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Abstract. Since Val Tannen's pioneering work on the combination of
simply-typed λ-calculus and �rst-order rewriting [11], many authors have
contributed to this subject by extending it to richer typed λ-calculi and
rewriting paradigms, culminating in the Calculus of Algebraic Construc-
tions. These works provide theoretical foundations for type-theoretic
proof assistants where functions and predicates are de�ned by oriented
higher-order equations. This kind of de�nitions subsumes usual inductive
de�nitions, is easier to write and provides more automation.
On the other hand, checking that such user-de�ned rewrite rules, when

combined with β-reduction, are strongly normalizing and con�uent, and
preserve the decidability of type-checking, is more di�cult. Most ter-
mination criteria rely on the term structure. In a previous work, we
extended to dependent types and higher-order rewriting, the notion of
�sized types� studied by several authors in the simpler framework of ML-
like languages, and proved that it preserves strong normalization.
The main contribution of the present paper is twofold. First, we prove

that, in the Calculus of Algebraic Constructions with size annotations,
the problems of type inference and type-checking are decidable, provided
that the sets of constraints generated by size annotations are satis�able
and admit most general solutions. Second, we prove the latter proper-
ties for a size algebra rich enough for capturing usual induction-based
de�nitions and much more.

1 Introduction

The notion of �sized type� was �rst introduced in [21] and further studied by sev-
eral authors [20,3,1,31] as a tool for proving the termination of ML-like function
de�nitions. It is based on the semantics of inductive types as �xpoints of mono-
tone operators, reachable by trans�nite iteration. For instance, natural numbers
are the limit of (Si)i<ω, where Si is the set of natural numbers smaller than i
(inductive types with constructors having functional arguments require ordinals
bigger than ω). The idea is then to re�ect this in the syntax by adding size
annotations on types indicating in which subset Si a term is. For instance, sub-
traction on natural numbers can be assigned the type − : natα ⇒ natβ ⇒ natα,
where α and β are implicitly universally quanti�ed, meaning that the size of its



output is not bigger than the size of its �rst argument. Then, one can ensure
termination by restricting recursive calls to arguments whose size � by typing �
is smaller. For instance, the following ML-like de�nition of d x

y+1e:

letrec div x y = match x with

| O -> O

| S x' -> S (div (x' - y) y)

is terminating since, if x is of size at most α and y is of size at most β, then x′

is of size at most α− 1 and (x′ − y) is of size at most α− 1 < α.
The Calculus of Constructions (CC) [17] is a powerful type system with

polymorphic and dependent types, allowing to encode higher-order logic. The
Calculus of Algebraic Constructions (CAC) [8] is an extension of CC where func-
tions are de�ned by higher-order rewrite rules. As shown in [10], it subsumes the
Calculus of Inductive Constructions (CIC) [18] implemented in the Coq proof
assistant [15], where functions are de�ned by induction. Using rule-based def-
initions has numerous advantages over induction-based de�nitions: de�nitions
are easier (e.g. Ackermann's function), more propositions can be proved equiv-
alent automatically, one can add simpli�cation rules like associativity or using
rewriting modulo AC [6], etc. For proving that user-de�ned rules terminate when
combined with β-reduction, [8] essentially checks that recursive calls are made
on structurally smaller arguments.

In [7], we extended the notion of sized type to CAC, giving the Calculus of
Algebraic Constructions with Size Annotations (CACSA). We proved that, when
combined with β-reduction, user-de�ned rules terminate essentially if recursive
calls are made on arguments whose size � by typing � is strictly smaller, by
possibly using lexicographic and multiset comparisons. Hence, the following rule-
based de�nition of d x

y+1e:

0 / y → 0
(s x) / y → s ((x − y) / y)

is terminating since, in the last rule, if x is of size at most α and y is of size
at most β, then (s x) is of size at most α + 1 and (x − y) is of size at most
α < α + 1. Note that this rewrite system cannot be proved terminating by
criteria only based on the term structure, like RPO or its extensions to higher-
order terms [22,29]. Note also that, if a term t is structurally smaller than a term
u, then the size of t is smaller than the size of u. Therefore, CACSA proves the
termination of any induction-based de�nition like CIC/Coq, but also de�nitions
like the previous one. To our knowledge, this is the most powerful termination
criterion for functions with polymorphic and dependent types like in Coq. The
reader can �nd other convincing examples in [7].

However, [7] left an important question open. For the termination criterion to
work, we need to make sure that size annotations assigned to function symbols
are valid. For instance, if subtraction is assigned the type − : natα ⇒ natβ ⇒
natα, then we must make sure that the de�nition of − indeed outputs a term
whose size is not greater than the size of its �rst argument. This amounts to



check that, for every rule in the de�nition of −, the size of the right hand-side
is not greater than the size of the left hand-side. This can be easily veri�ed by
hand if, for instance, the de�nition of − is as follows:

0 − x → 0
x − 0 → x

(s x) − (s y) → x − y

The purpose of the present work is to prove that this can be done automat-
ically, by inferring the size of both the left and right hand-sides, and checking
that the former is smaller than the latter.

Fig. 1. Insertion sort on polymorphic and dependent lists

nil : (A : ?)listαA 0
cons : (A : ?)A⇒ (n : nat)listαA n⇒ listsαA (sn)

if_in_then_else : bool⇒ (A : ?)A⇒ A⇒ A
insert : (A : ?)(≤: A⇒ A⇒ bool)A⇒ (n : nat)listαA n⇒ listsαA (sn)
sort : (A : ?)(≤: A⇒ A⇒ bool)(n : nat)listαA n⇒ listαA n

if true in A then u else v → u
if false in A then u else v → v
insert A ≤ x _ (nil _) → cons A x 0 (nil A)

insert A ≤ x _ (cons _ y n l) → if x ≤ y in list A (s (s n))
then cons A x (s n) (cons A y n l)
else cons A y (s n) (insert A ≤ x n l)

sort A ≤ _ (nil _) → nil A
sort A ≤ _ (cons _ x n l) → insert A ≤ x n (sort A ≤ n l)

We now give an example with dependent and polymorphic types. Let ? be
the sort of types and list : ?⇒ nat⇒ ? be the type of polymorphic lists of �xed
length whose constructors are nil and cons. Without ambiguity, s is used for the
successor function both on terms and on size expressions. The functions insert
and sort de�ned in Figure 1 have size annotations satisfying our termination
criterion. The point is that sort preserves the size of its list argument and thus
can be safely used in recursive calls. Checking this automatically is the goal of
this work.

