
Computability Closure: Ten Years Later

Frédéric Blanqui

INRIA
LORIA?, Campus Scienti�que, BP 239

54506 Vandoeuvre-lès-Nancy Cedex, France

Abstract. The notion of computability closure has been introduced for
proving the termination of higher-order rewriting with �rst-order match-
ing by Jean-Pierre Jouannaud and Mitsuhiro Okada in a 1997 draft which
later served as a basis for the author's PhD. In this paper, we show how
this notion can also be used for dealing with β-normalized rewriting with
matching modulo βη (on patterns à la Miller), rewriting with matching
modulo some equational theory, and higher-order data types (types with
constructors having functional recursive arguments). Finally, we show
how the computability closure can easily be turned into a reduction or-
dering which, in the higher-order case, contains Jean-Pierre Jouannaud
and Albert Rubio's higher-order recursive path ordering and, in the �rst-
order case, is equal to the usual �rst-order recursive path ordering.

1 Introduction

After Jan Willem Klop's PhD thesis on Combinatory Reduction Systems (CRS)
[28,29], the interest in higher-order rewriting, or the combination of λ-calculus
and rewriting, was relaunched by Dale Miller and Gopalan Nadathur's work on
λ-Prolog [38] and Val Breazu-Tannen's paper on the modularity of con�uence
for the combination of simply-typed λ-calculus and �rst-order rewriting [10,13].
A year later, Dale Miller proved the decidability of uni�cation modulo βη for
�higher-order patterns� [36,37], and the modularity of termination for simply-
typed λ-calculus and �rst-order rewriting was independently proved by Jean
Gallier and Val Breazu-Tannen [11,12] and Mitsuhiro Okada [40], both using
Jean-Yves Girard's technique of reducibility predicates [18,19,20]. A little bit
later, Daniel Dougherty showed, by purely syntactic means (without using re-
ducibility predicates), that these results could be extended to any �stable� set
of untyped λ-terms [16,17], the set of simply-typed λ-terms being stable. We
must also mention Zhurab Khasidashvili's new approach to higher-order rewrit-
ing with his Expression Reduction Systems (ERS) [27].

Then, in 1991, two important papers were published on this subject, both
introducing a new approach to higher-order rewriting: Tobias Nipkow's Higher-
order Rewrite Systems (HRS) [39,33], and Jean-Pierre Jouannaud and Mitsuhiro

? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP

Okada's Executable Higher-Order Algebraic Speci�cation Languages [22,23]. To-
bias Nipkow's approach is based on Dale Miller's result: the simply-typed λ-
calculus, which is con�uent and terminating, is used as a framework for en-
coding higher-order rewriting. He extends to this framework the Critical Pair
Lemma. Jean-Pierre Jouannaud and Mitsuhiro Okada's approach can be seen as
a typed version of CRS's (restricted to �rst-order matching). They proved that
termination is modular for the combination of simply-typed λ-calculus, a non-
duplicating1 terminating �rst-order rewrite system, and an higher-order rewrite
system which de�nition follows a �general schema� extending primitive recursion.
Later, Vincent van Oostrom and Femke van Raamsdonk compared CRS's and
HRS's [46] and developed an axiomatized framework subsuming them [47,49].

The combination of β-reduction and rewriting is naturally used in depen-
dent type systems and proof assistants implementing the proposition-as-type
and proof-as-object paradigm [6]. In these systems, two propositions equivalent
modulo β-reduction and rewriting are considered as equivalent (e.g. P (2+2) and
P (4)). This is essential for enabling users to formalize large proofs with many
computations, as recently shown by Georges Gonthier and Benjamin Werner's
proof of the Four Color Theorem in the Coq proof assistant. However, checking
the correctness of user proofs requires to check the equivalence of two terms.
Hence, the necessity to have termination criteria for the combination of β-
reduction and a set R of higher-order rewrite rules.

For proving the correctness of the general schema, Jean-Pierre Jouannaud
and Mitsuhiro Okada used Jean-Yves Girard's technique of reducibility predi-
cates. Roughly speaking, since proving the (strong) β-normalization by induc-
tion on the structure of terms does not work directly, one needs to prove a
stronger predicate. In 1967, William Tait introduced a �convertibility predicate�
for proving the weak normalization of some extension of Kurt Gödel's system T
[43]. Later, in 1971, Jean-Yves Girard introduced �reducibility predicates� (called
computability predicates in the following) for proving the weak and strong nor-
malization of the polymorphic λ-calculus [18,19]. This technique can be applied
to (higher-order) rewriting by proving that every function symbol is computable,
that is, that every function call is computable whenever its arguments so are.

This naturally leads to the following question: which operations preserve
computability? Indeed, from a set of such operations, one can de�ne the com-
putability closure of a term t, written CC(t), as the set of terms that are com-
putable whenever t so is. Then, to get normalization, it su�ces to check that,
for every rule f l → r ∈ R, r belongs to the computability closure of l. Ex-
amples of computability-preserving operations are: application, function calls
on arguments smaller than l in some well-founded ordering >, etc. Jean-Pierre
Jouannaud and Mitsuhiro Okada introduced this notion in a 1997 draft which
served as a basis for [8,9]. In this paper, we show how this notion can be extended
for dealing with β-normalized rewriting with matching modulo βη on patterns
à la Miller and matching modulo some equational theory.

1 l→ r is non-duplicating if no variable has more occurrences in r than it has in l.

Another way to prove the termination of R is to �nd a decidable well-founded
rewrite relation containing R. A well known such relation in the �rst-order case
is the recursive path ordering [41,14] which well-foundedness was initially based
on Kruskal theorem [30]. The �rst attempts made for generalizing this ordering
to the higher-order case were not able to orient system T [31,32,26]. Finally,
in 1999, Jean-Pierre Jouannaud and Albert Rubio succeeded in �nding such an
ordering [25] by using computability-based techniques again, hence providing the
�rst well-foundedness proof of RPO not based on Kruskal theorem. This ordering
was later extended to the calculus of constructions by Daria Walukiewicz [50,51].

Although the computability closure on one hand, and the recursive path
ordering on the other hand, share the same computability-based techniques,
there has been no precise comparison between these two termination criteria.
In [51], one can �nd examples of rules that are accepted by one criterion but
not the other. And Jean-Pierre Jouannaud and Albert Rubio themselves use the
notion of computability closure for strengthening HORPO.

In this paper, we explore the relations between both criteria. We start from
the trivial remark that the computability closure itself provides us with an or-
dering: let t CR(>) u if t = ft and u ∈ CC>(t), where CC> is the computability
closure built by using a well-founded relation > for comparing the arguments
between function calls. Proving the well-foundedness of this ordering simply con-
sists in proving that the computability closure is correct, which can be done by
induction on >. Then, we remark that the function mapping > to CR(>) is
monotone wrt inclusion. Thus, it admits a least �xpoint which is a well-founded
ordering. We prove that this �xpoint contains HORPO and is equal to RPO in
the �rst-order case.

