
THE COMPUTABILITY PATH ORDERING

FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

INRIA, Deducteam, France

École Polytechnique, LIX, and Université Paris-Sud, France

Technical University of Catalonia, Spain

Abstract. This paper aims at carrying out termination proofs for simply typed higher-
order calculi automatically by using ordering comparisons. To this end, we introduce the
computability path ordering (CPO), a recursive relation on terms obtained by lifting a
precedence on function symbols. A first version, core CPO, is essentially obtained from
the higher-order recursive path ordering (HORPO) by eliminating type checks from some
recursive calls and by incorporating the treatment of bound variables as in the so-called
computability closure. The well-foundedness proof shows that core CPO captures the
essence of computability arguments à la Tait and Girard, therefore explaining its name.
We further show that no more type check can be eliminated from its recursive calls without
loosing well-foundedness, but one for which we found no counter-example yet. Two exten-
sions of core CPO are then introduced which allow one to consider: the first, higher-order
inductive types; the second, a precedence in which some function symbols are smaller than
application and abstraction.

1. Introduction

This paper addresses the problem of automating termination proofs for typed higher-order
calculi by reducing them to ordering comparisons between lefthand and righthand sides of
rules.

It also addresses another, more fundamental problem of mathematical importance. Con-
sider the set of terms generated by a denumerable set of variables, application, abstraction
and some set of function symbols with arities, our version of the pure λ-calculus. We shall
use a (possibly infinite) set R of pairs of λ-terms called rewrite rules used as our computing
device. Given a term as input, whether our computing device will eventually terminate and
return an answer is in general undecidable, even if R is a singleton set [32]. It may even be
undecidable for specific rewrite systems, such as the well-known β-reduction rule (formally
defined here as the infinite set of its instances). A major question is the following: can
we approximate the set of β-terminating terms by some meaningful subset? An important
partial answer was given by Turing: the set of simply-typed λ-terms, where the word simply

Frédéric Blanqui thanks the Institute of Software of the Chinese Academy of Sciences for hosting him from
June 2012 to August 2013. This research was supported by the Spanish MINECO under grant TIN2013-
45732-C4-3-P.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio
Creative Commons

1

2 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

refers to a specific typing discipline introduced by Church in the λ-calculus [25], is terminat-
ing when a specific strategy is employed [89]. The complete answer, the fact that the very
same set is indeed terminatin under any strategy, is due to Sanchis [81]. Tait and Girard
gave later proofs [84, 45] which have been the basis of many further generalizations, by
considering more rules (η-reduction, recursors, general schema), and more terms character-
ized by more elaborate type disciplines (polymorphic, dependent, inductive type systems).
When considering β-reduction alone, the obtained approximations of the set of terminating
λ-terms are quite satisfactory. But proving the corresponding statement that computations
terminate when given a typed λ-term as input, requires using an extremely powerful tech-
nique called reducibility1, introduced by Tait for simply typed terms, and further developed
by Girard for the richer type disciplines. Given a set of terms and a set of rewrite rules R, a
reducibility predicate is defined by axioms that it should satisfy, mainly closure under term
constructions, closure under rewriting with R, and containment in the set of terminating
terms. Girard exhibited a particular predicate for β-reduction which can be easily adapted
for other sets of rules, but there are sets of rules for which some typable terms originate an
infinite computation. We therefore turn to a new undecidable question: which sets of rules
admit a computability predicate?

The question we answer in this paper is whether this set S (of sets R of rules) admits
some non-trivial decidable subset: our approximation of S is the set of sets R of rules such
that pairs in R are ordered by (some instance of) the computability path ordering CPO.

The work itself takes its roots in early attempts by Breazu-Tannen and Gallier [24] and
independently Okada [77] to consider mixed typed λ-calculi with algebraic rewriting. Both
works used Girard’s computability predicates method to show that the strong normalization
property of algebraic rewriting was preserved in the union. These results grew into a whole
new area, by extending the type discipline on the one hand, and the kind of rules that could
be taken care of on the other hand. The type discipline was extended independently by
Barbanera and Dougherty in order to cover the whole calculus of constructions [3, 38], while
the rule format was extended as described next.

Higher-order rewrite rules satisfying the general schema, a generalization of Gödel’s
primitive recursion rules for higher types, were introduced by Jouannaud and Okada in the
case of a polymorphic type discipline [56, 57]. The latter work was then extended first
by Barbanera and Fernández [5, 4] and finally by Barbanera, Fernández and Geuvers to
cover the whole calculus of constructions [6]. Recursors for basic inductive types, which
constructors admit arguments of a non-functional type only, could be taken care of by the
general schema, but arbitrary strictly positive inductive types could not, prompting for an
extension of the schema, which was reformulated for that purpose by Blanqui, Jouannaud
and Okada [15]. This new formulation was based on the notion of computability closure of a
term f(t⃗), defined as a set of terms containing t⃗ and closed under computability preserving
operations in the sense of Tait and Girard. Membership to the general schema was then
defined for an arbitrary rewrite rule as membership of its righthand side to the computability
closure of its lefthand side. This elegant, flexible and powerful definition of the general
schema was finally extended by Blanqui in a series of papers, until it covered the entire
calculus of inductive constructions including strong elimination rules [10, 11], rewriting
modulo some equational theories and rewriting with higher-order pattern-matching [14].

1In fact, Tait speaks of “convertibility” in [83], “realizability” in [84]; and Girard of “réductibilité” and
”reducibility” in [44, 45, 46]. Following Gödel, “computability” is used by Troelstra in [88], p. 100.

THE COMPUTABILITY PATH ORDERING 3

Introduced by Jouannaud and Rubio, HORPO was the next step, the very first order
on simply typed λ-terms defined by induction on the term structure, as does Dershowitz
recursive path ordering for first-order terms [34]. Comparing two terms with HORPO starts
by comparing their types in a given well-founded ordering on types before to proceed recur-
sively on the structure of the compared terms, in a way which depends on a comparison of
the roots of both terms in a given well-founded order on the algebraic signature called the
precedence [58]. HORPO was extended to the calculus of constructions by Walukiewicz [91],
and to use semantic interpretations of terms instead of a precedence on function symbols by
Borralleras and Rubio [22]. An axiomatic presentation of the rules underlying HORPO can
be found in [47]. A more recent work in the same direction is [35]. A more general version of
HORPO appears in [59], which uses the computability closure to strengthen its expressivity.
Blanqui proved that the first version of HORPO is contained in an order defined as a fixpoint
of the computability closure definition [12]. Indeed, HORPO and the computability closure
share many similar constructs, raising expectations for a simpler and yet more expressive
definition, instead of a pair of mutually inductive definitions for the computability closure
and the ordering itself. On the positive side, the computability closure makes little use of
type comparisons, hence may succeed when HORPO fails for type reason. Unfortunately,
its fixpoint is not a syntax-oriented definition, hence has a more limited practical usage.

Originally formulated in [16], the question of finding a syntax oriented recursive defini-
tion of HORPO that would inherit the advantages of the computability closure paved the
way to CPO, the computability path ordering. The first definition was given in [17], later
improved as CPO in [18]. A major improvement of CPO is that type comparisons are no
more systematic, but occur in very specific cases. This does not only speed up computa-
tions, but also boosts the ordering capabilities in an essential way. Further, bound variables
are handled explicitly by CPO, allowing for arbitrary abstractions in the righthand sides
together with a more uniform definition.

In this paper, we present an in-depth study of an improved version of CPO for a simple
extension of Church’s simple type discipline [25], before we extend it to inductive types along
the lines suggested in [18] following a technique dating back to Mendler [73, 74] and extended
to rewriting by Blanqui [10]. In particular, we first show that many improvements of CPO
cannot be well-founded: type comparisons are necessary when recursive calls deconstruct
the lefthand side, but are not otherwise. While this all came out of the well-foundedness
proof, it indeed shows a strong relationship between the recursive structure of CPO and the
computability predicates method of Tait and Girard that is used to carry out the proof,
which explains the name CPO. It further shows that CPO is indeed a sharp approximation
of the set of sets of rules which admit a computability predicate. We then address the
treatment of inductive types which remained ad hoc so far, thanks to the use of accessibility,
a relationship introduced by Blanqui which generalizes the notion of inductive type [11].
We finally introduce another novelty: small symbols. In all previous definitions, function
symbols were bigger in the precedence than application and abstraction. Such symbols are
now called big, while small symbols behave differently, being possibly smaller than both.
Small symbols were suggested by Li to carry out a generalization of CPO to dependent
types [55].

In the recent years, the success of HORPO has prompted interest in the generalization
to higher-order computations of various other methods used for first-order computations,
most notably Art and Giesl’s dependency pairs [2, 42, 50] yielding for instance [80, 68, 64,
82, 62, 63], and interpretation methods [70, 69, 93, 27] yielding for instance [90, 48, 78, 40].

4 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

The paper is organized as follows. First, we define the sets of types and terms that
we consider (simply typed λ-terms with function symbols of fixed arity), and the class
of orderings on types that can be used in CPO. We then give a first definition of our
ordering (core CPO), and show that it can hardly be improved while keeping the same
recursive structure and well-foundedness. We then show how to prove its well-foundedness
by extending Tait and Girard’s technique of computability predicates. In the following
sections, we consider two extensions of core CPO. In the first one, core CPO is extended
by using accessible subterms which allows to handle strictly inductive types. In the second,
application or abstraction are allowed to be bigger than a function call. Concluding remarks
are given in Section 9.

We recommend surveys [36, 86] for rewriting and [7] for typed λ-calculus.

2. Types and admissible type orderings

CPO is a relation on well typed terms but, instead of allowing the comparison of terms of
the same type only, it allows the type to decrease in some well-founded ordering. However,
not any type ordering is admissible.

In this section, we first recall the definition of (simple) types and some basic functions
on types. Then, we define what are the (strict) orderings on types that can be used in CPO,
study some of their properties and give an example based on a well-founded precedence on
type constants.

Definition 2.1 (Types). Let S be a set of sorts. The set T of types, the arity α(_) and
the order o(_) of a type are inductively defined as follows:

● a sort A ∈ S is a type of arity α(A) = 0 and order o(A) = 0.
● if T and U are types, then T → U is a type of arity α(T → U) = 1 +α(U) and order
o(T → U) = max{1 + o(T), o(U)}.

We use capital letters for types and a different font for sorts (e.g. T and A), and T⃗ for
a (possibly empty) sequence of types T1, . . . , Tn, of length ∣T⃗ ∣ = n.

As usual, → associates to the right so that A→ A→ A and A→ (A→ A) are the same.
Given a relationR, letR+ (resp. R∗) denote the transitive (resp. transitive and reflexive)

closure of R.

Definition 2.2 (Admissible type orderings). Let ⊳l and ⊳r be the relations on types such
that T → U ⊳l T and T → U ⊳r U respectively, and ⊳ be the transitive closure of their
union. A (strict) ordering > on types is admissible if:

● ⊳r ⊆ > (typ-right-subterm)
● ⋗ = (> ∪ ⊳l)+ is well-founded (typ-sn)
● if T → U > V , then U ≥ V or V = T → U ′ with U > U ′ (typ-arrow)

where ≥ is the reflexive closure of >. We say that a type T is compatible (resp. strictly
compatible) with a sort A, written SorttA(T) (resp. Sort⋖A(T)) if B t A (resp. B ⋖ A) for
every sort B occurring in T .

Admissible type orderings originate from [59]. Note that a sort can be bigger than an
arrow type. If A is a sort occurring in T , then T u A. Finally, note that the relation ⋗ is a
simplification ordering [34].

We now give an example of admissible ordering based on a well-founded precedence on
sorts. For a concrete use case, see Example 5.2 below.

THE COMPUTABILITY PATH ORDERING 5

Lemma 2.3. Given a well-founded ordering >S on sorts, let > be the smallest ordering >
on types containing >S and ⊳r and such that, for all U,V,V ′, it holds that V > V ′ implies
U → V > U → V ′. Then, > is admissible.

Proof.
● (typ-sn) ⋗ is included in the RPO extending >S [33], hence is well-founded.
● (typ-right-subterm) By definition.
● (typ-arrow) Let T → U > V . The proof is by induction on the definition of >.

(1) > is >S . Impossible since T → U is not a sort.
(2) > is ⊳r. Then U = V , hence U ≥ V .
(3) V = T →W and U >W . Immediate.
(4) T → U >W > V . By induction hypothesis applied to T → U >W , there are two

cases:
– U ≥W . Then, by transitivity, U > V .
– W = T → U ′ for some U ′ < U . By induction hypothesis on T → U ′ > V ,

there are two cases:
∗ U ′ ≥ V . By transitivity, U > V .
∗ V = T → V ′ for some V ′ < U ′. By transitivity, U > V ′ and we are

done.

In the following, we prove some properties of admissible type orderings:

Lemma 2.4. Let > be an admissible type ordering. If T → U > T ′ → U ′, then U > U ′.

Proof. By (typ-arrow), either T = T ′ and U > U ′ or U ≥ T ′ → U ′, in which case we conclude
by (typ-right-subterm) and transitivity.

Lemma 2.5. Let > be an admissible type ordering. If A > U , then Sort⋖A(U).
Proof. Let B be a sort occurring in U . Then, U u B. Hence, by transitivity, A ⋗ B.

Lemma 2.6. Let > be an admissible type ordering. If T > U and SorttA(T), then SorttA(U).
Proof. Let C be a sort occurring in U . We proceed by induction on T .

● T = B. Since SorttA(T), B t A. By Lemma 2.5, Sort⋖B(U) and C ⋖ B. Therefore,
by transitivity, C t A.

● T = S → T ′. Then, SorttA(S) and SorttA(T ′). By (typ-arrow), there are two cases:
– T ′ ≥ U . Then, by induction hypothesis, SorttA(U).
– U = S → U ′ and T ′ > U ′. By induction hypothesis, SorttA(U ′). Hence

SorttA(U).

3. Terms

In this section, we define the set of terms on which CPO operates. We consider simply-typed
λ-terms [25, 7] with function symbols of fixed arity, that is, a function symbol of arity n
always comes with n arguments. We assume that every variable or function symbol comes
equipped with a fixed type and that α-equivalence replaces a variable by another variable
of the same type.

6 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Definition 3.1 (Terms). Let X be an infinite set of variables, each variable x being equipped
with a type τ(x) ∈ T so that there is an infinite number of variables of each type. Let also
F be a (finite or infinite) set of function symbols disjoint from X , each function symbol f
being equipped with a type τ(f) ∈ T and an arity α(f) ≤ α(τ(f)). The declaration fn ∶ T
indicates the arity n and type T of f. The set L of terms is defined inductively as follows:

● a variable x is a term of type τ(x);
● if fn ∶ T1 → . . . → Tn → U and t1, . . . , tn are terms of type T1, . . . , Tn respectively,
then f(t1, . . . , tn) is a term of type U ;

● if t and u are terms of types U → V and U respectively, then tu is a term of type V ;
● if x is a variable and t is a term of type T , then λxt is a term of type τ(x)→ T .

We denote by τ(t) the type of a term t, and write t ∶ T when τ(t) = T .
We usually write f ∶ T for the declaration f0 ∶ T , omitting the arity n = 0, and f for

f(). Note that a term f(t⃗) may have a functional type, hence can be applied. Application
associates to the left so that tuv is the same as (tu)v.

We use the letters x, y, z, . . . for variables, f,g, . . . for function symbols, and a, b, . . .,
s, t, u, v, . . ., t′, u′, . . . for terms.

We denote by FV(t) the set of free variables in t, by ⊲ the strict subterm relationship
on terms, and by ⊴ its reflexive closure. The height of a term t, written ∣t∣, is the height of
its tree representation: ∣x∣ = 0, ∣f ∣ = 0 if α(f) = 0, ∣f(t⃗)∣ = 1+max{∣ti∣ ∣ 1 ≤ i ≤ α(f)} if α(f) > 0,
∣tu∣ = 1 +max{∣t∣, ∣u∣} and ∣λxt∣ = 1 + ∣t∣.
Definition 3.2 (Substitution).

● A substitution is a function σ ∶ X → L such that dom(σ) = {x ∈ X ∣ σ(x) ≠ x} is finite
and, for every x, τ(σ(x)) = τ(x). As usual, the application of a substitution σ to
a term t, written tσ, is defined so as to avoid free-variable captures when renaming
some bound variables of t by new variables of the same type [31].

● A substitution σ is away from a finite set of variables X if (dom(σ)∪FV(σ))∩X = ∅,
where FV(σ) = ⋃{FV(σ(x)) ∣ x ∈ dom(σ)}.

● A relation > on terms (or sequences of terms) is stable by substitution away from X
if aσ > bσ whenever a > b and σ is away from X. A relation is stable by substitution
if it is stable by substitution away from ∅.

We will use the letters σ, θ, . . . for substitutions, and denote the substitution mapping
the variables x⃗ of its domain to the terms in t⃗ (hence ∣x⃗∣ = ∣t⃗∣) by (t⃗x⃗).

Note that stability by substitution reduces to the standard definition: > is stable by
substitution if aσ > bσ whenever a > b (because any substitution is away from ∅).

The equivalence relation identifying terms up to type-preserving renaming of their bound
variables is called α-equivalence and written =α as usual [31].

Given a relation R, let SNT (R) be the set of terms of type T from which there is no
infinite sequence of R-steps, and SN(R) = ⋃{SNT (R) ∣ T ∈ T }.

4. Relations

One ingredient of CPO is a well-founded quasi-ordering on function symbols and, for each
equivalence class generated by the corresponding equivalence relation, a status stat ∈ {mul}∪
{lex(n) ∣ n > 2} prescribing how to compare the arguments of two equivalent symbols,
by either its multiset [37] or lexicographic extension. We hereafter recall the necessary

THE COMPUTABILITY PATH ORDERING 7

definitions and state some simple but important properties of these operations. The product
extension is introduced here for technical reasons.

Given a relation ≻ on terms, let:
● t⃗ ≻prod u⃗ if ∣t⃗∣ = ∣u⃗∣ and there is j ∈ {1, . . . , ∣u⃗∣} s.t. tj ≻ uj and, for all i ≠ j, ti = ui.
● t⃗ ≻mul u⃗ if {∣t⃗∣} (≻1M)+ {∣u⃗∣} where {∣t⃗∣} is the multiset made of the elements in t⃗ and
M +{∣x∣} ≻1M M +{∣y1, . . . , yn∣} (n ≥ 0) if, for all i, x ≻ yi (+ being the multiset union);

● t⃗ ≻lex(n) u⃗ if there is j ∈ {1, . . . , n} such that tj ≻ uj and, for all i < j, ti = ui.
Note that both ≻mul and ≻lex(n) may compare all the arguments whatever their types

are (from left to right for ≻lex(n)). In [14], the first author describes a more general version
of these statuses that take types into account and allow reordering and filtering of the
arguments [2]. We could also consider statuses combining both lexicographic and multiset
comparisons [39].

In the following, we will omit n in ≻lex(n) and simply write ≻lex.
Here are the properties of statuses we will rely on:

Proposition 4.1. Given a relation ≻ on terms:
● ≻stat preserves termination: if ≻ is well-founded, then ≻stat is well-founded.
● ≻stat contains ≻prod.
● ≻stat preserves stability: if ≻ is stable by substitution away from X, then so is ≻stat.

5. Computability path ordering

In this section, we give the core definition of the computability path ordering (CPO) before
to explore its limits by means of examples and compare it with its father definition, HORPO.

5.1. Definition of core CPO. We assume given:
● an admissible ordering on types >;
● a quasi-ordering ≥F on F , called precedence, whose equivalence ≥F ∩ ≥−1F is written
≃F and strict part ≥F ∖ ≥−1F is written >F and assumed well-founded;

● for every f ∈ F , a status stat(f) ∈ {mul} ∪ {lex(n) ∣ n ≥ 2} such that symbols
equivalent in ≃F have the same status.

Definition 5.1 (Core computability path relation). The core computability path relation
is the relation ≻∅τ (≻τ for short) where:

● the set Fb of big symbols is identical to F ,2
● for any given finite set X of variables, ≻X is inductively defined in Figure 1,
● t ≻Xτ u if t ≻X u and τ(t) ≥ τ(u),
● ⪰X (resp. ⪰Xτ) is the reflexive closure of ≻X (resp. ≻Xτ).

The parameter X serves as a meta-level binder to keep track of the variables that were
previously bound in the righthand side but have become free when destructuring a righthand
side abstraction. We shall say that a variable x is fresh with respect to a comparison u ≻X v
if x /∈ FV(u) ∪X ∪ FV(v).