An important point is that the ordering naturally associated with size anno-
tations implies some subtyping relation on types. The combination of subtyping
and dependent types (without rewriting) is a di�cult subject which has been
studied by Chen [12]. We reused many ideas and techniques of his work for
designing CACSA and proving important properties like β-subject reduction
(preservation of typing under β-reduction) [5].

Another important point is related to the meaning of type inference. In ML,
type inference means computing a type of a term in which the types of free and
bound variables, and function symbols (letrec's in ML), are unknown. In other
words, it consists in �nding a simple type for a pure λ-term. Here, type inference



means computing a CACSA type, hence dependent and polymorphic (CACSA
contains Girard's system F), of a term in which the types and size annotations of
free and bound variables, and function symbols, are known. In dependent type
theories, this kind of type inference is necessary for type-checking [16]. In other
words, we do not try to infer relations between the sizes of the arguments of a
function and the size of its output like in [13,4]. We try to check that, with the
annotated types declared by the user for its function symbols, rules satisfy the
termination criterion described in [7].

Moreover, in ML, type inference amounts to solve equality constraints in
the type algebra. Here, type inference amounts to solve equality and ordering
constraints in the size algebra. The point is that the ordering on size expressions
is not anti-symmetric: it is a quasi-ordering. Thus, we have a combination of
uni�cation and symbolic quasi-ordering constraint solving.

Finally, because of the combination of subtyping and dependent typing, the
decidability of type-checking requires the existence of minimal types [12]. Thus,
we must also prove that a satis�able set of equality and ordering constraints has
a smallest solution, which is not the case in general. This is in contrast with
non-dependently typed frameworks.

Outline. In Section 2, we de�ne terms and types, and study some properties
of the size ordering. In Section 3, we give a general type inference algorithm and
prove its correctness and completeness under general assumptions on constraint
solving. Finally, in Section 4, we prove that these assumptions are ful�lled for the
size algebra introduced in [3] which, although simple, is rich enough for capturing
usual inductive de�nitions and much more, as shown by the �rst example above.
Missing proofs are given in [9].

2 Terms and types

Size algebra. Inductive types are annotated by size expressions from the fol-
lowing algebra A:

a ::= α | sa | ∞

where α ∈ Z is a size variable. The set A is equipped with the quasi-ordering
≤A de�ned in Figure 2. Let 'A= ≤A ∩ ≥A be its associated equivalence.

Let ϕ,ψ, ρ, . . . denote size substitutions, i.e. functions from Z to A. One can
easily check that ≤A is stable by substitution: if a ≤A b then aϕ ≤A bϕ. We
extend ≤A to substitutions: ϕ ≤A ψ i�, for all α ∈ Z, αϕ ≤A αψ.

We also extend the notion of �more general substitution� from uni�cation
theory as follows: ϕ is more general than ψ, written ϕ v ψ, i� there is ϕ′ such
that ϕϕ′ ≤A ψ.

Terms.We assume the reader familiar with typed λ-calculi [2] and rewriting
[19]. Details on CAC(SA) can be found in [8,7]. We assume given a set S = {?,2}
of sorts (? is the sort of types and propositions; 2 is the sort of predicate types),
a set F of function or predicate symbols, a set CF2 ⊆ F of constant predicate
symbols, and an in�nite set X of term variables. The set T of terms is:



Fig. 2. Ordering on size expressions

(re�) a ≤A a (trans)
a ≤A b b ≤A c

a ≤A c

(mon)
a ≤A b

sa ≤A sb
(succ)

a ≤A b

a ≤A sb
(infty) a ≤A ∞

t ::= s | x | Ca | f | [x : t]t | (x : t)t | tt

where s ∈ S, x ∈ X , C ∈ CF2, a ∈ A and f ∈ F \ CF2. A term [x : t]u is
an abstraction. A term (x : T )U is a dependent product, simply written T ⇒ U
when x does not occur in U . Let t denote a sequence of terms t1, . . . , tn of length
|t| = n.

Every term variable x is equipped with a sort sx and, as usual, terms
equivalent modulo sort-preserving renaming of bound variables are identi�ed.
Let V(t) be the set of size variables in t, and FV(t) be the set of term vari-
ables free in t. Let θ, σ, . . . denote term substitutions, i.e. functions from X
to T . For our previous examples, we have CF2 = {nat, list, bool} and F =
CF2 ∪ {0, s, /, nil, cons, insert, sort}.

Rewriting. Terms only built from variables and symbol applications ft are
said to be algebraic. We assume given a set R of rewrite rules l → r such that
l is algebraic, l = f l with f /∈ CF2 and FV(r) ⊆ FV(l). Note that, while left
hand-sides are algebraic and thus require syntactic matching only, right hand-
sides may have abstractions and products. β-reduction and rewriting are de�ned
as usual: C[[x : T ]u v] →β C[u{x 7→ v}] and C[lσ] →R C[rσ] if l → r ∈ R. Let
→ =→β ∪ →R and→∗ be its re�exive and transitive closure. Let t ↓ u i� there
exists v such that t→∗ v ∗← u.

Typing. We assume that every symbol f is equipped with a sort sf and a
type τf = (x : T )U such that, for all rules f l→ r ∈ R, |l| ≤ |T | (f is not applied
to more arguments than the number of arguments given by τf ). Let Fs (resp.
X s) be the set of symbols (resp. variables) of sort s. As usual, we distinguish
the following classes of terms where t is any term:

� objects: o ::= x ∈ X ? | f ∈ F? | [x : t]o | ot
� predicates: p ::= x ∈ X2 | Ca ∈ CF2 | f ∈ F2 \ CF2 | [x : t]p | (x : t)p | pt
� kinds: K ::= ? | (x : t)K

Examples of objects are the constructors of inductive types 0, s, nil, cons, . . .
and the function symbols −, /, insert, sort, . . .. Their types are predicates: induc-
tive types bool, nat, list, . . ., logical connectors ∧,∨, . . ., universal quanti�cations
(x : T )U, . . . The types of predicates are kinds: ? for types like bool or nat,
?⇒ nat⇒ ? for list, . . .

An environment Γ is a sequence of variable-term pairs. An environment is
valid if a term is typable in it. The typing rules of CACSA are given in Figure 4
and its subtyping rules in Figure 3. In (symb), ϕ is an arbitrary size substitution.



This re�ects the fact that, in type declarations, size variables are implicitly
universally quanti�ed, like in ML. In contrast with [12], subtyping uses no sorting
judgment. This simpli�cation is justi�ed in [5].