2 Terms and types

We consider simply-typed λ-terms with curried constants. See [2] for details
about typed λ-calculus. For rewriting, we follow the notations of Nachum Der-
showitz and Jean-Pierre Jouannaud's survey [15].

Let B be a set of base types. The set T of simple types is inductively de�ned
as usual: T ∈ T = B ∈ B | T ⇒ T .

Let X be a set of variables and F be a set of function symbols disjoint from
X . We assume that every a ∈ X ∪ F is equipped with a type τa ∈ T. The sets
T T of terms of type T are inductively de�ned as follows:

� If a ∈ X ∪ F , then a ∈ T τa .

� If x ∈ X and t ∈ T U , then λxt ∈ T τx⇒U .

� If v ∈ T T⇒U and t ∈ T T , then vt ∈ T U .
As usual, we assume that, for all type T , the set of variables of type T

is in�nite and consider terms up to α-conversion (type-preserving renaming of
bound variables). Let FV(t) be the set of variables free in t. Let t denote a
sequence of terms t1, . . . , tn of length n = |t| ≥ 0.

Let τ(t) denote the type of a term t. In the following, writing t : T or tT

means that τ(t) = T .

The set Pos(t) of positions in a term t is de�ned as usual as words on {1, 2}.
Let t|p be the subterm of t at position p ∈ Pos(t), and t[u]p be the term obtained
by replacing in t its subterm at position p ∈ Pos(t) by u.

A term is algebraic if it contains no abstraction and no subterm of the form
xt. A term t is linear if no variable free in t occurs more than once in t.

The β-reduction is the closure by context of the relation (λxt)u→β t
u
x where

tux denotes the higher-order substitution of x by u in t.
A rewrite rule is a pair of terms l→ r such that l is of the form f l, FV(r) ⊆

FV(l) and τ(l) = τ(r). Given a set R of rewrite rules, let →R be the closure
by context and substitution of R. Hence, matching is modulo α-conversion (but
α-conversion is needed only for left-hand sides having abstractions). A rule l→ r
is linear (resp. algebraic) if both l and r are linear (resp. algebraic).

Given a relation → on terms, let ←, →= and →∗ be its inverse, its re�exive
closure and its re�exive and transitive closure respectively. Let also→ (t) = {t′ ∈
T | t→ t′} be the set of reducts of t, and SN(→) (resp. SNT (→)) be the set of
terms (resp. of type T) that are strongly normalizable wrt→. Our aim is to prove
the termination (strong normalization, well-foundedness) of → =→β ∪→R.

Given a relation >, let >lex, >mul and >prod respectively denote the lexico-
graphic, multiset and product extensions of >. Note that all these extensions
are well-founded whenever > is well-founded.

3 Computability

In this section, we remind the notion of computability predicate introduced by
William Tait [43,44] and extended by Jean-Yves Girard with the notion of neu-
tral2 term [19,20]. Every type is interpreted by a set of computable terms of that
type. Since computability is de�ned so as to imply strong normalization, the
latter is obtained by proving that every term is computable.

In the following, we assume given a set R of rewrite rules.

De�nition 1 (Reducibility candidates). A term is neutral if it is of the
form xv or of the form (λxt)uv. Let → = →β ∪→R. A reducibility candidate
for the type T is a set P of terms such that:

(1) P ⊆ SNT (→).
(2) P is stable by →: →(P) ⊆ P .
(3) If t : T is neutral and →(t) ⊆ P , then t ∈ P .
Let QTR be the set of all reducibility candidates for the type T , and IR be the
set of functions I from B to 2T such that, for all B ∈ B, I(B) ∈ QB

R. Given an
interpretation of base types I ∈ IR, we de�ne an interpretation [[T]]IR ∈ QTR for
every type T as follows:

� [[B]]IR = I(B),
� [[T ⇒ U]]IR = {v ∈ SNT⇒U | ∀t ∈ [[T]]IR, vt ∈ [[U]]IR}.
2 simple in [19].

One can check that SNT is a reducibility candidate for T .
We now check that the interpretation of a type is a reducibility candidate.

Lemma 1. If I ∈ IR then, for all type T , [[T]]IR ∈ QTR.

Proof. We proceed by induction on T . The lemma is immediate for T ∈ B.
Assume now that [[T]]IR ∈ QTR and [[U]]IR ∈ QUR. We prove that [[T ⇒ U]]IR ∈
QT⇒UR .

(1) [[T ⇒ U]]IR ⊆ SNT⇒U by de�nition.

(2) Let v ∈ [[T ⇒ U]]IR, v
′ ∈ →(v) and t ∈ [[T]]IR. We must prove that v′t ∈ [[U]]IR.

This follows from the facts that [[U]]IR ∈ QUR, vt ∈ [[U]]IR and v′t ∈ →(vt).
(3) Let vT⇒U be a neutral term such that →(v) ⊆ [[T ⇒ U]]IR and t ∈ [[T]]IR.

We must prove that vt ∈ [[U]]IR. Since v is neutral, vt is neutral too. Since
[[U]]IR ∈ QUR, it su�ces to prove that →(vt) ⊆ [[U]]IR. Since [[T]]IR ∈ QTR,
t ∈ SN and we can proceed by induction on t with → as well-founded
ordering. Let w ∈ →(vt). Since v is neutral, either w = v′t with v′ ∈ →(v), or
w = vt′ with t′ ∈ →(t). In the former case, w ∈ [[U]]IR since v′ ∈ [[T ⇒ U]]IR.
In the latter case, we conclude by induction hypothesis on t′. ut

Finally, we come to the de�nition of computability.

De�nition 2 (Computability). Let I be the base type interpretation such that
I(B) = SNB. A term t : T is computable if t ∈ [[T]]IR.

In the following, we drop the superscript I in [[T]]IR.
We do not know how to prove that computability is stable by subterm before

proving that every term is computable. However, since, on base types, com-
putability is equivalent to strong normalization, the subterms of base type of a
computable term are computable. This is in particular the case for the arguments
of base type of a function symbol:

De�nition 3 (Accessibility). For all f : T ⇒ B, let Acc(f) = {i | Ti ∈ B} be
the set of accessible arguments of f .

We now prove some properties of computable terms.

Lemma 2 (Computability properties).

(C1) If t, u and tux are computable, then (λxt)u is computable.

(C2) If every symbol is computable, then every term is computable.

(C3) If ft is computable and i ∈ Acc(f), then ti is computable.

(C4) A term ft : B is computable whenever t are computable and every head-
reduct of ft is computable.

(C5) A symbol f : T ⇒ B is computable if every head-reduct of ft is computable
whenever t : T are computable.

