = SN .

(symb) By assumption.

(var) xθ ∈ [[T]]ξ,θ since θ is adapted to ξ.

(weak) By induction hypothesis.

(prod) We have to prove that (x : Uθ)V θ ∈ [[s′]]ξ,θ = >s′ = SN . By induction hy-

pothesis, Uθ ∈ [[s]]ξ,θ = SN . Now, let ξ′ = ξ>Ux . Since ξ′, θ |= Γ, x : U , by induction

hypothesis, V θ ∈ [[s′]]ξ′,θ = SN .

(abs) Let t = [x : U]v. We have to prove that tθ ∈ [[(x : U)V]]ξ,θ. First note that

Uθ, vθ ∈ SN . Indeed, let ξ′ = ξ>Ux . Since ξ′, θ |= Γ, x : U , by induction hypothesis,

vθ ∈ [[V]]ξ′,θ. Furthermore, by inversion, Γ ` U : s for some s. So, by induction

hypothesis, Uθ ∈ [[s]]ξ,θ = SN . Now, let u ∈ [[U]]ξ,θ ⊆ SN and S ∈ RU . We must prove

that tθu ∈ S′ = [[V]]ξSx ,θux . Since tθu is neutral, it su�ces to prove that →(tθu) ⊆ S′.

We prove it by induction on (Uθ, vθ, u) with →lex as well-founded ordering. We have

tθu → vθ{x 7→ u} = vθ′. Since ξSx , θ
u
x |= Γ, x : U , by induction hypothesis, vθ′ ∈ S′.

For the other cases, we can conclude by induction hypothesis on (Uθ, vθ, u).
(app) We have to prove that tθuθ ∈ [[V {x 7→ u}]]ξ,θ. By induction hypothesis, tθ ∈

[[(x : U)V]]ξ,θ and uθ ∈ [[U]]ξ,θ. Since S = [[uθ]]ξ,θ ∈ RUθ = RU , by de�nition of

[[(x : U)V]]ξ,θ, tθuθ ∈ [[V]]ξSx ,θ′ with θ′ = θuθx . By candidate substitution, [[V {x 7→
u}]]ξ,θ = [[V]]ξ′,{x 7→u}θ with yξ′ = [[y{x 7→ u}]]ξ,θ. Since ξ′ = ξSx and {x 7→ u}θ = θ′,

tθuθ ∈ [[V {x 7→ u}]]ξ,θ.
(conv) In (Blanqui 2001), we show that adding the hypothesis Γ ` T : s does not change
the typing relation. Therefore, by induction hypothesis, tθ ∈ [[T]]ξ,θ, Tθ ∈ [[s]]ξ,θ = >s =
SN and T ′θ ∈ [[s]]ξ,θ = SN . Hence, by invariance by reduction, [[T]]ξ,θ = [[T ′]]ξ,θ and

tθ ∈ [[T ′]]ξ,θ.

Theorem 67 (Computability closure correctness) Let (f~l→ r,Γ, ρ) be a well-formed

rule with f ∈ Fω, f : (~x : ~T)U and γ = {~x 7→ ~l}. Assume that η, γσ |= Γf , ξ, σ |= Γ,
xη = [[xγρ]]ξ,σ, and ~lσ ∈ [[~Tγρ]]ξ,σ. Assume also that:

• ∀g <F f , g ∈ [[τg]],
• ∀g =F f , if g : (~y : ~U)V and (f, η, γσ) A (g, ξ′′, θ) then g~yθ ∈ [[V]]ξ′′,θ.
If ∆ c̀ t : T and ξξ′, σσ′ |= Γ,∆ then tσσ′ ∈ [[T]]ξξ′,σσ′ .