In comparison with [5], we added the side condition V(t) = ∅ in (size). It
does not a�ect the properties proved in [5] and ensures that the size ordering
is compatible with subtyping (Lemma 2). By the way, one could think of tak-
ing the more general rule Cat ≤ Cbu with t 'A u. This would eliminate the
need for equality constraints and thus simplify a little bit the constraint solving
procedure. More generally, one could think in taking into account the monotony
of type constructors by having, for instance, list nata ≤ list natb whenever
a ≤A b. This requires extensions to Chen's work [12] and proofs of many non
trivial properties of [5] again, like Theorem 1 below or subject reduction for β.

Fig. 3. Subtyping rules

(re�) T ≤ T (size) Cat ≤ Cbt (C ∈ CF2, a ≤A b, V(t) = ∅)

(prod)
U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′
(conv)

T ′ ≤ U ′

T ≤ U (T ↓ T ′, U ′ ↓ U)

(trans)
T ≤ U U ≤ V

T ≤ V

Fig. 4. Typing rules

(ax) ` ? : 2 (prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(size)
` τC : 2

` Ca : τC
(C ∈ CF2, a ∈ A) (symb)

` τf : sf

` f : τfϕ
(f /∈ CF2)

(var)
Γ ` T : sx

Γ, x : T ` x : T
(x /∈dom(Γ )) (weak)

Γ ` t : T Γ ` U : sx

Γ, x : U ` t : T
(x /∈dom(Γ ))

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U ]v : (x : U)V
(app)

Γ ` t : (x : U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(sub)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T ≤ T ′)

∞-Terms. An ∞-term is a term whose only size annotations are ∞. In
particular, it has no size variable. An ∞-environment is an environment made
of∞-terms. This class of terms is isomorphic to the class of (unannotated) CAC
terms. Our goal is to be able to infer annotated types for these terms, by using
the size annotations given in the type declarations of constructors and function
symbols 0, s, /, nil, cons, insert, sort, . . .



Since size variables are intended to occur in object type declarations only,
and since we do not want matching to depend on size annotations, we assume
that rules and type declarations of predicate symbols nat, bool, list, . . . are made
of ∞-terms. As a consequence, we have:

Lemma 1. � If t→R t′ then, for all ϕ, tϕ→R t′ϕ.

� If Γ ` t : T then, for all ϕ, Γϕ ` tϕ : Tϕ.

We make three important assumptions:

(1) R preserves typing: for all l → r ∈ R, Γ , T and σ, if Γ ` lσ : T then
Γ ` rσ : T . It is generally not too di�cult to check this by hand. However,
as already mentioned in [7], �nding su�cient conditions for this to hold in
general does not seem trivial.

(2) β ∪ R is con�uent. This is for instance the case if R is con�uent and left-
linear [24], or if β ∪R is terminating and R is locally con�uent.

(3) β∪R is terminating. In [7], it is proved that β∪R is terminating essentially
if, in every rule f l → r ∈ R, recursive calls in r are made on terms whose
size � by typing � are smaller than l, by using lexicographic and multiset
comparisons. Note that, with type-level rewriting, con�uence is necessary
for proving termination [8].

Important remark. One may think that there is some vicious circle here: we
assume the termination for proving the decidability of type-checking, while type-
checking is used for proving termination! The point is that termination checks
are done incrementally. At the beginning, we can check that some set of rewrite
rules R1 is terminating in the system with β only. Indeed, we do not need to use
R1 in the type conversion rule (conv) for typing the terms of R1. Then, we can
check in β ∪R1 that some new set of rules R2 is terminating, and so on. . .

Various properties of CACSA have already been studied in [5]. We refer the
reader to this paper if necessary. For the moment, we just mention two important
and non trivial properties based on Chen's work on subtyping with dependent
types [12]: subject reduction for β and transitivity elimination:

Theorem 1 ([5]). T ≤ U i� T↓ ≤s U↓, where ≤s is the restriction of ≤ to
(re�), (size) and (prod).

We now give some properties of the size and substitution orderings. Let →A
be the con�uent and terminating relation on A generated by the rule s∞→∞.

Lemma 2. Let a↓ be the normal form of a w.r.t. →A.
� a 'A b i� a↓= b↓.
� If ∞ ≤A a or sk+1a ≤A a then a↓=∞.

� If a ≤A b and ϕ ≤A ψ then aϕ ≤A bψ.
� If ϕ ≤A ψ and U ≤ V then Uϕ ≤ V ψ.

Note that ∞-terms are in A-normal form. The last property (compatibility
of size ordering wrt subtyping) follows from the restriction V(t) = ∅ in (size).



3 Decidability of typing

In this section, we prove the decidability of type inference and type-checking for
∞-terms under general assumptions that will be proved in Section 4. We begin
with some informal explanations.

How to do type inference? The critical cases are (symb) and (app). In (symb),
a symbol f can be typed by any instance of τf , and two di�erent instances may be
necessary for typing a single term (e.g. s(sx)). For type inference, it is therefore
necessary to type f by its most general type, namely a renaming of τf with fresh
variables, and to instantiate it later when necessary.

Assume now that we want to infer the type of an application tu. We naturally
try to infer a type for t and a type for u using distinct fresh variables. Assume that
we get T and U ′ respectively. Then, tu is typable if there is a size substitution
ϕ and a product type (x : P )Q such that Tϕ ≤ (x : P )Q and U ′ϕ ≤ P .

After Theorem 1, checking whether A ≤ B amounts to check whether A↓ ≤s
B↓, and checking whether A ≤s B amounts to apply the (prod) rule as much
as possible and then to check that (re�) or (size) holds. Hence, Tϕ ≤ (x : P )Q
only if T↓ is a product. Thus, the application tu is typable if T↓ = (x : U)V and
there exists ϕ such that U ′↓ϕ ≤s Uϕ. Finding ϕ such that Aϕ ≤s Bϕ amounts
to apply the (prod) rule on A ≤s B as much as possible and then to �nd ϕ such
that (re�) or (size) holds. So, a subtyping problem can be transformed into a
constraint problem on size variables.

We make this precise by �rst de�ning the constraints that can be generated.

De�nition 1 (Constraints). Constraint problems are de�ned as follows:

C ::= ⊥ | > | C ∧ C | a = b | a ≤ b

where a, b ∈ A, = is commutative, ∧ is associative and commutative, C ∧ C =
C ∧> = C and C ∧⊥ = ⊥. A �nite conjunction C1 ∧ . . .∧ Cn is identi�ed with >
if n = 0. A constraint problem is in canonical form if it is neither of the form
C ∧ >, nor of the form C ∧ ⊥, nor of the form C ∧ C ∧ D. In the following, we
always assume that constraint problems are in canonical form. An equality (resp.
inequality) problem is a problem having only equalities (resp. inequalities). An
inequality ∞ ≤ α is called an ∞-inequality. An inequality spα ≤ sqβ is called a
linear inequality. Solutions to constraint problems are de�ned as follows:

� S(⊥) = ∅,
� S(>) is the set of all size substitutions,

� S(C ∧ D) = S(C) ∩ S(D),
� S(a = b) = {ϕ | aϕ = bϕ},
� S(a ≤ b) = {ϕ | aϕ ≤A bϕ}.
Let S`(C) = {ϕ | ∀α, αϕ↓ 6=∞} be the set of linear solutions.