(C6) A symbol f is computable if, for every rule f l → r ∈ R and substitution
σ, rσ is computable whenever lσ are computable.

Proof. (C1) Since (λxt)u is neutral, it su�ces to prove that every reduct is
computable. We proceed by induction on (t, u) with →prod as well-founded
ordering (t and u are computable). Assume that (λxt)u → v. If v = tux,
then t′ is computable by assumption. Otherwise, v = (λxt′)u with t → t′,
or v = (λxt)u′ with u → u′. In both cases, we can conclude by induction
hypothesis.

(C2) First note that the identity substitution is computable since variables are
computable (they are neutral and irreducible). We then prove that, for every
term t and computable substitution θ, tθ is computable, by induction on t.

� Assume that t = f ∈ F . Then, tθ = f is computable by assumption.

� Assume that t = x ∈ X . Then, tθ = xθ is computable by assumption.

� Assume that t = λxu. Then, tθ = λxuθ. Let v : V computable. We must
prove that tθv is computable. By induction hypothesis, uθvx is computable.
Since uθ and v are computable too, by (C1), tθ is computable.

� Assume that t = uV⇒T v. Then, tθ = uθvθ. By induction hypothesis, uθ
and vθ are computable. Thus, tθ is computable.

(C3) By de�nition of the interpretation of base types.

(C4) By de�nition of the interpretation of base types, it su�ces to prove that
every reduct of ft is computable. We prove it by induction on t with→prod

as well-founded ordering (t are computable). Head-reducts are computable
by assumption. For non-head-reducts, this follows by induction hypothesis.

(C5) By de�nition of the interpretation of arrow types and (C4).

(C6) After (C5), it su�ces to prove that every head-reduct of ft is computable
whenever t are computable. Let t′ be a head-reduct of ft. Then, there is
l→ r ∈ R and σ such that t = lσ and t′ = rσ. Thus, t′ is computable. ut

4 Computability closure

After the properties (C2) and (C6), we are left to prove that, for every rule
f l→ r ∈ R, rσ is computable whenever lσ are computable. This naturally leads
us to �nd a set CCf (l) of terms t such that tσ is computable whenever lσ are
computable: the computability closure of l wrt f .

We can include l and close this set with computability-preserving operations
like applying a term to another or taking the accessible argument of a function
call.

We can also include variables distinct from FV(l) and allow abstraction on
them by strengthening the property to prove as follows: for all t ∈ CCf (l), tσ is
computable whenever lσ are computable and σ is computable on FV(t) \FV(l).

Now, to allow function calls, the idea is to introduce a precedence on function
symbols and a well-founded ordering > on function arguments.

So, we assume given a quasi-ordering ≥F on F which strict part >F =
≥F \ ≤F is well-founded. Let 'F = ≥F ∩ ≤F be its associated equivalence
relation.

We also assume that every symbol f is equipped with a status statf ∈
{lex,mul}, such that statf = statg whenever f 'F g, de�ning how the argu-
ments of f must be compared: lexicographically (from left to right, or from right
to left) or by multiset.

De�nition 4 (Status relation). The status relation associated to a relation
> is the relation (f, t) >stat (g,u) such that f >F g or f 'F g and t >statf

u.

Note that the status relation >stat is well-founded whenever > so is.
We now formalize the notion of computability closure.

De�nition 5. A function CC mapping every fT⇒B and lT to a set of terms
CCf (l) is a computability closure if, for all fT⇒B, lT , r ∈ CCf (l) and θ, rθ is
computable whenever lθ are computable and θ is computable on X \ FV(l).

We now check that the computability of symbols, hence the termination of
→β ∪→R by (C2), can be obtained by using a computability closure.

Lemma 3. If CC is a computability closure and, for all rule f l → r ∈ R,
r ∈ CCf (l), then every symbol is computable.

Proof. It follows from (C6) and the fact that FV(r) ⊆ FV(l). ut

Fig. 1. Higher-order computability closure

(arg) li ∈ CCf>(l)

(decomp-symb)
gu ∈ CCf>(l) i ∈ Acc(g)

ui ∈ CCf>(l)

(prec)
f >F g

g ∈ CCf>(l)

(call)
f 'F gU⇒U uU ∈ CCf>(l) l >fl

statf
u

gu ∈ CCf>(l)

(app)
uV⇒T ∈ CCf>(l) vV ∈ CCf>(l)

uv ∈ CCf>(l)

(var)
x /∈ FV(l)

x ∈ CCf>(l)

(lam)
u ∈ CCf>(l) x /∈ FV(l)

λxu ∈ CCf>(l)

We now present a computability closure similar to the one introduced in
[8,9] except that the relation > used for comparing arguments in recursive calls is
replaced by an abstract family of relations (>l)l∈T . We then prove the correctness
of this abstract computability closure under some condition.

De�nition 6 (Closure-compatibility). A relation � is closure-compatible
with a family of relations (>l)l∈T if, for all l and θ, tθ � uθ whenever t >l u,
tθ and uθ are computable, and θ is computable on X \ FV(l).

Note that any relation stable by substitution > is closure-compatible with
itself (the constant family equal to >). This is in particular the case of the
restriction of the subterm ordering > de�ned by t > u if u is a subterm of t and
FV(u) ⊆ FV(t).

Lemma 4. Let > = (>l)l∈T be a family of relations. The function CC> de-
�ned in Figure 1 is a computability closure whenever there exists a well-founded
relation on computable terms � that is closure-compatible with >.

Proof. We proceed by induction, �rst on (f, lθ) with �stat as well-founded or-

dering (H1), and second, by induction on CCf>(l) (H2).

(arg) liθ is computable by assumption.

(decomp-symb) By (H2), guθ is computable. Thus, after (C3), uiθ is com-
putable.

(prec) By (H1), g is computable.

(call) By (H2), uθ are computable. Since l >fl
statf

u, � is closure-compatible
with >, lθ and uθ are computable, and θ is computable on X \FV(l), we have
lθ �statf

uθ. Therefore, by (H1), guθ is computable.

(app) By (H2), uθ and vθ are computable. Thus, uθvθ is computable.

(var) Since x ∈ X \ FV(l), xθ is computable by assumption.

(lam) Wlog we can assume that x /∈ codom(θ). Thus, (λxu)θ = λxuθ. Let v : τx
computable. After (C1), (λxuθ)v is computable if uθ, v and uθvx are com-
putable. We have v computable by assumption and uθ and uθvx computable
by (H2). ut

5 β-normalized rewriting with matching modulo βη

In this section, we show how the notion of computability closure can be extended
to deal with HRS's [39]. This extends our previous results on CRS's and HRS's
[5]. This computability closure approach seems simpler than the technique of
�neutralization� introduced by Jean-Pierre Jouannaud and Albert Rubio in [24].
However, the comparison between both approaches remains to be done.

