Program termination in the simply-typed $$\lambda$-calculus$

Frédéric Blanqui

INRIA

2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, 20-27 August 2010

Outline

$\beta\text{-reduction}$

Van Daalen's proof (1980)

Tait's proof (1967)

Untyped λ -calculus

introduced by Alonzo Church in 1932

λ -terms: $t \in \mathcal{L} = x \in \mathcal{X} \mid \lambda x.t \mid tt$

β -reduction

 \rightarrow_{β} is defined by induction as follows:

(top)
$$\overline{(\lambda x.t)u} \rightarrow_{\beta} t_{x}^{u}$$

context rules:

(abs)
$$\frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'}$$

(app1)
$$\frac{t \to_{\beta} t'}{tu \to_{\beta} t'u}$$

(app2)
$$\frac{u \to_{\beta} u'}{tu \to_{\beta} tu'}$$

Termination

- a term t terminates if every sequence of β -reductions starting from t is finite
- *i.e.* there is no infinite sequence of β -reductions starting from t

$$t = t_0 \rightarrow_{\beta} t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} \ldots$$

let SN be the set of terminating terms

Which λ -terms terminate ?

- $(\lambda x.if \ x \ge 2 \ then \ t \ else \ u)v$ is typable and terminates
- $(\lambda x.xx)(\lambda x.xx)$ is not typable and does not terminate
- $(\lambda x.if x \ge 2 \text{ then } t \text{ else } u)$ "foo" is not typable and terminates

Do all simply-typed λ -terms terminate ?

Simply-typed λ -calculus à la Church simplified

simple types: $S \in \mathcal{T} = B \in \mathcal{B} \mid S \rightarrow S$

To remove the need for typing environments, we assume that each variable x is given a fixed type τ_x . Let τ_t be the unique type of t:

$$(\text{var}) \ \frac{t:T}{x:\tau_x} \quad (\text{abs}) \ \frac{t:T}{\lambda x.t:\tau_x \to T} \quad (\text{app}) \ \frac{u:S \to T \quad s:S}{us:T}$$

Consequence: induction on v : T is equivalent to induction on v

Preservation of typing under substitution

Definition: a substitution ρ is well-typed if, for all $x, x\rho : \tau_x$.

Lemma: if v : V and ρ is well-typed, then $v\rho : V$.

Proof. By induction on v. Exercise.

Remark: In the following, we only consider well-typed terms and substitutions.

Preservation of typing under reduction

Lemma: if v : V and $v \rightarrow_{\beta} v'$, then v' : V.

Proof. By induction on v. Exercise.

Outline

β -reduction

Van Daalen's proof (1980)

Tait's proof (1967)

Frédéric Blanqui Program termination in the simply-typed λ -calculus

First proof attempt

- Theorem: if v : V, then $v \in SN$.
- Proof. By induction on v.
- $v \in \mathcal{X}$. Then, $v \in SN$.
- ▶ $v = \lambda x.t$. By IH, $t \in SN$. Thus, $v \in SN$.

Application case

▶ v = us. By IH, $u, s \in SN$. How to prove that $v = us \in SN$?

Remark: $v \in SN$ if every reduct of v is SN.

Possible reducts of us:

- u's with u' a reduct of u
- us' with s' a reduct of s
- t_x^s if $u = \lambda x.t$

Is every possible reduct SN ?

Since $u, s \in SN$, the first two cases can be dealt with by well-founded induction on (u, s).

For the third case, we need to strengthen the IH.

Second proof attempt

Theorem: if v : V and $a : \tau_y$ are SN, then $v_v^a \in SN$.

Proof. Let $\rho = \begin{pmatrix} a \\ v \end{pmatrix}$. By induction on v.

▶ $v \in \mathcal{X}$. If v = y, then $v\rho = a \in SN$. Otherwise, $v\rho = v \in SN$.

▶ $v = \lambda x.t.$ Wlog we can assume that $x \neq y$ and $x \notin FV(a)$. Thus, $v\rho = \lambda x.t\rho$. By IH, $t\rho \in SN$. Thus, $v\rho \in SN$.