We now prove that a subtyping problem can be transformed into constraints.

Lemma 3. Let S(U, V ) be the set of substitutions ϕ such that Uϕ ≤s V ϕ. We
have S(U, V ) = S(C(U, V )) where C(U, V ) is de�ned as follows:



� C((x : U)V, (x : U ′)V ′) = C(U ′, U) ∧ C(V, V ′),
� C(Cau, Cbv) = a ≤ b ∧ E0(u1, v1) ∧ . . . ∧ E0(un, vn) if |u| = |v| = n,

� C(U, V ) = E1(U, V ) in the other cases,

and E i(U, V ) is de�ned as follows:

� E i((x :U)V, (x :U ′)V ′) = E i([x :U ]V, [x :U ′]V ′) = E i(UV,U ′V ′)
= E i(U,U ′) ∧ E i(V, V ′),

� E1(Ca, Cb) = a = b,

� E0(Ca, Cb) = a = b ∧∞ ≤ a,
� E i(c, c) = > if c ∈ S ∪ X ∪ F \ CF2,

� E i(U, V ) = ⊥ in the other cases.

Proof. First, we clearly have ϕ ∈ S(E1(U, V )) i� Uϕ = V ϕ, and ϕ ∈ S(E0(U, V ))
i� Uϕ = V ϕ and V(Uϕ) = ∅. Thus, S(U, V ) = S(C(U, V )). ut

Fig. 5. Type inference rules

(ax) Γ `
Y
a ? : 2 (prod)

Γ `
Y
a U : sx Γ, x : U `

Y
a V : s′

Γ `Ya (x : U)V : s′

(size) Γ `
Y
a C∞ : τC (C ∈ CF2) (symb) Γ `

Y
a f : τfρY (f /∈ CF2)

(var) Γ `
Y
a x : xΓ (x∈dom(Γ )) (abs)

Γ `
Y
a U : sx Γ, x : U `

Y
a v : V

Γ `Ya [x : U ]v : (x : U)V
(V 6= 2)

(app)
Γ `
Y
a t : T Γ `

Y∪V(T )

a u : U ′

Γ `Ya tu : V ϕρY {x 7→ u}
(T↓ = (x : U)V , C = C(U ′↓, U),

S(C) 6= ∅, ϕ = mgs(C))

For renaming symbol types with variables outside some �nite set of already
used variables, we assume given a function ρ which, to every �nite set Y ⊆ Z,
associates an injection ρY from Y to Z\Y. In Figure 5, we de�ne a type inference

algorithm `Ya parametrized by a �nite set Y of (already used) variables under the
following assumptions:

(1) It is decidable whether S(C) is empty or not.

(2) If S(C) 6=∅ then C has a most general solution mgs(C).
(3) If S(C) 6= ∅ then mgs(C) is computable.

It would be interesting to try to give a modular presentation of type inference
by clearly separating constraint generation from constraint solving, as it is done
for ML in [25] for instance. However, for dealing with dependent types, one
at least needs higher-order pattern uni�cation. Indeed, assume that we have a
constraint generation algorithm which, for a term t and a type (meta-)variable
X, computes a set C of constraints on X whose solutions provide valid instances
of X, i.e. valid types for t. Then, in (app), if the constraint generation gives
C1 for t : Y and C2 for u : Z, then it should give something like C1 ∧ C2 ∧
(∃U.∃V. Y =βη (x : U)V x ∧ Z ≤ U ∧X=βη V u) for tu : X.



We now prove the correctness, completeness and minimality of `Ya , assuming
that symbol types are well sorted (` τf : sf for all f).

Theorem 2 (Correctness). If Γ is a valid ∞-environment and Γ `Ya t : T ,
then Γ ` t : T , t is an ∞-term and V(T ) ∩ Y = ∅.

Proof. By induction on `Ya . We only detail the (app) case.

(app) By induction hypothesis, Γ ` t : T , Γ ` u : U ′ and t and u are∞-terms.
Thus, tu is an ∞-term. By Lemma 1, Γ ` t : Tϕ and Γ ` u : U ′ϕ. Since
Tϕ↓= (x : Uϕ)V ϕ, we have Tϕ 6= 2 and Γ ` Tϕ : s. By subject reduction,
Γ ` (x : Uϕ)V ϕ : s. Hence, by (sub), Γ ` t : (x : Uϕ)V ϕ. By Lemma 3,
S(C) = S(U ′↓, U) and U ′↓ϕ ≤s Uϕ. Since Γ ` Uϕ : s′, by (sub), Γ ` u : Uϕ.
Therefore, by (app), Γ ` tu : V ϕ{x 7→ u} and Γ ` tu : V ϕρY{x 7→ u} since
V(u) = ∅. ut

Theorem 3 (Completeness and minimality). If Γ is an ∞-environment, t

is an ∞-term and Γ ` t : T , then there are T ′ and ψ such that Γ `Ya t : T ′ and
T ′ψ ≤ T .

Proof. By induction on `. We only detail some cases.

(symb) Take T ′ = τfρY and ψ = ρ−1
Y
ϕ.

(app) By induction hypothesis, there exist T , ψ1, U
′ and ψ2 such that Γ `Ya

t : T , Tψ1 ≤ (x : U)V , Γ `Y∪V(T )

a u : U ′ and U ′ψ2 ≤ U . By Lemma 2,
V(U ′) ∩ V(T ) = ∅. Thus, dom(ψ1) ∩ dom(ψ2) = ∅. So, let ψ = ψ1 ] ψ2. By
Lemma 1, T↓ψ ≤s (x : U↓)V ↓. Thus, T↓ = (x : U1)V1, U↓ ≤ U1ψ and V1ψ ≤
V ↓. Since U ′ψ ≤ U and U↓ ≤ U1ψ, we have U

′↓ ψ ≤ U1ψ and, by Lemma 1,
U ′↓ ψ ≤s U1ψ. Thus, ψ ∈ S(U ′↓, U1). By Lemma 3, S(U ′↓, U1) = S(C) with

C = C(U ′↓, U1). Thus, S(C) 6= ∅ and there exists ϕ = mgs(C). Hence, Γ `Ya
tu : V1ϕρY θ where θ = {x 7→ u}. We are left to prove that there exists ϕ′ such
that V1ϕρY θϕ

′ ≤ V θ. Since ϕ = mgs(C), there exists ψ′ such that ϕψ′ ≤A ψ.
So, let ϕ′ = ρ−1

Y
ψ′. Since V(u) = ∅, θ commutes with size substitutions. Since

V1ψ ≤ V ↓ ≤ V , by Lemma 2, V1ϕρY θϕ
′ = V1ϕψ

′θ ≤ V1ψθ ≤ V θ. ut

Theorem 4 (Decidability of type-checking). Let Γ be an ∞-environment,
t be an ∞-term and T be a type such that Γ ` T : s. Then, the problem of
knowing whether there is ψ such that Γ ` t : Tψ is decidable.