In HRS's, rewrite rules are of base type, rule left-hand sides are patterns à la
Miller [37], and rewriting is de�ned on terms in β-normal η-long form as follows:
t ⇒R u if there are p ∈ Pos(t), l → r ∈ R and σ in β-normal η-long form such
that t|p = lσ↓β↑η and u = t[rσ↓β↑η]p.

We are going to consider a slightly more general notion of rewriting: β-
normalized rewriting with matching modulo βη, de�ned as follows: t →R,βη u
if there are p ∈ Pos(t), l → r ∈ R and σ in β-normal form such that t|p is in
β-normal form, t|p =βη lσ and u = t[rσ]p. Furthermore, we do not assume that
rules are of base type. However, in this case, one can check that, on terms in
β-normal η-long form, ⇒R ⊆ →R,βη→∗β .

Matching modulo βη is necessary when a rule left-hand side contains abstrac-
tions. Consider for instance the left-hand side l = Dλx(sin(Fx)). With matching
modulo α-conversion only, the term t = Dλx(sinu) matches p only if u is of the
form vx. In particular, Dλx(sinx) does not match p. Yet, if one substitutes F
by λxu in l, then one gets D(λx(sin((λxu)x))) which β-reduces to t.

Take now l = Dλx(Fx). With matching modulo α-conversion only, the term
t = Du matches l only if u is of the form λxv. In particular, (D sin) does not
match l. Yet, if one substitutes F by u in l, then one gets Dλx(ux) which η-
reduces to t since x /∈ FV(u) (by de�nition of higher-order substitution).

Higher-order patterns are terms in β-normal η-long form which free variables
are applied to terms η-equivalent to distinct bound variables. Hence, if l is a
pattern, t and σ are in β-normal form and lσ =βη t, then lσ →∗β0

=η t, where
→β0 is the restriction of→β to redexes of the form (λxt)x, that is, (λxt)x→β0 t
[37].

Now, for proving the termination of →β ∪→R,βη (hence the termination of
the HRS rewrite relation⇒R), it su�ces to adapt the notion of computability by
replacing →R by →R,βη. One can check that all the proofs of the computability
properties are still valid except the one for (C6) for which we give a new proof:

Lemma 5 (C6). A symbol f is computable if, for every rule f l → r ∈ R and
substitution σ, rσ is computable whenever lσ are computable.

Proof. After (C5), for proving that f : T ⇒ B is computable, it su�ces to prove
that every head-reduct of ft is computable whenever t : T are computable. Let
t′ be a head-reduct of ft. Then, ft is in β-normal form and there are f l→ r ∈ R
and σ such that f lσ ←∗β0

=η ft and t′ = rσ. To conclude, it su�ces to check
that lσ are computable.

To this end, we prove that computability is preserved by η-reduction, η-
expansion and β0-expansion. Let t be a computable term and let u be a term
obtained from t by η-reduction, η-expansion or β0-expansion. We prove that u is
computable when u is of base type. If u is not of base type then, by applying it
to computable terms of appropriate types, we get a term of base type. On base
types, computability is equivalent to strong normalization. Thus, it su�ces to
prove that every reduct of u is strongly normalizable. In each case, we proceed
by induction on t with → as well-founded ordering (t is computable).

� β0-expansion: t ←β0 u. If u →β u′ then either u′ = t is computable or,
by con�uence of β and since β0 makes no duplication, there is t′ such that
t→β t

′ ←∗β0
u′. Now, if u→R u

′ then, since R-redexes are in β-normal form,
the β0-redex is either above the R-redex or at a disjoint position. Thus, there
is u′ such that t →R t′ ←β0 u

′. In both cases, we can conclude by induction
hypothesis.

� η-reduction: t→η u. If u→β u
′ then, by postponement of η wrt β (→η→β ⊆

→+
β→∗η), there is t′ such that t →+

β t′ →∗η u′. Now, if u →R u′ then, since
R-redexes are in β-normal form, either the η-redex is a β-redex and t →β

u →R t′ = u′, or there is t′ such that t →R t′ →∗η u′. In both cases, we can
conclude by induction hypothesis.

� η-expansion: t ←η u. If u →β u′ then either u′ = t is computable or, by
con�uence of βη, there is t′ such that t →β t

′ ←∗η u′. Now, if u →R u′ then,
since R-redexes are in β-normal form, there is t′ such that t→R t

′ ←∗η u′. In
both cases, we can conclude by induction hypothesis. ut

By property (C2) and Lemma 4, it follows that → = →β ∪→R,βη is well-

founded if, for all rule f l→ r ∈ R, r ∈ CCf>(l).

Fig. 2. Decomposition rules for higher-order patterns

(decomp-lam)
λyu ∈ CCf>(l) y /∈ FV(l)

u ∈ CCf>(l)

(decomp-app-left)
uy ∈ CCf>(l) y /∈ FV(l) ∪ FV(u)

u ∈ CCf>(l)

Now, for dealing with patterns à la Miller, we also need to add new decom-
position rules in the computability closure.

Lemma 6. The function CC> de�ned by the rules of Figure 1 and 2 is a com-
putability closure whenever there exists a well-founded relation on computable
terms that is closure-compatible with >.

Proof. We extend the proof of Lemma 4 with the new decomposition rules.

(decomp-lam) Let θ′ be the restriction of θ to dom(θ)\{y}. Wlog, we can assume
that y /∈ codom(θ). Hence, (λyu)θ′ = λyuθ′. Now, since dom(θ) ⊆ FV(u) \
FV(l), dom(θ′) ⊆ FV(λyu) \ FV(l). Thus, by (H2), λyuθ′ is computable.
Since yθ is computable, (λyuθ′)yθ is computable. Thus, by β-reduction, uθ′yθy
is computable too. Finally, since y /∈ dom(θ′) ∪ codom(θ′), uθ′yθy = uθ.

(decomp-app-left) Let v : τy computable. Since dom(θ) ⊆ FV(u)\FV(l) and y /∈
FV(l), dom(θvy) = dom(θ) ∪ {y} ⊆ FV(uy) \ FV(l). Thus, by (H2), (uy)θvy =
uθvyv is computable. Since y /∈ FV(u), uθvy = uθ. Thus, uθ is computable. ut

6 Matching modulo some equational theory

In this section, we show how the notion of computability closure can be used for
proving the termination of the combination of β-reduction and rewriting with
matching modulo some equational theory E [48,21].

To this end, we assume that E is a symmetric set of rules, that is, l→ r ∈ E
i� r → l in E. By de�nition of rewrite rules (see Section 2), this implies that, for
all l→ r ∈ E, r is of the form gr and FV(l) = FV(r). This includes associativity
and commutativity but excludes collapsing rules like x+0→ x and erasing rules
like x× 0→ 0.

