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Using the untyped λ-calculus as a programming language ?

This is possible! cf. J.-J. Lévy’s lecture.

Examples: LISP (1958), Scheme (1975), . . .

Problem: what to do with expressions like

(λx .if x ≥ 2 then t else u)”foo” ?

Typed programming languages like Pascal (1970), C (1972), ML
(1973), Ada (1977), C++ (1979), Coq (1985), Java (1995),
OCaml (1996), . . . reject such ill-typed expressions.
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Simple types

A simple type is either:

I a type constant bool, int,float, . . . ∈ B
I a function type S → T , where S and T are themselves types

Remark: every type is of the form

T1 → . . .→ Tn → B

where n ≥ 0 and B ∈ B.
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Order of a type

order(T1 → . . .→ Tn → B) = max({0}∪{1+order(Ti )|1 ≤ i ≤ n})

Examples:

I order(int) = 0

I order(int→ int) = order(int→ int→ int) = 1

I order((int→ int)→ int) = 2

Most programming languages allow types of order 1 only. . .
ML, OCaml, Coq, . . . allow types of any order.
Coq allows even richer types (polymorphic, dependent, . . . )
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Assigning a type to a λ-term

Problem: what type(s) has λx .x ?

bool→ bool, int→ int, (int→ int)→ (int→ int),. . .
are all possible

⇒ a typable expression has no unique type !
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Types of variables ?

Two approaches:

I à la Curry (1934): variables are not annotated

λx .t

⇒ a typable expression has no unique type
BUT has a unique most general type schema (proof later)

I à la Church (1940): variables are annotated with their type

λxS .t

⇒ a typable expression has a unique type (proof later)
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Typing environments

Notations:

I X is the set of variables x , y , . . .

I L is the set of λ-terms s, t, . . .

I T is the set of simple types S ,T , . . .

I E is the set of typing environments Γ,∆, . . .
i.e. the set of finite maps from X to T

dom(Γ) = {x ∈ X | ∃T , (x ,T ) ∈ Γ} is the domain of Γ
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Assigning a type to a λ-term - Church approach

Typing ` is inductively defined as the smallest relation on
E × L × T such that:

(var) (Γ, x ,S) ∈ `
if (x ,S) ∈ Γ

(abs) (Γ, λxS .t,S → T ) ∈ `
if x /∈ dom(Γ) and (Γ ∪ {(x ,S)}, t,T ) ∈ `

(app) (Γ, us,T ) ∈ `
if there is S ∈ T such that (Γ, u,S → T ) ∈ ` and (Γ, s, S) ∈ `
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Assigning a type to a λ-term - Church approach

By writing Γ ` v : V instead of (Γ, v ,V ) ∈ ` and
using deduction rules. . .

Typing ` is inductively defined as the smallest relation on
E × L × T such that:

(var)
Γ ` x : S

if (x ,S) ∈ Γ

(abs)
Γ ∪ {(x ,S)} ` t : T

Γ ` λxS .t : S → T
if x /∈ dom(Γ)

(app)
Γ ` u : S → T Γ ` s : S

Γ ` us : T
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Example

Let Γ = {(≤, int→ int→ bool), (2, int), (x , int), (t, int), (u, int),
(if then else ,bool→ int→ int→ int)}.

(var)
Γ ` ≤ : int→ int→ bool

(var)
Γ ` x : int

(app)
Γ ` x ≤ : int→ bool

(var)
Γ ` 2 : int

(app)
Γ ` x ≤ 2 : bool

(var)
Γ ` if then else : bool→ int→ int→ int

. . .

Γ ` x ≤ 2 : bool
(app)

Γ ` if x ≤ 2 then else : int→ int→ int
. . .

Γ ` if x ≤ 2 then t else u : int
(abs)

` λx .if x ≤ 2 then t else u : int→ int
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Assigning a type to a λ-term - Curry approach

Typing ` is inductively defined as the smallest relation on
E × L × T such that:

I (Γ, λx .t,S → T ) ∈ `
if x /∈ dom(Γ) and (Γ ∪ {(x ,S)}, t,T ) ∈ `

(abs)
Γ ∪ {(x ,S)} ` t : T

Γ ` λx .t : S → T
if x /∈ dom(Γ)
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Decidability of type-checking

Problem: given Γ, v and V , is it decidable whether Γ ` v : V ?
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Inversion lemma

Lemma: assume that Γ ` v : V .

I If v ∈ X ,
then (v ,V ) ∈ Γ.

I If v = λxS .t and x /∈ dom(Γ),
then there is T such that V = S → T and Γ ∪ {(x , S)} ` t : T .