Proof. The decision procedure consists in (1) trying to compute the type T ′

such that Γ `Ya t : T ′ by taking Y = V(T ), and (2) trying to compute ψ =
mgs(C(T ′, T )). Every step is decidable.

We prove its correctness. Assume that Γ `Ya t : T ′, Y = V(T ) and ψ =
mgs(C(T ′, T )). Then, T ′ψ ≤ Tψ and, by Theorem 2, Γ ` t : T ′. By Lemma 1,
Γ ` t : T ′ψ. Thus, by (sub), Γ ` t : Tψ.

We now prove its completeness. Assume that there is ψ such that Γ ` t : Tψ.
Let Y = V(T ). Since Γ is valid and V(Γ ) = ∅, by Theorem 3, there are T ′ and

ϕ such that Γ `Ya t : T ′ and T ′ϕ ≤ Tψ. This means that the decision procedure
cannot fail (ψ ] ϕ ∈ S(T ′, T )). ut



4 Solving constraints

In this section, we prove that the satis�ability of constraint problems is decidable,
and that a satis�able problem has a smallest solution. The proof is organized
as follows. First, we introduce simpli�cation rules for equalities similar to usual
uni�cation procedures (Lemma 4). Second, we introduce simpli�cation rules for
inequalities (Lemma 5). From that, we can deduce some general result on the
form of solutions (Lemma 7). We then prove that a conjunction of inequalities has
always a linear solution (Lemma 8). Then, by using linear algebra techniques,
we prove that a satis�able inequality problem has always a smallest solution
(Lemma 11). Finally, all these results are combined in Theorem 5 for proving
the assumptions of Section 3.

Let a state S be ⊥ or a triplet E|E ′|C where E and E ′ are conjunctions of
equalities and C a conjunction of inequalities. Let S(⊥) = ∅ and S(E|E ′|C) =
S(E ∧ E ′ ∧ C) be the solutions of a state. A conjunction of equalities E is in
solved form if it is of the form α1 = a1 ∧ . . . ∧ αn = an (n ≥ 0) with the
variables αi distinct from one another and V(a) ∩ {α} = ∅. It is identi�ed with
the substitution {α 7→ a}.

Fig. 6. Simpli�cation rules for equalities

(1) E ∧ sa = sb | E ′ | C  E ∧ a = b | E ′ | C
(2) E ∧ a = a | E ′ | C  E | E ′ | C
(3) E ∧ a = sk+1a | E ′ | C  ⊥
(4) E ∧∞ = sk+1a | E ′ | C  ⊥
(5) E ∧ α = a | E ′ | C  E{α 7→a} | E ′{α 7→a} ∧ α = a | C{α 7→a} if α /∈V(a)

The simpli�cation rules on equalities given in Figure 6 correspond to the usual
simpli�cation rules for �rst-order uni�cation [19], except that substitutions are
propagated into the inequalities.

Lemma 4. The relation of Figure 6 terminates and preserves solutions: if S1  
S2 then S(S1) = S(S2). Moreover, any normal form of E|>|C is either ⊥ or of
the form >|E ′|C′ with E ′ in solved form and V(C′) ∩ dom(E ′) = ∅.

We now introduce a notion of graphs due to Pratt [26] that allows us to detect
the variables that are equivalent to ∞. In the following, we use other standard
techniques from graph combinatorics and linear algebra. Note however that we
apply them on symbolic constraints, while they are generally used on numerical
constraints. What we are looking for is substitutions, not numerical solutions.
In particular, we do not have the constant 0 in size expressions (although it
could be added without having to change many things). Yet, for proving that
satis�able problems have most general solutions, we will use some isomorphism
between symbolic solutions and numerical ones (see Lemma 10).

De�nition 2 (Dependency graph). To a conjunction of linear inequalities
C, we associate a graph GC on V(C) as follows. To every constraint spα ≤ sqβ,



we associate the labeled edge α
p−q−→ β. The cost of a path α1

p1−→ . . .
pk−→ αk+1 is

Σk
i=1pi. A cyclic path (i.e. when αk+1 = α1) is increasing if its cost is > 0.

Fig. 7. Simpli�cation rules for inequalities

(1) C ∧ a ≤ sk∞  C
(2) C ∧ D  C ∧ {∞ ≤ α | α ∈ V(D)} if GD is increasing

(3) C ∧ sk∞ ≤ slα  C{α 7→ ∞} ∧∞ ≤ α if α ∈ V(C)

A conjunction of inequalities C is in reduced form if it is of the form C∞ ∧ C`
with C∞ a conjunction of ∞-inequalities, C` a conjunction of linear inequalities
with no increasing cycle, and V(C∞) ∩ V(C`) = ∅.

Lemma 5. The relation of Figure 7 on inequality problems terminates and pre-
serves solutions. Moreover, any normal form is in reduced form.

Lemma 6. If C is a conjunction of inequalities then S(C) 6= ∅. Moreover, if C
is a conjunction of ∞-inequalities then S(C) = {ϕ | ∀α ∈ V(C), αϕ↓=∞}.

Lemma 7. Assume that E|>|C has normal form >|E ′|C′ by the rules of Figure
6, and C′ has normal form D by the rules of Figure 7. Then, S(E ∧ C) 6= ∅,
E ′ = mgs(E) and every ϕ ∈ S(E ∧ C) is of the form E ′(υ ] ψ) with υ ∈ S(D∞)
and ψ ∈ S(D`).

Proof. The fact that, in this case, S(E) 6= ∅ and E ′ = mgs(E) is a well known
result on uni�cation [19]. Since S(E ∧ C) = S(E ′ ∧ D), V(E ′) ∩ V(D) = ∅ and
S(D) 6= ∅, we have S(E ∧C) 6= ∅. Furthermore, every ϕ ∈ S(E ∧C) is of the form
E ′ϕ′ since S(E ′ ∧ D) ⊆ S(E ′). Now, since V(D∞) ∩ V(D`) = ∅, ϕ′ = υ ] ψ with
υ ∈ S(D∞) and ψ ∈ S(D`). ut

Hence, the solutions of a constraint problem can be obtained from the solu-
tions of the equalities, which is a simple �rst-order uni�cation problem, and from
the solutions of the linear inequalities resulting of the previous simpli�cations.