Proof. By induction on ∆ c̀ t : T , we prove that tσσ′ ∈ [[T]]ξξ′,σσ′ as in the previous

lemma. We only detail the case (symb=). Let ~u = ~yδ. By induction hypothesis, ~uσσ′ ∈

Frédéric Blanqui 50

[[~Uδ]]ξξ′,σσ′ . By candidate substitution, there exists ξ′′ such that [[~Uδ]]ξξ′,σσ′ = [[~U]]ξ′′,δσσ′ ,
[[V δ]]ξξ′,σσ′ = [[V]]ξ′′,δσσ′ and ξ′′ |= Γg. Therefore, ξ′′, δσσ′ |= Γg.
We now prove that (f, η, γσ) A (g, ξ′′, δσσ′). If li : Tiγ �+

ρ uj : Ujδ. Then, li � uj and

FV(uj) ⊆ FV(li). Therefore, liσ = liσσ
′ � ujσσ

′. Assume now that li : Tiγ >kR uj : Ujδ,
k ∈ SP (f) and T kf = C~a. By de�nition of >kR, li = h~t′, h : (~x′ : ~T ′)C~v, uj = x~u′,

x ∈ dom(Γ), li : Tiγ �+
ρ x : V and V ρ = xΓ = (~y′ : ~U ′)C ~w, where γ′ = {~x′ 7→ ~t′}

and δ′ = {~y′ 7→ ~u′}. We must prove that [[~a]]η,γσ = [[~a]]ξ′′,δσσ′ = ~S and oC(~S)(liσ) >
oC(~S)(ujσσ

′).
Assume that Ti = C~t and Uj = C~u. Since k ∈ SP (f), ~t|C = ~u|C = ~a|C . By de�nition

of �ρ, Tiγρ = C~vγ′ρ. Hence, ~aγρ|C = ~vγ′ρ|C . By de�nition of >kR, ~vγ
′ρ|C = ~wδ′|C

and Ujδρ = C ~wδ′. Therefore, ~aγρ|C = ~wδ′|C = ~uδρ|C = ~aδρ|C = ~aδ|C since dom(ρ) ⊆
FV(l), FV(δ) ⊆ dom(∆) and dom(∆) ∩ FV(l) = ∅. By (S5), [[~a]]η,γσ = [[~a]]η,γρσ. Since
xη = [[xγρ]]ξ,σ, by candidate substitution, [[~a]]η,γρσ = [[~aγρ]]ξ,σ. So, [[~a]]η,γσ = [[~aδ]]ξ,σ =
[[~aδ]]ξξ′,σσ′ = [[~a]]ξ′′,δσσ′ . Now, by induction hypothesis, ~u′σσ′ ∈ [[~U ′δ′]]ξξ′,σσ′ . Therefore,
since liσ = liσσ

′ ∈ [[Tiγρ]]ξ,σ = [[Tiγρ]]ξξ′,σσ′ , by Lemma 54, ujσσ
′ ∈ [[Ujδρ]]ξξ′,σσ′ and

oC(~R)(liσ) > oC(~R)(ujσσ
′) where ~R = [[~vγ′ρ]]ξξ′,σσ′ = ~S.

Lemma 68 (Computability of higher-order symbols) For all f ∈ Fω, f ∈ [[τf]].

Proof. Assume that f : (~x : ~T)U . f ∈ [[τf]] i�, for all Γf -valid pair (η, θ), f~xθ ∈ [[U]]η,θ.
We prove it by induction on ((f, η, θ), θ) with (A,→)lex as well-founded ordering. Let

ti = xiθ and t = f~t. By assumption (see De�nition 2), for all rule f~l → r ∈ R, |~l| ≤ |~t|.
So, if U 6= C~v with C ∈ CF2 then t is neutral and it su�ces to prove that →(t) ⊆
[[U]]η,θ. Otherwise, [[U]]η,θ = IC(~a) with ai = (viθ, [[vi]]η,θ). Since η, θ |= Γf , tj ∈ [[Tj]]η,θ.
Therefore, in this case too, it su�ces to prove that →(t) ⊆ [[U]]η,θ.
If the reduction takes place in one ti then we can conclude by induction hypothesis

since reducibility candidates are stable by reduction and A is compatible with reduction.