2In core CPO, all symbols are big. Small symbols will show up in Section 8.

8 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Figure 1: Core CPO
(Fb⊳) f(t⃗) ≻X v if f ∈ Fb and (∃i) ti ⪰τ v
(Fb=) f(t⃗) ≻X g(u⃗) if f ∈ Fb, f ≃F g, (∀i) f(t⃗) ≻X ui and t⃗ (≻τ)stat(f) u⃗
(Fb>) f(t⃗) ≻X g(u⃗) if f ∈ Fb, f >F g and (∀i) f(t⃗) ≻X ui
(Fb@) f(t⃗) ≻X uv if f ∈ Fb, f(t⃗) ≻X u and f(t⃗) ≻X v

(Fbλ) f(t⃗) ≻X λyv if f ∈ Fb, f(t⃗) ≻X∪{z} vzy , τ(y) = τ(z) and z fresh
(FbX) f(t⃗) ≻X y if f ∈ Fb and y ∈X
(@⊳) tu ≻X v if t ⪰X v or u ⪰Xτ v
(@=) tu ≻X t′u′ if t = t′ and u ≻X u′, or tu ≻X@ t′ and tu ≻X@ u′

where tu ≻X@ v if t ≻Xτ v or u ⪰Xτ v or tu ≻Xτ v
(@λ) tu ≻X λyv if tu ≻X vzy and z fresh
(@X) tu ≻X y if y ∈X
(@β) (λxt)u ≻X v if tux ⪰X v

(λ⊳) λxt ≻X v if tzx ⪰Xτ v, τ(x) = τ(z) and z fresh
(λ=) λxt ≻X λyv if tzx ≻X vzy , τ(x) = τ(y) = τ(z) and z fresh
(λ≠) λxt ≻X λyv if λxt ≻X vzy , τ(x) ≠ τ(y), τ(y) = τ(z) and z fresh
(λX) λxt ≻X y if y ∈X
(λη) λx(tx) ≻X v if t ⪰X v and x ∉ FV(t)

Note that the parameter X is carried along computations without change, except in rule
(Fbλ). Hence, any comparison u ≻X v generated from an initial comparison s ≻∅ t implies
X ∩ FV(u) = ∅.

Explicit variable renamings and the associated freshness conditions are used to make
the relation invariant by α-equivalence, the smallest congruence generated by the equation
λxt = λytyx if τ(x) = τ(y) and y ∉ FV(λxt) [31], and by appropriate renaming of the variables
in X, as we shall prove later.

Note the seemingly complex behaviour of application in rule (@=), which allows to
search the lefthand side for appropriate arguments bigger than those of the righthand side.
This enhancement of CPO intends to mimic the corresponding rule of HORPO without
flattening lefthand sides.

Having function symbols equipped with an arity is more general than having uncurried
function symbols (i.e. of null arity) only: any uncurried system can be dealt with as it
is. However, in this case, the (Fb_) rules are very limited: (Fb⊳) is not applicable, (Fb=)
and (Fb>) reduce to the precedence itself. Moreover, applications of the form f t⃗ with
∣t⃗∣ > 0 can only be compared by using the (@_) rules which are more constrained than the
corresponding (Fb_) rules, especially (@λ) and (@=). Considering function symbols with
non-null arities provides more structure to the terms, and this structure can be used for
proving termination [51].

Lemma 6.4 below will show that FV(v) ⊆ FV(u) ∪ X whenever u ≻X v. Hence, an
alternative formulation of rules (@λ) and (λ≠) could therefore be given by replacing the
condition “z fresh” by y ∉ FV(v).

Another, perhaps surprising fact is that the definition of core CPO can be simplified by
replacing ≻X by ≻ everywhere but in (Fbλ). This is true at the start since we are interested

THE COMPUTABILITY PATH ORDERING 9

in ≻τ . This is then an invariant of the computation, for two reasons: X is never increased,
except in (Fbλ); X is reset to the empty set by (Fb⊳) and (Fb=), which are the only rules
which may move from a (Fb) comparison to a (@) or (λ) comparison. We could therefore
simplify our definition by removing the superfluous X subscripts. This will however no more
be true of the extension of core CPO to inductive types, and we prefer to have a uniform
definition over the various sections. Further, the present definition will allow us to study a
relaxation of (@λ) in the next section.

Surprisingly, core CPO is powerful enough already to prove termination of examples
that usually require techniques like the ones developed in Section 7.

Example 5.2. Consider the breadth-first search of labeled trees using continuations [52],
using the sorts L for lists of labels and C for continuations, the abbreviation ¬T = T → L,
and the symbols d ∶ C and c1 ∶ ¬¬C → C for building continuations. Let now e ∶ ¬C defined
by the rule:

e c(x) → x e

Its termination can be checked by core CPO by taking C ≥ L and c >F e. Indeed,
e c(x) ≻τ x e holds by (@⊳) since c(x) ≻τ x e for τ(c(x)) = C ≥ τ(x e) = L and, by (Fb@),
c(x) ≻ x by (Fb⊳), and c(x) ≻ e by (Fb>).

5.2. Transitivity. As HORPO, core CPO is not transitive (both include β-reduction which
is not transitive). Adding transitivity as a rule yields non-termination as shown by the
following counter-example:

Example 5.3. In the premises of (Fb@), replace ≻X by (≻X)+. Then, in the system S1
described at the beginning of next section, we have:

(1) f(a) ≻τ (λxf(x))a since τ(f(a)) = o ≥ τ((λxf(x))a) = o and, by relaxing (Fb@):
(a) f(a) ≻+ λxf(x) since

(i) f(a) ≻ a by (Fb⊳), and
(ii) a ≻ λxf(x) by (Fbλ) since a ≻{x} f(x) by (Fb>) and then (FbX)

(b) f(a) ≻ a by (Fb⊳).
(2) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

Similar counter-examples can be built as well for (Fb>) and (Fb=), since the key point
is that, by using (≻X)+, we can apply case (Fb⊳) without requiring type decreasingness.

Useful implemented heuristics for under-approximating ≻+τ are discussed in [59]. The
introduction of small symbols in Section 8 will reduce the need for such heuristics, although
not completely. On the other hand, we will show soon that core CPO is a well-founded
relation on terms. So is therefore its transitive closure.

5.3. Tightness of core CPO. In this section, we show that almost all possible relaxations
(by replacing ≻τ by ≻, and ≻ by ≻X) of the above definition lead to non-termination by
providing appropriate examples that are also meant to help understanding how CPO works.
To this end, we will consider three different systems, using o ∶ ∗ to declare a sort o:

S1: o ∶ ∗; a ∶ o, f1 ∶ o→ o, g ∶ o→ o→ o; a >F f >F g.
S2: o, o′ ∶ ∗; a ∶o, f1 ∶o→ o, j1∶(o′ → o→ o)→ o; a >F f >F j.
S3: o ∶ ∗; a ∶ o, h2 ∶ o→ o→ o, k2 ∶ (o→ o)→ o→ o; a >F h ≃F k; stat(h)=stat(k)=mul.

10 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

For each rule, we now consider all its natural relaxations.
● (Fb⊳) f(t⃗) ≻X v if (∃i)ti ⪰τ v

– Replace ⪰τ by ⪰Xτ . Then, in S1, we have:
(1) f(a) ≻τ (λxf(x))a since τ(f(a)) = o ≥ τ((λxf(x))a) = o and, by (Fb@):

(a) f(a) ≻ λxf(x) since, by (Fbλ), x ∉ FV(f(a)) and
(i) f(a) ≻{x} f(x) since, by relaxing (Fb⊳):

a ⪰{x}τ f(x) since τ(a) = o ≥ τ(f(x)) = o and, by (Fb>), a ≻{x} x
by (FbX),

(b) f(a) ≻ a by (Fb⊳).
(2) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

– Replace ⪰τ by ⪰. Then, in S1, we have:
(1) f(a) ≻τ (λxf(x))a since τ(f(a)) = o ≥ τ((λxf(x))a) = o and, by (Fb@):

(a) f(a) ≻ λxf(x) since, by relaxing (Fb⊳):
(i) a ⪰ λxf(x) since, by (Fbλ), x ∉ FV(a) and

a ≻{x} f(x) and, by (Fb>), a ≻{x} x by (FbX)
(b) f(a) ≻ a by (Fb⊳).

(2) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

● (Fb=) f(t⃗) ≻X g(u⃗) if f ≃F g, f(t⃗) ≻X u⃗ and t⃗ (≻τ)stat(f) u⃗
– Replace ≻τ by ≻Xτ . Then, in S1, we have:

(1) f(a) ≻τ (λxf(x))a since τ(f(a)) = o ≥ τ((λxf(x))a) = o and, by (Fb@):
(a) f(a) ≻ λxf(x) since, by (Fbλ), x ∉ FV(f(a)) and:

(i) f(a) ≻{x} f(x) since, by relaxing (Fb=):
f(a) ≻{x} x by (FbX),
a ≻{x}τ x since τ(a) = o ≥ τ(x) = o and by (FbX),

(b) f(a) ≻ a by (Fb⊳),
(2) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

– Replace ≻τ by ≻. We found no counter-example for this case, but this is due to
the condition f(t⃗) ≻X u⃗. If we consider (Fb=mul) and (Fb=lex) instead, then
simple counter-examples like the following one in S3 come up.
(1) h(a, a) ≻τ k(λxh(x,x))a since τ(h(a, a)) = o ≥ τ(k(λxh(x,x))a) = o and,

by relaxing (Fb=mul), {a, a} (≻)mul {λxh(x,x), a}, since a ≻ λxh(x,x), by
case (Fbλ) because a ≻{x} x by case (FbX).

(2) k(λxh(x,x))a ≻τ (λxh(x,x))a since τ(k(λxh(x,x))a) = o ≥ τ((λxh(x,x))a) =
o and by case (Fb@), since
(a) k(λxh(x,x))a ≻ λxh(x,x) by (Fb⊳).
(b) k(λxh(x,x))a ≻ a by (Fb⊳).

(3) (λxh(x,x))a ≻τ h(a, a) since τ((λxh(x,x))a) = o ≥ τ(h(a, a)) = o and by
(@β).

Note that this counter-example can be also applied on case (Fb=lex) if we take
stat(h) = stat(k) = lex. Unfortunately it does not work on (Fb=) since we
cannot prove h(a, a) ≻ λxh(x,x).

● (@⊳) tu ≻X v if t ⪰X v or u ⪰Xτ v
– Replace ⪰Xτ by ⪰X . Then, in S1, we have:

(1) f(a) ≻τ gaa since τ(f(a)) = o ≥ τ(gaa) = o and, by (Fb@):

THE COMPUTABILITY PATH ORDERING 11

(a) f(a) ≻ ga since, by (Fb@):
(i) f(a) ≻ g by (Fb>),
(ii) f(a) ≻ a by (Fb⊳),

(b) f(a) ≻ a by 1(a)ii,
(2) gaa ≻τ (λxf(x))a since τ(gaa) = o ≥ τ((λxf(x))a) = o and, by (@=):

(a) ga ≻τ λxf(x) since τ(ga) = o → o ≥ τ(λxf(x)) = o → o and, by
relaxing (@⊳):

(i) a ≻ λxf(x) since, by (Fbλ):
a ≻{x} f(x) since, by (Fb>), a ≻{x} x by (FbX),

(3) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

● (@=) tu ≻X t′u′ if if t = t′ and u ≻X u′, or tu ≻X@ t′ and tu ≻X@ u′,
where tu ≻X@ v if t ≻Xτ v or u ⪰Xτ v or tu ≻Xτ v tu (≻τ)mul t

′u′.
– Replace tu ≻Xτ t′ by tu ≻X t′. Then, taking t ∶ o → o, we get tu ≻τ tu since, by

relaxing (@=), we have tu ≻ t by (@⊳).
– Replace tu ≻Xτ t′ by tu ≻X t′. Then, taking t ∶ (o → o) → o, we get tu ≻τ tu

since, by relaxing (@=), we have tu ≻ u by (@⊳).
– We found no counter-example yet for the other cases.

● (@λ) tu ≻X λyv if tu ≻X vzy , τ(y) = τ(z) and z fresh
– Replace ≻X by ≻X∪{z}. Then, in S1, we have:

(1) f(a) ≻τ gaa since τ(f(a)) = o ≥ τ(gaa) = o and, by (Fb@):
(a) f(a) ≻ ga since, by (Fb@):

(i) f(a) ≻ g by (Fb>),
(ii) f(a) ≻ a by (Fb⊳),

(b) f(a) ≻ a by 1(a)ii,
(2) gaa ≻τ (λxf(x))a since τ(gaa) = o ≥ τ((λxf(x))a) = o and, by (@=):

(a) ga ≻τ λxf(x) since τ(ga) = o → o ≥ τ(λxf(x)) = o → o and, by
relaxing (@λ):

(i) ga ≻{x} f(x) since, by (@⊳):
a ≻{x} f(x) since, by (Fb>), a ≻{x} x by (FbX),

(3) (λxf(x))a ≻τ f(a) since τ((λxf(x))a) = o ≥ τ(f(a)) = o and by (@β).

● (λ⊳) λxt ≻X v if tyx ⪰Xτ v, τ(x) = τ(y) and y fresh
– Replace ⪰Xτ by ⪰X . Then, in S2, we have:

(1) f(a) ≻τ j(λxλya) since τ(f(a)) = o ≥ τ(j(λxλya)) = o and, by (Fb>):
(a) f(a) ≻ λxλya since, by (Fbλ) twice:

(i) f(a) ≻{x,y} a by (Fb⊳),
(2) j(λxλya) ≻τ (λzf(z))a since τ(j(λxλya)) = o ≥ τ((λzf(z))a) = o and, by

(Fb@):
(a) j(λxλya) ≻ λzf(z) since, by (Fb⊳):

(i) λxλya ≻τ λzf(z) since τ(λxλya) = o′ → o → o ≥ τ(λzf(z)) = o → o
and, by relaxed (λ⊳), x ∉ FV(λzf(z)) and:
λya ≻ λzf(z) since, by relaxed (λ⊳), y ∉ FV(λzf(z)) and a ≻
λzf(z) since, by (Fbλ), a ≻{z} f(z) since, by (Fb>), a ≻{z} z by
(FbX),

(b) j(λxλya) ≻ a since, by (Fb⊳):

12 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

(i) λxλya ≻τ a since τ(λxλya) = o′ → o → o ≥ τ(a) = o and, by (λ⊳),
x ∉ FV(a) and:
λya ≻τ a since τ(λya) = o→ o ≥ τ(a) = o and, by (λ⊳)again.

(3) (λzf(z))a ≻τ f(a) since τ((λzfz)a) = o ≥ τ(f(a)) = o and, by (@β).

● (λ≠) λxt ≻X λyv if λxt ≻X vzy , τ(y) ≠ τ(z) and z fresh
– Replace ≻X by ≻X∪{z}. Then, in S2, we have:

(1) f(a) ≻τ j(λxλya) since τ(f(a)) = o ≥ τ(j(λxλya)) = o, by (Fb>):
(a) f(a) ≻ λxλya since, by (Fbλ) twice:

(i) f(a) ≻ a by (Fb⊳),
(2) j(λxλya) ≻τ (λzf(z))a since, by (Fb@):

(a) j(λxλya) ≻ λzf(z) since, by (Fb⊳):
(i) λxλya ≻τ λzf(z) since τ(λxλya) = o′ → o → o ≥ τ(λzf(z)) = o → o

and, by relaxing (λ≠):
λxλya ≻{z} f(z) since, by (λ⊳), λya ≻{z}τ f(z) since τ(λya) = o→
o ≥ τ(f(z)) = o and by (λ⊳) again, a ≻{z}τ f(z) since τ(a) = o ≥
τ(f(z)) = o and, by (Fb>), a ≻{z} z by (FbX),

(b) j(λxλya) ≻ a since, by (Fb⊳):
(i) λxλya ≻τ a since τ(λxλya) = o′ → o→ o ≥ τ(a) = o and, by (λ⊳):

λya ≻τ a since τ(λya) = o→ o ≥ τ(a) = o and, by (λ⊳) again.
(3) (λzf(z))a ≻τ f(a) by (@β).

– Remove the condition τ(x) ≠ τ(y).
Then, in S1, we have τ(λxa) ≥ τ(λxb) and λxa ≻τ λxa by the relaxed (λ≠) since
λxa ≻ a by (λ⊳).

5.4. Comparison with HORPO. In [59], the last two authors define a relation on simply-
typed polymorphic λ-terms, >horpo, and its extension >chorpo using the notion of computabil-
ity closure introduced in [15]. In this section, we explain the differences between CPO and
>horpo. We will compare CPO with >chorpo in Section 7.3.

● Type discipline. >horpo and >chorpo are relations on simply-typed polymorphic λ-
terms, where types may contain type variables that have to be instantiated when
forming function calls, while CPO is a relation on simply-typed monomorphic λ-
terms. In the following, we will therefore compare CPO with the monomorphic
versions of >horpo and >chorpo. Extending CPO to polymorphic types along the lines
of [59] is routine.

● Relation on types. In [59], the relation ≥ on types must be a quasi-ordering
satisfying the following conditions3, where > = ≥ ∖ ≥−1 is its strict part and ≃ = ≥ ∩ ≥−1
its associated equivalence relation:
(1) > is well-founded;
(2) T → U ≃ V implies V = T ′ → U ′ with T ≃ T ′ and U ≃ U ′;
(3) T → U > V implies U ≥ V or V = T ′ → U ′ with T ≃ T ′ and U > U ′;
(4) T ≥ T ′ implies T → U ≥ T ′ → U and U → T ≥ U → T ′.
It turns out that these conditions are inconsistent: if T > U then, by (4), T →

V > U → V and, by (3), V ≥ U → V , which is impossible by (1) [61]. However, the

3Condition (2) is actually stated there as an equivalence, but its converse follows from (4).

THE COMPUTABILITY PATH ORDERING 13

results of [59] are still true since property (4) is only used to build the simplification
ordering ⋗4 used for defining the interpretation of types. Instead, now, we distinguish
between > which must contain ⊳r and satisfy (3)/(typ-arrow) ((2) is always satisfied
when ≤ is an ordering instead of a quasi-ordering), and ⋗ which must contain > ∪ ⊳l
and be well-founded. The monotony property (4) is not required anymore.

In [59], >horpo and >chorpo are proved well-founded not only on well-typed terms
but on a larger set of terms called candidate terms, obtained by identifying equivalent
types. Since, by (2), the arrow structure of equivalent types is invariant, the quotient
of the set of types by ≃ can be obtained by simply identifying sorts equivalent
in ≃, and the quasi-order becomes then an order in the quotient structure. Since
rewriting on candidate terms coincides with rewriting in the quotient, an order on
types suffices, which removes the need for candidate terms and their technicalities.

● Relation on terms. One important difference between HORPO and CPO is that,
in all sub-derivations of >horpo, types must decrease (t >horpo u only if τ(t) ≥ τ(u))
while, in CPO, this is not the case: types must be checked only in case the recursive
call takes a subterm of the lefthand side term (except in (@⊳) for the left argument
of an application). Indeed, CPO is an optimized version of >horpo in this respect.

>horpo is defined by a set of 12 rules and each rule but (9) is implied by a rule of
CPO: (1) is implied by (Fb⊳), (2) by (Fb>), (3) by (Fb=) with stat(f) = mul, (4)
by (Fb=) with stat(f) = lex, (5) by (@⊳), (6) by (λ⊳), (7) by (Fb@), (8) by (Fbλ)
(HORPO requires the strong condition x ∉ FV(v) since it does not manage bound
variables; this is however done by the computability closure in CHORPO), (10) by
(λ=), (11) by (@β) and (12) by (λη).

Rule (9) compares st and u1 . . . un with n ≥ 2 by comparing the multisets {∣s, t∣}
and {∣u1, . . . , un∣}. It is implied by (@=). Indeed, in this case, for all i, either s ⪰τ ui
or t ⪰τ ui. If there is no i such that s = ui then, for all i, s ≻τ ui or t ⪰τ ui, in
which case one can prove that st ≻τ u1 . . . uk by induction on k. If s = u1 then, for
all i ≥ 2, t ≻τ ui, in which case one can also prove that st ≻τ u1 . . . uk by induction
on k. Otherwise, there is i > 1 such that s = ui and t ≻τ u1. But, then, τ(s) ⋗ τ(t) ≥
τ(u1) ⋗ τ(s), which is not possible by (typ-sn).