Then, rewriting with matching modulo can be de�ned as follow: t→R,E u if
there are p ∈ Pos(t), l→ r ∈ R and σ such that t|p →∗E lσ and u = t[rσ]p.

Rewriting with matching modulo E is di�erent from rewriting modulo E
which is →∗E→R. The point is that, with matching modulo E, no E-step takes
place above t|p when one rewrites a term t at some position p ∈ Pos(t).

Hence, we correct an error in [4] (Theorem 6) where it is claimed that →β ∪
→∗E→R is terminating. What is in fact proved in [4] is the termination of →β ∪
→∗E1

→R1∪→Rω,Eω
where E1 and R1 (resp. Eω and Rω) are the �rst-order (resp.

higher-order) parts of E and R respectively.
For proving the termination of→β∪→R,E , it su�ces to adapt computability

by replacing →R by →R,E . One can check that all the proofs of computability
properties are still valid except the one for (C6) for which we give a new proof:

Lemma 7 (C6). Let E be a symmetric set of rules. Assume that � is a well-
founded relation on computable terms closure-compatible with > and that, for
all rule f l → gr ∈ E, r ∈ CCf>(l). Then, f is computable if, for every rule
f l→ r ∈ R and substitution σ, rσ is computable whenever lσ are computable.

Proof. By Lemma 4, CC> is a computability closure. After (C5), for proving
that f : T ⇒ B is computable, it su�ces to prove that every head-reduct of ft is
computable whenever t : T are computable. Let t′ be a head-reduct of ft. Then,
there is gl → r ∈ R and σ such that ft →∗E glσ and t′ = rσ. By de�nition of
computability closure, lσ are computable since t are computable (induction on
the number of E-steps). Therefore, rσ is computable. ut

By property (C2) and Lemma 4, it follows that → = →β ∪→R,E is well-

founded if moreover, for all rule f l→ r ∈ R, r ∈ CCf>(l).

7 Higher-order data types

Until now, we used the subterm ordering in (call). But this ordering is not strong
enough to handle recursive de�nitions on higher-order data types, i.e. data types
with constructors having functional recursive arguments. Consider for instance
a type P representing processes with a sequence operator ; : P ⇒ P ⇒ P and
a data-dependent choice operator Σ : (D ⇒ P) ⇒ P. Then, in the following
simpli�cation rule [45]:

(ΣP);x→ Σλy(Py;x)

the term Py is not a subterm of ΣP .

In this section, we describe an extension of the computability closure to
handle such de�nitions. It is based on the interpretation of �positive� higher-
order data types introduced by Nax Paul Mendler in 1987 [34,35].

As usual, the set Pos(T) of positions in a type T is de�ned as words on {1, 2}.
The sets Pos+(T) and Pos−(T) of positive and negative positions respectively are
inductively de�ned as follows:

� Posδ(B) = {ε}.
� Posδ(T ⇒ U) = 1 · Pos−δ(T) ∪ 2 · Posδ(U).

Let Pos(B, T) be the positions of the occurrences of B in T . A base type B
occurs only positively (resp. negatively) in a type T if Pos(B, T) ⊆ Pos+(T) (resp.
Pos(B, T) ⊆ Pos−(T)).

Nax Paul Mendler showed that the combination of β-reduction and reduction
rules for a �case� or �match� construction does not terminate if a data type B has
a constructor having an argument in the type of which B occurs negatively (we
say that B is not positive). Take for instance c : (B⇒ N)⇒ B, f : B⇒ (B⇒ N)
together with the rule f(cx) →R x. Then, by taking ω = λxfxx : B ⇒ N, we
have ω(cω)→β f(cω)(cω)→R ω(cω)→β . . .

He also showed that the set of all reducibility candidates is a complete lattice
for inclusion and that, if B is positive, then one can build an interpretation of
B as the �xpoint of a monotone functional on reducibility candidates, in which
the reduction rules for the case construction are safe. In this case, we can say
that every argument of a constructor is accessible. We extend this notion of
accessibility to every (de�ned or unde�ned) function symbol as follows.

De�nition 7 (Accessible arguments). For every fT⇒B ∈ F , let Acc(f) =
{i ≤ |T | | Pos(B, Ti) ⊆ Pos+(Ti)}.

In our example, we have Pos(P,D ⇒ P) = {2} = Pos+(D ⇒ P) and
Pos(P,P) = {ε} = Pos+(P). Thus, Acc(Σ) = {1} and Acc(;) = {1, 2}.

We now de�ne the functional the least �xpoint of which will provide the
interpretation of base types.

Lemma 8. The function F IR(B) = {t ∈ SNB | ∀fT⇒Bt, t →∗ ft ⇒ ∀i ∈
Acc(f), ti ∈ [[Ti]]IR} is a monotone function on IR.

Proof. We �rst prove that P = F IR(B) ∈ QB
R.

(1) P ⊆ SNB by de�nition.

(2) Let t ∈ P , t′ ∈ →(t), f : T ⇒ B and t such that t′ →∗ ft. We must prove
that t ∈ [[T]]R. It follows from the facts that t ∈ P and t→∗ ft.

(3) Let tB neutral such that →(t) ⊆ P . Let fT⇒B, t such that t →∗ ft and
i ∈ Acc(f). We must prove that ti ∈ [[Ti]]R. Since t is neutral, t 6= ft. Thus,
there is t′ ∈ →(t) such that t′ →∗ ft. Since t′ ∈ P , ti ∈ [[Ti]]R.

For the monotony, let ≤+ = ≤ and ≤− = ≥. Let I ≤ J i�, for all B,
I(B) ⊆ J(B). We �rst prove that [[T]]IR ⊆δ [[T]]JR whenever I ≤ J and Pos(B, T) ⊆
Posδ(T), by induction on T .

� Assume that T = C ∈ B. Then, δ = +, [[T]]IR = I(C) and [[T]]IR = J(C). Since
I(C) ⊆ J(C), [[T]]IR ⊆ [[T]]IR.

� Assume that T = U ⇒ V . Then, Pos(B, U) ⊆ Pos−δ(U) and Pos(B, V) ⊆
Posδ(V). Thus, by induction hypothesis, [[U]]IR ⊆−δ [[U]]JR and [[V]]IR ⊆δ [[V]]JR.
Assume that δ = +. Let t ∈ [[T]]IR and u ∈ [[U]]JR. We must prove that
tu ∈ [[V]]JR. Since [[U]]IR ⊇ [[U]]JR, tu ∈ [[V]]IR. Since [[V]]IR ⊆ [[V]]JR, tu ∈ [[V]]JR.
It works similarly for δ = −.
Assume now that I ≤ J . We must prove that, for all B, F IR(B) ⊆ F JR(B).