In the following, let C be a conjunction of K linear inequalities with no
increasing cycle, and L be the biggest label in absolute value in GC . We �rst
prove that C has always a linear solution by using Bellman-Ford's algorithm.

Lemma 8. S`(C) 6= ∅.

Proof. Let succ(α) = {β | α p−→ β ∈ GC} and succ∗ be the re�exive and
transitive closure of succ. Choose γ ∈ Z \ V(C), a set R of vertices in GC such
that succ∗(R) covers GC , and a minimal cost qβ ≥ KL for every β ∈ R. Let

the cost of a vertex αk+1 along a path α1
p1−→ α2

p2−→ . . . αk+1 with α1 ∈ R
be qα1 + Σk

i=1pi. Now, let ωβ be the maximal cost for β along all the possible
paths from a vertex in R. We have ωβ ≥ 0 since there is no increasing cycle.

Hence, for all edge α
p−→ β ∈ GC , we have ωα + p ≤ ωβ . Thus, the substitution

ϕ = {α 7→ sωαγ | α ∈ V(C)} ∈ S`(C). ut



We now prove that any solution has a more general linear solution. This
implies that inequality problems are always satis�able and that the satis�ability
of a constraint problem only depends on its equalities.

Lemma 9. If ϕ ∈ S(C) then there exists ψ ∈ S`(C) such that ψ ≤A ϕ.

We now prove that S`(C) has a smallest element. To this end, assume that
inequalities are ordered and that V(C) = {α1, . . . , αn}. We associate to C an
adjacency-like matrix M = (mi,j) with K lines and n columns, and a vector
v = (vi) of length K as follows. Assume that the i-th inequality of C is of the
form spαj ≤ sqαk. Then, mi,j = 1, mi,k = −1, mi,l = 0 if l /∈ {j, k}, and
vi = q − p. Let P = {z ∈ Qn | Mz ≤ v, z ≥ 0} and P ′ = P ∩ Zn.

To a substitution ϕ ∈ S`(C), we associate the vector zϕ such that zϕi is the
natural number p such that αiϕ = spβ.

To a vector z ∈ P ′, we associate a substitution ϕz as follows. Let {G1, . . . , Gs}
be the connected components of GC . For all i, let ci be the component number
to which αi belongs. Let β1, . . . , βs be variables distinct from one another and
not in V(C). We de�ne αiϕz = sziβci .

We then study the relations between symbolic and numerical solutions.

Lemma 10.

� If ϕ ∈ S`(C) then zϕ ∈ P ′. Furthermore, if ϕ ≤A ϕ′ then zϕ ≤ zϕ
′
.

� If z ∈ P ′ then ϕz ∈ S`(C). Furthermore, if z ≤ z′ then ϕz ≤A ϕz′ .
� zϕz = z and ϕzϕ v ϕ.

Finally, we are left to prove that P ′ has a smallest element. The proof uses
techniques from linear algebra.

Lemma 11. There is a unique z∗ ∈ P ′ such that, for all z ∈ P ′, z∗ ≤ z.

An e�cient algorithm for computing the smallest solution of a set of linear
inequalities with at most two variables per inequality can be found in [23]. A
more e�cient algorithm can perhaps be obtained by taking into account the
speci�cities of our problems.

Gathering all the previous results, we get the decidability.

Theorem 5 (Decidability). Let C be a constraint problem. Whether S(C) is
empty or not can be decided in polynomial time w.r.t. the size of equalities in C.
Furthermore, if S(C) 6= ∅ then S(C) has a smallest solution that is computable
in polynomial time w.r.t. the size of inequalities.

5 Conclusion and related works

In Section 3, we give a general algorithm for type inference with size annotations
based on constraint solving, that does not depend on the size algebra. For having
completeness, we require satis�able sets of constraints to have a computable most
general solution. In Section 4, we prove that this is the case if the size algebra is



built from the symbols s and∞ which, although simple, captures usual inductive
de�nitions (since then the size corresponds to the number of constructors) and
much more (see the introduction and [7]).

A natural extension would be to add the symbol + in the size algebra, for
typing list concatenation in a more precise way for instance. We think that the
techniques used in the present work can cope with this extension. However, with-
out restrictions on symbol types, one may get constraints like 1 ≤ α+β and loose
the unicity of the smallest solution. We think that simple and general restric-
tions can be found to avoid such constraints to appear. Now, if symbols like ×
are added to the size algebra, then we lose linearity and need more sophisticated
mathematical tools.

The point is that, because we consider dependent types and subtyping, we are
not only interested in satis�ability but also in minimality and unicity, in order
to have completeness of type inference [12]. There exist many works on type
inference and constraint solving. We only mention some that we found more or
less close to ours: Zenger's indexed types [32], Xi's Dependent1 ML [30], Odersky
et al 's ML with constrained types [25], Abel's sized types [1], and Barthe et al 's
staged types [4]. We note the following di�erences:

Terms. Except [4], the previously cited works consider λ-terms à la Curry,
i.e. without types in λ-abstractions. Instead, we consider λ-terms à la Church,
i.e. with types in λ-abstractions. Note that type inference with λ-terms à la
Curry and polymorphic or dependent types is not decidable. Furthermore, they
all consider functions de�ned by �xpoint and matching on constructors. Instead,
we consider functions de�ned by rewrite rules with matching both on constructor
and de�ned symbols (e.g. associativity and distributivity rules).

Types. If we disregard constraints attached to types, they consider simple
or polymorphic types, and we consider fully polymorphic and dependent types.
Now, our data type constructors carry no constraints: constraints only come up
from type inference. On the other hand, the constructors of Zenger's indexed
data types must satisfy polynomial equations, and Xi's index variables can be
assigned boolean propositions that must be satis�able in some given model (e.g.
Presburger arithmetic). Explicit constraints allow a more precise typing and
more function de�nitions to be accepted. For instance (see [7]), in order for
quicksort to have type listα ⇒ listα, we need the auxiliary pivot function to have
type nat∞ ⇒ listα ⇒ listβ×listγ with the constraint α = β+γ. And, if quicksort
has type list∞ ⇒ list∞ then a rule like f (cons x l)→ g x (f (quicksort l)) is
rejected since (quicksort l) cannot be proved to be smaller than (cons x l). The
same holds in [1,4].