On the other hand, the CPO rules (λ≠), (@λ), (FbX), (@X), (λX) have no coun-
terpart in HORPO. Therefore, HORPO is strictly included in CPO.

5.5. Implementation. All examples given in the paper have been checked by our imple-
mentation, which is available from the web at http://www.lsi.upc.edu/~albert/cpo.zip.
In this implementation the precedence and the status should be provided by the user. The
implemented prototype includes core CPO as well as the extended versions of the ordering
defined in Section 7 and 8. Several more examples are also included together with the imple-
mentation showing the power of the developed orderings. However, like RPO, CPO cannot
be compared with transformation techniques based on, for instance, the computation of de-
pendency pairs [2, 42], but its power shows that it should be the path ordering of choice for
solving the (monotonic) ordering comparisons which are generated by these transformation
techniques.

4Written ≥→TS in Lemma 3.15 of [59].

14 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Given a precedence and a status for every function symbol, deciding if a term s is smaller
than a term t in core CPO can be made in quadratic time (using a dynamic programming al-
gorithm) if (@β) is not used. The proof is basically the same as for RPO [66]. Our prototype
implementation written in Prolog does not use dynamic programming. Still, some standard
optimizations over the given presentation are made, which mainly affect case (Fb=). Let us
split this case in two new cases, one for multiset status (Fb=mul) and one for lexicographic
status (Fb=lex), and show that even after removing all or part of the condition f(t⃗) ≻X u⃗,
the conjunction of both cases is equivalent to the original one.

(Fb=mul) f(t⃗) ≻X g(u⃗) if f ≃F g, stat(f) = mul and t⃗ (≻τ)mul u⃗
(Fb=lex) f(t⃗) ≻X g(u⃗) if f ≃F g, stat(f) = lex and:

(∃i) ti ≻τ ui ∧ (∀j < i) tj = uj ∧ (∀j > i) f(t⃗) ≻X uj

In case (Fb=mul), t⃗ (≻τ)mul u⃗ implies that, for every uj , there is ti such that ti ⪰τ uj ,
which implies that f(t⃗) ≻X uj by (Fb⊳). Similarly, in case (Fb=lex), there is i such that
ti ≻τ ui, (∀j < i) tj = uj and (∀j > i) f(t⃗) ≻X uj , which implies (∀j) f(t⃗) ≻X uj by (Fb⊳).
Therefore, we have f(t⃗) ≻X u⃗ and hence case (Fb=) can be applied as well.

As said, our implementation assumes that the precedence on function symbols and the
status is given. Generating the precedence and the status automatically is a harder problem,
and closely relates to the decision problem of solving ordering constraints, which is already
NP-complete for RPO [76, 75], but which is nowadays efficiently done in practice by encoding
the problem into SAT [26]. These kind of encodings can be easily adapted to CPO, as done
for HORPO in termination tools like WANDA [63] and THOR [23].

6. Well-foundedness of core CPO

We now move to a technical analysis of the most important properties of core CPO.

6.1. Basic properties of core CPO.

Lemma 6.1. ≻X is well-defined.

Proof. a ≻X b is well-defined by induction on the pair (a, b) with (=α⊳∪→β ∪→η,=α⊳)lex as
well-founded relation, where ⊲ is the subterm relation.

Definition 6.2 (Monotony). We say that ≻τ is monotone if the following properties hold:

(1) if f ∣T⃗ ∣ ∶ T⃗ → U , t⃗ ∶ T⃗ , t⃗′ ∶ T⃗ and t⃗ (≻τ)prod t⃗′, then f(t⃗) ≻τ f(t⃗′);
(2) if t ∶ U → V , t′ ∶ U → V ′, t ≻τ t′, u ∶ U and V ≥ V ′, then tu ≻τ t′u;
(3) if t ∶ U → V , u,u′ ∶ U and u ≻τ u′, then tu ≻τ tu′;
(4) if t ∶ T , t′ ∶ T ′, t ≻τ t′ and τ(x)→ T ≥ τ(x)→ T ′, then λxt ≻τ λxt′.

Lemma 6.3. ≻τ is monotone.

Proof.
(1) Since τ(f(t⃗)) = τ(f(t⃗′)), it suffices to check that f(t⃗) ≻ f(t⃗′). By Lemma 4.1,

t⃗ (≻τ)stat(f) t⃗′. By (Fb⊳), f(t⃗) ≻ t⃗′ since, for each i, ti ⪰τ t′i. We conclude by (Fb=).
(2) Since τ(tu) ≥ τ(t′u), it suffices to check that tu ≻ t′u. This follows by by (@=).
(3) Since τ(tu) = τ(tu′), it suffices to check that tu ≻ tu′. This follows by (@=).
(4) By (λ=).

THE COMPUTABILITY PATH ORDERING 15

Note that Lemma 6.3 holds for any relation satisfying (Fb⊳), (Fb=), (@=) and (λ=).

Lemma 6.4. If a ≻X b, then FV(b) ⊆ FV(a) ∪X.

Proof. By an easy induction on a ≻X b. We detail a selection of cases:
● (Fbλ) By the induction hypothesis, FV(vzy) ⊆ FV(f(t⃗)) ∪X ∪ {y}. Now, FV(λyv) =

FV(vzy) ∖ {z} since z is fresh. The result follows.
● (λ⊳) By the induction hypothesis, FV(v) ⊆ FV(tzx) ∪ X. Therefore, FV(v) ⊆

FV(λxt) ∪X since FV(tzx) ⊆ FV(λxt) ∪ {z} and z ∉ FV(v).
● (λ=) By the induction hypothesis, FV(vzy) ⊆ FV(tzx)∪X. Now, FV(tzx) ⊆ FV(λxt)∪
{z} and, either y ∈ FV(v) and FV(vzy) = FV(λyv) ∪ {z}, or FV(vzy) = FV(λyv).
Therefore, FV(λyv) ⊆ FV(λxt) ∪X since z ∉ FV(λyv).

● (λ≠) By the induction hypothesis, FV(vzy) ⊆ FV(λxt) ∪X. Since z is fresh for λxt,
X and λyv, y ∉ FV(v). Therefore, FV(λyv) = FV(v) − {y} ⊆ FV(λxt) ∪X.

Lemma 6.5. If a ≻X b, a =α a′ and b =α b′, then a′ ≻X b′.

Proof. We prove (i) a ≻X b and a =α a′ implies a′ ≻X b, and (ii) a ≻X b and b =α b′ implies
a ≻X b′, separately by induction on a ≻X b. We only detail some cases:

● (Fbλ) (ii) Assume that λyv =α b′. Then, there are y′ and v′ such that b′ = λy′v′, y ∉
FV(λy′v′) and v =α v′yy′ . Hence, vzy =α v′

y
y′
z

y
=α v′zy′ and, by the induction hypothesis,

f(t⃗) ≻X∪{z} v′zy′ . Now, z ∉ FV(λy′v′) ∪ FV(f(t⃗)) since FV(λy′v′) = FV(λyv) and
z ∉ FV(λyv) ∪ FV(f(t⃗)). Therefore, by (Fbλ), f(t⃗) ≻X λy′v′.

● (λ⊳) (ii) Assume that v =α v′. By the induction hypothesis, tzx ⪰Xτ v′. Now, z is fresh
for λxt, X and v′ since FV(v′) = FV(v) and z is fresh for λxt, X and v. Therefore,
by (λ⊳), λxt ≻X v′.

(i) Assume now that λxt =α a′. Then, there are x′ and t′ such that a′ = λx′t′, x ∉
FV(λx′t′) and t =α t′xx′ . Hence, tzx =α t′

x
x′
z
x =α t′

z
x′ and, by the induction hypothesis,

t′zx′ ⪰Xτ v. Now, z is fresh for λx′t′, X and v since FV(λx′t′) = FV(λxt) and z is
fresh for λxt, X and v. Therefore, by (λ⊳), λx′t′ ≻X v.

● (λ=) (ii) Assume that λyv =α b′. Then, there are y′ and v′ such that b′ = λy′v′, y ∉
FV(λy′v′) and v =α v′yy′ . Hence, vzy =α v′

z
y′
z

y
=α v′zy′ and, by the induction hypothesis,

tzx ≻X v′zy′ . Now, z is fresh for λxt, X and λy′v′ since FV(λy′v′) = FV(λyv) and z
is fresh for λxt, X and λyv. Therefore, by (λ=), λxt ≻X λy′v′.

● (λ≠) (ii) Assume that λyv =α b′. Then, there are y′ and v′ such that b′ = λy′v′,
y′ ∉ FV(λyv) and vy

′

y =α v′. By Lemma 6.4, y ∉ FV(v). Hence, y′ ∉ FV(v′),
vzy =α v′zy′ and, by the induction hypothesis, λxt ≻X v′zy′ . Moreover, z is fresh for
λxt, X and λy′v′. Therefore, by (λ≠), λxt ≻X λy′v′.

Hence, if t ≻X u and V is a finite set of variables, then one can always assume without
lost of generality that the bounding variables of t and u do not belong to V .

Invariance by variable renaming can also be extended to X:

Lemma 6.6. Assume that t ≻X u.
(1) If σ is away from X, then tσ ≻X uσ.
(2) If e ∈X, e′ ∉ FV(λeu) and τ(e) = τ(e′), then t ≻X−{e}∪{e′} ue′e .

16 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Proof. Note that substitution preserves typing (τ(tσ) = τ(t)). Let Xe′
e = X − {e} ∪ {e′}.

Wlog we can assume that e ≠ e′. Hence, e′ ∉ FV(u). We now proceed by induction on the
deduction height of t ≻X u. We only detail some cases:

(1) (Fb=) By induction hypothesis and Lemma 4.1, (∀i) f(t⃗)σ ≻X uiσ and t⃗σ (≻τ)stat(f) u⃗σ.
Therefore, by (Fb=), f(t⃗)σ ≻X g(u⃗)σ.

(Fbλ) Wlog we can assume σ away from {y}. Hence, (λyv)σ = λy(vσ). Let now z′ be a
variable of the same type as z, fresh for f(t⃗)σ, X, λy(vσ) and λzvzy =α λyv, and
such that σ is away from {z′}. By induction hypothesis (2), f(t⃗) >(X∪{z})z

′

z (vzy)z
′

z .
Since z ∉ X, (X ∪ {z})z′z = X ∪ {z′}. Since (z′z) is away from {y} and z ∉ FV(v),
(vzy)z

′

z = vz′y . By induction hypothesis, f(t⃗)σ >X∪{z′} (vz′y)σ. Since σ is away from
{y, z′}, (vz′y)σ = (vσ)z′y . Therefore, by (Fbλ), f(t⃗)σ ≻X λy(vσ).

(λ⊳) Wlog we can assume that σ is away from {x}. Hence, (λxt)σ = λx(tσ). After Lemma
6.4 and since σ is away from X, FV(v) ⊆ FV(λxt). Hence, we can also assume wlog
that dom(σ) ⊆ FV(λxt). Let now z′ be a variable of the same type as z, fresh for
λx(tσ), X, vσ and x, and such that σ is away from {z′}. Let σ′ = σ∪{(z, z′)}. Since
σ′ is away from X, by induction hypothesis, (tzx)σ′ ≻X vσ′. Since dom(σ) ⊆ FV(λxt)
and σ is away from {x, z′}, (tzx)σ′ = (tσ)z

′

x , and since z ∉ FV(v), vσ′ = vσ. Therefore,
by (λ=), λx(tσ) ≻X vσ.

(λ=) Wlog we can assume that σ is away from {x, y}. Hence, (λxt)σ = λx(tσ) and
(λyv)σ = λy(vσ). After Lemma 6.4 and since σ is away from X, FV(λyv) ⊆
FV(λxt). Hence, we can also assume wlog that dom(σ) ⊆ FV(λxt). Let now z′
be a variable of the same type as z, fresh for λx(tσ), X, λy(vσ), x and y, and such
that σ is away from {z′}. Let σ′ = σ∪{(z, z′)}. Since σ′ is away fromX, by induction
hypothesis, (tzx)σ′ ≻X (vzy)σ′. Since dom(s) ⊆ FV(λxt), dom(σ) ⊆ FV(λyv), and
σ is away from {x, y, z′}, (tzx)σ′ = (tσ)z

′

x and (vzy)σ′ = (vσ)z
′

y . Therefore, by (λ=),
(λxt)σ ≻X (λyv)σ.

(λ≠) Wlog we can assume σ away from {x, y}. Hence, (λxt)σ = λx(tσ) and (λyv)σ =
λy(vσ). Let z′ fresh for λxtσ, X and λyvσ. By Lemma 6.4, y ∉ FV(v), hence
vzy = vz

′

y . By induction hypothesis, (λxt)σ ≻X vz
′

y σ. Therefore, by (λ≠), λx(tσ) ≻X
λy(vσ).

(2) (Fbλ) Wlog we can assume (e′e) away from {y}. Hence, (λyv)e′e = λy(ve′e). Let now z′ be a
variable of the same type as z, fresh for f(t⃗), Xe′

e , λy(ve
′

e), λzvzy =α λyv and y. By

induction hypothesis, f(t⃗) ≻(X∪{z})z
′

z (vzy)z
′

z . Since z ∉X, (X∪{z})z′z =X∪{z′}. Since
z ∉ FV(λyv), (vzy)z

′

z = vz′y . By induction hypothesis, f(t⃗) ≻(X∪{z′})e
′

e (vz′y)e
′

e . Since
(e′e) is away from {y, z′}, (X ∪ {z′})e′e = Xe′

e ∪ {z′} and (vz′y)e
′

e = (ve′e)z
′

y . Therefore,

by (Fbλ), f(t⃗) ≻Xe′

e λyve
′

e .
(λ⊳) Let z′ be a variable of the same type as z, fresh for λxt, X, Xe′

e , ve
′

e and x. Since
(z′z) is away from X, by induction hypothesis (1), (tzx)z

′

z ⪰Xτ vz
′

z . Since z′ ≠ x and
z ∉ FV(t), (tzx)z

′

z = tz
′

x . Since z ∉ FV(v), vz′z = v. So, by induction hypothesis,

tz
′

x ⪰X
e′

e
τ ve

′

e . Therefore, by (λ⊳), λxt ≻Xe′

e ve
′

e .
(λ=) Wlog we can assume (e′e) away from {y}. Hence, (λyv)e′e = λy(ve′e). Let now z′ be a

variable of the same type as z, fresh for λxt, X, Xe′
e , λyve

′

e , x and y. Since (z′z) is away

THE COMPUTABILITY PATH ORDERING 17

from X, by induction hypothesis (1), (tzx)z
′

z ≻X (vzy)z
′

z . Since z′ ≠ x and z ∉ FV(t),
(tzx)z

′

z = tz′x . Since z′ ≠ y and z ∉ FV(v), (vzy)z
′

z = vz′y . So, by induction hypothesis,

tz
′

x ≻Xe′

e (vz′y)e
′

e . Since (e
′

e) is away from {y, z′}, (vz′y)e
′

e = (ve′e)z
′

y . Therefore, by (λ=),

λxt ≻Xe′

e λy(ve′e).
(λ≠) Wlog we can assume (e′e) away from {y}. Hence, (λyv)e′e = λy(ve′e). Let z′ fresh for

λxt, Xe′
e and λy(ve′e). By Lemma 6.4, y ∉ FV(v), hence vzy = vz

′

y . By the induction

hypothesis, λxt ≻Xe′

e (vz′y)e
′

e = (ve′e)z
′

y . Therefore, by (λ≠), λxt ≻Xe′

e λy(ve′e).

6.2. Tait and Girard’s computability. We now turn to the proof that ≻τ is well-founded.
This proof is based on the meticulous analysis of the technique of computability predicates of
Tait and Girard for proving the termination of β-reduction in typed λ-calculi [83, 45, 84, 46].
This technique consists in the following three steps:

(1) interpret each type T by a set JT K of so-called computable terms;
(2) prove that, for every type T , JT K satisfies some properties among which termination,

i.e. JT K ⊆ SN(≻τ);
(3) prove that every (well typed) term is computable.
For arrow types, we will use the standard interpretation but, for sorts, we a priori have

some freedom and we will indeed use this freedom to extend CPO to inductive types later
in Section 7.

Definition 6.7 (Computability). A base type interpretation is a map I ∶ S → P(L) such
that, for all sorts A, I(A) is a set of terms of type A. A base type interpretation naturally
extends to types as follows:

● JAKI = I(A)
● JU → V KI = {t ∈ L ∣ t ∶ U → V ∧ (∀u)u ∈ JUKI ⇒ tu ∈ JV KI}

Given a base type interpretation I, we say that:
● a term t ∶ T is I-computable if t ∈ JT KI ;
● a substitution σ is I-computable on a set X of variables if, for all x ∈ X, xσ is
I-computable; it is I-computable if it is I-computable on X ;

● a function symbol f ∣T⃗ ∣ ∶ T⃗ ⇒ U is I-computable if, for all I-computable terms t⃗ ∶ T⃗ ,
f(t⃗) is I-computable.

Let ΣI be the set of pairs (f, t⃗) such that f ∈ F , f(t⃗) is a term and t⃗ are I-computable. Given a
relation on termsR, let (>F ,Rstat)lex be the relation on ΣI such that (f, t⃗) (>F ,Rstat)lex (g, u⃗)
if either f >F g, or f ≃F g and t⃗ Rstat(f) u⃗.

Our first lemma has a straightforward proof:

Lemma 6.8. Let I1 and I2 be two base type interpretations, and T be a type. Then, JT KI1 =
JT KI2 if I1 and I2 agree on every sort occurring in T .

We then consider the following properties:

Definition 6.9 (Sets of neutral terms). A set N is a set of neutral terms if it satisfies the
following properties:

● X ⊆ N (neutral-var)
● for all x, t, u, (λxt)u ∈ N (neutral-beta)

18 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

● if t ∈ N then, for all u, tu ∈ N (neutral-app)
● for all x and t, λxt ∉ N (neutral-not-lam)

Definition 6.10 (Computability properties). Given a base type interpretation I and a set
N of neutral terms, a set S of terms of type T is an I-computability predicate if it satisfies
the following properties:

● S ⊆ SN(≻τ) (comp-sn)
● If t ∈ S, then every ≻τ -reduct of t is I-computable (comp-red)
● t ∈ S if t ∶ T , t ∈ N and every ≻τ -reduct of t is I-computable (comp-neutral)
● λxt ∈ S if T = U → V , λxt ∶ T and, for all u ∈ JUKI , tux is I-computable (comp-lam)

We can then prove that every term is strongly normalizing if the sets JT KI satisfy
some of these properties and function symbols are I-computable, whatever the base type
interpretation I and the set N of neutral terms are:

Theorem 6.11. Given a base type interpretation I and a set N of neutral terms, ≻τ is
well-founded if:

● for every type T , JT KI satisfies (comp-sn), (comp-neutral) and (comp-lam);
● every function symbol f ∈ F is I-computable.

Proof. Because, for every T , JT KI satisfies (comp-sn), it suffices to prove that every term is
I-computable. By (neutral-var), variables belongs to N . Because, for every T , JT KI satisfies
(comp-neutral), variables are computable. Hence, the identity substitution is computable.
We then prove that, for all t ∶ T and computable σ, tσ ∈ JT KI , by induction on t.

● t = x. Then, tσ = xσ is computable since σ is computable.
● t = uv. By induction hypothesis, uσ and vσ are computable. Therefore, tσ =
(uσ)(vσ) is computable.

● t = λxu with x ∶ V . By renaming x, we can assume that σ is away from {x}.
Hence, tσ = λx(uσ). By assumption, JT KI satisfies (comp-lam). Therefore, tσ is
computable if, for all computable v ∶ V , (uσ)vx is computable. Since σ is away from
{x}, (uσ)vx = u(σ ∪ {(x, v)}) which is computable by induction hypothesis.

● t = f(t⃗) with f ∣T⃗ ∣ ∶ T⃗ → U . By induction hypothesis, t⃗σ are computable. Thus,
(f, t⃗σ) ∈ Σ and, by assumption, f(t⃗)σ is computable.

We are therefore left to find a set of neutral terms N and a base type interpretation I so
that type interpretations are computability predicates and function symbols are computable.

First, we are going to study under which conditions the interpretation of an arrow type
U → V , JU → V KI , satisfies the above computability properties, whatever the base type
interpretation I and the set of neutral terms N are.

