Program termination in the simply-typed λ-calculus

Frédéric Blanqui

INRIA

2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, 20-27 August 2010

Outline

β-reduction

Van Daalen's proof (1980)

Tait's proof (1967)

Untyped λ-calculus

introduced by Alonzo Church in 1932
λ-terms: $t \in \mathcal{L}=x \in \mathcal{X}|\lambda x . t| t t$

β-reduction

\rightarrow_{β} is defined by induction as follows:

$$
(\mathrm{top}) \overline{(\lambda x . t) u \rightarrow_{\beta} t_{x}^{u}}
$$

context rules:

$$
\begin{aligned}
& \text { (abs) } \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x \cdot t \rightarrow_{\beta} \lambda x \cdot t^{\prime}} \\
& \text { (app1) } \frac{t \rightarrow_{\beta} t^{\prime}}{t u \rightarrow_{\beta} t^{\prime} u} \\
& \text { (app2) } \frac{u \rightarrow_{\beta} u^{\prime}}{t u \rightarrow_{\beta} t u^{\prime}}
\end{aligned}
$$

Termination

a term t terminates
if every sequence of β-reductions starting from t is finite
i.e. there is no infinite sequence of β-reductions starting from t

$$
t=t_{0} \rightarrow_{\beta} t_{1} \rightarrow_{\beta} t_{2} \rightarrow_{\beta} \cdots
$$

let SN be the set of terminating terms

Which λ-terms terminate ?

- (λx.if $x \geq 2$ then t else $u) v$ is typable and terminates
- $(\lambda x . x x)(\lambda x . x x)$ is not typable and does not terminate
- (λx.if $x \geq 2$ then t else u) "foo" is not typable and terminates

Do all simply-typed λ-terms terminate ?

Simply-typed λ-calculus à la Church simplified

$$
\text { simple types: } S \in \mathcal{T}=B \in \mathcal{B} \mid S \rightarrow S
$$

To remove the need for typing environments, we assume that each variable x is given a fixed type τ_{x}. Let τ_{t} be the unique type of t :

$$
\text { (var) } \frac{t: T}{x: \tau_{x}} \quad \text { (abs) } \frac{t: T}{\lambda x \cdot t: \tau_{x} \rightarrow T} \quad \text { (app) } \frac{u: S \rightarrow T \quad s: S}{u s: T}
$$

Consequence: induction on $v: T$ is equivalent to induction on v

Preservation of typing under substitution

Definition: a substitution ρ is well-typed if, for all $x, x \rho: \tau_{x}$.

Lemma: if $v: V$ and ρ is well-typed, then $v \rho: V$.
Proof. By induction on v. Exercise.

Remark: In the following, we only consider well-typed terms and substitutions.

Preservation of typing under reduction

Lemma: if $v: V$ and $v \rightarrow_{\beta} v^{\prime}$, then $v^{\prime}: V$.
Proof. By induction on v. Exercise.

Outline

β-reduction

Van Daalen's proof (1980)

Tait's proof (1967)

First proof attempt

Theorem: if $v: V$, then $v \in \mathrm{SN}$.
Proof. By induction on v.

- $v \in \mathcal{X}$. Then, $v \in \mathrm{SN}$.
- $v=\lambda$ x.t. By $\mathrm{IH}, t \in \mathrm{SN}$. Thus, $v \in \mathrm{SN}$.

Application case

- $v=u s$. By $\mathrm{IH}, u, s \in \mathrm{SN}$. How to prove that $v=u s \in \mathrm{SN}$?

Remark: $v \in \mathrm{SN}$ if every reduct of v is SN .
Possible reducts of $u s$:

- $u^{\prime} s$ with u^{\prime} a reduct of u
- $u s^{\prime}$ with s^{\prime} a reduct of s
- t_{x}^{s} if $u=\lambda x . t$

Is every possible reduct SN ?
Since $u, s \in \mathrm{SN}$, the first two cases can be dealt with by well-founded induction on (u, s).

For the third case, we need to strengthen the IH.

Second proof attempt

Theorem: if $v: V$ and $a: \tau_{y}$ are SN , then $v_{y}^{a} \in \mathrm{SN}$.
Proof. Let $\rho=\binom{a}{y}$. By induction on v.