Constraints. In contrast with Xi and Odersky et al who consider the con-
straint system as a parameter, giving DML(C) and HM(X) respectively, we con-
sider a �xed constraint system, namely the one introduced in [3]. It is close to
the one considered by Abel whose size algebra does not have∞ but whose types
have explicit bounded quanti�cations. Inductive types are indeed interpreted
in the same way. We already mentioned also that Zenger considers polynomial

1 By �dependent�, Xi means constrained types, not full dependent types.



equations. However, his equivalence on types is de�ned in such a way that, for
instance, listα is equivalent to list2α, which is not very natural. So, the next
step in our work would be to consider explicit constraints from an abstract
constraint system. By doing so, Odersky et al get general results on the com-
pleteness of inference. Sulzmann [28] gets more general results by switching to
a fully constrained-based approach. In this approach, completeness is achieved
if every constraint can be represented by a type. With term-based inference and
dependent types, which is our case, completeness requires minimality which is
not always possible [12].

Constraint solving. In [4], Barthe et al consider system F with ML-like
de�nitions and the same size annotations. Since they have no dependent type,
they only have inequality constraints. They also use dependancy graphs for elim-
inating ∞, and give a speci�c algorithm for �nding the most general solution.
But they do not study the relations between linear constraints and linear pro-
gramming. So, their algorithm is less e�cient than [23], and cannot be extended
to size annotations like a+ b, for typing addition or concatenation.

Inference of size annotations. As already mentioned in the introduction,
we do not infer size annotations for function symbols like [13,4]. We just check
that function de�nitions are valid wrt size annotations, and that they preserve
termination. However, �nding annotations that satisfy these conditions can eas-
ily be expressed as a constraint problem. Thus, the techniques used in this paper
can certainly be extended for inferring size annotations too. For instance, if we
take − : natα⇒natβ⇒natX , the rules of − given in the introduction are valid
whenever 0 ≤ X, α ≤ X and X ≤ X, and the most general solution of this
constraint problem is X = α.

Acknowledgments. I would like to thank very much Miki Hermann, Hong-
wei Xi, Christophe Ringeissen and Andreas Abel for their comments on a pre-
vious version of this paper.
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Proofs

5.1 Remark about constraint solving

One could think of using Comon's work [14] but it is not possible for several
reasons:

� We consider two kinds of constraints: equality constraints a = b where = is
interpreted by the syntactic equality, and inequality constraints a ≤ b where
≤ is interpreted by the quasi-ordering ≤A on size expressions. Instead of large
inequalities, Comon considers strict inequalities a < b where < is interpreted
by the lexicographic path ordering (LPO). Since ≤A is a quasi-ordering, we
do not have a ≤A b⇔ a <A b ∨ a = b.

� Even though one can get rid of ∞ symbols in a �rst step, thing that we do in
Lemmas 7 and 9, Comon assumes that there is at least one constant symbol.
Indeed, he studies the ground solutions of a boolean combination of equations
and inequations. However, without ∞, we have no ground term. It does not
matter since we do not restrict ourself to ground solutions.

5.2 Proof of Lemma 4

The relation  strictly decreases the measure (s(E), c(E))lex where s(E) is the
number of constraints and c(E) the number of symbols. Its correctness is easily
checked. Now, let S = E|E ′|C′ be a normal form of E|>|C. If E 6= > then S is
reducible. Now, one can easily check that, if E1|E ′1|C1  E2|E ′2|C2, E ′1 is in solved
form and V(C1)∩dom(E ′1) = ∅, then E ′2 is in solved form and V(C2)∩dom(E ′2) = ∅.
So, E ′ is in solved form and V(C′) ∩ dom(E ′) = ∅.

5.3 Proof of Lemma 5

The relation strictly decreases the measure (c(C), v(C))lex where c(C) is the num-
ber of symbols and variables and v(C) the multiset of occurrences of each vari-
able in C. We now prove the correctness of these rules. (1) is trivial. (3) follows
from Lemma 2. For (2), let D′ =

∧
{∞ ≤ α | α ∈ V(D)}. We clearly have

S(D′) ⊆ S(D). Assume that GD = α1
p1−→ . . .

pk−→ α1 and θ ∈ S(D). If αiθ↓=∞



then, for all i, αiθ↓= ∞ and θ ∈ S(D′). Otherwise, there exist γ ∈ Z and, for
all i, mi ∈ N such that αiθ = smiγ, m1 + p1 ≤ m2, . . . , mk + pk ≤ m1. Thus,
Σk
i=1mi +Σk

i=1pi ≤ Σk
i=1mi. Hence, Σ

k
i=1pi ≤ 0 which is not possible since GD

is increasing. Finally, a normal form is clearly in reduced form.

5.4 Proof of Lemma 6

Let S = {ϕ | ∀α ∈ V(C), αϕ↓= ∞}. We prove that S ⊆ S(C). Let ϕ = {α 7→
∞ | α ∈ V(C)} and a ≤ b ∈ C. We have a = ska′ and b = slb′ with a′, b′ ∈
Z ∪ {∞}. So, by Lemma 2, aϕ = sk∞ ≤A bϕ = sl∞ and ϕ ∈ S(C).

Assume now that C is a conjunction of ∞-inequalities. Let ϕ ∈ S(C) and
α ∈ V(C). Since α ∈ V(C), there exists a constraint ∞ ≤ α in C. Thus, by
Lemma 2, αϕ↓=∞ and ϕ ∈ S.

5.5 Proof of Lemma 9

We can assume w.l.o.g. that dom(ϕ) ⊆ V(C). If, for all α ∈ V(C), αϕ↓= ∞,
then any ψ ∈ S`(C) 6= ∅ works. Otherwise, there exists α ∈ V(C), γ and p
such that αϕ = spγ. W.l.o.g., we can assume that C has only one connected
component. Let D` = {α ∈ dom(ϕ) | αϕ ↓6= ∞}, D∞ = dom(ϕ) \ D` and
D′∞ = {β ∈ D∞ | spα ≤ sqβ ∈ C ⇒ αϕ↓6= ∞}. For every α ∈ D`, let ωα be
the integer k such that αϕ = skγ. Let C1 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓6= ∞},
C2 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓= ∞}, C3 = {spα ≤ sqβ | αϕ↓= ∞, βϕ↓= ∞}
and C′3 = C3 ] {β ≤ β | β ∈ D′∞}. We have C = C1 ] C2 ] C3. After the proof of
Lemma 8, by taking R ⊇ D′∞ and qβ = max{KL,ωα + p− q | spα ≤ sqβ ∈ C}
for every β ∈ D′∞, there exists ϕ′ ∈ S`(C′3). We have dom(ϕ′) = V(C′3) = D∞.
Let ψ = ϕ|D` ] ϕ′. We clearly have ψ linear and ψ ≤A ϕ. We now prove that
ψ ∈ S`(C). We have ψ|V(C1) = ϕ|V(C1) ∈ S(C1) and ψ|V(C3) = ϕ′|V(C3) ∈ S(C3).
Let now spα ≤ sqβ ∈ C2. We must check that spαϕ ≤ sqβϕ′. It follows from the
de�nition of ϕ′.