Second, we will define a set of neutral terms N and a base type interpretation I so that,
for every type T , JT KI satisfies all the computability properties. Finally, we will prove that
function symbols are computable by induction on (>F , (≻τ)stat)lex, which is well-founded
when the following conditions are satisfied:

Lemma 6.12. Given a base type interpretation I and a well-founded relation on I-computable
terms R, (>F ,Rstat)lex is well-founded if, for all f ∣T⃗ ∣ ∶ T⃗ → U , JT⃗ KI ⊆ SN(R).

Proof. If (f, t⃗) ∈ ΣI , then t⃗ ∈ JT⃗ KI . By assumption, JT⃗ KI ⊆ SN(R). Hence, by Lemma 4.1,
t⃗ ∈ SN(Rstat(g)) whatever g is. Assume now that there is an infinite (>F ,Rstat)lex-decreasing

THE COMPUTABILITY PATH ORDERING 19

sequence (fi, t⃗i)i≥0. Then, (fi)i≥0 is an infinite ≥F -decreasing sequence. Since >F is well-
founded by assumption, there must be some j such that, for all i ≥ j, fi ≃F fj . Since symbols
equivalent in ≃F have the same status by assumption, (t⃗i)i≥j is an infinite Rstat(fj)-decreasing
sequence, a contradiction.

6.3. Computability properties of arrow types. In this sub-section, the results hold for
any base type interpretation I and any set of neutral terms N . For the sake of simplicity,
we drop the index I in JT KI and simply write JT K.

Lemma 6.13. JU → V K satisfies (comp-sn) if:
● JUK ≠ ∅, which is the case if JUK satisfies (comp-neutral);
● JV K satisfies (comp-sn).

Proof. Assume that there is an infinite reduction sequence t0 ≻τ t1 ≻τ . . . with t0 ∈ JU → V K
and ti ∶ Ti. By definition of JU → V K, T0 = U → V . By definition of ≻τ , T0 ≥ T1 ≥ . . . By
assumption, JUK ≠ ∅. So, let u ∈ JUK. By definition of JU → V K, we have t0u ∈ JV K. We now
prove that there is an infinite reduction sequence starting from t0u. Since JV K is assumed
to satisfy (comp-sn), this is not possible. Therefore, JU → V K satisfies (comp-sn) too. By
(typ-arrow) there are only two cases:

● For all i, Ti = U → Bi for some Bi. By monotony (Lemma 6.3), t0u ≻τ t1u ≻τ . . .
● There is i such that Ti+1 is a sort or Ti+1 = Ai+1 → Bi+1 with Ai+1 ≠ U . Let k be
the smallest i satisfying this condition. Hence, for all i ≤ k, there is Bi such that
Ti = U → Bi. By monotony (Lemma 6.3), t0u ≻τ . . . tku. By (typ-arrow), we have
Bk ≥ Tk+1. Hence, by (@⊳), tku ≻τ tk+1.

Lemma 6.14. JU → V K satisfies (comp-red) if:
● JUK ≠ ∅, which is the case if JUK satisfies (comp-neutral);
● JV K satisfies (comp-red).

Proof. Let t ∈ JU → V K and t′ ∶ T ′ such that t ≻τ t′. By definition of JU → V K, t ∶ U → V . By
definition of ≻τ , U → V ≥ T ′. By (typ-arrow), there are two cases:

(1) V ≥ T ′. By assumption, JUK ≠ ∅. So, let u ∈ JUK. By definition of JU → V K, tu ∈ JV K.
By (@⊳), we have tu ≻τ t′. Therefore t′ ∈ JT ′K since JV K satisfies (comp-red).

(2) T ′ = U → V ′ and V ≥ V ′. Let u ∈ JUK. By monotony (Lemma 6.3), tu ≻τ t′u. By
definition of JU → V K, tu ∈ JV K. Since JV K satisfies (comp-red), t′u ∈ JV ′K. Therefore,
t′ ∈ JT ′K.

Lemma 6.15. Let t ∶ U → V and u ∶ U . Then, every ≻τ -reduct of tu is computable if:
● every ≻τ -reduct of t is computable;
● u is computable;
● if t = λxv, then vux is computable;
● for all u′ such that u ≻τ u′, tu′ is computable;
● JUK satisfies (comp-red);
● JV K satisfies (comp-red);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V .

Proof. We prove that every w ∶W such that tu ≻τ w is computable, by induction on ∣w∣. By
definition of ≻τ , we have V ≥W .

● (@⊳)

20 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

– t ⪰ w. By (typ-right-subterm), U → V > V . Hence, by transitivity, U → V >W
and t ≻τ w. Therefore, w is computable by assumption.

– u ⪰τ w. Then, w is computable since, by assumption, u is computable and JUK
satisfies (comp-red).

● (@=) w = t′u′ and either:
– t = t′ and u ≻ u′, in which case t′u is computable by assumption since u ≻τ u′;
– or tu ≻@ t′ and tu ≻@ u′. We prove that, for v ∈ {t′, u′}, if tu ≻@ v then v is

computable. There are three cases:
∗ t ≻τ v. Then, v is computable by assumption.
∗ u ⪰τ v. Then, either u = v and v is computable by assumption, or u ≻τ v

and v is computable since u is computable and JUK satisfies (comp-red).
∗ tu ≻τ v. Then, since v ∈ {t′, u′}, v is computable by induction hypothesis.

● (@λ) w = λyv, tu ≻ v and y ∉ FV(v) by Lemma 6.4. Then, there are A and B such
that W = A → B. By (typ-right-subterm), W > B. Hence, by transitivity, V > B
and tu ≻τ v. Thus, by induction hypothesis, v is computable. Since JW K satisfies
(comp-lam), w is computable if, for all computable term a ∶ A, vay is computable.
Since y ∉ FV(v), vay = v. Therefore, w is computable.

● (@X) w ∈ ∅. Impossible.
● (@β) t = λxv and vux ≥∅ w. Since τ((λxv)u) = τ(vux), we have vux ⪰τ w. Thus w is
computable since vux is computable and JV K satisfies (comp-red).

Lemma 6.16. Let t ∶ U → V and u ∶ U . Then, tu is computable if:
● every ≻τ -reduct of t is computable;
● u is computable;
● if t = λxv, then vux is computable;
● either t is neutral or t = λxv;
● JUK satisfies (comp-red) and (comp-sn);
● JV K satisfies (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V .

Proof. We prove that tu is computable by induction on u with ≻τ as well-founded relation
(JUK satisfies (comp-sn) by assumption). So, by induction hypothesis, for all u′ such that
u ≻τ u′, tu′ is computable. Hence, by Lemma 6.15, every ≻τ -reduct of tu is computable.
Now, tu is neutral because, either t is neutral and tu is neutral by (neutral-app), or t = λxv
and tu is neutral by (neutral-beta). Therefore, tu is computable since JV K satisfies (comp-
neutral).

Corollary 6.17. JU → V K satisfies (comp-neutral) if:
● JUK satisfies (comp-red) and (comp-sn);
● JV K satisfies (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V .

Proof. Let t be a neutral term of type U → V such that every ≻τ -reduct of t is computable.
By definition, t ∈ JU → V K if, for all computable u ∶ U , tu is computable. Since t is neutral,
by (neutral-not-lam), t is not of the form λxv. Therefore, by Lemma 6.16, tu is computable
since all the required properties are satisfied.

Lemma 6.18. Let x ∶ U and v ∶ V . Then, λxv is computable if:
● for all computable u ∶ U , vux is computable;

THE COMPUTABILITY PATH ORDERING 21

● JUK satisfies (comp-sn) and (comp-red) and contains a variable, which is the case if
it satisfies (comp-neutral) too;

● JV K satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V .

Proof. By definition, λxv is computable if, for all computable u ∶ U , (λxv)u is computable.
By Lemma 6.16, (λxv)u is computable if every ≻τ -reduct of λxv is computable, the other
conditions being satisfied. Since JUK contains a variable, we can wlog assume that this is
x. So, vxx = v is computable. Since JV K satisfies (comp-sn), v ∈ SN(≻τ). We now prove that
every ≻τ -reduct w ∶ W of λxv is computable, by induction on (v, ∣w∣) with (≻τ ,>N)lex as
well-founded relation. By definition of ≻τ , we have U → V ≥W .

● (λ⊳) v ⪰τ w. Since v is computable and JV K satisfies (comp-red), we have w com-
putable.

● (λ=) w = λxb and v ≻ b. Then, there is B such that W = U → B. Since U → V ≥W ,
by Lemma 2.4, we have V ≥ B. Hence, v ≻τ b. Thus, by induction hypothesis, every
≻τ -reduct of λxb is computable. By Lemma 6.16, to prove that λxb is computable,
it suffices to check that, for all u ∶ U computable, bux is computable. By assumption,
vux is computable. By stability by substitution (Lemma 1), vux ≻τ bux. Therefore, bux
is computable since JV K satisfies (comp-red) by assumption.

● (λ≠) w = λyb, τ(x) ≠ τ(y), λxv ≻ b and y ∉ FV(b) by Lemma 6.4. Then, there are
A and B such that W = A → B. Since U ≠ A, by (typ-arrow), V ≥ W . Since, by
assumption, JW K satisfies (comp-lam), it suffices to prove that, for all computable
a ∶ A, bay is computable. Since y ∉ FV(b), bay = b. By (typ-right-subterm), U → V > V
and W > B. Hence, by transitivity, U → V > B and λxv ≻τ b. Therefore, since
∣w∣ >N ∣b∣, by induction hypothesis, b is computable.

● (λX) w ∈ ∅. Impossible.
● (λη) v = ax, a ⪰ w and x ∉ FV(a). Since τ(λxv) = τ(a), we have a ⪰τ w. Let
u ∶ U computable. We have au = vux computable by assumption. Therefore, a is
computable. By Lemma 6.14, JU → V K satisfies (comp-red) since JUK ≠ ∅ and JV K
satisfies (comp-red). Therefore, w is computable too.

Corollary 6.19. JU → V K satisfies (comp-lam) if:
● JUK satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV K satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V .

In conclusion, we can see that JU → V KI is a computability predicate if so are JUKI and
JV ′KI for all V ′ ≤ V . Therefore, if we can define a base type interpretation I so that, for every
sort A, I(A) is a computability predicate then, for all type T , JT KI will be a computability
predicate.

6.4. Well-foundedness of core CPO. We now define a set of neutral terms N and a base
type interpretation I for proving the well-foundedness of core CPO.

Definition 6.20 (Neutral terms for core CPO). Let N be the smallest set of terms contain-
ing the terms of the form f(t⃗) and closed by (neutral-var), (neutral-beta) and (neutral-app).

One can easily check that N satisfies all the properties of Definition 6.10.

22 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

In contrast with the usual practice, but as in [59], our interpretation of sorts is not the
set of strongly normalizing terms of that sort. To define the base type interpretation I, we
proceed by induction on ⋗ which is well-founded by (typ-sn). So, let A be a sort and assume
that I is defined for all sorts B ⋖ A. Then, let I(A) be the least fixpoint of the monotone
function FA defined as follows:

FA(S) = {t ∈ L ∣ t ∶ A ∧ (∀u)(∀U) t ≻τ u ∧ u ∶ U ⇒ u ∈ JUKI∪{(A,S)}}

We now prove that FA is indeed well-defined and monotone. Then, by Knaster and
Tarski’s fixpoint theorem [85], FA admits a (least) fixpoint.

Lemma 6.21. FA is well-defined.

Proof. The recursive call to JUKI∪{(A,S)} is well-defined because, by definition of ≻τ , we have
A ≥ U . Hence, by Lemma 2.5, SorttA(U).
Lemma 6.22. FA is monotone.

Proof. Let S ⊆ S′, J = I ∪ {(A, S)}, J ′ = I ∪ {(A, S′)} and t ∈ FA(S). Then, (1) t ∶ A and
(2) (∀u)(∀U) t ≻τ u ∧ u ∶ U ⇒ u ∈ JUKJ . Now, we have t ∈ FA(S′) because t satisfies (1)
and (2) with S replaced by S′. Indeed, assume that t ≻τ u and u ∶ U . By (2), u ∈ JUKJ . By
definition of ≻τ , A ≥ U . If A = U , then u ∈ JUKJ ′ since u ∈ JUKJ = S ⊆ S′ = JUKJ ′ . Otherwise,
by Lemma 2.5, Sort⋖A(U). Therefore, by Lemma 6.8, JUKJ = JUKJ ′ and u ∈ JUKJ ′ .

Note that the least fixpoint of FA can be reached by transfinite iteration of FA from ∅
[67, 30], that is, there is an ordinal a, such that I(A) = F a

A(∅) where:
● F 0

A(S) = S
● F a+1

A (S) = FA(F a
A(S))

● F a
A(S) = ⋃b<a F b

A(S) if a is a limit ordinal
We now check that type interpretations are computability predicates.

Lemma 6.23. Given a sort A, JAK satisfies (comp-red), (comp-neutral) and (comp-lam).

Proof. We show each property in turn.
● (comp-red) Let t ∈ JAK and assume that t ≻τ u and u ∶ U . Since JAK = FA(JAK), we
have u ∈ JUK by definition of FA.

● (comp-neutral) Let t ∶ A be a neutral term whose ≻τ -reducts are all computable.
Since JAK = FA(JAK), we have t ∈ JAK by definition of FA.

● (comp-lam) Trivial for typing reasons.

Lemma 6.24. Given a sort A, JAK satisfies (comp-sn) if, for all type U < A, JUK satisfies
(comp-sn).

Proof. As already mentioned, JAK = F a
A(∅) for some ordinal a. Since ∅ satisfies (comp-sn),

it therefore suffices to check that FA preserves termination: if S ⊆ SN(≻τ), then FA(S) ⊆
SN(≻τ). So, let S ⊆ SN(≻τ) and let t ∈ FA(S). By definition of FA, we have t ∶ A and, if
t ≻τ u and u ∶ U , then u ∈ JUKJ where J = I ∪ {(A, S)}. By definition of ≻τ , A ≥ U . If A = U ,
then JUKJ = S and u ∈ SN(≻τ) since S ⊆ SN(≻τ). Otherwise, u ∈ SN(≻τ) since JUK ⊆ SN(≻τ)
by assumption.

THE COMPUTABILITY PATH ORDERING 23

Theorem 6.25. For all type T , JT K is a computability predicates, i.e. satisfies (comp-sn),
(comp-red), (comp-neutral) and (comp-lam).

Proof. We proceed by induction on ⋗ which is well-founded by assumption (typ-sn). If T
is a sort, then we can conclude by Lemma 6.23, Lemma 6.24 and induction hypothesis.
Otherwise, T = U → V . Since T ⊳l U , by induction hypothesis, JUK is a computability
predicate. Let now V ′ be a type such that V ≥ V ′. By (typ-right-subterm) and transitivity,
T > V ′. Hence, by induction hypothesis, JV ′K is a computability predicate. Therefore,
JU → V K satisfies (comp-sn) by Lemma 6.13, (comp-red) by Lemma 6.14, (comp-neutral) by
Corollary 6.17 and (comp-lam) by Corollary 6.19.

Now, we are left to prove that every function symbol is computable.

Lemma 6.26. Let f ∣T⃗ ∣ ∶ T⃗ → U and t⃗ ∈ JT⃗ K. Then, f(t⃗) ∈ JUK.

Proof. By Theorem 6.25, JT⃗ K satisfies (comp-sn). Hence, by Lemma 6.12, (>F , (≻τ)stat)lex
is well-founded. We now prove that, for all (f, t⃗) ∈ Σ, f(t⃗) is computable, by induction on
(>F , (≻τ)stat)lex (1).

First, we check that t = f(t⃗) is computable if all its ≻τ -reducts so are. This follows
from the facts that, by definition of N , t is neutral and, by Theorem 6.25, JUK satisfies
(comp-neutral).

We now prove that, for all finite sets of variables X, for all substitutions σ such that
dom(σ) ∩ FV(t⃗) = ∅ and σ is computable on X, and for all terms w such that f(t⃗) ≻X
w, we have wσ computable, by induction on the size of w (2). Note that t⃗σ = t⃗ since
dom(σ) ∩ FV(t⃗) = ∅.

● (Fb⊳) (∃i) ti ⪰τ w. By stability by substitution of ⪰τ (Lemma 1), we have tiσ ⪰τ wσ.
Therefore, wσ is computable since, by Theorem 6.25, JV K satisfies (comp-red).

● (Fb=) There are g and u⃗ such that w = g(u⃗), f ≃F g, (∀i) f(t⃗) ≻X ui and t⃗ (≻τ)stat(f) u⃗.
Since (∀i) f(t⃗) ≻X ui, by induction hypothesis (2), u⃗σ are computable. If ti ≻τ
uj then, by stability by substitution (Lemma 1), ti = tiσ ≻τ ujσ. Therefore,
t⃗ (≻τ)stat(f) u⃗σ and, by induction hypothesis (1), g(u⃗)σ is computable.

● (Fb>) Since f(t⃗) ≻X u⃗, by induction hypothesis (2), u⃗σ are computable. Hence,
g(u⃗)σ is computable by induction hypothesis (1).

● (Fb@) Since f(t⃗) ≻X u and f(t⃗) ≻X v, by induction hypothesis (2), uσ and vσ are
computable. Therefore, (uv)σ = (uσ)(vσ) is computable.

● (Fbλ) Wlog we can assume that σ is away from {y} and y ∉ FV(f(t⃗)). Hence,
(λyv)σ = λy(vσ). By Theorem 6.25, λy(vσ) is computable if, for all computable
u ∶ τ(y), (vσ)uy is computable. Since σ is away from {y}, (vσ)uy = (vzy)θ where
θ = σ ∪ {(z, u)}. Let Z = X ∪ {z}. Since f(t⃗) ≻Z vzy , dom(θ) ∩ FV(f(t⃗)) = ∅ and θ is
computable on Z, we have vzyθ computable by induction hypothesis (2).

● (FbX) w ∈X. Then, wσ is computable since σ is computable on X.

Theorem 6.27. The relation ≻τ of Definition 5.1 is well-founded.

Proof. After Theorem 6.11, Theorem 6.25 and Lemma 6.26.

We can therefore conclude that ≻+τ is a monotone, stable, well-founded order.
The well-foundedness proof of core CPO is actually similar to that of HORPO, although

the proof here is presented in a quite different style from HORPO’s monolithic proof [59].
This similarity fades away with the two coming extensions, to inductive types and to small

24 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

symbols. The reason why we have split the proof into small pieces is indeed to factor out
its structure and those parts which are common to core CPO and its extensions.

7. Accessibility

In this section, we introduce an extension of the core definition that will allow us to handle
rewrite rules like the ones defining recursors for strictly positive inductive types as used in
the Coq proof assistant [29, 54].

Example 7.1. Consider the inductive type O of “Brouwer ordinals” whose constructors are
zero ∶ O for zero, suc1 ∶ O→ O for successor, and lim1 ∶ (N→ O)→ O for limit, where N is the
inductive type of Peano (unary) natural numbers with constructors 0 ∶ N and s1 ∶ N → N.
Given a type A, the recursor (of arity 4) at type A

recAO ∶ O→ A→ (O→ A→ A)→ ((N→ O)→ (N→ A)→ A)→ A

can be defined by the following rewrite rules:
recAO(zero, u, v,w) → u

recAO(suc(x), u, v,w) → v x (recAO(x,u, v,w))
recAO(lim(y), u, v,w) → wy (λn recAO(y n, u, v,w))

To capture such a relation, we need the following two comparisons to succeed:

recAO(lim(y), u, v,w) ≻ y and lim(y) ≻τ y n.
The second comparison cannot succeed unless we allow non empty sets X of variables in

(Fb=) in order to have lim(y) ≻{n}τ y n, but we have seen in Section 5.3 that this may lead to
non-termination. Instead, we will use a specific ordering: the structural ordering introduced
by Coquand for dealing with such kind of definitions in the calculus of constructions [28].

For the first comparison to succeed, since the type of y is bigger than the type of lim(y),
we must not check types in (Fb⊳), but we have seen in Section 5.3 that this may lead to
non-termination. To solve this problem, we will compare in (Fb⊳) the right-hand side with
possibly deep subterms of the left-hand side.

We cannot take any deep subterm however, as shown by the following example: assuming
the signature c1 ∶ (A → B) → A and f1 ∶ A → (A → B), the deep subterm comparison
f(c(x)) ≻τ x leads to non-termination, since, taking t = λx f(x)x, we have f(c(t)) c(t) ≻τ
t c(t) ≻τ f(c(t)) c(t) by monotony and (@β). There are two cases where deep subterms can
be used: as for the first, deep subterms whose type is a (sufficiently small) sort [59]; as
for the second, Mendler showed that pattern-matching on constructors of a sort A having
an argument whose type has a negative occurrence of A wrt the arrow type constructor
(see Definition 7.2 just after), leads to non-termination, while, on the contrary, β-reduction
combined with recursion combinators for positive inductive types terminates [73, 74].