- $v \in \mathcal{X}$. If $v=y$, then $v \rho=a \in \mathrm{SN}$. Otherwise, $v \rho=v \in \mathrm{SN}$.
- $v=\lambda x . t$. Wlog we can assume that $x \neq y$ and $x \notin \mathrm{FV}(a)$. Thus, $v \rho=\lambda x . t \rho$. By IH, $t \rho \in \mathrm{SN}$. Thus, $v \rho \in \mathrm{SN}$.

Application case: $v=u s s_{1} \ldots s_{n}$

- $u=x \neq y$. Then, $v \rho=x s \rho s_{1} \rho \ldots s_{n} \rho \in \mathrm{SN}$ since, by IH, $s \rho, s_{1} \rho, \ldots, s_{n} \rho \in \mathrm{SN}$.
- $u=y$. Then, $v \rho=\operatorname{as} \rho s_{1} \rho \ldots s_{n} \rho$. If $v \rho \notin \mathrm{SN}$, then $a \rightarrow_{\beta}^{*} \lambda x$.b and $b_{x}^{5 \rho} s_{1} \rho \ldots s_{n} \rho \notin \mathrm{SN}$. How to conclude?
Remark 1: $\tau_{y}=\tau_{x} \rightarrow \tau_{z}$
Remark 2: for $c=b_{x}^{s \rho}$, we have $\tau_{x}<\tau_{y}$ Remark 3: $b_{x}^{s \rho} s_{1} \rho \ldots s_{n} \rho=\left(z s_{1} \rho \ldots s_{n} \rho\right)_{z}^{c}$ and $\tau_{z}<\tau_{y}$
- $u=\lambda x . t . v \rho=(\lambda x . t \rho) s \rho s_{1} \rho \ldots s_{n} \rho$. We prove that $v \rho \in \mathrm{SN}$ by well-founded induction on ($t, s, s_{1}, \ldots, s_{n}$). Reducts of $v \rho$:
- Reduction in $t \rho, s \rho, s_{1} \rho, \ldots, s_{n} \rho$: IH.
- Otherwise, the reduct is $t \rho_{x}^{s \rho} s_{1} \rho \ldots s_{n} \rho$. How to conclude? Remark 4: $t \rho_{x}^{s \rho} s_{1} \rho \ldots s_{n} \rho=\left(t_{x}^{s} s_{1} \ldots s_{n}\right) \rho \leftarrow \beta v \rho$ and $v \in \mathrm{SN}$

Final proof (Diederik Van Daalen, 1980)

Theorem: if $v: V$ and $a: \tau_{y}$ are SN , then $v_{y}^{a} \in \mathrm{SN}$.
Proof. Let $\rho=\binom{a}{y}$. By induction on $\left(\tau_{y}, v\right)$ using $\rightarrow_{\beta} \cup \triangleright$ as well-founded ordering on v.

- $v \in \mathcal{X}$. If $v=y$, then $v \rho=a \in \mathrm{SN}$. Otherwise, $v \rho=v \in \mathrm{SN}$.
- $v=\lambda$ x.t. By $\mathrm{IH}, t \rho \in \mathrm{SN}$. Thus, $v \rho \in \mathrm{SN}$.
- $v=u s \vec{s}$. By $\mathrm{IH}, s \rho, \vec{s} \rho \in \mathrm{SN}$.
- $u=x \neq y$. Then, $v \rho=x s \rho \vec{s} \rho \in$ SN since, by $\mathrm{IH}, \boldsymbol{s} \rho, \vec{s} \rho \in \mathrm{SN}$.
- $u=y$. Then, $v \rho=\operatorname{as} \rho \overrightarrow{\boldsymbol{s} \rho}$. If $v \rho \notin \mathrm{SN}$, then $a \rightarrow_{\beta}^{*} \lambda x . b$ and $b_{x}^{s \rho} \vec{s} \rho=(z \vec{s} \rho)_{z}^{b_{x}^{s \rho}} \notin \mathrm{SN}$. Since $b \in \mathrm{SN}$ and $\tau_{x}<\tau_{y}$, by IH, $b_{x}^{s \rho} \in \mathrm{SN}$. Since $z \vec{s} \rho \in \mathrm{SN}$ and $\tau_{z}<\tau_{y}$, by $\mathrm{IH}, b_{x}^{s \rho} \vec{s} \rho \in \mathrm{SN}$.
- $u=\lambda x . t . v \rho=(\lambda x . t \rho) \operatorname{s} \rho \overrightarrow{\boldsymbol{s}} \rho$. Reducts of $v \rho$:
- Reduction in $t \rho, s \rho, \vec{s} \rho$: IH .
- Otherwise, the reduct is $t \rho_{x}^{s \rho} \vec{s} \rho=\left(t_{x}^{s} \vec{s}\right) \rho$. We have $t_{x}^{s} \vec{s} \in \mathrm{SN}$ since it is a reduct of $v \in \mathrm{SN}$. Thus, by $\mathrm{IH}, t \rho_{x}^{s \rho} \vec{s} \rho \in \mathrm{SN}$.