Application case: $v = uss_1 \dots s_n$

- ▶ $u = x \neq y$. Then, $v\rho = xs\rho s_1\rho \dots s_n\rho \in SN$ since, by IH, $s\rho, s_1\rho, \dots, s_n\rho \in SN$.
- ► u = y. Then, $v\rho = as\rho s_1\rho \dots s_n\rho$. If $v\rho \notin SN$, then $a \rightarrow_{\beta}^* \lambda x.b$ and $b_x^{s\rho} s_1\rho \dots s_n\rho \notin SN$. How to conclude ? Remark 1: $\tau_y = \tau_x \rightarrow \tau_z$ Remark 2: for $c = b_x^{s\rho}$, we have $\tau_x < \tau_y$ Remark 3: $b_x^{s\rho} s_1\rho \dots s_n\rho = (zs_1\rho \dots s_n\rho)_z^c$ and $\tau_z < \tau_y$
- ▶ $u = \lambda x.t. \ v\rho = (\lambda x.t\rho)s\rho s_1\rho...s_n\rho$. We prove that $v\rho \in SN$ by well-founded induction on $(t, s, s_1, ..., s_n)$. Reducts of $v\rho$:
 - Reduction in $t\rho$, $s\rho$, $s_1\rho$, ..., $s_n\rho$: IH.
 - Otherwise, the reduct is tρ^{sρ}_x s₁ρ...s_nρ. How to conclude ? Remark 4: tρ^{sρ}_x s₁ρ...s_nρ = (t^s_x s₁...s_n)ρ ←_β vρ and v ∈ SN

Final proof (Diederik Van Daalen, 1980)

Theorem: if v : V and $a : \tau_y$ are SN, then $v_y^a \in SN$.

Proof. Let $\rho = \begin{pmatrix} a \\ y \end{pmatrix}$. By induction on (τ_y, v) using $\rightarrow_{\beta} \cup \triangleright$ as well-founded ordering on v.

▶ $v \in \mathcal{X}$. If v = y, then $v\rho = a \in SN$. Otherwise, $v\rho = v \in SN$.

•
$$v = \lambda x.t.$$
 By IH, $t\rho \in SN$. Thus, $v\rho \in SN$.

•
$$v = us\vec{s}$$
. By IH, $s\rho, \vec{s}\rho \in SN$.

- $u = x \neq y$. Then, $v\rho = xs\rho \vec{s}\rho \in SN$ since, by IH, $s\rho, \vec{s}\rho \in SN$.
- ► u = y. Then, $v\rho = as\rho \vec{s}\rho$. If $v\rho \notin SN$, then $a \rightarrow_{\beta}^{*} \lambda x.b$ and $b_x^{s\rho} \vec{s}\rho = (z\vec{s}\rho)_z^{b_x^{s\rho}} \notin SN$. Since $b \in SN$ and $\tau_x < \tau_y$, by IH, $b_x^{s\rho} \in SN$. Since $z\vec{s}\rho \in SN$ and $\tau_z < \tau_y$, by IH, $b_x^{s\rho} \vec{s}\rho \in SN$.

•
$$u = \lambda x.t. v\rho = (\lambda x.t\rho)s\rho \vec{s}\rho$$
. Reducts of $v\rho$:

- Reduction in $t\rho$, $s\rho$, $\vec{s}\rho$: IH.
- Otherwise, the reduct is tρ^{sρ}_x s̄ρ = (t^s_x s̄)ρ. We have t^s_x s̄ ∈ SN since it is a reduct of v ∈ SN. Thus, by IH, tρ^{sρ}_x s̄ρ ∈ SN.

Program termination in the simply-typed λ -calculus

Direct proof (Diederik Van Daalen, 1980)

- nice proof: created redexes have abstractions of decreasing types
- but we do not know how to extend it to richer type theories yet

From left to right: husband of Henriëtte, Jan van Hoek, Diederik van Daalen, Bert Jutting, Ids Zandleven, Roel de Vrijer, prof de Bruijn.

Outline

β -reduction

Van Daalen's proof (1980)

Tait's proof (1967)

William Walker Tait's approach (1967)

Idea: strengthen the induction hypothesis again

Find a property P on well-typed terms such that:

- if P(v), then $v \in SN$
- if $P(u: S \rightarrow T)$ and P(s: S), then P(us)
- if P(u) and P(s), then $P(u_x^s)$
- P(x) holds for every variable x

William Walker Tait's approach (1967)

u : *V* is computable if:

- either $V \in \mathcal{B}$ and $u \in SN$
- or $V = S \rightarrow T$ and, for all computable s : S, us is computable

this provides an inductive interpretation of types:

•
$$\llbracket B \rrbracket = \{ u : B \mid u \in SN \}$$

is the set of computable terms of type *B*

▶ $\llbracket S \to T \rrbracket = \{u : S \to T \mid \forall s \in \llbracket S \rrbracket, us \in \llbracket T \rrbracket\}$ is the set of computable terms of type $S \to T$

a substitution ρ is computable if, for all $x, x \rho \in \llbracket \tau_x \rrbracket$

Computability, variables and termination

Let X be the set of terminating terms of the form $xs_1 \dots s_n$ $(n \ge 0)$

Lemma: For all type V, $X \subseteq_{(1)} \llbracket V \rrbracket \subseteq_{(2)} SN$.

Proof. By induction on V.