Assume now that there exist (l → r,Γ, ρ) ∈ R and σ such that l = f~l and t = lσ.

Then, θ = γσ with γ = {~x 7→ ~l}. Furthermore, by (S5), σ ↓ ρσ. Hence, by Lemma 38,

[[U]]η,θ = [[U]]η,γρσ and [[~T]]η,θ = [[~T]]η,γρσ. Now, since rules are well-formed, Γ ` lρ : Uγρ.
Therefore, by inversion, Γ ` liρ : Tiγρ and γρ : Γf ; Γ.
We now de�ne ξ such that [[U]]η,γρσ = [[Uγρ]]ξ,σ and [[~T]]η,γρσ = [[~Tγρ]]ξ,σ. By safeness

(b), for all x ∈ FV2(~TU), xγρ ∈ dom(Γ) and, for all x, x′ ∈ FV2(~TU), xγρ = x′γρ ⇒
x = x′. Let y ∈ dom2(Γ). If there exists x ∈ dom(Γf) (necessarily unique) such that

y = xγρ, we take yξ = xη. Otherwise, we take yξ = >yΓ. We check that ξ |= Γ. If
y 6= xγρ, yξ = >yΓ ∈ RyΓ. If y = xγρ then yξ = xη. Since η |= Γf , xη ∈ RxΓf . Since

γρ : Γf ; Γ, Γ ` y : xΓfγρ. Therefore, yΓ C∗Γ xΓfγρ and, by Lemma 34, yξ = xη ∈
RxΓf = RxΓfγρ = RyΓ. So, ξ |= Γ. Now, by candidate substitution, [[Uγρ]]ξ,σ = [[U]]ξ′,γρσ
with xξ′ = [[xγρ]]ξ,σ. Let x ∈ FV(~TU). By (b), xγρ = y ∈ dom2(Γ) and xξ′ = yξ = xη.

Since ξ′ and η are equal on FV2(~TU), [[U]]ξ′,γρσ = [[U]]η,γρσ = [[Uγρ]]ξ,σ and [[~T]]ξ′,γρσ =
[[~T]]η,γρσ = [[~Tγρ]]ξ,σ.
We now prove that σ is adapted to ξ. Let x ∈ dom(Γ). Since rules are well-formed, there

exists i such that li : Tiγ �∗ρ x : xΓ and dom(ρ) ⊆ FV(l)\dom(Γ). Since liσ ∈ [[Tiγρ]]ξ,σ,
by correctness of accessibility, xσ ∈ [[xΓρ]]ξ,σ. Since dom(ρ) ∩ dom(Γ) = ∅, xΓρ = xΓ

De�nitions by rewriting in the Calculus of Constructions 51

and xσ ∈ [[xΓ]]ξ,σ. Therefore, σ is adapted to ξ and, by correctness of the computability

closure, rσ ∈ [[Uγρ]]ξ,σ = [[U]]η,θ.

Lemma 69 (Computability of well-typed terms) If Γ ` t : T and ξ, θ |= Γ then

tθ ∈ [[T]]ξ,θ.

Proof. After Lemmas 63, 66 and 68.

Theorem 70 (Strong normalization) Every typable term is strongly normalizable.

Proof. Assume that Γ ` t : T . Let xξ = >xΓ for all x ∈ dom(Γ). Since ξ |= Γ and the

identity substitution ι is adapted to ξ, t ∈ S = [[T]]ξ,ι. Now, either T = 2 or Γ ` T : s for
some s. If T = 2 then S = >2 = SN . If Γ ` T : s then S ∈ Rs and S ⊆ SN by (R1).

So, in both cases, t ∈ SN .

7. Future directions of research

We conclude by giving some directions of research for improving our conditions of strong

normalization.