Direct proof (Diederik Van Daalen, 1980)

- nice proof: created redexes have abstractions of decreasing types
- but we do not know how to extend it to richer type theories yet

From left to right: husband of Henriëtte, Jan van Hoek, Diederik van Daalen, Bert Jutting, Ids Zandleven, Roel de Vrijer, prof de Bruijn.

Outline

β-reduction

Van Daalen's proof (1980)

Tait's proof (1967)

William Walker Tait's approach (1967)

Idea: strengthen the induction hypothesis again
Find a property P on well-typed terms such that:

- if $P(v)$, then $v \in \mathrm{SN}$
- if $P(u: S \rightarrow T)$ and $P(s: S)$, then $P(u s)$
- if $P(u)$ and $P(s)$, then $P\left(u_{x}^{s}\right)$
- $P(x)$ holds for every variable x

William Walker Tait's approach (1967)

$u: V$ is computable if:

- either $V \in \mathcal{B}$ and $u \in \mathrm{SN}$
- or $V=S \rightarrow T$ and, for all computable $s: S$, $u s$ is computable this provides an inductive interpretation of types:
- $\llbracket B \rrbracket=\{u: B \mid u \in \mathrm{SN}\}$
is the set of computable terms of type B
- $\llbracket S \rightarrow T \rrbracket=\{u: S \rightarrow T \mid \forall s \in \llbracket S \rrbracket, u s \in \llbracket T \rrbracket\}$
is the set of computable terms of type $S \rightarrow T$
a substitution ρ is computable if, for all $x, x \rho \in \llbracket \tau_{x} \rrbracket$

Computability, variables and termination

Let X be the set of terminating terms of the form $x s_{1} \ldots s_{n}(n \geq 0)$
Lemma: For all type $V, \mathrm{X} \subseteq_{(1)} \llbracket V \rrbracket \subseteq_{(2)} \mathrm{SN}$.
Proof. By induction on V.

- $V \in \mathcal{B}$.
(1) Let $v \in \mathrm{X}$. Since $\mathrm{X} \subseteq \mathrm{SN}, v \in \mathrm{SN}$. Thus, $v \in \llbracket V \rrbracket$.
(2) Let $v \in \llbracket V \rrbracket$. Then, $v \in$ SN.
- $V=S \rightarrow T$.
(1) Let $v=x s_{1} \ldots s_{n} \in \mathrm{X}$ and $s_{n+1} \in \llbracket S \rrbracket$. By $\mathrm{IH} 2, s_{n+1} \in \mathrm{SN}$.

Thus, $x s_{1} \ldots s_{n+1} \in \mathrm{SN}$. By $\mathrm{IH} 2, x s_{1} \ldots s_{n+1} \in \llbracket T \rrbracket$. Thus, $v \in \llbracket V \rrbracket$.
(2) Let $v \in \llbracket V \rrbracket$. By H 1 , there is $x \in \llbracket S \rrbracket$. Thus, $v x \in \llbracket T \rrbracket$. By $\mathrm{IH} 2, v x \in \mathrm{SN}$. Thus, $v \in \mathrm{SN}$.

Tait's approach

Lemma: If $v: V$ and ρ is computable, then $v \rho \in \llbracket V \rrbracket$.
Proof. By induction on $v: V$.

- $v \in \mathcal{X}$. We have $v \rho \in \llbracket V \rrbracket$, since ρ is computable.
- $v=u s$. We have $u: S \rightarrow V$ and $s: S$. By $\mathrm{IH}, u \rho \in \llbracket S \rightarrow T \rrbracket$ and $s \rho \in \llbracket S \rrbracket$. Thus, $v \rho \in \llbracket V \rrbracket$.

Abstraction case

- $v=\lambda x$.t. Let $s_{0}=v \rho, S_{1}=\tau_{x}$ and assume that $\tau_{t}=S_{2} \rightarrow \ldots \rightarrow S_{n} \rightarrow B \in \mathcal{B}$. Let $s_{1} \in \llbracket S_{1} \rrbracket, \ldots, s_{n} \in \llbracket S_{n} \rrbracket$.