V ∈ B.
(1) Let v ∈ X. Since X ⊆ SN, v ∈ SN. Thus, v ∈ [[V]].
(2) Let v ∈ [[V]]. Then, v ∈ SN.
V = S → T.
(1) Let v = xs₁...s_n ∈ X and s_{n+1} ∈ [[S]]. By IH2, s_{n+1} ∈ SN. Thus, xs₁...s_{n+1} ∈ SN. By IH2, xs₁...s_{n+1} ∈ [[T]]. Thus, v ∈ [[V]].
(2) Let v ∈ [[V]]. By IH1, there is x ∈ [[S]]. Thus, vx ∈ [[T]]. By IH2, vx ∈ SN. Thus, v ∈ SN.

Tait's approach

- Lemma: If v : V and ρ is computable, then $v\rho \in \llbracket V \rrbracket$.
- Proof. By induction on v : V.
- $v \in \mathcal{X}$. We have $v \rho \in \llbracket V \rrbracket$, since ρ is computable.
- ▶ v = us. We have $u : S \to V$ and s : S. By IH, $u\rho \in \llbracket S \to T \rrbracket$ and $s\rho \in \llbracket S \rrbracket$. Thus, $v\rho \in \llbracket V \rrbracket$.

Abstraction case

► $v = \lambda x.t.$ Let $s_0 = v\rho$, $S_1 = \tau_x$ and assume that $\tau_t = S_2 \rightarrow \ldots \rightarrow S_n \rightarrow B \in \mathcal{B}.$ Let $s_1 \in \llbracket S_1 \rrbracket, \ldots, s_n \in \llbracket S_n \rrbracket.$

Possible reducts of $s_0 s_1 \dots s_n$:

- $t\rho_x^{s_1}s_2\ldots s_n \in SN$ by IH
- $s_0 \dots s'_i \dots s_n$ with s'_i a reduct of s_i

Is every possible reduct SN ?

Since each $s_i \in SN$, the second case can be dealt with by well-founded induction on (s_0, \ldots, s_n) if computability is preserved by reduction (the IH applies only if s'_i is computable).

Computability is preserved by reduction

Lemma: If $v \in \llbracket V \rrbracket$ and $v \to_{\beta} v'$, then $v' \in \llbracket V \rrbracket$.

Proof. By induction on V.

- ▶ $V \in \mathcal{B}$. Then, $v \in SN$ and $v' \in SN$. Thus, $v' \in \llbracket V \rrbracket$.
- ► $V = S \rightarrow T$. Let $s \in \llbracket S \rrbracket$. Then, $vs \in \llbracket T \rrbracket$. Since $vs \rightarrow_{\beta} v's$, by IH, $v's \in \llbracket T \rrbracket$. Thus, $v' \in \llbracket V \rrbracket$.

Final proof

Lemma: If v : V and ρ is computable, then $v\rho \in \llbracket V \rrbracket$.

Proof. By induction 1 on v : V.

- $v \in \mathcal{X}$. We have $v \rho \in \llbracket V \rrbracket$, since ρ is computable.
- ▶ v = us. We have $u : S \to V$ and s : S. By IH, $u\rho \in \llbracket S \to T \rrbracket$ and $s\rho \in \llbracket S \rrbracket$. Thus, $v\rho \in \llbracket V \rrbracket$.
- ▶ $v = \lambda x.t.$ Let $s_0 = v\rho$, $S_1 = \tau_x$ and assume that $\tau_t = S_2 \rightarrow \ldots \rightarrow S_n \rightarrow B$. Let $s_1 \in [S_1], \ldots, s_n \in [S_n]$. We then prove that $s_0 s_1 \ldots s_n \in SN$ by well-founded induction 2 on (s_0, \ldots, s_n) . Possible reducts:
 - $t\rho_x^{s_1}s_2\ldots s_n$ is SN by IH1.
 - $s_0 \dots s'_i \dots s_n$ with s'_i a reduct of s_i is SN by IH2.

Consequences

Lemma: If v : V and ρ is computable, then $v \rho \in \llbracket V \rrbracket$.

Corollary: If v : V, then $v \in SN$.

Proof. Since $[\![V]\!]\subseteq \mathrm{SN}$ and the identity substitution is computable.

Corollary: Every simply-typed λ -term has a unique β -normal form.

Proof. By termination, every term has at least one normal form. By confluence, every term has at most one normal form.

Corollary: β -equivalence is decidable.

Proof. Check that the β -normal forms are α -equivalent.

What if we add constants and δ -rules ?

Take for instance the constants:

- $c:(T \to T) \to T$
- ▶ $p: T \to (T \to T)$

and the δ -rule:

• $p(cx) \rightarrow x$

Do well-typed terms using p and c terminate ? Let $\omega = \lambda x^T . pxx : T \to T$. Then, $\omega(c\omega) \to_{\beta} p(c\omega)(c\omega) \to_{\delta} w(c\omega) \to_{\beta} ... !$

Constants and rules introduce relations on types:

- p maps every element of T to a map from T to T. Ok.
- c maps every map from T to T to an element of T. Strange.
- p(cx) → x means that T is in bijection with the set of functions from T to T! This is possible only if T = Ø (Cantor theorem).