Rewriting modulo. We did not consider rewriting modulo some equational theories

like associativity and commutativity. While this does not create too much di�culties at

the object level (Blanqui 2003, RTA), it is less clear for rewriting at the type level.

Quotient types. We have seen that rewrite rules on constructors allows us to formalize

some quotient types. However, to prove properties by induction on such types requires to

know what the normal forms are (Jouannaud and Kounalis 1986) and may also require

a particular reduction strategy (Courtieu 2001) or conditional rewriting.

Con�uence. Among our strong normalization conditions, we not only require rewriting

to be con�uent but also its combination with β-reduction. This is a strong condition since

we cannot rely on strong normalization for proving con�uence (Nipkow 1991; Blanqui

2000). Except for �rst-order rewriting systems without dependent types (Breazu-Tannen

and Gallier 1994) or left-linear higher-order rewrite systems (Müller 1992; Van Oostrom

1994), few results are known on modularity of con�uence for the combination of higher-

order rewriting and β-reduction. Therefore, it would be interesting to study this problem

more deeply.

Local con�uence. We believe that local con�uence is su�cient for establishing strong

normalization since local con�uence and strong normalization together imply con�uence.

But, then, it seems necessary to prove many properties simultaneously (subject reduc-

tion, strong normalization and con�uence), which seems di�cult.

Simplicity. For non-primitive predicate symbols, we require that their de�ning rules

have no critical pairs between them or with the other rules. These strong conditions

Frédéric Blanqui 52

allow us to de�ne a valid interpretation in a simple way. It is important to be able to

weaken these conditions in order to capture more decision procedures.

Local de�nitions. In our work, we considered only globally de�ned symbols, that is,

symbols whose type is typable in the empty environment. However, in practice, during a

formal proof in a system like Coq (Coq Development Team 2002), it may be very useful

to introduce symbols and rules using some hypothesis. We should study the problems

arising from local de�nitions and how our results can be used to solve them. Local ab-

breviations are studied by Poll and Severi (Poll and Severi 1994) and local de�nitions by

rewriting are considered by Chrzaszcz (Chrz¡szcz 2000).

HORPO. For higher-order de�nitions, we have chosen to extend the General Schema

of Jouannaud and Okada (Jouannaud and Okada 1997). But the Higher-Order Recur-

sive Path Ordering (HORPO) of Jouannaud and Rubio (Jouannaud and Rubio 1999),

which is an extension of RPO to the simply typed λ-calculus, is naturally more power-

ful. Walukiewicz recently extended this ordering to the Calculus of Constructions with

symbols at the object level only (Walukiewicz 2000; Walukiewicz-Chrz¡szcz 2002). The

combination of the two works should allow us to extend RPO to the Calculus of Con-

structions with type-level rewriting too.

η-Reduction. Among our conditions, we require the con�uence of →R ∪ →β . Hence,

our results cannot be directly extended to η-reduction, which is well known to create

important di�culties (Geuvers 1993) since →β ∪ →η is not con�uent on not well-typed

terms.

Non-strictly positive predicates. The ordering used in the General Schema for com-

paring the arguments of function symbols can capture recursive de�nitions on basic and

strictly-positive types, but cannot capture recursive de�nitions on non-strictly positive

types (Matthes 2000). However, Mendler (Mendler 1987) showed that such de�nitions

are strongly normalizing. In (Blanqui 2003, TLCA), we recently showed how to deal with

such de�nitions in the Calculus of Algebraic Constructions.

Acknowledgments: I would like to thank very much Daria Walukiewicz who pointed

to me several errors or imprecisions in previous versions of this work. I also thank Jean-

Pierre Jouannaud, Gilles Dowek, Christine Paulin, Herman Geuvers, Thierry Coquand

and the anonymous referees for their useful comments on previous versions of this work.

References

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional
Programming, 1(4):375�416, 1991.