7.1. Accessible subterms. In this sub-section, we first define the sets of positive and
negative positions of a type, and the notions of accessible and structurally smaller term,
before we prove some properties of these notions.

Definition 7.2 (Positive and negative positions in a type). The sets Pos(T), Pos(A, T),
Pos+(T) and Pos−(T) of positions, positions of A, positive positions and negative positions
in a type T are inductively defined as follows:

● Pos(A) = Pos+(A) = Pos(A,A) = {ε}

THE COMPUTABILITY PATH ORDERING 25

● Pos−(A) = ∅
● Pos(A,B) = ∅ if A ≠ B
● Pos(T → U) = {1p ∣ p ∈ Pos(T)} ∪ {2p ∣ p ∈ Pos(U)}
● Pos(A, T → U) = {1p ∣ p ∈ Pos(A, T)} ∪ {2p ∣ p ∈ Pos(A, U)}
● Pos+(T → U) = {1p ∣ p ∈ Pos−(T)} ∪ {2p ∣ p ∈ Pos+(U)}
● Pos−(T → U) = {1p ∣ p ∈ Pos+(T)} ∪ {2p ∣ p ∈ Pos−(U)}

A sort A occurs only positively (resp. negatively) in T if Pos(A, T) ⊆ Pos+(T) (resp.
Pos(A, T) ⊆ Pos−(T)).

For instance, for T = (A → B) → B with A ≠ B, we have Pos(T) = {ε,1,2,11,12},
Pos+(T) = {11,2}, Pos−(T) = {12}, Pos(A, T) = {11} and Pos(B, T) = {12,2}. Hence, A
occurs only positively in T , but B has both positive and negative occurrences in T .

Definition 7.3 (Accessible arguments). For every fα(f) ∶ T⃗ → A, we assume given a set
Acc(f) of accessible arguments of f such that i ∈ Acc(f) implies SorttA(Ti) and Pos(A, Ti) ⊆
Pos+(Ti).

Note that, if α(f) < ∣T⃗ ∣, the output type of f is functional.
Let us consider Example 7.1 and assume that O > N. Then, O occurs only positively

in the type of the first argument of suc, and we can take Acc(suc) = {1}. Similarly, we can
take Acc(lim) = {1}.

We can now introduce those sorts A which are not bigger than any arrow type and will
be interpreted by SNA(≻τ) later:
Definition 7.4 (Basic sorts). A sort A is basic if, for all type T < A, T is a basic sort and,
for all fα(f) ∶ T⃗ → A and i ∈ Acc(f), Ti = A or Ti is a basic sort.

In particular, are basic all first-order data types like unary natural numbers, lists, trees,
etc. whose constructors do not take a function as argument.

Accessibility blends accessible arguments and subterms of basic sort:

Definition 7.5 (Accessibility). A term u is said to be accessible in a term t if:
● u is a subterm of basic sort of t such that FV(u) ⊆ FV(t), written t ⊳sb u, or
● there are fα(f) ∶ T⃗ → A, t⃗ ∶ T⃗ and i ∈ Acc(f) such that t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣
and ti ⊵a u, written t ⊳a u,

where ⊵sb and ⊵a are the reflexive closures of ⊳sb and ⊳a respectively.

Coming back to Example 7.1, we have x accessible in suc(x) since suc(x) ⊳a x, and y
accessible in lim(y) since lim(y) ⊳a y.
Lemma 7.6. If t ⊳a u ∶ U , then there are two sorts A and B such that t ∶ A, B t A, SorttB(U)
and Pos(B, U) ⊆ Pos+(U).

Proof. By induction on ⊳a, which is clearly well-founded. Assume that there are fα(f) ∶ T⃗ →
A, t⃗ ∶ T⃗ and i ∈ Acc(f) such that t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ and ti ⊵a u. By definition
of Acc, SorttA(Ti) and Pos(A, Ti) ⊆ Pos+(Ti). If ti = u then U = Ti and we are done with
B = A. Assume now that ti ⊳a u. Then, by induction hypothesis, there are two sorts B and
C such that ti ∶ B, C t B, SorttC(U) and Pos(C, U) ⊆ Pos+(U). Since SorttA(Ti) and Ti = B,
we have B t A. By transitivity, we get C t A.

26 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Corollary 7.7. If t ∶ A, t ⊳a u ∶ U and A occurs in U , then SorttA(U) and Pos(A, U) ⊆
Pos+(U).
Proof. By Lemma 7.6, there is a sort B t A such that SorttB(U) and Pos(B, U) ⊆ Pos+(U).
Since A occurs in U , A t B. Therefore, B = A and we are done.

Definition 7.8 ([28]). Given a finite set X of variables, we say that u is structurally smaller
than t wrt X, written t ⊳X@ u, if there are A, v and x⃗ ∶ U⃗ such that t ∶ A, u ∶ A, u = vx⃗, t ⊳a v,
x⃗ ∈X and Pos(A, U⃗) = ∅.

One can easily check:

Lemma 7.9. ⊳sb and ⊳a (resp. ⊳X@) are stable by substitution (resp. away from X).

7.2. CPO with accessible subterms.

Definition 7.10 (CPO with accessible subterms). The relation ≻X is extended by replacing
the rules (Fb⊳) and (Fb=) of Figure 1 by the ones of Figure 2.

Figure 2: New CPO rules with accessible subterms
(Fb⊳) f(t⃗) ≻X v if f ∈ Fb and t⃗ ⊵sb⊵a⪰τ v
(Fb=) f(t⃗) ≻X g(u⃗) if f ∈ Fb, f ≃F g, f(t⃗) ≻X u⃗ and t⃗ (≻τ ∪ ⊳X@⪰τ)stat(f) u⃗

The rules of Example 7.1 are now easily oriented by CPO. Take for instance the third
rule. It is included in CPO since, by (Fb@):

● l = recAO(lim(y), u, v,w) ≻ wx by (Fb@)since:
– l > w by (Fb⊳),
– l > y by (Fb⊳) since lim(y) ⊳a y,

● l ≻ λn recAO(y n, u, v,w) by (Fbλ) since l ≻{n} recAO(y n, u, v,w) because, by (Fb=):
– l ≻{n} y n since by (Fb@):

∗ l > y as already seen,
∗ l > n by (FbX),

– l > u, v,w by (Fb⊳),
– lim(y) ⊳{n}@ y n.

Following [12], we could strengthen CPO further by defining ⊳X@ and ≻X simultaneously,
by replacing in (Fb=), ⊳X@ by ⊳f(t⃗),X@ and, in the definition of ⊳X@ , x⃗ ∈X by f(t⃗) ≻X x⃗.

7.3. Comparison with CHORPO. CHORPO is a variant of HORPO which was also
aiming at ordering recursors of inductive types like Brouwer’s ordinals. In rules (1), (3), (4)
and (7) of the 12 rules of HORPO as recalled in Section 5.4, one has to show recursively that
every direct subterm of the left-hand side f(t⃗) is bigger than (or equal to) the right-hand
side. In CHORPO, one can also use in addition to the direct subterms, any term of the
computability closure CC(f(t⃗),∅) of the left-hand side, a set inductively defined by 6 rules
(CC1) to (CC6) that, for most of them, correspond to CPO rules as follows.

CC(f(t⃗),X) must contain {t⃗}, which corresponds to (Fb⊳), and X, which corresponds
to (FbX); (CC1) says that CC(f(t⃗),∅) contains any term u of minimal type such that t⃗ ⊳s u,

THE COMPUTABILITY PATH ORDERING 27

where t ⊳s u if t ⊳ u and FV(u) ⊆ FV(t), which corresponds to (Fb⊳), (@⊳) and (λ⊳); (CC2)
corresponds to (Fb>); (CC3) corresponds to (Fb=) with ≻τ replaced by ≻τ ∪ ⊳sτ ; (CC4)
corresponds to (Fb@) and (CC5) to (Fbλ).

On the other hand, (CC6) says that CC(f(t⃗),∅) is closed by >horpo. Capturing such
a rule in CPO requires to consider the transitive closure of ≻τ in (Fb=) which would most
presumably turn CPO into an undecidable relation, as it is probably already the case of
CHORPO for the same reason.

In conclusion, while CHORPO and CPO look incomparable, the restriction of CHORPO
to (CC1), (CC2), (CC3), (CC4), (CC5) is included in CPO. In fact, CPO can be seen as
a decidable reformulation of CHORPO integrating in a simple, uniform and more powerful
way both HORPO and the notion of computability closure. Note finally that HORPO and
the computability closure are themselves already related, as shown in [12]. More precisely,
the first version of HORPO [58] is included in the fixpoint of the monotone function mapping
> to the relation >∅CC such that t >XCC u if u ∈ CC(t,X), RPO being equal to this fixpoint
when restricted to first-order terms.

7.4. Computability with accessible subterms.

Lemma 7.11 (Basic properties).
● ≻X is well-defined.
● ≻τ is monotone.
● If a ≻X b, then FV(b) ⊆ FV(a) ∪X.
● ≻X is stable by α-equivalence.
● ≻X is stable by substitution away from X.
● If e, e′ ∈ X , τ(e) = τ(e′), t ≻X u and e′ ∉ FV(λeu), then t ≻X−{e}∪{e′} ue′e .

Proof. As for the core definition using Lemma 7.9 and the fact that, if a ⊳a b, then FV(b) ⊆
FV(a).

In order to extend the well-founded proof of core CPO to accessible subterms, we need
to define a set of neutral terms and a base type interpretation so that accessible arguments
of a computable term f(t⃗) are computable. Hence, the following definitions:

Definition 7.12 (Neutral terms for CPO with accessible subterms). Let N be the smallest
set of terms containing the terms of the form f(t⃗) with Acc(f) = ∅, and closed by (neutral-
var), (neutral-beta) and (neutral-app).

One can easily check that N satisfies all the properties of Definition 6.10. Note that,
now, a term is neutral if and only if it is of the form x v⃗, (λxa) b v⃗, or f(t⃗) v⃗ with Acc(f) = ∅.

To define the base type interpretation I, we proceed as for core CPO by well-founded
induction on ⋗. So, let A be a sort and assume that I is defined for all sorts B ⋖ A. Then,
let I(A) be the least fixpoint of the monotone function FA defined as follows:

FA(S) = {t ∈ L ∣ t ∶ A ∧ (∀u)(∀U) t ≻τ u ∧ u ∶ U ⇒ u ∈ JUKI∪{(A,S)}
∧ (∀f)(∀T⃗)(∀t⃗)(∀i) fα(f) ∶ T⃗ → A ∧ t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ ∧ i ∈ Acc(f)

⇒ ti ∈ JTiKI∪{(A,S)}}

28 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Note that, by this definition, a term f(t1, . . . , tα(f))tα(f)+1 . . . tn ∶ A is computable if all
its ≻τ -reducts and all its accessible arguments ti with i ∈ Acc(f) are computable. This makes
the terms of this form behave like neutral terms when t⃗ are computable.

We now prove that FA is indeed well-defined and monotone.

Lemma 7.13. FA is well-defined.

Proof. The calls to JUKI∪{(A,S)} and JTiKI∪{(A,S)} with i ∈ Acc(f) are well-defined because
every sort occurring in U or Ti is t to A. Indeed, by definition of ≻τ , we have A ≥ U . Hence,
by Lemma 2.5, SorttA(U). As for Ti, it follows by definition of Acc(f).
Lemma 7.14. Let T be a type such that SorttA(T). Then, the function S ↦ JT KI∪{(A,S)} is
monotone (resp. anti-monotone) wrt set inclusion if Pos(A, T) ⊆ Pos+(T) (resp. Pos(A, T) ⊆
Pos−(T)).
Proof. Let S ⊆ S′, J = I ∪ {(A, S)} and J ′ = I ∪ {(A, S′)}. We proceed by induction on T .

● T = A. Then, JT KJ = S ⊆ S′ = JT KJ ′ .
● T = B ⋖ A. Then, JT KJ = I(B) = JT KJ ′ .
● T = U → V and Pos(A, T) ⊆ Pos+(T). Let t ∈ JT KJ . By definition of JT K, t ∈ JT KJ ′
if, for all u ∈ JUKJ ′ , tu ∈ JV KJ ′ . By definition, Pos(A, T) = {1p ∣ p ∈ Pos(A, U)} ∪
{2p ∣ p ∈ Pos(A, V)} and Pos+(T) = {1p ∣ p ∈ Pos−(U)} ∪ {2p ∣ p ∈ Pos+(V)}.
Hence, Pos(A, U) ⊆ Pos−(U) and Pos(A, V) ⊆ Pos+(V). Therefore, by induction
hypothesis, JUKJ ′ ⊆ JUKJ and JV KJ ⊆ JV KJ ′ . So, u ∈ JUKJ and, since t ∈ JT KJ , we
have tu ∈ JV KJ ⊆ JV KJ ′ .

● T = U → V and Pos(A, T) ⊆ Pos−(T). Let t ∈ JT KJ ′ . By definition of JT K, t ∈ JT KJ
if, for all u ∈ JUKJ , tu ∈ JV KJ . By definition, Pos(A, T) = {1p ∣ p ∈ Pos(A, U)} ∪
{2p ∣ p ∈ Pos(A, V)} and Pos−(T) = {1p ∣ p ∈ Pos+(U)} ∪ {2p ∣ p ∈ Pos−(V)}.
Hence, Pos(A, U) ⊆ Pos+(U) and Pos(A, V) ⊆ Pos−(V). Therefore, by induction
hypothesis, JUKJ ⊆ JUKJ ′ and JV KJ ′ ⊆ JV KJ . So, u ∈ JUKJ ′ and, since t ∈ JT KJ ′ , we
have tu ∈ JV KJ ′ ⊆ JV KJ .

Lemma 7.15. FA is monotone.

Proof. Let S ⊆ S′, J = I ∪ {(A, S)}, J ′ = I ∪ {(A, S′)} and t ∈ FA(S). Then, (1) t ∶ A,
(2) (∀u)(∀U) t ≻τ u ∧ u ∶ U ⇒ u ∈ JUKJ , and (3) (∀f)(∀T⃗)(∀t⃗)(∀i) fα(f) ∶ T⃗ → A ∧ t =
f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ ∧ i ∈ Acc(f)⇒ ti ∈ JTiKJ . We have t ∈ FA(S′) because t satisfies
(1), (2) and (3) with S replaced by S′:

(1) t ∶ A by (1).
(2) Assume that t ≻τ u and u ∶ U . By (2), u ∈ JUKJ . By definition of ≻τ , A ≥ U . If

A = U , then u ∈ JUKJ ′ since u ∈ JUKJ = S ⊆ S′ = JUKJ ′ . Otherwise, by Lemma 2.5,
Sort⋖A(U). Therefore, by Lemma 6.8, JUKJ = JUKJ ′ and u ∈ JUKJ ′ .

(3) Assume that fα(f) ∶ T⃗ → A, t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ and i ∈ Acc(f). By
definition of Acc, SorttA(Ti), Pos(A, Ti) ⊆ Pos+(Ti) and, by Lemma 7.14, JTiKJ ⊆
JTiKJ ′ . Therefore, ti ∈ JTiKJ ′ since ti ∈ JTiKJ by (3).

7.5. Well-foundedness of the structural term ordering.

Lemma 7.16. The function a↦ F a
A(∅) is monotone.

Proof. Let Ja = F a
A(∅). We prove by induction on b that, for all a < b, Ja ⊆ Jb.

THE COMPUTABILITY PATH ORDERING 29

● b = c + 1. Then, Jb = FA(J c). If a = c, then Ja ⊆ Jb by definition of FA. Otherwise,
a < c and, by induction hypothesis, Ja ⊆ J c. By Lemma 7.15, Ja+1 ⊆ J c+1. Since
Ja ⊆ Ja+1 by definition of FA, we have Ja ⊆ Jb.

● b is a limit ordinal. Then, Ja ⊆ Jb by definition of Jb.

The functions F a
A provide us with a well-founded relation that is the basis of the well-

foundedness of the structural term ordering when it is instantiated by computable terms:

Definition 7.17 (Rank ordering). Let the rank of a term t ∈ JAK, rkA(t), be the smallest
ordinal a such that t ∈ F a

A(∅). Then, let t ⊐ u if there is a sort A such that t ∈ JAK, u ∈ JAK
and rkA(t) > rkA(u).

We now prove that ≻τ is included in ⊐ and that their union is strongly normalizing on
computable terms.

Lemma 7.18. If t ∈ JAK, u ∈ JAK and t ≻τ u, then t ⊐ u.
Proof. By definition, we have t ∈ F a

A(∅) where a = rkA(t). We can neither have a = 0 nor
a be a limit ordinal. So, there is b such that a = b + 1. Hence, F a

A(∅) = FA(F b
A(∅)) and

u ∈ F b
A(∅) by definition of FA. Therefore, t ⊐ u.

Lemma 7.19. JT K ⊆ SN(≻τ ∪ ⊐) if, for all T ′ ≤ T , JT ′K satisfies (comp-sn).

Proof. Assume that there is an infinite (≻τ ∪ ⊐)-decreasing sequence (ti)i≥0 such that t0 ∈ JT K
and ti ∶ Ti. Then, (Ti)i≥0 is an infinite ≥-decreasing sequence. Since > is well-founded by
(typ-sn), there must be some j such that, for all i ≥ j, Ti = Tj . If Tj is a sort then, by
Lemma 7.18, (ti)i≥j is an infinite ⊐-decreasing sequence, which is not possible since ⊐ is
well-founded. If Tj is not a sort, then (ti)i≥j is an infinite ≻τ -decreasing sequence since ⊐
only compares terms of base type. But this is not possible since T ≥ Tj and, by assumption,
JTjK satisfies (comp-sn).

We now show that ⊳a preserves computability, and that the structural term ordering
⊳X@ is stable by computable substitutions of domain X.

Lemma 7.20. If t is computable and t ⊵a u, then u is computable.

Proof. By induction on the definition of ⊵a. If t = u, this is immediate. Otherwise, there are
fα(f) ∶ T⃗ → A, t⃗ ∶ T⃗ and i ∈ Acc(f) such that t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ and ti ⊵a u. Since
t is computable, by definition of JAK, ti is computable. Therefore, by induction hypothesis,
u is computable.

Lemma 7.21. If t ∶ A is computable, t ⊳a u ∶ U and A occurs in U , then there is b such that
rkA(t) = b + 1 and u ∈ JUKJ , where J(A) = F b

A(∅) and J(B) = I(B) if B ≠ A.

Proof. First note that, by Corollary 7.7, SorttA(U) and Pos(A, U) ⊆ Pos+(U). We now
proceed by induction on the definition of ⊳a. Assume that there are fα(f) ∶ T⃗ → A, t⃗ ∶ T⃗ and
i ∈ Acc(f) such that t = f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ and ti ⊵a u. By definition, rkA(t) can
be neither 0 nor a limit ordinal. Therefore, there must be b such that rkA(t) = b + 1 and
ti ∈ JTiKJ . If ti = u, then we are done. Assume now that ti ⊳a u. Then, there is B such
that ti ∶ B. By definition of Acc, B t A. By Corollary 7.7, SorttB. Since A occurs in U ,
we have A t B and thus B = A because ⋗ is well-founded by (typ-sn). Hence, by induction
hypothesis, there is c such that rkA(ti) = c + 1 and u ∈ JUKK , where K(A) = F c

A(∅) and
K(B) = I(A) if B ≠ A. Therefore, u ∈ JUKJ by Lemma 7.14 since c ≤ b, SorttA(U) and
Pos(A, U) ⊆ Pos+(U).

30 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Lemma 7.22. If t ⊳X@ u, σ is computable on X and tσ is computable, then uσ is computable
and tσ ⊐ uσ.
Proof. Since t ⊳X@ u, there are A, v and x⃗ ∶ W⃗ such that t ∶ A, u ∶ A, u = vx⃗, t ⊳a v, x⃗ ∈X and
Pos(A, W⃗) = ∅. Therefore, uσ = (vσ)(x⃗σ) and, since ⊳a is stable by substitution, tσ ⊳a vσ.
By Lemma 7.21, there is b such that rkA(tσ) = b+1 and vσ ∈ JW⃗ → AKJ , where J(A) = F b

A(∅)
and J(B) = I(A) if B ≠ A. Since σ is computable on X, we have x⃗σ computable. Since
Pos(A, W⃗) = ∅, by Lemma 6.8, we have x⃗σ ∈ JW⃗ KJ . Therefore, uσ ∈ JAKJ and tσ ⊐ uσ.

