
β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Program termination in the simply-typed
λ-calculus

Frédéric Blanqui

INRIA

2nd Asian-Pacific Summer School on Formal Methods
Tsinghua University, 20-27 August 2010

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Outline

β-reduction

Van Daalen’s proof (1980)

Tait’s proof (1967)

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Untyped λ-calculus

introduced by Alonzo Church in 1932

λ-terms: t ∈ L = x ∈ X | λx .t | tt

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

β-reduction

→β is defined by induction as follows:

(top)
(λx .t)u →β tux

context rules:

(abs)
t →β t ′

λx .t →β λx .t ′

(app1)
t →β t ′

tu →β t ′u

(app2)
u →β u′

tu →β tu′

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Termination

a term t terminates
if every sequence of β-reductions starting from t is finite

i.e. there is no infinite sequence of β-reductions starting from t

t = t0 →β t1 →β t2 →β . . .

let SN be the set of terminating terms

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Which λ-terms terminate ?

I (λx .if x ≥ 2 then t else u)v is typable and terminates

I (λx .xx)(λx .xx) is not typable and does not terminate

I (λx .if x ≥ 2 then t else u) ”foo” is not typable and
terminates

Do all simply-typed λ-terms terminate ?

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Simply-typed λ-calculus à la Church simplified

simple types: S ∈ T = B ∈ B | S → S

To remove the need for typing environments, we assume that each
variable x is given a fixed type τx . Let τt be the unique type of t:

(var)
x : τx

(abs)
t : T

λx .t : τx → T
(app)

u : S → T s : S

us : T

Consequence: induction on v : T is equivalent to induction on v

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Preservation of typing under substitution

Definition: a substitution ρ is well-typed if, for all x , xρ : τx .

Lemma: if v : V and ρ is well-typed, then vρ : V .

Proof. By induction on v . Exercise.

Remark: In the following, we only consider well-typed terms and
substitutions.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Preservation of typing under reduction

Lemma: if v : V and v →β v ′, then v ′ : V .

Proof. By induction on v . Exercise.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Outline

β-reduction

Van Daalen’s proof (1980)

Tait’s proof (1967)

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

First proof attempt

Theorem: if v : V , then v ∈ SN.

Proof. By induction on v .

I v ∈ X . Then, v ∈ SN.

I v = λx .t. By IH, t ∈ SN. Thus, v ∈ SN.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Application case

I v = us. By IH, u, s ∈ SN. How to prove that v = us ∈ SN ?

Remark: v ∈ SN if every reduct of v is SN.

Possible reducts of us:

I u′s with u′ a reduct of u
I us ′ with s ′ a reduct of s
I tsx if u = λx .t

Is every possible reduct SN ?

Since u, s ∈ SN, the first two cases can be dealt with by
well-founded induction on (u, s).

For the third case, we need to strengthen the IH.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Second proof attempt

Theorem: if v : V and a : τy are SN, then vay ∈ SN.

Proof. Let ρ = (ay). By induction on v .

I v ∈ X . If v = y , then vρ = a ∈ SN. Otherwise, vρ = v ∈ SN.

I v = λx .t. Wlog we can assume that x 6= y and x /∈ FV(a).
Thus, vρ = λx .tρ. By IH, tρ ∈ SN. Thus, vρ ∈ SN.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Application case: v = uss1 . . . sn

I u = x 6= y . Then, vρ = xsρs1ρ . . . snρ ∈ SN since, by IH,
sρ, s1ρ, . . . , snρ ∈ SN.

I u = y . Then, vρ = asρs1ρ . . . snρ. If vρ /∈ SN, then a→∗β λx .b
and bsρx s1ρ . . . snρ /∈ SN. How to conclude ?
Remark 1: τy = τx → τz
Remark 2: for c = bsρx , we have τx < τy
Remark 3: bsρx s1ρ . . . snρ = (zs1ρ . . . snρ)cz and τz < τy

I u = λx .t. vρ = (λx .tρ)sρs1ρ . . . snρ. We prove that vρ ∈ SN
by well-founded induction on (t, s, s1, . . . , sn). Reducts of vρ:

I Reduction in tρ, sρ, s1ρ, . . . , snρ: IH.
I Otherwise, the reduct is tρsρx s1ρ . . . snρ. How to conclude ?