A. Abel. A third-order representation of the λµ-calculus. In Proc. of the Workshop on Mechanized
Reasoning about Languages with Variable Binding, Electronic Notes in Theoretical Computer

Science, 58(1), 2001.

De�nitions by rewriting in the Calculus of Constructions 53

T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, University

of Edinburgh, United Kingdom, 1993.

L. Augustsson. Compiling pattern matching. In Proc. of the Conf. on Functional Programming
Languages and Computer Architecture, LNCS 201, 1985.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

F. Barbanera. Adding algebraic rewriting to the Calculus of Constructions: strong normalization

preserved. In Proc. of the 2nd Int. Work. on Conditional and Typed Rewriting Systems, LNCS
516, 1990.

F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization and con�uence

in the algebraic-λ-cube. In Proc. of the 9th IEEE Symp. on Logic in Computer Science, 1994.
F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization in the

algebraic-λ-cube. Journal of Functional Programming, 7(6):613�660, 1997.
H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 2nd edition,

1984.

H. Barendregt. Lambda calculi with types. In S. Abramski, D. Gabbay, and T. Maibaum,

editors, Handbook of logic in computer science, volume 2. Oxford University Press, 1992.

B. Barras. Auto-validation d'un système de preuves avec familles inductives. PhD thesis, Uni-

versité Paris VII, France, 1999.

G. Barthe. The relevance of proof-irrelevance. In Proc. of the 25th Int. Colloq. on Automata,
Languages and Programming, LNCS 1443, 1998.

G. Barthe and H. Geuvers. Modular properties of algebraic type systems. In Proc. of the 2nd
Int. Work. on Higher-Order Algebra, Logic and Term Rewriting, LNCS 1074, 1995.

G. Barthe and H. Geuvers. Congruence types. In Proc. of the 9th Int. Work. on Computer
Science Logic, LNCS 1092, 1995.

G. Barthe and P.-A. Melliès. On the subject reduction property for algebraic type systems. In

Proc. of the 10th Int. Work. on Computer Science Logic, LNCS 1258, 1996.

G. Barthe and F. van Raamsdonk. Termination of algebraic type systems: the syntactic ap-

proach. In Proc. of the 6th Int. Conf. on Algebraic and Logic Programming, LNCS 1298,

1997.

P. Bendix and D. Knuth. Computational problems in abstract algebra, chapter Simple word

problems in universal algebra. Pergamon Press, 1970.

F. Blanqui. Termination and con�uence of higher-order rewrite systems. In Proc. of the 11th
Int. Conf. on Rewriting Techniques and Applications, LNCS 1833, 2000.

F. Blanqui. Théorie des Types et Récriture. PhD thesis, Université Paris XI, Orsay, France,

2001. Available in english as "Type Theory and Rewriting".

F. Blanqui. De�nitions by rewriting in the Calculus of Constructions (extended abstract). In

Proc. of the 16th IEEE Symp. on Logic in Computer Science, 2001.
F. Blanqui. Inductive types in the Calculus of Algebraic Constructions. In Proceedings of the
6th International Conference on Typed Lambda Calculi and Applications, Lecture Notes in

Computer Science 2701, 2003.

F. Blanqui. Rewriting modulo in Deduction modulo. In Proceedings of the 14th International
Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science

2706, 2003.

F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In Proc.
of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631, 1999.

F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type Systems. Theoretical Computer
Science, 272:41�68, 2002.

Frédéric Blanqui 54

P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau, C. Ringeissen,

and M. Vittek. ELAN User Manual. INRIA Nancy, France, 2000. http://elan.loria.fr/.

V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. of the 3rd IEEE Symp.
on Logic in Computer Science, 1988.

V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normaliza-

tion. In Proc. of the 16th Int. Colloq. on Automata, Languages and Programming, LNCS 372,

1989.

V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con�uence. Infor-
mation and Computation, 114(1):1�29, 1994.