5.6 Proof of Lemma 10

� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must prove
that zϕj −z

ϕ
k ≤ q−p. By assumption, spαjϕ ≤A sqαkϕ. Hence, p+zϕj ≤ q+z

ϕ
k .

The second claim is immediate.

� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must prove
that spαjϕz ≤A sqαkϕz, that is, sp+zjβcj ≤A sq+zkβck . Since αj and αk are
connected in GC , cj = ck. And, by assumption, zj − zk ≤ q − p.

� zϕzi is the integer p such that αiϕz = spβ, and αiϕz = sziβci . Thus, p = zi.

� αiϕzϕ = sz
ϕ
i βci , and z

ϕ
i is the integer p such that αiϕ = spβ. Every variable

of a connected component c is mapped by ϕ to the same variable γc. Let ψ
be the substitution which associates γc to βc. We have αiϕzϕψ = spβciψ =
spγci = αiϕ. Thus, ϕzϕ v ϕ.



5.7 Proof of Lemma 11

Lemma 11 is Lemma 12 (6) below.
See for instance [27] for details on polyhedrons, i.e. sets of the form {z ∈

Qn | Mz ≤ v}. Note that P = {z ∈ Qn | M ′z ≤ v′} with M ′ =
(
M
−I

)
and

v′ =
(
v
0

)
, where I is the identity matrix. We say that a bit vector is a vector

whose components are in {0, 1}. Given two vectors za and zb, min{za, zb} is the
vector z such that zi = min{zai , zbi }.

Lemma 12.

(1) P is pointed, i.e. his lineality space {z∈Qn|M ′z = 0} has dimension 0.
(2) P is integral, i.e. P is the convex hull of P ′.

(3) P is in�nite.

(4) Every minimal proper face of P has for direction a bit vector.

(5) If za, zb ∈ P then min{za, zb} ∈ P .
(6) There is a unique z∗ ∈ P ′ such that, for all z ∈ P ′, z∗ ≤ z.

Proof. (1) If M ′z = 0 then −Iz = 0 and z = 0.
(2) P is integral since the transpose of M is totally unimodular: it is a {0,±1}-

matrix with in each column exactly one +1 and one −1 ([27] p. 274).

(3) As any polyhedron, there is a polytope Q such that P = Q+ char.cone(P )
([27] p. 88), where char.cone(P ) = {z ∈ Qn | M ′z ≤ 0} is the characteristic
cone of P . Since every row ofM has exactly one +1 and one −1, the sum of
the columns ofM is 0. Thus, the vector 1 whose components are all equal to
1 belongs to char.cone(P ) and, either P = ∅ or P is in�nite. After Lemma
8, S`(C) 6= ∅. Thus, P is in�nite.

(4) For every minimal proper face F of P , there exist a row submatrix (L u) of
(M ′ v′) and two rows (ai v′i) and (aj v′j) of (M ′ v′) such that rank(L) =
rank(M ′) − 1 and F = {z ∈ Qn | Lz = u, taiz ≤ v′i,

tajz ≤ v′j} ([27] p.
105). The direction of F is given by Ker(L) = {z ∈ Qn | Lz = 0}. Let ej be
the unit vector such that ejj = 1 and eji = 0 if i 6= j. Since rank(M ′) = n,

rank(L) = n− 1 and there exists k ≤ n such that {Lej | j 6= k} is a family

of linearly independent vectors. Thus, N =
(

L
tek

)
is not singular. Let w =

N−1ek. If Lz = 0 then Nz = zke
k and z = zkw. We have N−1 =

tcom(N)
det(N)

where tcom(N) is the transpose matrix of the cofactors of N . Now, one can
easily prove that, if every row (or column) of a matrix U is either 0, ±ej
or ej − ek with j 6= k, then det(U) ∈ {0,±1}. Hence, det(N) = ±1 and
w is a {0,±1}-vector. The equations satis�ed by z in Lz = 0 are either
zi = 0 or zi = zj . If there is no equation involving zi then Ker(L) = Qei
and w = ±ei. Otherwise, w ≥ 0 or w ≤ 0. Since w can be replaced by −w
w.l.o.g, w can always be de�ned as a bit vector.



(5) Let z = min{za, zb}. If za ≤ zb or zb ≤ za, this is immediate. Assume now
that there are i 6= j such that zai < zbi and zaj > zbj . Since every minimal
proper face of P has for direction a bit vector, we must have z ∈ P .

(6) Let c = min{1z | z ∈ P}, F = {z ∈ P | 1z = c}, z∗ ∈ F and z ∈ P .
Assume that z∗ 6≤ z. Then, z′ = min{z∗, z} ∈ P and 1z′ < 1z∗, which is
not possible. Thus, z∗ ≤ z and F = {z∗}. Now, since P is integral, z∗ ∈ P ′.

ut

5.8 Proof of Theorem 5

We can assume that C 6= ⊥. Let C= be the equalities of C and C≤ be the
inequalities of C. Compute the normal form of C=|>|C≤ w.r.t. the rules of Figure
6. This can be done in polynomial time w.r.t. the size of equalities. If the normal
form is ⊥ then S(C) = ∅ and we are done. Otherwise, it is of the form >|E|D. Let
D∞]D` be the normal form of D w.r.t. the rules of Figure 7. It can be computed
in polynomial time w.r.t. the size of constraints. Let P = {z ∈ Qn | M ′z ≤ v′}
where M ′ and v′ are the matrix and the vector associated to D`. Compute
c = min{1z | z ∈ P} and z∗ ∈ {z ∈ P | 1z = c}. This can be done in polynomial
time w.r.t. the size of constraints since P is integral (see [27] p. 232). Finally,
let mgs(C) = E(υ ] ϕz∗) where υ ∈ S(D∞). We prove that this is the smallest
solution.

Let ϕ ∈ S(C). By Lemma 7, ϕ = E(υ′]ϕ′) where υ′ ∈ S(D∞) and ϕ′ ∈ S(D`).
By Lemma 9, there exists ψ ∈ S`(D`) such that ψ v ϕ′. By Lemma 10, zψ ∈ P ′.
By Lemma 11, z∗ ≤ zψ. By Lemma 10, ϕz∗ v ϕzψ . By Lemma 10, ϕzψ v ψ.
Thus, ϕz∗ v ϕ′ and mgs(C) v ϕ since υ 'A υ′.
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