Let B ∈ B and t ∈ F IR(B). We must prove that t ∈ F JR(B). First, we have
t ∈ SNB since t ∈ F IR(B). Assume now that t →∗ fT⇒Bt and let i ∈ Acc(f).
We must prove that ti ∈ [[Ti]]JR. Since t ∈ F IR(B), ti ∈ [[Ti]]IR. Since i ∈ Acc(f),
Pos(B, Ti) ⊆ Pos+(Ti) and [[Ti]]IR ⊆ [[Ti]]JR. ut

De�nition 8 (Computability). Let IR be the least �xpoint of FR. A term
t : T is computable if t ∈ [[T]]IR

R .

In the following, we drop the superscript IR in [[T]]IR

R .
One can check that all the proofs of computability properties are still valid

except the one for (C4) for which we give a new proof:

Lemma 9 (C4). A term ft : B is computable whenever t are computable and
every head-reduct of ft is computable.

Proof. We �rst need to prove that ft is SN. This follows from the previous
proof of (C4). Assume now that ft →∗ gu and i ∈ Acc(g). We prove that ui
is computable by induction on t with →prod as well-founded ordering (t are
computable). If ft = gu, then ui = ti is computable by assumption. Otherwise,
ft → v →∗ gu. If v is a head-reduct of ft, then v and ui are computable.
Otherwise, we conclude by induction hypothesis. ut

The least �xpoint of FR is reachable by trans�nite iteration from the smallest
element of IR. This provides us with an ordering that can handle de�nitions on
higher-order data types.

De�nition 9 (Size ordering). For all B ∈ B and t ∈ [[B]]R, let the size of t be
the smallest ordinal oB

R(t) = a such that t ∈ F a
R(∅)(B), where F a

R is the trans�nite
a-iteration of FR. Let �R be the union of all the relations �TR inductively de�ned
on [[T]]R as follows:

� t �B
R u if oB

R(t) ≥ oB
R(u).

� t �T⇒UR u if, for all v ∈ [[T]]R, tv �UR uv.

In our example, we have [[P]]R = {t ∈ SNP | ∀fT⇒Pt, t →∗ ft ⇒ ∀i ∈
Acc(f), ti ∈ [[Ti]]R}. Since Acc(Σ) = {1}, if ΣP ∈ [[P]]R then, for all d ∈ [[D]]R,
Pd ∈ [[P]]R and oP

R(Pd) < oP
R(ΣP).

We immediately check that the size ordering is well-founded.

Lemma 10. �R is a well-founded quasi-ordering containing →.

Proof. The relation �R is the union of pairwise disjoint relations. Hence, it
su�ces to prove that each one is transitive and well-founded. We proceed by
induction on T . For T ∈ B, this is immediate. Assume now that (ti)i∈N is an
increasing sequence for �T⇒UR . Since variables are computable, let x ∈ [[T]]R. By
de�nition of �T⇒UR , (tix)i∈N is an increasing sequence for �UR. ut

Fig. 3. Accessibility ordering

(>base)
i ∈ Acc(g) b ∈ X \ FV(l)

gA⇒BaA >l aB⇒B
i bB

(>lam)
a >l bx x ∈ X \ (FV(b) ∪ FV(l))

λxa > b

(>red)
a >l b b→β c

a >l c

(>trans)
a >l b b >l c

a >l c

We now de�ne some relation strong enough for capturing de�nitions on
higher-order data types and with which �R is closure-compatible.

Lemma 11. �R is closure-compatible with the family (>l)l∈T de�ned Figure 3.

Proof. We prove that aθ �R bθ whenever a >l b, aθ and bθ are computable, and
θ is computable on X \ FV(l).

(>base) By de�nition of IR, oR(gaθ) = a + 1 and aiθ ∈ [[B ⇒ B]]I
a
R

R . Since
b ∈ X \FV(l) and θ is computable on X \FV(l), bθ are computable. Therefore,
aiθbθ ∈ Ia

R(B) and aR(gaθ) > a ≥ oR(aiθbθ).
(>lam) Let w : τx computable. Wlog we can assume that x /∈ dom(θ) ∪

codom(θ). Hence, (λxa)θ = λxaθ. We must prove that (λxaθ)w �R bθw.
By β-reduction, (λxaθ)w �R aθwx . By induction hypothesis, aθwx �R (bx)θwx .
Since x /∈ FV(b) ∪ dom(θ) ∪ codom(θ), (bx)θwx = bθw.

(>red) By induction hypothesis and since →β ⊆ �R.
(>trans) By induction hypothesis and transitivity of �R. ut

By property (C2) and Lemma 4, it follows that → = →β ∪→R is well-

founded if, for all rule f l→ r ∈ R, r ∈ CCf>(l).
Note that we could strengthen the de�nition of (>l)l∈T by taking in (>base),

when l = f l, b ∈ CCf>(l) instead of b ∈ X \ FV(l), making the de�nitions of >
and CC> mutually dependent. See [7] for details.

8 The recursive computability ordering

We now show how the computability closure can be turned into a well-founded
ordering containing the monomorphic version of Jean-Pierre Jouannaud and
Albert Rubio's higher-order recursive path ordering [25].

Indeed, consider the relation CR(>) = {(f l, r) | r ∈ CCf>(l),FV(r) ⊆
FV(l), τ(f l) = τ(r)} made of all the rules which right-hand side is in the com-
putability closure of its left-hand side. After (C2) and Lemma 3, →β ∪→CR(>)

is well-founded whenever > is well-founded and stable by substitution. Hence,
CR(>) is itself well-founded and stable by substitution whenever > is well-
founded and stable by substitution.

We now observe that the function mapping > to CR(>) is monotone wrt
inclusion. It has therefore a least �xpoint that is stable by substitution and
which closure by context is well-founded when combined with →β .

Lemma 12. The function mapping > to the relation CR(>) = {(f l, r) | r ∈
CCf>(l), FV(r) ⊆ FV(l), τ(f l) = τ(r)} is monotone wrt inclusion on the set of
well-founded relations stable by substitution.

Proof. Assume that >1 ⊆ >2. One can prove by induction on (f l, r) ∈ CR(>1)
that (f l, r) ∈ CR(>2). In the (call) case, we use the fact that the function
mapping > to >stat is monotone wrt inclusion.

Now, assume that > is well-founded and stable by substitution. After (C2)
and Lemma 3, →β ∪ →CR(>) is well-founded. Thus, CR(>) is well-founded.
Now, one can check that CR(>) is stable by substitution whenever > is stable
by substitution. ut

De�nition 10. Let the weak higher-order recursive computability (quasi-) or-
dering >whorco be the least �xpoint of CR, and the higher-order recursive com-
putability (quasi-) ordering >horco be the closure by context of >whorco.

