Introduction to the simply-typed λ -calculus

Frédéric Blanqui

INRIA

2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, 20-27 August 2010

Outline

Simply-typed λ -terms

Decidability of type-checking (Church approach)

Type inference (Curry approach)

Using the untyped λ -calculus as a programming language ?

This is possible! cf. J.-J. Lévy's lecture.

Examples: LISP (1958), Scheme (1975), ...

Problem: what to do with expressions like

```
(\lambda x. \text{if } x \ge 2 \text{ then } t \text{ else } u)"foo" ?
```

Typed programming languages like Pascal (1970), C (1972), ML (1973), Ada (1977), C++ (1979), Coq (1985), Java (1995), OCaml (1996), ... reject such ill-typed expressions.

Simple types

A simple type is either:

- ▶ a type constant bool, int, float, $\ldots \in \mathcal{B}$
- ▶ a function type $S \rightarrow T$, where S and T are themselves types

Remark: every type is of the form

$$T_1 \rightarrow \ldots \rightarrow T_n \rightarrow B$$

where $n \geq 0$ and $B \in \mathcal{B}$.

Order of a type

$$order(T_1 \rightarrow \ldots \rightarrow T_n \rightarrow B) = max(\{0\} \cup \{1+order(T_i) | 1 \le i \le n\})$$

Examples:

- ▶ order(int) = 0
- $order(int \rightarrow int) = order(int \rightarrow int \rightarrow int) = 1$
- $order((int \rightarrow int) \rightarrow int) = 2$

Most programming languages allow types of order 1 only... ML, OCaml, Coq, ... allow types of any order. Coq allows even richer types (polymorphic, dependent, ...)

Assigning a type to a λ -term

Problem: what type(s) has $\lambda x.x$?

bool \rightarrow bool, int \rightarrow int, (int \rightarrow int) \rightarrow (int \rightarrow int),... are all possible

 \Rightarrow a typable expression has no unique type !

 $\begin{array}{c} \textbf{Simply-typed λ-terms} \\ \textbf{Decidability of type-checking (Church approach)} \\ \textbf{Type inference (Curry approach)} \end{array}$

Types of variables ?

Two approaches:

► à la Curry (1934): variables are not annotated

 $\lambda x.t$

 $\lambda x^{S} t$

- \Rightarrow a typable expression has no unique type
- BUT has a unique most general type schema (proof later)
- ► à la Church (1940): variables are annotated with their type

 \Rightarrow a typable expression has a unique type (proof later)

Typing environments

Notations:

- \mathcal{X} is the set of variables x, y, \ldots
- \mathcal{L} is the set of λ -terms s, t, \ldots
- \mathcal{T} is the set of simple types S, T, \ldots
- *ε* is the set of typing environments Γ, Δ, ...
 i.e. the set of finite maps from X to T

dom(Γ) = { $x \in \mathcal{X} \mid \exists T, (x, T) \in \Gamma$ } is the domain of Γ

Assigning a type to a λ -term - Church approach

Typing \vdash is inductively defined as the smallest relation on $\mathcal{E} \times \mathcal{L} \times \mathcal{T}$ such that:

(var)
$$(\Gamma, x, S) \in \vdash$$

if $(x, S) \in \Gamma$
(abs) $(\Gamma, \lambda x^{S}.t, S \to T) \in \vdash$
if $x \notin \operatorname{dom}(\Gamma)$ and $(\Gamma \cup \{(x, S)\}, t, T) \in \vdash$
(app) $(\Gamma, us, T) \in \vdash$
if there is $S \in \mathcal{T}$ such that $(\Gamma, u, S \to T) \in \vdash$ and $(\Gamma, s, S) \in \vdash$

Assigning a type to a λ -term - Church approach

By writing $\Gamma \vdash v : V$ instead of $(\Gamma, v, V) \in \vdash$ and using deduction rules...

Typing \vdash is inductively defined as the smallest relation on $\mathcal{E} \times \mathcal{L} \times \mathcal{T}$ such that:

(var)
$$rac{\Gamma \vdash x : S}{\Gamma \vdash x : S}$$
 if $(x, S) \in \Gamma$
(abs) $rac{\Gamma \cup \{(x, S)\} \vdash t : T}{\Gamma \vdash \lambda x^S \cdot t : S \to T}$ if $x \notin \operatorname{dom}(\Gamma)$
(app) $rac{\Gamma \vdash u : S \to T \quad \Gamma \vdash s : S}{\Gamma \vdash us : T}$

 $\begin{array}{c} \textbf{Simply-typed λ-terms} \\ \textbf{Decidability of type-checking (Church approach)} \\ \textbf{Type inference (Curry approach)} \end{array}$