J. Chrz¡szcz. Modular rewriting in the Calculus of Constructions, 2000. Presented at the Int.

Work. on Types for Proofs and Programs.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada. Maude:
Speci�cation and Programming in Rewriting Logic. Computer Science Laboratory, SRI Inter-

national, United States, 1999. http://maude.csl.sri.com/.

E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME, 2000. http://cime.lri.fr/.

Coq Development Team. The Coq Proof Assistant Reference Manual � Version 7.3. INRIA

Rocquencourt, France, 2002. http://coq.inria.fr/.

T. Coquand. Une théorie des constructions. PhD thesis, Université Paris VII, France, 1985.

T. Coquand. An analysis of Girard's paradox. In Proc. of the 1st IEEE Symp. on Logic in
Computer Science, 1986.

T. Coquand. An algorithm for testing conversion in type theory. In G. Huet and G. Plotkin,

editors, Logical Frameworks, pages 255�279. Cambridge University Press, 1991.

T. Coquand. Pattern matching with dependent types. In Proc. of the Int. Work. on
Types for Proofs and Programs, , 1992. http://www.lfcs.informatics.ed.ac.uk/research/
types-bra/proc/.

T. Coquand and J. Gallier. A proof of strong normalization for the Theory of Constructions

using a Kripke-like interpretation, 1990. Paper presented at the 1st Int. Work. on Logical

Frameworks but not published in the proceedings. Available at ftp://ftp.cis.upenn.edu/

pub/papers/gallier/sntoc.dvi.Z.

T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation,
76(2�3):95�120, 1988.

T. Coquand and C. Paulin-Mohring. Inductively de�ned types. In Proc. of the Int. Conf. on
Computer Logic, LNCS 417, 1988.

P. Courtieu. Normalized types. In Proc. of the 15th Int. Work. on Computer Science Logic,
LNCS 2142, 2001.

N. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its extensions.

In Proc. of the Symp. on Automatic Demonstration, Lecture Notes in Mathematics. Springer,

1968. Reprinted in (Geuvers et al. 1994).
N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17:279�301,
1982.

N. Dershowitz. Hierarchical termination. In Proc. of the 4th Int. Work. on Conditional and
Typed Rewriting Systems, LNCS 968, 1994.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 6. North-Holland, 1990.

D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. In Proc. of the 4th
Int. Conf. on Rewriting Techniques and Applications, LNCS 488, 1991.

G. Dowek. La part du calcul, 1999. Mémoire d'habilitation.

http://elan.loria.fr/
http://maude.csl.sri.com/
http://cime.lri.fr/
http://coq.inria.fr/
http://www.lfcs.informatics.ed.ac.uk/research/types-bra/proc/
http://www.lfcs.informatics.ed.ac.uk/research/types-bra/proc/
ftp://ftp.cis.upenn.edu/pub/papers/gallier/sntoc.dvi.Z
ftp://ftp.cis.upenn.edu/pub/papers/gallier/sntoc.dvi.Z

De�nitions by rewriting in the Calculus of Constructions 55

G. Dowek and B. Werner. Proof normalization modulo. In Proc. of the Int. Work. on Types for
Proofs and Programs, , LNCS 1657, 1998.

G. Dowek and B. Werner. An inconsistent theory modulo de�ned by a con�uent and terminating

rewrite system, 2000.

G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Technical Report 3400,

INRIA Rocquencourt, France, 1998.

G. Dowek, T. Hardin, and C. Kirchner. HOL-lambda-sigma: an intentional �rst-order expression

of higher-order logic. Mathematical Structures in Computer Science, 11:1�25, 2001.
K. Drosten. Termersetzungssysteme. PhD thesis, Universität Passau, Germany, 1989.

S. Eker. Fast matching in combinations of regular equational theories. In Proceedings of the 1st
International Workshop on Rewriting Logic and Applications, Electronic Notes in Theoretical

Computer Science 4, 1996.