In Figure 4, we give an inductive presentation of >horco obtained by replacing
u ∈ CCf>(l) by f l > u in Figure 1, and adding a rule (cont) for the closure by
context and a rule (rule) for the conditions on rules.

Strictly speaking, >horco, like >horpo, is not a quasi-ordering. One needs to
take its transitive closure to get a quasi-ordering. On the other hand, one can
check that >whorco is transitive, hence is a true quasi-ordering (note that, if
t >whorco u, then t is of the form ft).

Moreover, since >whorco is not closed by context, it is better suited for proving
the termination of rewrite systems by using the dependency pair method [1,42,3].

We now would like to compare this ordering with the monomorphic version of
>horpo which de�nition is reminded in Figure 5. To this end, we need to slightly
strengthen the de�nition of computability closure by replacing > by its closure
by context →>, and by adding the following deduction rule:

(red)
u ∈ CCf>(l) u > v

v ∈ CCf>(l)

Fig. 4. Higher-order computability ordering

(cont)
t >whorco u p ∈ Pos(C)

C[t]p >horco C[u]p

(rule)
tT > uU FV(u) ⊆ FV(t) T = U

t >whorco u

(arg) f l > li

(decomp-symb)
f l > gu i ∈ Acc(g)

f l > ui

(prec)
f >F g

f l > g

(call)
f 'F gU⇒U f l > uU l (>whorco)statf u

f l > gu

(app)
f l > uV⇒T f l > vV

f l > uv

(var)
x /∈ FV(l)

f l > x

(lam)
f l > u x /∈ FV(l)

f l > λxu

One can check that all the properties are preserved. More details can be found
in [7]. Hence, we get the following additional deduction rules for >whorco:

(call)
f 'F gU⇒U f l > uU l (>horco)statf

u

f l > gu

(red)
f l > u u >horco v

f l > v

We now prove that >horpo is included in the transitive closure of >horco.

Lemma 13. >horpo ⊆ >+
horco.

Proof. Note that FV(u) ⊆ FV(t) and T = U whenever tT >horpo u
U (>horpo is

a set of rules).
We �rst prove the property (*): ft > v whenever tj >

∗
horco v or ft >+

horco v.
Assume that tj >

∗
horco v. By (arg), ft > tj . Thus, by (red), ft > v. Assume now

that ft >horco u >
∗
horco v. By (red), it su�ces to prove that ft > u. There are

two cases:

� ft = fatkb, u = fat′kb and tk >horco t
′
k. We conclude by (call).

Fig. 5. HORPO [25]

P (f, t, u) = ft >horpo u ∨ (∃j) tj ≥horpo u

(1)
ti ≥horpo u

fT⇒T tT >horpo uT

(2)
f >F g P (f, t,u)

fT⇒T tT >horpo gU⇒TuU

(3)
f 'F g statf = mul t (>horpo)statf u

fT⇒T tT >horpo gU⇒TuU

(4)
f 'F g statf = lex t (>horpo)statf u P (f, t,u)

fT⇒T tT >horpo gU⇒TuU

(5)
P (f, t,u)

fT⇒T t >horpo uT

(6)
{t1, t2} (>horpo)mul {u1, u2}
tU⇒T1 tU2 >horpo uV⇒T1 uV2

(7)
t >horpo u

λxt >horpo λxu

� ft = f lb, u = rb and f l >whorco r. One can check that f lt > rt whenever
f l > r.

We now prove the theorem by induction on >horpo.

(1) By induction hypothesis, ti >
∗
horco u. By (arg), ft > ti. Since ti >horpo u

and ft >horpo u, ft → ti is a rule. Thus, ft >whorco ti and, by (red),
ft >whorco u.

(2) By induction hypothesis, for all i, ft >+
horco ui or tj >

∗
horco ui. Hence, by

(*), ft > u. By (prec), ft > g. Thus, by (app), ft > gu. Since ft→ gu is
a rule, ft >whorco gu.

(3) By induction hypothesis, t (>+
horco)mul u. Hence, by (*), ft > u. Thus, by

(call), ft > gu. Since ft→ gu is a rule, ft >whorco gu.

(4) By induction hypothesis, t (>+
horco)statf

u and, for all i, ft >+
horco ui or

tj >
∗
horco ui. Hence, by (*), ft > u. Thus, by (call), ft > gu. Since ft→ gu

is a rule, ft >whorco gu.

(5) By induction hypothesis, for all i, ft >+
horco ui or tj >

∗
horco ui. Hence, by

(*), ft > ui for all i. Thus, by (app), ft > u. Since (ft,u) is a rule,
ft >whorco u.

(6) For typing reasons, (t1, u1) (>horpo)prod (t2, u2). Thus, by induction hy-
pothesis, (t1, u1) (>+

horco)prod (t2, u2). Hence, by (cont) and transitivity,
t1t2 >

+
horco u1u2.

(7) By induction hypothesis, t >+
horco u. Thus, by (cont), λxt >+

horco λxu. ut

We observe that, if (6) were restricted to (t1 >horpo u1 ∧ t2 = u2) ∨ (t1 =
u1∧ t2 >horpo u2), then we would get >horpo ⊆ >horco, since this is the only case
requiring transitivity.

Note that >horco can be extended with the accessibility ordering de�ned in
Figure 3. The details can be found in [7].

Finally, we remark that, when restricted to �rst-order terms, the recursive
computability ordering is equal to the usual �rst-order recursive path ordering
[41,14], the subterm rule being simulated by (arg) and (red).

Lemma 14. The relation de�ned in Figure 4 by the rules (arg), (decomp-symb),
(call) and the rule:

(prec-app)
f >F g

U⇒U f l > uU

f l > gu

is equal to the usual �rst-order recursive path ordering.

9 Conclusion

We show through various extensions how powerful is the notion of computability
closure introduced by Jean-Pierre Jouannaud and Mitsuhiro Okada. In partic-
ular, we show how it can easily be turned into a well-founded ordering con-
taining Jean-Pierre Jouannaud and Albert Rubio's higher-order recursive path
ordering. This provides a simple way to extend this ordering to richer type dis-
ciplines. However, its de�nition as the closure by context of another relation is
not completely satisfactory, all the more so since one wants to combine it with
the accessibility ordering. We should therefore try to �nd a new de�nition of
HORPO that nicely integrates the notions of computability closure and accessi-
bility ordering in order to capture de�nitions on higher-order data types (data
types with constructors having functional recursive arguments).

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133�178, 2000.

2. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of logic in computer science, volume 2. Oxford
University Press, 1992.

3. F. Blanqui. Higher-order dependency pairs. In Proceedings of the 8th International

Workshop on Termination, 2006.
4. F. Blanqui. Rewriting modulo in Deduction modulo. In Proceedings of the 14th

International Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science 2706, 2003.