7.6. Well-foundedness of CPO with accessible subterms. We now check that type
interpretations are computability predicates, and that function symbols are computable.

One can easily check that all the lemmas of Section 6.3 are still valid, as well as the
lemmas 6.23 and 6.24 (since they do not depend on (Fb_) rules). Therefore, following the
proof of Theorem 6.25, we get:

Theorem 7.23. For all type T , JT K is a computability predicate, i.e. satisfies (comp-sn),
(comp-red), (comp-neutral) and (comp-lam).

Lemma 7.24. If A is a basic sort, then JAK = SNA(≻τ).
Proof. By Lemma 6.24, it suffices to prove that, for all t ∈ SNA(≻τ), we have t ∈ JAK. By
(typ-sn), ⋗ is well-founded. By Lemma 7.11, ≻τ is monotone and thus ≻τ ∪ ⊳ is well-founded
on SN(≻τ). We can therefore proceed by induction on (A, t) with (⋗,≻τ ∪⊳) as well-founded
relation.

We first prove that every ≻τ -reduct u of t is computable. Since t ∈ SNA(≻τ), we have
u ∈ SNU(≻τ). By definition of ≻τ , A ≥ U . Therefore, U is a basic sort and, by induction
hypothesis, u ∈ JUK since A ⋗ U or else A = U and t ≻τ u.

Hence, if t is neutral, then t ∈ JAK since JAK satisfies (comp-neutral). Otherwise, t =
f(t1, . . . , tα(f))tα(f)+1 . . . t∣T⃗ ∣ with fα(f) ∶ T⃗ → A and Acc(f) ≠ ∅. Let i ∈ Acc(f). Then,
SorttA(Ti). Since A is basic, Ti = A or Ti is a basic sort. In both cases, Ti t A and Ti is a
basic sort. Therefore, ti ∈ JTiK since ti ∈ SNTi(≻τ) and A ⋗ Ti or else A = Ti and t ⊳ ti.

Lemma 7.25. Let f ∣T⃗ ∣ ∶ T⃗ → U and t⃗ ∈ JT⃗ K. Then, f(t⃗) is computable.

Proof. There are U⃗ and A such that U = U⃗ → A. By definition, f(t⃗) is computable if, for
every u⃗ ∈ JU⃗K, f(t⃗)u⃗ is computable. By Theorem 7.23, JT⃗ K and JU⃗K satisfy (comp-sn) and,
by Lemma 7.19, JT⃗ K ⊆ SN(≻τ ∪ ⊐). Therefore, by Lemma 6.12, (>F , (≻τ ∪ ⊐)stat)lex is well-
founded. We can therefore prove that, for all ((f, t⃗), u⃗) such that f(t⃗)u⃗ is of base type, f(t⃗)u⃗
is computable, by induction on ((>F , (≻τ ∪ ⊐)stat)lex, (≻τ)lex)lex (0).

Since f(t⃗)u⃗ is of base type and all its accessible arguments are computable by assump-
tion, it suffices to prove that all its ≻τ -reducts are computable. To this end, we prove that,
for all k ≤ n = ∣u⃗∣, every ≻τ -reduct of f(t⃗)u1 . . . uk is computable, by induction on k (1).

● k = 0. The proof is the same as for Lemma 6.26 except for the new cases:
– (Fb⊳) There are i, u ∶ U and v ∶ V such that ti ⊵sb u ⊵a v ⪰τ w. By stability

by substitution of ⊵sb, ⊵a and ⪰τ (Lemma 7.9 and 7.11), we have ti = tiσ ⊵sb
uσ ⊵a vσ ⪰τ wσ. Since t⃗ are computable and JT⃗ K satisfies (comp-sn), we have
t⃗ ∈ SN(≻τ). Since ≻τ is monotone (Lemma 7.11), we have uσ ∈ SN(≻τ). Hence,
by Lemma 7.24, uσ is computable and, by Lemma 7.20, vσ is computable.
Therefore, wσ is computable since, by Theorem 7.23, JV K satisfies (comp-red).

THE COMPUTABILITY PATH ORDERING 31

– (Fb=) There are g and u⃗ such that w = g(u⃗), f ≃F g, t⃗ (≻τ ∪ ⊳X@⪰τ)stat(f) u⃗ and
f(t⃗) ≻X u⃗. Since f(t⃗) ≻X u⃗, by induction hypothesis (2), u⃗σ are computable.
If ti ≻τ uj then, by stability by substitution (Lemma 7.11), ti = tiσ ≻τ ujσ. If
ti ⊳X@ v ⪰τ uj then, by Lemma 7.22, tiσ ⊐ vσ and, by stability by substitution
again, vσ ⪰τ ujσ. Therefore, by Lemma 7.18 and transitivity, tiσ ⊐ ujσ. Thus,
in both cases, t⃗ (≻τ ∪ ⊐)stat(f) u⃗σ and, by induction hypothesis (0), g(u⃗)σ is
computable.

● k > 0. Then, f(t⃗)u⃗ = tuk where t = f(t⃗)u1 . . . uk−1. By induction hypothesis (1), every
≻τ -reduct of t is computable. Now, if uk ≻τ u′k, then tu′k is computable by induction
hypothesis (0). Therefore, by Lemma 6.15, every ≻τ -reduct of tuk is computable.

Theorem 7.26. The relation ≻τ of Definition 7.10 is well-founded.

Proof. After Theorem 6.11, Theorem 7.23 and Lemma 7.25.

7.7. Using semantic comparisons. The extension of CPO described here is still not able
to orient the terminating rules defining the recursor of the type C in Example 5.2:

Example 7.27. Given an arbitrary type A, the recursor (of arity 3) at type A of the type
C of continuations of Example 5.2 has type recAC ∶ C → A → (¬¬C → ¬¬A → A) → A. Its
rewrite rules are the following:

recAC(d, u, v) → u
recAC(c(x), u, v) → v x (λy¬Ax (λzCy recAC(z, u, v)))

The problem is that we do not have c(x) ⊳{y,z}@ z. Indeed, C is non-strictly positive and
the structural term ordering can only handle strictly positive types.

To handle such rules, we know two solutions. The first one is to define the interpretation
of C so that recAC is computable by definition [92, 71, 11], which is possible since positivity
conditions are satisfied. However, this solution lacks flexibility for the user who is forced to
define all other functions on C via the recursor.

The second, flexible solution consists in considering types with size annotations (to be
interpreted by ordinals) and, in (Fb=), compare terms by their size annotations, an approach
initiated independently in [53, 43] and later developed in various works, e.g. [1, 8, 9, 19].
Indeed, assuming that c(x) has type Cα+1, then x has type ¬¬Cα and, thus, the bound
variable z gets the type Cα which size annotation is smaller than the one of c(x).

Including semantics in RPO was pioneered by Kamin and Lévy [60], and extended to
HORPO in [22]. In both cases, semantics was added by replacing the precedence by a
semantic order on terms. The use of size annotations is a different way to include semantics
in these orders. These two different ways of including semantics in recursive path orders
are however related: both can be seen as an instance of the more general semantic labeling
schema [93, 48, 20].

8. Small symbols

In this section, we consider a further extension of CPO that originated from some draft
version of [55] and try to answer the following general question: can we relax the constraints
on the precedence? More precisely, to which extent can a function symbol be smaller than

32 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

an application or an abstraction? We are going to show that this is indeed possible if the
rules governing these small symbols are more restrictive than the ones for big symbols.

We first define the extension of CPO to small symbols, and then show the computabil-
ity properties including a specific one for small symbols. Unlike before, this will reveal a
circularity among the dependencies between the different computability properties, hence
strong normalization does not follow. Breaking this circularity will require assumptions on
the types of small symbols that are then investigated for practical purposes. It will appear
that, for instance, any constructor of a strictly-positive inductive type can be considered a
small symbol.

8.1. CPO with small symbols.

Definition 8.1 (CPO with small symbols). We assume that the set of function symbols is
partitioned into a set Fb of big symbols and a set Fs of small symbols so that:

● no small symbol is greater or equivalent to a big symbol (small-lt-big)
● small symbols with arrow output type have no accessible argument (small-acc)

We then extend ≻X by adding the rules of Figure 3.

We will add conditions on the types of small symbols after Definition 8.9 (see Figure 4).

Figure 3: Additional CPO rules for small symbols
(@Fs) tu ≻X f(v⃗) if f ∈ Fs and (∀i) tu ≻Xτ vi
(λFs) λxt ≻X f(v⃗) if f ∈ Fs and (∀i) λxt ≻Xτ vi

(Fs⊳) f(t⃗) ≻X v if f ∈ Fs and (∃i) ti ⪰τ v
(Fs=) f(t⃗) ≻X g(u⃗) if f ∈ Fs, f ≃F g, (∀i) f(t⃗) ≻Xτ ui and t⃗ (≻τ ∪ ⊳X@ ⪰τ)stat(f) u⃗
(Fs>) f(t⃗) ≻X g(u⃗) if f ∈ Fs, f >F g and (∀i) f(t⃗) ≻Xτ ui
(Fs@) f(t⃗) ≻X uv if f ∈ Fs, f(t⃗) ≻Xτ u and f(t⃗) ≻Xτ v
(FsX) f(t⃗) ≻X x if f ∈ Fs and x ∈X

Because of the rules (@Fs) and (Fs@), one may think that the relation is not terminating
anymore, but this is not the case for typing reasons. Indeed, in contrast with rules for big
symbols, rules for small symbols require type checking the recursive calls systematically.

For instance, assume that f ∶ o → o and g2 ∶ o → o → o. Then, although we have
f a ≻τ g(a, a) by (@Fs) since f a ≻τ a by (@⊳), we do not hopefully have g(a, a) ≻τ f a by
(Fs@) because we do not have g(a, a) ≻τ f for typing reasons.

On the other hand, there is no rule (Fsλ) such that f(t⃗) ≻X λyv if f(t⃗) ≻X v and
y ∉ FV(v) because, together with the rule (λFs), it would lead to non-termination as shown
by the following example: given small symbols a ∶ o → o >F b ∶ o, λxb ≻τ a by (λFs),
and a ≻τ λxb by (Fsλ) since a ≻τ b by (Fs>). It is however possible to have (Fsλ) if one
removes (λFs). We choose to present the case of (Fsλ) because it seems more useful, but
the termination proof can be easily adapted if (Fsλ) is replaced by (λFs). Note however
that this does not lead to the same definition for the sets SPos, LPos, . . . (Definition 8.9)
studied in Section 8.4.

Two potential improvements are left. First, take a rule (Fs⊳) similar to the rule (Fb⊳)
of Figure 2. Second, get rid of the assumption (small-acc), if possible.

THE COMPUTABILITY PATH ORDERING 33

8.2. Computability properties.

Lemma 8.2 (Basic properties).
● ≻X is well-defined.
● ≻τ is monotone.
● If a ≻X b, then FV(b) ⊆ FV(a) ∪X.
● ≻X is stable by α-equivalence.
● ≻X is stable by substitution away from X.
● If e, e′ ∈ X , τ(e) = τ(e′), t ≻X u and e′ ∉ FV(λeu), then t ≻X−{e}∪{e′} ue′e .

Keeping the same definitions for neutral terms and the base type interpretation as in
Section 6, it is easy to check that Lemma 6.13 and Lemma 6.14 still hold. However, because
of the new rules (@Fs) and (λFs), Corollary 6.17 and Corollary 6.19, hence Lemma 6.16
and Lemma 6.18 reveal new dependencies that require introducing the following new com-
putability property for a set S of terms of type T :

(comp-small) f(t⃗) ∈ S if f(t⃗) ∶ T , f ∈ Fs and t⃗ are computable.

Note that big symbols do not need any computability property because they are bigger
than everybody else, and therefore other computability properties do not depend upon the
computability of big symbols. It follows that they cannot be implied in any circularity.

Lemma 8.3. Let t ∶ U → V and u ∶ U . Then, every ≻τ -reduct of tu is computable if:
● every ≻τ -reduct of t is computable;
● u is computable;
● if t = λxv, then vux is computable;
● for all u′ such that u ≻τ u′, tu′ is computable;
● JUK satisfies (comp-red);
● JV K satisfies (comp-red);
● JV ′K satisfies (comp-lam) and (comp-small) whenever V ′ ≤ V .

Proof. The proof is the same as for Lemma 6.15 except for the new case:
● (@Fs) w = f(v⃗), f ∈ Fs and (∀i) tu ≻τ vi. By induction hypothesis, v⃗ are computable.
Since JW K satisfies (comp-small) by assumption, w is computable.

Lemma 8.4. Let t ∶ U → V and u ∶ U . Then, tu is computable if:
● u is computable;
● every ≻τ -reduct of t is computable;
● if t = λxv, then vux is computable;
● either t is neutral or t = λxv;
● JUK satisfies (comp-red) and (comp-sn);
● JV K satisfies (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) and (comp-small) whenever V ′ ≤ V .

Proof. As for Lemma 6.16 but using Lemma 8.3 instead.

Corollary 8.5. JU → V K satisfies (comp-neutral) if:
● JUK satisfies (comp-sn) and (comp-red);
● JV K satisfies (comp-red) and (comp-neutral);

34 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

● JV ′K satisfies (comp-lam) and (comp-small) whenever V ′ ≤ V .

Proof. As for Corollary 6.17 but using Lemma 8.4 instead.

Lemma 8.6. Let x ∶ U and v ∶ V . Then, λxv is computable if:
● for all computable u ∶ U , vux is computable;
● JUK satisfies (comp-sn) and (comp-red) and contains a variable, which is the case if
it satisfies (comp-neutral) too;

● JV K satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V ;
● JW K satisfies (comp-small) whenever W ≤ U → V .

Proof. The proof is the same as for Lemma 6.18 except for the new case:
● (λFs) w = f(v⃗), f ∈ Fs and (∀i) λxv ≻τ vi. By induction hypothesis, v⃗ are com-
putable. Thus, w is computable since, by assumption, JW K satisfies (comp-small).

Corollary 8.7. JU → V K satisfies (comp-lam) if:
● JUK satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV K satisfies (comp-sn), (comp-red) and (comp-neutral);
● JV ′K satisfies (comp-lam) whenever V ′ ≤ V ;
● JW K satisfies (comp-small) whenever W ≤ U → V .

We are left with the new computability property for small symbols:

Lemma 8.8. JUK satisfies (comp-small) if:
● JUK satisfies (comp-neutral);
● JU ′K satisfies (comp-small) whenever U ′ < U ;
● for every small f ∣T⃗ ∣ ∶ T⃗ → U , JT⃗ K satisfies (comp-sn) and (comp-red).

Proof. Assume that fα(f) ∶ T⃗ → U is small. By assumption, JT⃗ K satisfies (comp-sn) and,
by Lemma 7.19, JT⃗ K ⊆ SN(≻τ ∪ ⊐). Therefore, by Lemma 6.12, (>F ,(≻τ ∪ ⊐)stat)lex is well-
founded when restricted to small symbols. We can therefore prove that, for all (f, t⃗) ∈ Σ
with f ∈ Fs, f(t⃗) is computable, by induction on (>F , (≻τ ∪ ⊐)stat)lex (1).

We first prove that f(t⃗) is computable if all its ≻τ -reducts so are. If U is a sort, then
the result holds since t⃗ are computable. Otherwise, by (small-acc), Acc(f) = ∅ and f(t⃗) is
neutral. Therefore, the result holds since JUK satisfies (comp-neutral) by assumption.

We now prove that every ≻τ -reduct w ∶W of f(t⃗) is computable by induction on w (2).
By definition of ≻τ , we have U ≥W .

● (Fs⊳) (∃i) ti ⪰τ w. By assumption, JT⃗ K satisfies (comp-red). Thus, w is computable.
● (Fs=) There are g ∶ U⃗ → W and u⃗ ∶ U⃗ such that w = g(u⃗), (∀i) f(t⃗) ≻τ ui, f ≃F g
and t⃗ (≻τ ∪ ⊳∅@⪰τ)stat(f) u⃗. By (small-lt-big), g is small. Since f(t⃗) ≻τ u⃗, by induction
hypothesis (2), u⃗ are computable. We distinguish two cases:
– U >W . Then, g(u⃗) is computable since JW K satisfies (comp-small).
– U = W . If ti ⊳∅@ v ⪰τ uj then, by Lemma 7.22, ti ⊐ v and, by Lemma 7.18,
v ⊒ uj . Therefore, by transitivity, ti ⊐ uj . Hence, t⃗ (≻τ ∪ ⊐)stat(f) u⃗ and, by
induction hypothesis (1), g(u⃗) is computable.

● (Fs>) There are g ∶ U⃗ → W and u⃗ ∶ U⃗ such that w = g(u⃗), (∀i) f(t⃗) ≻τ ui and
f >F g. By (small-lt-big), g is small. Since f(t⃗) ≻τ u⃗, by induction hypothesis (2), u⃗
are computable. We distinguish two cases:

THE COMPUTABILITY PATH ORDERING 35

– U >W . Then, g(u⃗) is computable since JW K satisfies (comp-small).
– U =W . Then, g(u⃗) is computable by induction hypothesis (1).

● (Fs@) There are u and v such that w = uv and f(t⃗) ≻τ uv. By induction hypothesis
(2), u and v are computable. Therefore, uv is computable.

● (FsX) Not possible.

8.3. Well-foundedness of CPO with small symbols. In contrast with the previous
cases, we cannot conclude from the above lemmas that, for every type T , JT K is a com-
putability predicate, because of circularities.

Indeed, for JAK to satisfy (comp-small), we need, for every small symbol f ∶ T → A, JT K
to satisfy (comp-sn); but for JT K to satisfy (comp-sn) when T = U → V , we need JUK to
satisfy (comp-neutral); but for JUK to satisfy (comp-neutral) when U = W → A, we need
JAK to satisfy (comp-small). To break this circularity, we will make these dependencies
more precise by introducing sets of positions in types that reflect how these computability
properties depend from each other. The idea here is that if there is no problematic occurrence
of A in T , then JT K satisfies (comp-sn), and similarly for the other properties.

Instead of sets of positions, we could have simply considered boolean functions returning
true if T contains a problematic occurrence of A. Considering positions allows us to pinpoint
precisely which occurrences are problematic, and therefore to obtain sharper conditions on
Fs ensuring the absence of cycle in the dependency graph of the computability properties.
Of course, one may think that there are different ways to carry out these proofs, resulting
in different dependency graphs. We believe that these relationship are intrinsic to the
computability properties, although we have not been able to substantiate this claim so far.

Definition 8.9 (Computability-property positions). For each computability property (S
standing for (comp-sn), R for (comp-red), N for (comp-neutral), L for (comp-lam) and C
for (comp-small)), we inductively define a set of positions in a type T wrt a sort A as follows:

● CPosA(A) = {ε} and CPosA(B) = ∅ if B ≠ A
● SPosA(B) = RPosA(B) = NPosA(B) = LPosA(B) = ∅ whatever A and B are
● CPosA(U → V) = NPosA(U → V)
● SPosA(U → V) = RPosA(U → V) = {1p ∣ p ∈ NPosA(U)} ∪ {2p ∣ p ∈ SPosA(V)}
● NPosA(U → V) = {1p ∣ p ∈ SPosA(U) ∪RPosA(U)}
∪ {2p ∣ p ∈ RPosA(V) ∪NPosA(V) ∪ LPosA(V) ∪CPosA(V)}

● LPosA(U → V) = CPosA(U → V)
∪ {1p ∣ p ∈ SPosA(U) ∪RPosA(U) ∪NPosA(U)}
∪ {2p ∣ p ∈ SPosA(V) ∪RPosA(V) ∪NPosA(V) ∪ LPosA(V) ∪CPosA(V)}

Note that RPosA(T) = SPosA(T) ⊆ LPosA(T) and NPosA(T) ⊆ CPosA(T). Straightfor-
ward simplifications then yield:

● NPosA(U → V) = {1p ∣ p ∈ SPosA(U)} ∪ {2p ∣ p ∈ LPosA(V) ∪CPosA(V)}
● LPosA(U → V)
= CPosA(U → V)∪{1p ∣ p ∈ SPosA(U)∪NPosA(U)}∪{2p ∣ p ∈ LPosA(V)∪CPosA(V)}

We can now express in Figure 4 conditions on the types of the small symbols ensuring,
as we shall show next, the absence of cycles in the dependency graph.