Remark 4: tρsρx s1ρ . . . snρ = (tsxs1 . . . sn)ρ←β vρ and v ∈ SN

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Final proof (Diederik Van Daalen, 1980)

Theorem: if v : V and a : τy are SN, then vay ∈ SN.

Proof. Let ρ = (ay). By induction on (τy , v) using →β ∪B as
well-founded ordering on v .

I v ∈ X . If v = y , then vρ = a ∈ SN. Otherwise, vρ = v ∈ SN.
I v = λx .t. By IH, tρ ∈ SN. Thus, vρ ∈ SN.
I v = us~s. By IH, sρ,~sρ ∈ SN.

I u = x 6= y . Then, vρ = xsρ~sρ ∈ SN since, by IH, sρ,~sρ ∈ SN.
I u = y . Then, vρ = asρ~sρ. If vρ /∈ SN, then a→∗β λx .b and

bsρx ~sρ = (z~sρ)b
sρ
x

z /∈ SN. Since b ∈ SN and τx < τy , by IH,
bsρx ∈ SN. Since z~sρ ∈ SN and τz < τy , by IH, bsρx ~sρ ∈ SN.

I u = λx .t. vρ = (λx .tρ)sρ~sρ. Reducts of vρ:

I Reduction in tρ, sρ,~sρ: IH.
I Otherwise, the reduct is tρsρx ~sρ = (tsx~s)ρ. We have tsx~s ∈ SN

since it is a reduct of v ∈ SN. Thus, by IH, tρsρx ~sρ ∈ SN.
Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Direct proof (Diederik Van Daalen, 1980)

I nice proof: created redexes have abstractions of decreasing types

I but we do not know how to extend it to richer type theories yet

From left to right: husband of Henriëtte, Jan van Hoek, Diederik van Daalen, Bert Jutting, Ids Zandleven, Roel de
Vrijer, prof de Bruijn.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Outline

β-reduction

Van Daalen’s proof (1980)

Tait’s proof (1967)

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

William Walker Tait’s approach (1967)

Idea: strengthen the induction hypothesis again

Find a property P on well-typed terms such that:

I if P(v), then v ∈ SN

I if P(u : S → T) and P(s : S), then P(us)

I if P(u) and P(s), then P(usx)

I P(x) holds for every variable x

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

William Walker Tait’s approach (1967)

u : V is computable if:

I either V ∈ B and u ∈ SN

I or V = S → T and, for all computable s : S , us is computable

this provides an inductive interpretation of types:

I [[B]] = {u : B | u ∈ SN}
is the set of computable terms of type B

I [[S → T]] = {u : S → T | ∀s ∈ [[S]], us ∈ [[T]]}
is the set of computable terms of type S → T

a substitution ρ is computable if, for all x , xρ ∈ [[τx]]

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Computability, variables and termination

Let X be the set of terminating terms of the form xs1 . . . sn (n ≥ 0)

Lemma: For all type V , X ⊆(1) [[V]] ⊆(2) SN.

Proof. By induction on V .

I V ∈ B.
(1) Let v ∈ X. Since X ⊆ SN, v ∈ SN. Thus, v ∈ [[V]].
(2) Let v ∈ [[V]]. Then, v ∈ SN.

I V = S → T .
(1) Let v = xs1 . . . sn ∈ X and sn+1 ∈ [[S]]. By IH2, sn+1 ∈ SN.
Thus, xs1 . . . sn+1 ∈ SN. By IH2, xs1 . . . sn+1 ∈ [[T]]. Thus,
v ∈ [[V]].
(2) Let v ∈ [[V]]. By IH1, there is x ∈ [[S]]. Thus, vx ∈ [[T]]. By
IH2, vx ∈ SN. Thus, v ∈ SN.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Tait’s approach

Lemma: If v : V and ρ is computable, then vρ ∈ [[V]].