Possible reducts of $s_{0} s_{1} \ldots s_{n}$:

- $t \rho_{x}^{s_{1}} s_{2} \ldots s_{n} \in$ SN by IH
- $s_{0} \ldots s_{i}^{\prime} \ldots s_{n}$ with s_{i}^{\prime} a reduct of s_{i}

Is every possible reduct SN ?
Since each $s_{i} \in \mathrm{SN}$, the second case can be dealt with by well-founded induction on $\left(s_{0}, \ldots, s_{n}\right)$ if computability is preserved by reduction (the IH applies only if s_{i}^{\prime} is computable).

Computability is preserved by reduction

Lemma: If $v \in \llbracket V \rrbracket$ and $v \rightarrow_{\beta} v^{\prime}$, then $v^{\prime} \in \llbracket V \rrbracket$.
Proof. By induction on V.

- $V \in \mathcal{B}$. Then, $v \in \mathrm{SN}$ and $v^{\prime} \in \mathrm{SN}$. Thus, $v^{\prime} \in \llbracket V \rrbracket$.
- $V=S \rightarrow T$. Let $s \in \llbracket S \rrbracket$. Then, $v s \in \llbracket T \rrbracket$. Since $v s \rightarrow_{\beta} v^{\prime} s$, by $I H, v^{\prime} s \in \llbracket T \rrbracket$. Thus, $v^{\prime} \in \llbracket V \rrbracket$.

Final proof

Lemma: If $v: V$ and ρ is computable, then $v \rho \in \llbracket V \rrbracket$.
Proof. By induction 1 on $v: V$.

- $v \in \mathcal{X}$. We have $v \rho \in \llbracket V \rrbracket$, since ρ is computable.
- $v=u s$. We have $u: S \rightarrow V$ and $s: S$. By $\mathrm{IH}, u \rho \in \llbracket S \rightarrow T \rrbracket$ and $s \rho \in \llbracket S \rrbracket$. Thus, $v \rho \in \llbracket V \rrbracket$.
- $v=\lambda x$.t. Let $s_{0}=v \rho, S_{1}=\tau_{x}$ and assume that $\tau_{t}=S_{2} \rightarrow \ldots \rightarrow S_{n} \rightarrow B$. Let $s_{1} \in \llbracket S_{1} \rrbracket, \ldots, s_{n} \in \llbracket S_{n} \rrbracket$. We then prove that $s_{0} s_{1} \ldots s_{n} \in$ SN by well-founded induction 2 on $\left(s_{0}, \ldots, s_{n}\right)$. Possible reducts:
- $t \rho_{x}^{s_{1}} s_{2} \ldots s_{n}$ is SN by IH1.
- $s_{0} \ldots s_{i}^{\prime} \ldots s_{n}$ with s_{i}^{\prime} a reduct of s_{i} is SN by IH 2 .

Consequences

Lemma: If $v: V$ and ρ is computable, then $v \rho \in \llbracket V \rrbracket$.

Corollary: If $v: V$, then $v \in \mathrm{SN}$.
Proof. Since $\llbracket V \rrbracket \subseteq \mathrm{SN}$ and the identity substitution is computable.

Corollary: Every simply-typed λ-term has a unique β-normal form.
Proof. By termination, every term has at least one normal form. By confluence, every term has at most one normal form.

Corollary: β-equivalence is decidable.
Proof. Check that the β-normal forms are α-equivalent.

What if we add constants and δ-rules ?

Take for instance the constants:

- $c:(T \rightarrow T) \rightarrow T$
- $p: T \rightarrow(T \rightarrow T)$
and the δ-rule:
- $p(c x) \rightarrow x$

Do well-typed terms using p and c terminate ?
Let $\omega=\lambda x^{T} . p x x: T \rightarrow T$.
Then, $\omega(c \omega) \rightarrow_{\beta} p(c \omega)(c \omega) \rightarrow_{\delta} w(c \omega) \rightarrow_{\beta} \ldots$!
Constants and rules introduce relations on types:

- p maps every element of T to a map from T to T. Ok.
- c maps every map from T to T to an element of T. Strange.
- $p(c x) \rightarrow x$ means that T is in bijection with the set of functions from T to T ! This is possible only if $T=\emptyset$ (Cantor theorem).