Consider the (small-sort) case and assume that Ti t A. Then, either Ti = A and
SPosA(Ti) = ∅ by definition, or Ti ⋖ A and SPosA(Ti) = ∅ by Lemma 8.11. The condi-
tion for base types is therefore (strictly) weaker than the one for arrow types. This weaker

36 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Figure 4: Conditions on types of small symbols

∀f ∣T⃗ ∣ ∶ T⃗ → A, (∀i) SorttA(Ti) ∧ SPosA(Ti) = ∅ (small-sort)
∀f ∣T⃗ ∣ ∶ T⃗ → U⃗ → A with ∣U⃗ ∣ > 0, Acc(f) = ∅ ∧ (∀i) SorttA(Ti) ∧ Ti t U⃗ → A (small-arrow)

form will indeed be important later for deciding if a function symbol of base output type
can be declared small.

Lemma 8.10. If Sort⋖A(T), then SPosA(T) = NPosA(T) = LPosA(T) = CPosA(T) = ∅.
Proof. By induction on T .

● T = B. Then, SPosA(T) = NPosA(T) = LPosA(T) = ∅ by definition. Since Sort⋖A(T),
we have B ≠ A and thus CPosA(T) = ∅ too.

● T = U → V . Since Sort<A(U) and Sort<A(V), SPosA(U) = NPosA(U) = LPosA(U) =
CPosA(U) = ∅ and SPosA(V) = NPosA(V) = LPosA(V) = CPosA(V) = ∅ by induc-
tion hypothesis. Thus, SPosA(T) = NPosA(T) = LPosA(T) = CPosA(T) = ∅.

Lemma 8.11. If T > T ′ and SorttA(T) then:
● SPosA(T ′) = ∅ whenever SPosA(T) = ∅,
● NPosA(T ′) = ∅ whenever NPosA(T) = ∅,
● LPosA(T ′) = ∅ whenever LPosA(T) = ∅,
● CPosA(T ′) = ∅ whenever CPosA(T) = ∅.

Proof. We proceed by induction on T . Note that SorttA(T ′) by Lemma 2.6.
● T = B. Since SorttA(T), we have B ≤ A. By transitivity, T ′ < A. Hence, by Lemma
2.5, Sort⋖A(T ′). Therefore, SPosA(T ′) = NPosA(T ′) = LPosA(T ′) = CPosA(T ′) = ∅
by Lemma 8.10.

● T = U → V . Then, SorttA(U) and SorttA(V).
– SPosA(T) = ∅. Then, NPosA(U) = ∅ and SPosA(V) = ∅. By (typ-arrow), there

are two cases:
∗ V ≥ T ′. Then, SPosA(T ′) = ∅ by induction hypothesis.
∗ T ′ = U → V ′ and V > V ′. By induction hypothesis, SPosA(V ′) = ∅.

Therefore, SPosA(T ′) = ∅.
– CPosA(T) = NPosA(T) = ∅. Then, SPosA(U) = ∅ and SPosA(V) = NPosA(V) =

LPosA(V) = CPosA(V) = ∅. By (typ-arrow), there are two cases:
∗ V ≥ T ′. Then, CPosA(T ′) = NPosA(T ′) = ∅ by induction hypothesis.
∗ T ′ = U → V ′ and V > V ′, hence SPosA(V ′) = NPosA(V ′) = LPosA(V ′) =

CPosA(V ′) = ∅ by induction hypothesis. CPosA(T ′) = NPosA(T ′) = ∅
follows.

– LPosA(T) = ∅. Then, SPosA(U) = NPosA(U) = ∅ and SPosA(V) = NPosA(V) =
LPosA(V) = CPosA(V) = ∅. By (typ-arrow), there are two cases:

∗ V ≥ T ′. Then, LPosA(T ′) = ∅ by induction hypothesis.
∗ T ′ = U → V ′ and V > V ′. By induction hypothesis, SPosA(V) = NPosA(V) =

LPosA(V) = CPosA(V) = ∅. Therefore, LPosA(T ′) = ∅.
Lemma 8.12. Assume that the condition (small-arrow) of Figure 4 holds. Let A be a sort
such that, for all sort B ⋖ A, JBK satisfies (comp-small), and let T be a type such that
SorttA(T). Then:

● JT K satisfies (comp-sn) and (comp-red) if SPosA(T) = ∅,

THE COMPUTABILITY PATH ORDERING 37

● JT K satisfies (comp-neutral) if NPosA(T) = ∅,
● JT K satisfies (comp-lam) if LPosA(T) = ∅,
● JT K satisfies (comp-small) if CPosA(T) = ∅.

Proof. We proceed by induction on ⋗ which is well-founded by (typ-sn).
● T = B. Since SorttA(T), we have B t A.

– SPosA(T) = ∅. JT K satisfies (comp-red) by Lemma 6.23. By Lemma 6.24, JT K
satisfies (comp-sn) if, for all U < T , JUK satisfies (comp-sn). So, let U < T . By
transitivity, U ⋖ A. Hence, by Lemma 2.5, Sort⋖A(U) and, by Lemma 8.10,
SPosA(U) = ∅. Therefore, by induction hypothesis, JUK satisfies (comp-sn).

– NPosA(T) = ∅. JT K satisfies (comp-neutral) by Lemma 6.23.
– LPosA(T) = ∅. JT K satisfies (comp-lam) by Lemma 6.23.
– CPosA(T) = ∅. Then, B ⋖ A and, by assumption, JT K satisfies (comp-small).

● T = U → V . Then, SorttA(U) and SorttA(V).
– SPosA(T) = ∅. Then, NPosA(U) = ∅ and SPosA(V) = ∅. By induction hypoth-

esis, JUK satisfies (comp-neutral) and JV K satisfies (comp-sn) and (comp-red).
Hence, JT K satisfies (comp-sn) and (comp-red) by Lemmas 6.13 and 6.14.

– NPosA(T) = ∅. Then, SPosA(U) = ∅ and SPosA(V) = NPosA(V) = LPosA(V) =
CPosA(V) = ∅. By induction hypothesis, JUK satisfies (comp-sn) and (comp-
red). Let now V ′ ≤ V . By Lemma 2.6, SorttA(V ′). By Lemma 8.11, SPosA(V ′) =
NPosA(V ′) = LPosA(V ′) = CPosA(V ′) = ∅. By (typ-right-subterm) and tran-
sitivity, T > V ′. Hence, by induction hypothesis, JV ′K satisfies (comp-red),
(comp-neutral), (comp-lam) and (comp-small). Therefore, by Corollary 8.5,
JT K satisfies (comp-neutral).

– CPosA(T) = ∅. Then, NPosA(T) = ∅, hence SPosA(U) = ∅ and SPosA(V) =
NPosA(V) = LPosA(V) = CPosA(V) = ∅. We now check the conditions of
Lemma 8.8:

∗ JT K satisfies (comp-neutral) since NPosA(T) = ∅.
∗ Let W < T . We prove that CPosA(W) = ∅. By (typ-arrow), there are

two cases:
⋅ V ≥W . Then, by Lemma 8.11, CPosA(W) = ∅.
⋅ W = U → V ′ and V > V ′. Then, by Lemma 8.11, SPosA(V ′) =

NPosA(V ′) = LPosA(V ′) = CPosA(V ′) = ∅. Thus, CPosA(W) = ∅.
Hence, by induction hypothesis, JW K satisfies (comp-small).

∗ Let now f ∣T⃗ ∣ ∶ T⃗ → T be small. There are B⃗ and B such that V = V⃗ → B.
So, by (small-arrow), (∀i) SorttB(Ti) and Ti t T .
We first prove that, if SorttA(S⃗ → B) and CPosA(S⃗ → B) = ∅, then
B ⋖ A, by induction on S⃗. If S⃗ is empty, then SorttA(B) and CPosA(B) =
∅. Thus, B ⋖ A. If S⃗ = UV⃗ , then CPosA(S⃗ → B) = ∅ implies that
CPosA(V⃗ → B) = ∅. Hence, by induction hypothesis, B ⋖ A.
We therefore have B ⋖ A for T = UV⃗ → B, SorttA(T) and CPosA(T) = ∅.
Hence, Sort⋖A(T⃗) and, by Lemma 8.10, SPosA(T⃗) = ∅. If Ti ⋖ T , then JTiK
satisfies (comp-red) and (comp-sn) by induction hypothesis. Otherwise,
Ti = T and JTiK satisfies (comp-red) and (comp-sn) as shown previously.

– LPosA(T) = ∅. Then, SPosA(U) = NPosA(U) = ∅ and SPosA(V) = NPosA(V) =
LPosA(V) = CPosA(V) = ∅. By induction hypothesis, JUK satisfies (comp-sn),
(comp-red) and (comp-neutral).

38 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

Let now V ′ ≤ V . By Lemma 2.6, SorttA(V ′). By Lemma 8.11, SPosA(V ′) =
NPosA(V ′) = LPosA(V ′) = CPosA(V ′) = ∅. By (typ-right-subterm) and transi-
tivity, T > V ′. Hence, by induction hypothesis, JV ′K satisfies (comp-sn), (comp-
red), (comp-neutral), (comp-lam) and (comp-small).
Let now W ≤ T . By Lemma 2.6, SorttA(W). Since LPosA(T) = ∅, we have
CPosA(T) = ∅. Hence CPosA(W) = ∅ by Lemma 8.11. If W = T , we have al-
ready seen that JT K satisfies (comp-small). Otherwise,W > T and, by induction
hypothesis, JW K satisfies (comp-small).
Therefore, by Corollary 8.7, JT K satisfies (comp-lam).

Theorem 8.13. Assume that the conditions of Figure 4 hold. For all type T , JT K is a
computability predicate, i.e. satisfies (comp-sn), (comp-red), (comp-neutral), (comp-lam)
and (comp-small).

Proof. We proceed by induction on ⋗ which is well-founded by assumption (typ-sn). We
distinguish two cases:

● T is a sort A. By Lemma 6.23, JAK satisfies (comp-red), (comp-neutral), (comp-lam).
By Lemma 6.24 and induction hypothesis, JAK satisfies (comp-sn).

Let W < A. By Lemma 2.5, Sort⋖A(W). By Lemma 8.10, CPosA(W) = ∅.
Therefore, JW K satisfies (comp-small) by Lemma 8.12.

Let now fα(f) ∶ T⃗ → A be small. By (small-sort), we have (∀i) SorttA(Ti) and
SPosA(Ti) = ∅. Therefore, JT⃗ K satisfies (comp-sn) and (comp-red) by Lemma 8.12.
Hence, JAK satisfies (comp-small) by Lemma 8.8.

● Otherwise, T = U → V . Since T ⊳l U , by induction hypothesis, JUK is a computability
predicate. Let now V ′ be a type such that V ≥ V ′. By (typ-right-subterm) and
transitivity, T > V ′. By induction hypothesis, JV ′K is a computability predicate.
Therefore, JU → V K satisfies (comp-sn) by Lemma 6.13, (comp-red) by Lemma 6.14,
(comp-neutral) by Corollary 8.5, (comp-small) by Lemma 8.8 and (comp-lam) by
Corollary 8.7.

Theorem 8.14. If the conditions of Figure 4 hold, then the relation ≻τ of Definition 8.1 is
well-founded.

Proof. After Theorem 6.11, Theorem 8.13 and Lemma 7.25.

8.4. Checking computability assumptions for small symbols. We explore here simple
sufficient conditions under which the set SPosA(T) is empty, and therefore, which symbols
whose output type is a sort A can be declared as small. The order of a type plays an
important role here. In case these conditions are not met, it is of course always possible to
check (small-sort) and (small-arrow), which are both decidable.

Lemma 8.15. SPosA(T) = ∅ if o(T) ≤ 1.

Proof. We proceed by induction on T .
● T = B. Then, SPosA(T) = ∅ by definition.
● T = U → V . Since o(T) ≤ 1, o(U) ≤ 0 and o(V) ≤ 1. U being a sort, NPosA(U) = ∅.
Since o(V) ≤ 1, SPosA(V) = ∅ by induction hypothesis. Hence SPosA(T) = ∅.

THE COMPUTABILITY PATH ORDERING 39

Can therefore be declared as small, any symbol whose type is of order less than or equal
to 2 since its arguments have then a type of order less than or equal to 1. This is in particular
the case of the constructors of first-order data types.

More generally, can be declared as small every constructor of a strictly-positive inductive
type, whatever its order is, which is the class of inductive types allowed in the Coq proof
assistant [54]:

Lemma 8.16. Given types T⃗ and a sort A, SPosA(T⃗ → A) = ∅ if Sort⋖A(T⃗).
Proof. By induction on T .

● T = A. Immediate.
● T = U → V . Then, Sort⋖A(U) and V is of the form T⃗ → A with Sort⋖A(T⃗). By
Lemma 8.10, NPosA(U) = ∅. By induction hypothesis, SPosA(V) = ∅. Therefore,
SPosA(T) = ∅.

Non-strictly positive types are not available in Coq because strong elimination rules
may cause non-terminating computations in Coq’s richer type system [29]. Nothing such
that can happen in our simple type system in which constructors of non-strictly positive
inductive types of order ≤ 2 can be declared as small:

Lemma 8.17. NPosA(T)=LPosA(T)=CPosA(T)=∅ if o(T) ≤ 1, SorttA(T) and Pos(A, T) ⊆
Pos−(T).
Proof. We proceed by induction on T .

● T = B. Then, NPosA(T) = LPosA(T) = ∅ by definition. Since SorttA(T), we have
B ≤ A. Since Pos(A, T) ⊆ Pos−(T) and Pos−(T) = ∅, we have B ≠ A. Therefore,
CPosA(T) = ∅.

● T = U → V . Since o(T) ≤ 1, we have o(U) ≤ 0 and o(V) ≤ 1. Thus, U is a sort
and SPosA(U) = NPosA(U) = ∅. By Lemma 8.15, SPosA(V) = ∅. Since SorttA(T),
we have SorttA(V). Since Pos(A, T) ⊆ Pos−(T), we have Pos(A, V) ⊆ Pos−(V).
Hence, by induction hypothesis, NPosA(V) = LPosA(V) = CPosA(V) = ∅. Therefore,
NPosA(T) = LPosA(T) = CPosA(T) = ∅.

Lemma 8.18. SPosA(T) = ∅ if o(T) ≤ 2, SorttA(T) and Pos(A, T) ⊆ Pos+(T).
Proof. We proceed by induction on T .

● T = B. Then, SPosA(T) = ∅ by definition.
● T = U → V . Since o(T) ≤ 2, we have o(U) ≤ 1 and o(V) ≤ 2. Since SorttA(T), we
have SorttA(U) and SorttA(V). Since Pos(A, T) ⊆ Pos+(T), we have Pos(A, U) ⊆
Pos−(U) and Pos(A, V) ⊆ Pos+(V). Hence, by Lemma 8.17, NPosA(U) = ∅ and, by
induction hypothesis, SPosA(V) = ∅. Therefore, SPosA(T) = ∅.

But positivity is not always sufficient as shown by the following example. Assume that
f ∶ T → A with T = (B→ N)→ A, N = (B→ A)→ B and B < A. The sort A occurs negatively
in N and positively in T , which is a 3rd order type. We cannot declare f as small since we
do not know how to prove that JT K satisfies (comp-sn) by using our lemmas. Indeed, to
prove that JT K satisfies (comp-sn), we need to prove that JB→ NK satisfies (comp-neutral)
(Lemma 6.13). To prove that JB→ NK satisfies (comp-neutral), we need to prove that JNK
satisfies (comp-lam) (Corollary 8.5). To prove that JNK satisfies (comp-lam), we need to
prove that JB→ AK satisfies (comp-neutral) (Corollary 8.7). To prove that JB→ AK satisfies
(comp-neutral), we need to prove that JAK satisfies (comp-small) (Corollary 8.5). But, to

40 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

prove that JAK satisfies (comp-small), we need to prove that JT K satisfies (comp-sn) (Lemma
8.8). The circularity has not been broken here, but we can of course declare f as being big
instead of small.

8.5. Examples. In this section, we analyze two examples that show the need for small
symbols and their use. We will see that CPO with small symbols contains not only core
CPO, but also a subset of its transitive closure. But CPO with small symbols is not transitive
either, as shown by the second example which needs the use of both small symbols and the
transitive closure.

Example 8.19. Taken from the Termination Problems Data Base (TPDB) [87] under the
name Applicative_05__TreeFlatten. Let a be a sort. Consider the function symbols
nil ∶ a, flatten ∶ a→ a, concat1 ∶ a→ a, cons2 ∶ a→ a→ a, append2 ∶ a→ a→ a, node2 ∶ a→ a→ a
and map2 ∶ (a→ a)→ a→ a.

The higher-order rewrite system
map(F,nil) → nil

map(F, cons(x, v)) → cons(F x,map(F, v))
flatten node(x, v) → cons(x, concat(map(flatten, v)))

concat(nil) → nil
concat(cons(x, v)) → append(x, concat(v))

append(nil, v) → v
append(cons(x,u), v) → cons(x, append(u, v))

can be proved terminating with CPO by considering concat, append, map, cons and nil small,
while node and flatten can be either small or big (we consider them as big in the following).
All symbols can have multiset status. Let the precedence be concat >F append >F cons,
node >F map >F nil, node >F flatten and map >F cons.

Let us show the proof of the third rule, which is the most interesting one. Since cons
is small, we apply first (@Fs) and then we recursively need flatten node(x, v) ≻τ x, which
holds by (@⊳) and then (Fb⊳), and flatten node(x, v) ≻τ concat(map(flatten, v)), which
needs (@Fs) again. We then recursively need flatten node(x, v) ≻τ map(flatten, v), which
generates the subgoal node(x, v) ≻τ map(flatten, v) by (@⊳), and then the new subgoals
node(x, v) ≻τ flatten and node(x, v) ≻τ v by (Fb>). We conclude by (Fb>) and (Fb⊳).

The above example cannot be shown by core CPO because flatten is curried and the
head symbol of the third rule is then an application. There is however a way out with
the transitive closure of core CPO if one allows the introduction of new symbols. Let
flattenunc1 ∶ a → a be a new symbol. Assuming for example flatten >F flattenunc and
node >F {cons, concat,map,flatten}, we can then show the successive ordering comparisons:

flatten node(x, v) ≻τ (λxflattenunc(x))node(x, v)
(λxflattenunc(x))node(x, v) ≻τ flattenunc(node(x, v))

flattenunc(node(x, v)) ≻τ cons(x, concat(map(flatten, v)))
The first reduces to flatten ≻τ λxflattenunc(x), the second is a β-reduction, and the third is
a classical RPO-like computation. Details are left to the reader.

The use of small symbols can therefore help showing termination of examples that
would otherwise require the use of the transitive closure of core CPO (as well as a signature
extension in the above case). Small symbols, however, do not make CPO transitive. Our
second example requires indeed using both small symbols and the transitive closure:

THE COMPUTABILITY PATH ORDERING 41

Example 8.20. Taken from TPDB under the name AotoYamada_05__014. Let a and b be
sorts. Consider the function symbols 0 ∶ b, nil ∶ a, inc ∶ a → a, double ∶ a → a, s1 ∶ b → b,
plus1 ∶ b→ b→ b, times1 ∶ b→ b→ b, map1 ∶ (b→ b)→ a→ a, and cons2 ∶ b→ a→ a.

The higher-order rewrite system
plus(0) x → x

plus(s(y)) x → s(plus(y) x)
times(0) x → 0

times(s(y)) x → plus(times(y) x) x
map(F) nil → nil

map(F) cons(x, v) → cons(F x,map(F) v))
inc → map(plus(s(0)))

double → map(times(s(s(0))))
can be proved terminating with CPO by taking a = b in the type ordering, cons and s as
small symbols, the precedence times >F plus, inc >F {map,plus,0}, double >F {map, times,0},
and status multiset for all symbols.

We consider the 4th rule, for which we shall use the transitive closure of CPO, and the
6th rule, for which small symbols are needed (for the second rule too).

For the 4th rule, we exhibit the middle term (λz plus(times(y) z) z)x which is smaller
than the lefthand side and β-reduces to the righthand side of the rule.

To prove that times(s(y))x is greater than this middle term, we apply (@=), and since
the second arguments are equal, we have to show that times(s(y)) ≻τ (λz plus(times(y) z) z).
Since, both terms have the same type, by (Fbλ) and then (Fb@), we are left to show
times(s(y)) ≻{z} plus(times(y) z), since times(s(y)) ≻{z} z holds by (FbX). For this last
check, we apply first (Fb>) and then (Fb@), since times(s(y)) ≻{z} times(y) holds by (Fb=)
and then (Fs⊳), and times(s(y)) ≻{z} z holds by (FbX).