M. Fernández. Modèles de calculs multiparadigmes fondés sur la réécriture. PhD thesis, Univer-

sité Paris XI, Orsay, France, 1993.

J. Gallier. On Girard's �Candidats de Réductibilité�. In P.-G. Odifreddi, editor, Logic and
Computer Science. North-Holland, 1990.

H. Geuvers. A short and �exible proof of strong normalization for the Calculus of Constructions.

In Proc. of the Int. Work. on Types for Proofs and Programs, , LNCS 996, 1994.
H. Geuvers. Logics and Type Systems. PhD thesis, Katholiecke Universiteit Nijmegen, The

Netherlands, 1993.

H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the Calculus of

Constructions. Journal of Functional Programming, 1(2):155�189, 1991.
H. Geuvers, R. Nederpelt, and R. de Vrijer, editors. Selected Papers on Automath, volume 133

of Studies in Logic and the Foundations of Mathematics. North-Holland, 1994.
E. Giménez. Un Calcul de Constructions in�nies et son application à la véri�cation de systèmes
communiquants. PhD thesis, ENS Lyon, France, 1996.

E. Giménez. Structural recursive de�nitions in type theory. In Proc. of the 25th Int. Colloq. on
Automata, Languages and Programming, LNCS 1443, 1998.

J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse et son application à

l'élimination des coupures dans l'analyse et la théorie des types. In J. Fenstad, editor, Proc.
of the 2nd Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations
of Mathematics. North-Holland, 1971.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l'arithmetique d'ordre
supérieur. PhD thesis, Université Paris VII, France, 1972.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1988.

B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Proceedings of
the 7th ACM SIGPLAN International Conference on Functional Programming, 2002.

J. Guttag and J. Horning. The algebraic speci�cation of abstract data types. Acta Informatica,
10(1):27�52, 1978.

R. Harper and J. Mitchell. Parametricity and variants of Girard's J operator. Information
Processing Letters, 70:1�5, 1999.

J. Hsiang. Topics in Automated Theorem Proving and Program Generation. PhD thesis, Uni-

versity of Illinois, Urbana-Champaign, United States, 1982.

J.-P. Jouannaud and E. Kounalis. Proof by induction in equational theories without constructors.

In Proc. of the 1st IEEE Symp. on Logic in Computer Science, 1986.
J.-P. Jouannaud and M. Okada. Executable higher-order algebraic speci�cation languages. In

Proc. of the 6th IEEE Symp. on Logic in Computer Science, 1991.

Frédéric Blanqui 56

J.-P. Jouannaud and M. Okada. Abstract Data Type Systems. Theoretical Computer Science,
173(2):349�391, 1997.

J.-P. Jouannaud and A. Rubio. The Higher-Order Recursive Path Ordering. In Proc. of the
14th IEEE Symp. on Logic in Computer Science, 1999.

H. Kirchner and P.-E. Moreau. Promoting rewriting to a programming language: A compiler

for non-deterministic rewrite programs in associative-commutative theories. Journal of Func-
tional Programming, 11(2):207�251, 2001.

J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: intro-

duction and survey. Theoretical Computer Science, 121:279�308, 1993.
E. Kounalis. Completeness in data type speci�cations. In Proc. of the European Conf. on
Computer Algebra, LNCS 204, 1985.

Z. Luo and R. Pollack. LEGO Proof Development System: User's manual. University of Edin-

burgh, United Kingdom, 1992. http://www.dcs.ed.ac.uk/home/lego/.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Napoli, Italy, 1984.
R. Matthes. Lambda calculus: A case for inductive de�nitions, 2000.

N. P. Mendler. Inductive De�nition in Type Theory. PhD thesis, Cornell University, United

States, 1987.

F. Müller. Con�uence of the lambda calculus with left-linear algebraic rewriting. Information
Processing Letters, 41(6):293�299, 1992.