I If v = us,
then there is S such that Γ ` u : S → V and Γ ` s : S .
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Unicity of type in Church approach

Theorem: if Γ ` v : V and Γ ` v : V ′, then V = V ′.

Proof. By induction on Γ ` v : V .

(var)
Γ ` x : S

if (x , S) ∈ Γ. We have v = x and V = S . By

inversion, (x ,V ′) ∈ Γ. Since Γ is a function, V = V ′.

(abs)
Γ ∪ {(x , S)} ` t : T

Γ ` λxS .t : S → T
if x /∈ dom(Γ). We have v = λxS .t and

V = S → T . By inversion, there is T ′ such that V ′ = S → T ′

and Γ ∪ {(x , S)} ` t : T ′. By IH, T = T ′. Thus, V = V ′.

(app)
Γ ` u : S → T Γ ` s : S

Γ ` us : T
. We have v = us and V = T . By

inversion, there is S ′ ∈ T such that Γ ` u : S ′ → V ′ and
Γ ` s : S ′. By IH, S → V = S ′ → V ′. Thus, V = V ′.
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Decidability of type-checking

Problem: given Γ, v and V , is it decidable whether Γ ` v : V ?

We first define a computable function φ which, given Γ and v ,
returns the unique type of v in Γ if it exists, and error otherwise.

I φ(Γ, x) = S if (x , S) ∈ Γ

I φ(Γ, λxS .t) = S → T if φ(Γ ∪ {(x , S)}, t) = T

I φ(Γ, us) = T if φ(Γ, u) = S → T and φ(Γ, s) = S

I φ(Γ, v) = error otherwise

Then, the following function answers the problem:

I ψ(Γ, v ,V ) = true if φ(Γ, v) = V

I ψ(Γ, v ,V ) = false otherwise
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Correctness

Lemma: if φ(Γ, v) = V 6= error, then Γ ` v : V .

Proof. By induction on v .

I v ∈ X . By assumption, (v ,V ) ∈ Γ. Thus, Γ ` v : V .

I v = λxS .t. By assumption, φ(Γ ∪ {(x ,S)}, t) = T 6= error and
V = S → T . By IH, Γ ∪ {(x ,S)} ` t : T . Thus, Γ ` v : V .

I v = us. By assumption, there is S such that φ(Γ, u) = S → T
and φ(Γ, s) = S . By IH, Γ ` u : S → T and Γ ` s : S . Thus,
Γ ` v : V .

Corollary: if ψ(Γ, v ,V ) = true, then Γ ` v : V .
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Completeness

Lemma: if Γ ` v : V , then φ(Γ, v) = V 6= error.

Proof. By induction on Γ ` v : V .

(var)
Γ ` x : S

if (x , S) ∈ Γ. We have v = x and V = S . Thus,

φ(Γ, v) = V .

(abs)
Γ ∪ {(x , S)} ` t : T

Γ ` λxS .t : S → T
if x /∈ dom(Γ). We have v = λxS .t and

V = S → T . By IH, φ(Γ ∪ {(x ,S)}, t) = T 6= error. Thus,
φ(Γ, v) = V 6= error.

(app)
Γ ` u : S → T Γ ` s : S

Γ ` us : T
. We have v = us and V = T . By IH,

φ(Γ, u) = S → T 6= error and φ(Γ, s) = S 6= error. Thus,
φ(Γ, v) = V 6= error.

Corollary: if Γ ` v : V , then ψ(Γ, v ,V ) = true.
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Type inference

Problem: given v , is it decidable whether there exists Γ and V
such that Γ ` v : V ?

Problem for completeness: v has no unique type. . .

λx .x has type int→ int, (int→ int)→ (int→ int), . . .

Idea: use type variables !

every type of λx .x is an instance of the type schema α→ α
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Type schema

Types and typing are extended with type variables:

I S is the set of type schema S ,T , . . . made of:
I type variables α, β, . . . ∈ V
I type constants bool, int,float, . . . ∈ B
I function types S → T , where S and T are type schema

Type substitutions θ, ρ, σ, . . . are finite maps from V to S.

Lemma: if Γ ` v : V then, for all type substitution ρ, Γρ ` v : V ρ
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Type schema compatibility

Two type schema S and T (with distinct type variables) are
compatible if there is a type substitution ρ such that Sρ = Tρ.