5. F. Blanqui. Termination and con�uence of higher-order rewrite systems. In Pro-

ceedings of the 11th International Conference on Rewriting Techniques and Appli-

cations, Lecture Notes in Computer Science 1833, 2000.

6. F. Blanqui. De�nitions by rewriting in the Calculus of Constructions. Mathematical

Structures in Computer Science, 15(1):37�92, 2005.
7. F. Blanqui. (HO)RPO revisited. Research Report 5972, INRIA, 2006.
8. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Construc-

tions. In Proceedings of the 10th International Conference on Rewriting Techniques

and Applications, Lecture Notes in Computer Science 1631, 1999.
9. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type Systems. Theo-

retical Computer Science, 272:41�68, 2002.
10. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of

the 3rd IEEE Symposium on Logic in Computer Science, 1988.
11. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong

normalization. In Proceedings of the 16th International Colloquium on Automata,

Languages and Programming, Lecture Notes in Computer Science 372, 1989.
12. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong

normalization. Theoretical Computer Science, 83(1):3�28, 1991.
13. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con-

�uence. Information and Computation, 114(1):1�29, 1994.
14. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Sci-

ence, 17:279�301, 1982.
15. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B, chapter 6. North-Holland,
1990.

16. D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. In
Proceedings of the 4th International Conference on Rewriting Techniques and Ap-

plications, Lecture Notes in Computer Science 488, 1991.
17. D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Infor-

mation and Computation, 101(2):251�267, 1992.
18. J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse et son ap-

plication à l'élimination des coupures dans l'analyse et la théorie des types. In
J. Fenstad, editor, Proc. of the 2nd Scandinavian Logic Symposium, volume 63 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1971.

19. J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans

l'arithmetique d'ordre supérieur. PhD thesis, Université Paris VII, France, 1972.
20. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University

Press, 1988.
21. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of

equations. SIAM Journal on Computing, 15(4):1155�1194, 1986.
22. J.-P. Jouannaud and M. Okada. Executable higher-order algebraic speci�cation

languages. In Proceedings of the 6th IEEE Symposium on Logic in Computer

Science, 1991.
23. J.-P. Jouannaud and M. Okada. Abstract Data Type Systems. Theoretical Com-

puter Science, 173(2):349�391, 1997.
24. J.-P. Jouannaud and A. Rubio. Higher-order orderings for normal rewriting. In

Proceedings of the 17th International Conference on Rewriting Techniques and Ap-

plications, Lecture Notes in Computer Science 4098, 2006.
25. J.-P. Jouannaud and A. Rubio. The Higher-Order Recursive Path Ordering. In

Proceedings of the 14th IEEE Symposium on Logic in Computer Science, 1999.
26. J.-P. Jouannaud and A. Rubio. A recursive path ordering for higher-order terms in

eta-long beta-normal form. In Proceedings of the 7th International Conference on

Rewriting Techniques and Applications, Lecture Notes in Computer Science 1103,
1996.

27. Z. Khasidashvili. Expression Reduction Systems. In Proc. of I. Vekua Institute of

Applied Mathematics, volume 36, 1990.

28. J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht Universiteit,
The Netherlands, 1980. Published as Mathematical Center Tract 129.

29. J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121:279�308,
1993.

30. J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi's conjecture.
Transactions of the American Mathematical Society, 95:210�225, 1960.

31. C. Loria-Saenz and J. Steinbach. Termination of combined (rewrite and λ-calculus)
systems. In Proceedings of the 3rd International Workshop on Conditional and

Typed Rewriting Systems, Lecture Notes in Computer Science 656, 1992.

32. O. Lysne and J. Piris. A termination ordering for higher order rewrite systems.
In Proceedings of the 6th International Conference on Rewriting Techniques and

Applications, Lecture Notes in Computer Science 914, 1995.

33. R. Mayr and T. Nipkow. Higher-order rewrite systems and their con�uence. The-
oretical Computer Science, 192(2):3�29, 1998.

34. N. P. Mendler. Recursive types and type constraints in second order lambda
calculus. In Proceedings of the 2nd IEEE Symposium on Logic in Computer Science,
1987.

35. N. P. Mendler. Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic, 51(1-2):159�172, 1991.

36. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple uni�cation. In Proceedings of the International Workshop on

Extensions of Logic Programming, Lecture Notes in Computer Science 475, 1989.

37. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple uni�cation. Journal of Logic and Computation, 1(4):497�536,
1991.

38. D. Miller and G. Nadathur. An overview of λProlog. In Proceedings of the 5th

International Conference on Logic Programming, MIT Press, 1988.

39. T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th IEEE Symposium

on Logic in Computer Science, 1991.

40. M. Okada. Strong normalizability for the combined system of the typed lambda cal-
culus and an arbitrary convergent term rewrite system. In Proceedings of the 1989

International Symposium on Symbolic and Algebraic Computation, ACM Press.

41. D. A. Plaisted. A recursively de�ned ordering for proving termination of term
rewriting systems. Technical report, University of Illinois, Urbana-Champaign,
United States, 1978.

42. M. Sakai and K. Kusakari. On new dependency pair method for proving termi-
nation of higher-order rewrite systems. In Proceedings of the 1st International

Workshop on Rewriting in Proof and Computation, 2001.

43. W. W. Tait. Intensional interpretations of functionals of �nite type I. Journal of
Symbolic Logic, 32(2):198�212, 1967.

44. W. W. Tait. A realizability interpretation of the theory of species. In R. Parikh,
editor, Proceedings of the 1972 Logic Colloquium, volume 453 of Lecture Notes in

Mathematics, 1975.

45. J. van de Pol. Termination proofs for higher-order rewrite systems. In Proceed-

ings of the 1st International Workshop on Higher-Order Algebra, Logic and Term

Rewriting, Lecture Notes in Computer Science 816, 1993.

46. V. van Oostrom. Development closed critical pairs. In Proceedings of the 2nd Inter-

national Workshop on Higher-Order Algebra, Logic and Term Rewriting, Lecture
Notes in Computer Science 1074, 1995.

47. V. van Oostrom. Con�uence for Abstract and Higher-Order Rewriting. PhD thesis,
Vrije Universiteit Amsterdam, The Netherlands, 1994.

48. G. Peterson and M. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233�264, 1981.

49. F. van Raamsdonk. Con�uence and Normalization for Higher-Order Rewriting.
PhD thesis, Vrije University Amsterdam, The Netherlands, 1996.

50. D. Walukiewicz-Chrz¡szcz. Termination of Rewriting in the Calculus of Construc-

tions. PhD thesis, Warsaw University, Poland and Université d'Orsay, France,
2003.

51. D. Walukiewicz-Chrz¡szcz. Termination of rewriting in the Calculus of Construc-
tions. Journal of Functional Programming, 13(2):339�414, 2003.

	Computability Closure: Ten Years Later
	Frédéric Blanqui