R. Nederpelt. Strong normalization in a typed lambda calculus with lambda structured types.
PhD thesis, Technische Universiteit Eindhoven, The Netherlands, 1973.

T. Nipkow. Higher-order critical pairs. In Proc. of the 6th IEEE Symp. on Logic in Computer
Science, 1991.

M. Okada. Strong normalizability for the combined system of the typed lambda calculus and

an arbitrary convergent term rewrite system. In Proc. of the 1989 Int. Symp. on Symbolic
and Algebraic Computation, , ACM Press.

C. Paulin-Mohring. Extracting Fω's programs from proofs in the Calculus of Constructions. In

Proc. of the 16th ACM Symp. on Principles of Programming Languages, 1989.
G. Peterson and M. Stickel. Complete sets of reductions for some equational theories. Journal
of the ACM, 28(2):233�264, 1981.

D. A. Plaisted. A recursively de�ned ordering for proving termination of term rewriting systems.

Technical report, University of Illinois, Urbana-Champaign, United States, 1978.

E. Poll and P. Severi. Pure Types Systems with de�nitions. In Proc. of the 3rd Int. Symp. on
Logical Foundations of Computer Science, LNCS 813, 1994.

J. Reynolds. Types, abstraction and parametric poymorphism. In Proc. of the 9th IFIP World
Computer Congress, North-Holland, 1983.

M. Rusinowitch. On termination of the direct sum of term-rewriting systems. Information
Processing Letters, 1987.

M. P. A. Sellink. Verifying process algebra proofs in type theory. In Proc. of the Int. Work. on
Semantics of Speci�cation Languages, Workshops in Computing, 1993.

M. Stefanova. Properties of Typing Systems. PhD thesis, Katholiecke Universiteit Nijmegen,

The Netherlands, 1998.

W. W. Tait. Intensional interpretations of functionals of �nite type I. Journal of Symbolic Logic,
32(2):198�212, 1967.

J.-J. Thiel. Stop loosing sleep over incomplete speci�cations. In Proc. of the 11th ACM Symp.
on Principles of Programming Languages, 1984.

Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.

Information Processing Letters, 25(3):141�143, 1987.

http://www.dcs.ed.ac.uk/home/lego/

De�nitions by rewriting in the Calculus of Constructions 57

J. van de Pol. Termination proofs for higher-order rewrite systems. In Proc. of the 1st Int.
Work. on Higher-Order Algebra, Logic and Term Rewriting, LNCS 816, 1993.

J. van de Pol. Termination of higher-order rewrite systems. PhD thesis, Utrecht Universiteit,

Nederlands, 1996.

J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs. In Proc. of the
2nd Int. Conf. on Typed Lambda Calculi and Applications, LNCS 902, 1995.

V. van Oostrom. Con�uence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Uni-

versiteit Amsterdam, The Netherlands, 1994.

D. Walukiewicz. Termination of rewriting in the Calculus of Constructions (extended abstract).

In Proc. of the Workshop on Logical Frameworks and Meta-languages, 2000.
D. Walukiewicz-Chrz¡szcz. Termination of rewriting in the Calculus of Constructions. Journal
of Functional Programming, 2002. To appear.

B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université Paris VII, France,

1994.

H. Zantema. Termination of term rewriting: interpretation and type elimination. Journal of
Symbolic Computation, 17(1):23�50, 1994.

	Introduction
	Advantages of rewriting
	Problems
	Previous works
	Contributions

	The Calculus of Algebraic Constructions
	Terms
	Notations
	Rewriting
	Typing

	Subject reduction
	Subject reduction for rewriting
	Subject reduction for

	Logical consistency
	Conditions of Strong Normalization
	Inductive types and constructors
	General Schema
	Strong normalization conditions

	Correctness of the conditions
	Reducibility candidates
	Interpretation schema
	Interpretation of constant predicate symbols
	Computability ordering
	Interpretation of defined predicate symbols
	Correctness of the conditions

	Future directions of research
	References