For the 6th rule, we apply first (@Fs), which requires to check map(F) cons(x, v) ≻τ F x
and map(F) cons(x, v) ≻τ map(F) v. Since the types of both sides are equivalent, the first
one holds by applying (@=) and then (Fb⊳) to the first argument and (Fs⊳) to the second
one. Finally, for map(F) cons(x, v) ≻τ map(F) v, we apply (@=) and then (Fs⊳) to the
second argument.

9. Conclusion

We have defined in this paper a well-founded relation on algebraic lambda-terms following
a type discipline accepting simple types in the sense of Church, and inductive types in the
sense of Martin-Löf. Further, we could easily cope with (implicitly) universally quantified
type variables as in [59], a type discipline called weak polymorphism.

We want to stress that core CPO has reached a point where we cannot expect any major
improvement, as indicated by the counter-examples found to our own attempts to improve
it. We are in great debt with Cynthia Kop and Femke van Raamsdonk for igniting this quest,
by providing us with an example that removing the type check in the rule (Fb=) results
in losing the well-foundedness property [61]. The very existence of these counter-examples
supports our conviction that CPO defines an extremely sharp decidable approximation of
sets of rules for which there exists a computability predicate.

Of course, all these counter-examples still hold when adding inductive types and small
symbols. We did our best to exploit the idea of small symbols as much as possible within

42 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

our proof frame, but cannot argue that the conditions on the signature of small symbols
are all necessary and that the corresponding recursive calls cannot be improved: we did
not extend our quest for counter-examples to this question. We finally believe that there is
also some room left for improving the accessibility relationship, which is restricted so far to
terms headed by a function symbol, possibly applied to extra arguments.

A more challenging problem to be investigated now is the generalization of this new
definition to the calculus of constructions along the lines of [91] and the suggestions made
in [59], where an RPO-like ordering on types was proposed which allowed to give a single
definition for terms and types. Generalizing CPO to dependent types appears to follow the
classical route initiated in [49], albeit non-trivial [55]. We therefore believe that this work
should be applicable to Dedukti [21, 79] with limited effort. On the other hand, we have
failed so far to generalize CPO to truly polymorphic types: its use in the proof assistant
Coq [54] will require much more effort.

Finally, note that HORPO [65] on the one hand, and the notion of computability closure
on the other hand [13], have already been formalized in the proof assistant Coq [54]. These
works could serve as a basis for formalizing the results presented in this paper and develop
a termination certificate verifier for CPO.

Acknowledgements. The authors thank the reviewers for their suggestions.

References

[1] A. Abel. Termination checking with types. Theoretical Informatics and Applications, 38(4):277–319,
2004.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer
Science, 236:133–178, 2000.

[3] F. Barbanera. Adding algebraic rewriting to the calculus of constructions: strong normalization pre-
served. In Proceedings of the 2nd International Workshop on Conditional and Typed Rewriting Systems,
Lecture Notes in Computer Science 516, 1990.

[4] F. Barbanera and M. Fernández. Modularity of termination and confluence in combinations of rewrite
systems with λω. In Proceedings of the 20th International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 700, 1993.

[5] F. Barbanera and M. Fernández. Combining first and higher order rewrite systems with type assignment
systems. In Proceedings of the 1st International Conference on Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science 664, 1993.

[6] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization and confluence in
the algebraic-λ-cube. In Proceedings of the 9th IEEE Symposium on Logic in Computer Science, 1994.

[7] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of logic in computer science. Volume 2. Background: computational structures, pages
117–309. Oxford University Press, 1992.

[8] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive
definitions. Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[9] F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite systems. In
Proceedings of the 15th International Conference on Rewriting Techniques and Applications, Lecture
Notes in Computer Science 3091, 2004.

[10] F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Structures in Com-
puter Science, 15(1):37–92, 2005.

[11] F. Blanqui. Inductive types in the calculus of algebraic constructions. Fundamenta Informaticae, 65(1-
2):61–86, 2005.

[12] F. Blanqui. (HO)RPO revisited. Technical Report 5972, INRIA, France, 2006.
[13] F. Blanqui. A formalization in Coq of the notion of computability closure for proving the termination

of rewrite relations on λ-terms, 2013.

http://dx.doi.org/10.1051/ita:2004015
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://dx.doi.org/10.1007/3-540-54317-1_96
http://dx.doi.org/10.1007/3-540-54317-1_96
http://dx.doi.org/10.1007/3-540-56939-1_110
http://dx.doi.org/10.1007/3-540-56939-1_110
http://dx.doi.org/10.1007/BFb0037098
http://dx.doi.org/10.1007/BFb0037098
http://dx.doi.org/10.1109/LICS.1994.316049
http://dx.doi.org/10.1109/LICS.1994.316049
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1007/978-3-540-25979-4_2
http://dx.doi.org/10.1017/S0960129504004426
http://iospress.metapress.com/content/tf54nwg673hvgk5d/
http://hal.inria.fr/inria-00090488
http://color.inria.fr
http://color.inria.fr

THE COMPUTABILITY PATH ORDERING 43

[14] F. Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion of reducibility. Theo-
retical Computer Science, ?(?):?–?, 2015. To appear.

[15] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type systems. Theoretical Computer Sci-
ence, 272:41–68, 2002.

[16] F. Blanqui, J.-P. Jouannaud, and A. Rubio. Higher-order termination: from Kruskal to computability.
In Proceedings of the 13th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Lecture Notes in Computer Science 4246, 2006. Invited paper.

[17] F. Blanqui, J.-P. Jouannaud, and A. Rubio. HORPO with computability closure: a reconstruction. In
Proceedings of the 14th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Lecture Notes in Computer Science 4790, 2007.

[18] F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: the end of a quest.
In Proceedings of the 22nd International Conference on Computer Science Logic, Lecture Notes in
Computer Science 5213, 2008. Invited paper.

[19] F. Blanqui and C. Riba. Combining typing and size constraints for checking the termination of higher-
order conditional rewrite systems. In Proceedings of the 13th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Science 4246, 2006.

[20] F. Blanqui and C. Roux. On the relation between sized-types based termination and semantic labelling.
In Proceedings of the 23rd International Conference on Computer Science Logic, Lecture Notes in Com-
puter Science 5771, 2009.

[21] M. Boespflug, Q. Carbonneaux, and O. Hermant. The lambda-pi-calculus modulo as a universal proof
language. In Proceedings of the 2nd International Workshop on Proof eXchange for Theorem Proving,
CEUR Workshop Proceedings 878, 2012.

[22] C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering. In Proceedings of the
8th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Lecture
Notes in Computer Science 2250, 2001.

[23] C. Borralleras and A. Rubio. THOR, a tool for proving the termination of higher-order rewrite systems,
2010.

[24] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normalization. In
Proceedings of the 16th International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science 372, 1989.

[25] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68, 1940.
[26] M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for termination proofs with

recursive path orders and dependency pairs. Journal of Automated Reasoning, 49(1):53–93, 2011.
[27] E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination using poly-

nomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.
[28] T. Coquand. Pattern matching with dependent types. In Proceedings of the International Workshop on

Types for Proofs and Programs, 1992.
[29] T. Coquand and C. Paulin-Mohring. Inductively defined types. In Proceedings of the International

Conference on Computer Logic, Lecture Notes in Computer Science 417, 1988.
[30] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal of

Mathematics, 82(1):43–57, 1979.
[31] H. B. Curry and R. Feys. Combinatory logic. North-Holland, 1958.
[32] M. Dauchet. Termination of rewriting is undecidable in the one-rule case. In Proceedings of the 13th In-

ternational Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 324, 1988.

[33] N. Dershowitz. Orderings for term rewriting systems. In Proceedings of the 20th IEEE Symposium on
Foundations of Computer Science, 1979.

[34] N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17:279–301, 1982.
[35] N. Dershowitz. Jumping and escaping: modular termination and the abstract path ordering. Theoretical

Computer Science, 464:35–47, 2012. Special issue: New Directions in Rewriting (Honoring the 60th
Birthday of Yoshihito Toyama).

[36] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. Volume B: formal models and methods, chapter 6, pages 243–320. North-Holland,
1990.

http://dx.doi.org/10.1016/j.tcs.2015.07.045
http://dx.doi.org/10.1016/S0304-3975(00)00347-9
http://dx.doi.org/10.1007/11916277_1
http://dx.doi.org/10.1007/978-3-540-75560-9_12
http://dx.doi.org/10.1007/978-3-540-87531-4_1
http://dx.doi.org/10.1007/11916277_8
http://dx.doi.org/10.1007/11916277_8
http://dx.doi.org/10.1007/978-3-642-04027-6_13
http://ceur-ws.org/Vol-878/paper2.pdf
http://ceur-ws.org/Vol-878/paper2.pdf
http://dx.doi.org/10.1007/3-540-45653-8_37
http://www.lsi.upc.es/~albert/
http://dx.doi.org/10.1007/BFb0035757
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1007/s10817-010-9211-0
http://dx.doi.org/10.1007/s10817-010-9211-0
http://dx.doi.org/10.1007/s10817-005-9022-x
http://dx.doi.org/10.1007/s10817-005-9022-x
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
http://dx.doi.org/10.1007/3-540-52335-9_47
http://projecteuclid.org/euclid.pjm/1102785059
http://dx.doi.org/10.1007/BFb0017149
http://dx.doi.org/10.1109/SFCS.1979.32
http://dx.doi.org/10.1016/0304-3975(82)90026-3
http://dx.doi.org/10.1016/j.tcs.2012.09.013

44 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

[37] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of the
ACM, 22(8):465–476, 1979.

[38] D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Information and Computa-
tion, 101(2):251–267, 1992.

[39] M. Fernández and J.-P. Jouannaud. Modular termination of term rewriting systems revisited. In Pro-
ceedings of the 10th International Workshop on Specification of Abstract Data Types, Lecture Notes in
Computer Science 906, 1994.

[40] C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proceedings of the 23rd
International Conference on Rewriting Techniques and Applications, Leibniz International Proceedings
in Informatics 15, 2012.

[41] R. O. Gandy. An early proof of normalization by a. m. turing. In J. R. Hindley and J. P. Seldin, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 453–455.
Academic Press, 1980.

[42] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.
Journal of Automated Reasoning, 37(3):155–203, 2006.

[43] E. Giménez. Un calcul de constructions infinies et son application à la vérification de systèmes commu-
niquants. PhD thesis, ENS Lyon, France, 1996.

[44] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse et son application à l’élimination des
coupures dans l’analyse et la théorie des types. In J. Fenstad, editor, Proceedings of the 2nd Scandinavian
Logic Symposium, volume 63 of Studies in Logic and the Foundations of Mathematics, pages 63–92.
North-Holland, 1971.

[45] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris 7, France, 1972.

[46] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Cambridge University Press, 1988.
[47] J. Goubault-Larrecq. Well-founded recursive relations. In Proceedings of the 15th International Confer-

ence on Computer Science Logic, Lecture Notes in Computer Science 2142, 2001.
[48] M. Hamana. Higher-order semantic labelling for inductive datatype systems. In Proceedings of the 9th

ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, 2007.
[49] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM, 40(1):143–

184, 1993.
[50] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: techniques and features. Information and

Computation, 205(4):474–511, 2007.
[51] N. Hirokawa and A. Middeldorp. Uncurrying for termination. In Proceedings of the 15th International

Conference on Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer
Science 5330, 2008.

[52] M. Hofmann. Approaches to recursive data types - a case study. Unpublished note cited in [72] p. 61,
1995.

[53] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In
Proceedings of the 23th ACM Symposium on Principles of Programming Languages, 1996.

[54] INRIA, France. The Coq reference manual, version 8.4pl5, 2014.
[55] J.-P. Jouannaud and J. Li. Termination of Dependently Typed Rewrite Rules. In Proceedings of the 13th

International Conference on Typed Lambda Calculi and Applications, Leibniz International Proceedings
in Informatics 38, 2015.

[56] J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic specification
languages. In Proceedings of the 6th IEEE Symposium on Logic in Computer Science, 1991.

[57] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer Science, 173(2):349–
391, 1997.

[58] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proceedings of the 14th
IEEE Symposium on Logic in Computer Science, 1999.

[59] J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. Journal of the ACM,
54(1):1–48, 2007.

[60] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path orderings. Unpublished note,
1980.

[61] C. Kop. Personal communication, 2008.

http://dx.doi.org/10.1145/359138.359142
http://dx.doi.org/10.1016/0890-5401(92)90064-M
http://dx.doi.org/10.1007/BFb0014432
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.176
http://dx.doi.org/10.1007/s10817-006-9057-7
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD1996/PhD1996-11.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD1996/PhD1996-11.ps.Z
http://dx.doi.org/10.1016/S0049-237X(08)70843-7
http://dx.doi.org/10.1016/S0049-237X(08)70843-7
http://www.paultaylor.eu/stable/prot.pdf
http://dx.doi.org/10.1007/3-540-44802-0_34
http://dx.doi.org/10.1145/1273920.1273933
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1016/j.ic.2006.08.010
http://dx.doi.org/10.1007/978-3-540-89439-1_46
http://dx.doi.org/10.1145/237721.240882
http://coq.inria.fr/
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.257
http://dx.doi.org/10.1109/LICS.1991.151659
http://dx.doi.org/10.1109/LICS.1991.151659
http://dx.doi.org/10.1016/S0304-3975(96)00161-2
http://dx.doi.org/10.1109/LICS.1999.782635
http://dx.doi.org/10.1145/1206035.1206037
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/KAMIN_LEVY/kamin-levy80spo.pdf

THE COMPUTABILITY PATH ORDERING 45

[62] C. Kop. Higher order dependency pairs for algebraic functional systems. In Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, Leibniz International Proceedings
in Informatics 10, 2011.

[63] C. Kop. Higher order termination. PhD thesis, VU University Amsterdam, NL, 2012.
[64] C. Kop and F. van Raamsdonk. Higher-order dependency pairs with argument filterings. In 11th Inter-

national Workshop on Termination, 2010.
[65] A. Koprowski. Coq formalization of the higher-order recursive path ordering. Applicable Algebra in

Engineering Communication and Computing, 20(5-6):379–425, 2009.
[66] M. S. Krishnamoorthy and P. Narendran. On recursive path ordering. Theoretical Computer Science,

40(2-3):323–328, 1985.
[67] C. Kuratowski. Une méthode d’élimination des nombres transfinis des raisonnements mathématiques.

Fundamenta Mathematicae, 3(1):76–108, 1922.
[68] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on strong

computability for higher-order rewrite systems. IEICE Transactions on Information and Systems, E92-
D(10):2007–2015, 2009.

[69] D. Lankford. On proving term rewriting systems are Noetherian. Technical report, Lousiana Technical
University, USA, 1979.

[70] Z. Manna and S. Ness. On the termination of Markov algorithms. In Proceedings of the 3rd Hawaii
International Conference on System Sciences, 1970.

[71] R. Matthes. Extensions of system F by iteration and primitive recursion on monotone inductive types.
PhD thesis, Ludwig Maximilians Universität, München, Germany, 1998.

[72] R. Matthes. Lambda calculus: a case for inductive definitions, 2000.
[73] N. P. Mendler. Inductive definition in type theory. PhD thesis, Cornell University, USA, 1987.
[74] N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus. Annals of

Pure and Applied Logic, 51(1-2):159–172, 1991.
[75] P. Narendran, M. Rusinowitch, and R. Verma. RPO constraint solving is in NP. In Proceedings of the

12th International Conference on Computer Science Logic, Lecture Notes in Computer Science 1584,
1999.

[76] R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters, 47(2):65–69,
1993.

[77] M. Okada. Strong normalizability for the combined system of the typed lambda calculus and an arbi-
trary convergent term rewrite system. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, 1989.

[78] C. Roux. Size-based termination: semantics and generalizations. PhD thesis, Université Henri Poincaré,
Nancy, France, 2011.

[79] R. Saillard. Dedukti 2.3, 2014.
[80] M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-order rewrite

systems. IEICE Transactions on Information and Systems, E88-D(3):583–593, 2005.
[81] L. E. Sanchis. Functionals defined by recursion. Notre Dame Journal of Formal Logic, 8:161–174, 1967.
[82] S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in higher-order rewrite

systems. IPSJ Transactions on Programming, 4(2):1–12, 2011.
[83] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic,

32(2):198–212, 1967.
[84] W. W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Proceedings of

the 1972 Logic Colloquium, volume 453 of Lecture Notes in Mathematics, 1975.
[85] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

5:285–309, 1955.
[86] TeReSe. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2003.
[87] Termination pproblem data base (TPDB), version 9.0.2, 2014.
[88] A. S. Troelstra. Models and Computability. In A. S. Troelstra, editor, Metamathematical investigation

of intuitionistic arithmetic and analysis, volume 344 of Lecture Notes in Mathematics, pages 97–174.
Springer, 1973.

[89] A. M. Turing. Some theorems about Church’s system. Unpublished typescript reproduced in [41], 1942.
[90] J. van de Pol. Termination of higher-order rewrite systems. PhD thesis, Utrecht Universiteit, NL, 1996.

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.203
http://cl-informatik.uibk.ac.at/users/kop/phdthesis.pdf
http://cl-informatik.uibk.ac.at/users/kop/wst10.pdf
http://dx.doi.org/10.1007/s00200-009-0105-5
http://dx.doi.org/10.1016/0304-3975(85)90175-6
https://eudml.org/doc/213282
https://hal.inria.fr/inria-00397820
https://hal.inria.fr/inria-00397820
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/MANNA_NESS/manna_ness.pdf
http://www.irit.fr/~Ralph.Matthes/dissertation/matthesdiss.pdf
http://www.irit.fr/~Ralph.Matthes/papers/esslli.pdf
http://hdl.handle.net/1813/6710
http://dx.doi.org/10.1016/0168-0072(91)90069-X
http://dx.doi.org/10.1007/10703163_26
http://dx.doi.org/10.1016/0020-0190(93)90226-Y
http://dx.doi.org/10.1145/74540.74582
http://dx.doi.org/10.1145/74540.74582
https://tel.archives-ouvertes.fr/tel-00606360
http://dedukti.gforge.inria.fr/
http://www.ct.info.gifu-u.ac.jp/~kusakari/papers/ieice04b.pdf
http://www.ct.info.gifu-u.ac.jp/~kusakari/papers/ieice04b.pdf
http://dx.doi.org/10.1305/ndjfl/1093956080
https://hal.inria.fr/inria-00555008
https://hal.inria.fr/inria-00555008
http://www.jstor.org/stable/2271658
http://dx.doi.org/10.1007/BFb0064875
http://projecteuclid.org/euclid.pjm/1103044538
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
http://dx.doi.org/10.1007/BFb0066739
http://fmt.cs.utwente.nl/~vdpol/papers/thesis.pdf

46 FRÉDÉRIC BLANQUI, JEAN-PIERRE JOUANNAUD, AND ALBERT RUBIO

[91] D. Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of constructions. Journal of Func-
tional Programming, 13(2):339–414, 2003.

[92] B. Werner. Une théorie des constructions inductives. PhD thesis, Université Paris 7, France, 1994.
[93] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24:89–105,

1995.

http://dx.doi.org/10.1017/S0956796802004641
https://tel.archives-ouvertes.fr/tel-00196524
http://dx.doi.org/10.3233/FI-1995-24124

	1. Introduction
	2. Types and admissible type orderings
	3. Terms
	4. Relations
	5. Computability path ordering
	5.1. Definition of core CPO
	5.2. Transitivity
	5.3. Tightness of core CPO
	5.4. Comparison with HORPO
	5.5. Implementation

	6. Well-foundedness of core CPO
	6.1. Basic properties of core CPO
	6.2. Tait and Girard's computability
	6.3. Computability properties of arrow types
	6.4. Well-foundedness of core CPO

	7. Accessibility
	7.1. Accessible subterms
	7.2. CPO with accessible subterms
	7.3. Comparison with CHORPO
	7.4. Computability with accessible subterms
	7.5. Well-foundedness of the structural term ordering
	7.6. Well-foundedness of CPO with accessible subterms
	7.7. Using semantic comparisons

	8. Small symbols
	8.1. CPO with small symbols
	8.2. Computability properties
	8.3. Well-foundedness of CPO with small symbols
	8.4. Checking computability assumptions for small symbols
	8.5. Examples

	9. Conclusion
	References