This is unification (Jacques Herbrand, 1930) !
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Unification problem

I a unification constraint is a pair of type schema (S ,T )

I a unification problem is a set of unification constraints

I a solution to a unification problem {(S1,T1, ) . . . , (Sn,Tn)} is a
substitution ρ such that S1ρ = T1ρ, . . . ,Snρ = Tnρ

I a unification problem is in solved form if it is of the form
{(α1,T1), . . . , (αn,Tn)} and, for all i ≤ j , αi /∈ Tj

Remark: a solved form is a substitution

Frédéric Blanqui Introduction to the simply-typed λ-calculus



Simply-typed λ-terms
Decidability of type-checking (Church approach)

Type inference (Curry approach)

Unification algorithm

A configuration is a pair of problems (C ,D) with D in solved form.

Rewrite the initial configuration (C , ∅) as much as possible by
using the following rules:

{(S , S)} ∪ C ,D 7→ C ,D
{(S1 → T1, S2 → T2)} ∪ C ,D 7→ {(S1, S2), (T1,T2)} ∪ C ,D

{(α,S)} ∪ C ,D 7→ CS
α , {(α,S)} ∪ DS

α if α /∈ S
{(S , α)} ∪ C ,D 7→ CS

α , {(α,S)} ∪ DS
α if α /∈ S

C ,D 7→ error otherwise
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Example

Let C = {(α, β → γ), (γ → β, β → γ)}.

C , ∅
7→ {(γ → β, β → γ)}, {(α, β → γ)}
7→ {(γ, β), (β, γ)}, {(α, β → γ)}
7→ {(β, β)}, {(γ, β), (α, β → β)}
7→ {(γ, β), (α, β → β)}
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Unification algorithm

A configuration is a pair of problems (C ,D) with D in solved form.

Rewrite the initial configuration (C , ∅) as much as possible by
using the following rules:

{(S , S)} ∪ C ,D 7→ C ,D
{(S1 → T1, S2 → T2)} ∪ C ,D 7→ {(S1, S2), (T1,T2)} ∪ C ,D

{(α,S)} ∪ C ,D 7→ CS
α , {(α,S)} ∪ DS

α if α /∈ S
{(S , α)} ∪ C ,D 7→ CS

α , {(α,S)} ∪ DS
α if α /∈ S

C ,D 7→ error otherwise

Correctness: if (C , ∅) 7→∗ (∅, θ), then θ is a solution of C .

Completeness: if ρ is a solution of C , then there are θ and σ such
that (C , ∅) 7→∗ (∅, θ) and ρ = θσ (ρ is an instance of θ).
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Application to type inference

Problem: given v , is it decidable whether there exists Γ and V
such that Γ ` v : V ?

We first define a computable function φ which, given Γ, v and V
such that FV(v) ⊆ dom(Γ), returns a unification problem:

I φ(Γ, x ,V ) = {(Γ(x),V )}
I φ(Γ, λx .t,V ) = {(V , α→ β)}∪φ(Γ∪{(x , α)}, t, β) (α, β fresh)

I φ(Γ, us,V ) = φ(Γ, u, α→ V ) ∪ φ(Γ, s, α) (α fresh)

Correctness: if ρ satisfies φ(Γ, v ,V ), then Γρ ` v : V ρ.

Completeness: if Γρ ` v : V ρ, then ρ can be extended into a
solution of φ(Γ, v ,V ).
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Type inference

Problem: given v , is it decidable whether there exists Γ and V
such that Γ ` v : V ?

Assume that FV(v) = {x1, . . . , xn}.
I Let ∆ = {(x1, α1), . . . , (xn, αn)} with α1, . . . , αn 6= variables.

I Let β be a fresh type variable.

Then, let:

I ψ(v) = (∆θ, βθ) if φ(∆, v , β) has most general solution θ

I ψ(v) = error otherwise

Correctness: if ψ(v) = (∆, S), then ∆ ` v : S .

Completeness: if Γ ` v : V , then there are ∆, S and σ such that
ψ(v) = (∆,S), ∆σ ⊆ Γ and Sσ = V .
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Example

Is λx .xx typable ?

φ(∅, λx .xx , β)
= {(β, α→ γ)} ∪ φ({(x , α)}, xx , γ)
= {(β, α→ γ)} ∪ φ({(x , α)}, x , δ → γ) ∪ φ({(x , α)}, x , δ)
= {(β, α→ γ), (α, δ → γ), (α, δ)}

(φ(∅, λx .xx , β), ∅)
7→ ({(α, δ → γ), (α, δ)}, {(β, α→ γ)})
7→ ({(δ → γ, δ)}, {(α, δ → γ), (β, (δ → γ)→ γ)})
7→ error

because there is no type T such that T = T → S = (T → S)→ S
= ((T → S)→ S)→ S = (((T → S)→ S)→ S)→ S = . . .
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