Proof. By induction on v : V .

I v ∈ X . We have vρ ∈ [[V]], since ρ is computable.

I v = us. We have u : S → V and s : S . By IH, uρ ∈ [[S → T]]
and sρ ∈ [[S]]. Thus, vρ ∈ [[V]].

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Abstraction case

I v = λx .t. Let s0 = vρ, S1 = τx and assume that
τt = S2 → . . .→ Sn → B ∈ B. Let s1 ∈ [[S1]], . . . , sn ∈ [[Sn]].

Possible reducts of s0s1 . . . sn:

I tρs1x s2 . . . sn ∈ SN by IH
I s0 . . . s

′
i . . . sn with s ′i a reduct of si

Is every possible reduct SN ?

Since each si ∈ SN, the second case can be dealt with by
well-founded induction on (s0, . . . , sn) if computability is
preserved by reduction (the IH applies only if s ′i is computable).

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Computability is preserved by reduction

Lemma: If v ∈ [[V]] and v →β v ′, then v ′ ∈ [[V]].

Proof. By induction on V .

I V ∈ B. Then, v ∈ SN and v ′ ∈ SN. Thus, v ′ ∈ [[V]].

I V = S → T . Let s ∈ [[S]]. Then, vs ∈ [[T]]. Since vs →β v ′s, by
IH, v ′s ∈ [[T]]. Thus, v ′ ∈ [[V]].

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Final proof

Lemma: If v : V and ρ is computable, then vρ ∈ [[V]].

Proof. By induction 1 on v : V .

I v ∈ X . We have vρ ∈ [[V]], since ρ is computable.

I v = us. We have u : S → V and s : S . By IH, uρ ∈ [[S → T]]
and sρ ∈ [[S]]. Thus, vρ ∈ [[V]].

I v = λx .t. Let s0 = vρ, S1 = τx and assume that
τt = S2 → . . .→ Sn → B. Let s1 ∈ [[S1]], . . . , sn ∈ [[Sn]]. We
then prove that s0s1 . . . sn ∈ SN by well-founded induction 2 on
(s0, . . . , sn). Possible reducts:

I tρs1x s2 . . . sn is SN by IH1.
I s0 . . . s

′
i . . . sn with s ′i a reduct of si is SN by IH2.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

Consequences

Lemma: If v : V and ρ is computable, then vρ ∈ [[V]].

Corollary: If v : V , then v ∈ SN.

Proof. Since [[V]] ⊆ SN and the identity substitution is
computable.

Corollary: Every simply-typed λ-term has a unique β-normal form.

Proof. By termination, every term has at least one normal form.
By confluence, every term has at most one normal form.

Corollary: β-equivalence is decidable.

Proof. Check that the β-normal forms are α-equivalent.

Frédéric Blanqui Program termination in the simply-typed λ-calculus

β-reduction
Van Daalen’s proof (1980)

Tait’s proof (1967)

What if we add constants and δ-rules ?

Take for instance the constants:
I c : (T → T)→ T
I p : T → (T → T)

and the δ-rule:
I p(cx)→ x

Do well-typed terms using p and c terminate ?
Let ω = λxT .pxx : T → T .
Then, ω(cω) →β p(cω)(cω) →δ w(cω) →β . . . !

Constants and rules introduce relations on types:
I p maps every element of T to a map from T to T . Ok.
I c maps every map from T to T to an element of T . Strange.
I p(cx)→ x means that T is in bijection with the set of functions

from T to T ! This is possible only if T = ∅ (Cantor theorem).

Frédéric Blanqui Program termination in the simply-typed λ-calculus

	-reduction
	Van Daalen's proof (1980)
	Tait's proof (1967)