Example

Let
$$\Gamma = \{(\leq, \text{int} \to \text{int} \to \text{bool}), (2, \text{int}), (x, \text{int}), (t, \text{int}), (u, \text{int}), ($$

$$\frac{\overline{\Gamma \vdash _ \le _: int \rightarrow int \rightarrow bool} (var)}{\overline{\Gamma \vdash x : int} (app)} \frac{\overline{\Gamma \vdash 2 : int}}{\overline{\Gamma \vdash 2 : int} (app)} (var)}{\overline{\Gamma \vdash 2 : int} (app)}$$

$$\frac{\overline{\Gamma \vdash if _ then _ else _: bool \rightarrow int \rightarrow int \rightarrow int} (var)}{\overline{\Gamma \vdash x \le 2 : bool} (var)} \frac{\frac{\cdots}{\overline{\Gamma \vdash x \le 2 : bool}}}{\overline{\Gamma \vdash if x \le 2 then _ else _: int \rightarrow int \rightarrow int}} (app) (app)$$

$$\frac{\overline{\Gamma \vdash if x \le 2 then _ else _: int \rightarrow int \rightarrow int}}{\overline{\Gamma \vdash if x \le 2 then _ else _: int \rightarrow int}} (abs)$$

Assigning a type to a λ -term - Curry approach

Typing \vdash is inductively defined as the smallest relation on $\mathcal{E} \times \mathcal{L} \times \mathcal{T}$ such that:

►
$$(\Gamma, \lambda x.t, S \to T) \in \vdash$$

if $x \notin \operatorname{dom}(\Gamma)$ and $(\Gamma \cup \{(x, S)\}, t, T) \in \vdash$

(abs)
$$\frac{\Gamma \cup \{(x,S)\} \vdash t : T}{\Gamma \vdash \lambda x.t : S \to T} \text{ if } x \notin \operatorname{dom}(\Gamma)$$

Outline

Simply-typed λ -terms

Decidability of type-checking (Church approach)

Type inference (Curry approach)

Decidability of type-checking

Problem: given Γ , v and V, is it decidable whether $\Gamma \vdash v : V$?

Inversion lemma

Lemma: assume that $\Gamma \vdash v : V$.

- If $v \in \mathcal{X}$, then $(v, V) \in \Gamma$.
- ▶ If $v = \lambda x^S$.t and $x \notin \text{dom}(\Gamma)$, then there is T such that $V = S \rightarrow T$ and $\Gamma \cup \{(x, S)\} \vdash t : T$.
- ► If v = us,

then there is S such that $\Gamma \vdash u : S \rightarrow V$ and $\Gamma \vdash s : S$.

Unicity of type in Church approach

Theorem: if
$$\Gamma \vdash v : V$$
 and $\Gamma \vdash v : V'$, then $V = V'$.

Proof. By induction on $\Gamma \vdash v : V$.

(var)
$$\overline{\Gamma \vdash x:S}$$
 if $(x,S) \in \Gamma$. We have $v = x$ and $V = S$. By
inversion, $(x, V') \in \Gamma$. Since Γ is a function, $V = V'$.
(abs) $\frac{\Gamma \cup \{(x,S)\} \vdash t:T}{\Gamma \vdash \lambda x^S.t:S \to T}$ if $x \notin \operatorname{dom}(\Gamma)$. We have $v = \lambda x^S.t$ and
 $V = S \to T$. By inversion, there is T' such that $V' = S \to T'$
and $\Gamma \cup \{(x,S)\} \vdash t:T'$. By IH, $T = T'$. Thus, $V = V'$.
(app) $\frac{\Gamma \vdash u:S \to T \quad \Gamma \vdash s:S}{\Gamma \vdash us:T}$. We have $v = us$ and $V = T$. By
inversion, there is $S' \in T$ such that $\Gamma \vdash u:S' \to V'$ and
 $\Gamma \vdash s:S'$. By IH, $S \to V = S' \to V'$. Thus, $V = V'$.

Decidability of type-checking

Problem: given Γ , v and V, is it decidable whether $\Gamma \vdash v : V$?

We first define a computable function ϕ which, given Γ and v, returns the unique type of v in Γ if it exists, and error otherwise.

Then, the following function answers the problem:

•
$$\psi(\Gamma, \nu, V) = \text{true if } \phi(\Gamma, \nu) = V$$

•
$$\psi(\Gamma, v, V) = \text{false otherwise}$$

Correctness

Lemma: if $\phi(\Gamma, v) = V \neq \text{error}$, then $\Gamma \vdash v : V$.

Proof. By induction on v.

- ▶ $v \in \mathcal{X}$. By assumption, $(v, V) \in \Gamma$. Thus, $\Gamma \vdash v : V$.
- ▶ $v = \lambda x^S . t$. By assumption, $\phi(\Gamma \cup \{(x, S)\}, t) = T \neq \text{error and}$ $V = S \rightarrow T$. By IH, $\Gamma \cup \{(x, S)\} \vdash t : T$. Thus, $\Gamma \vdash v : V$.
- v = us. By assumption, there is S such that φ(Γ, u) = S → T and φ(Γ, s) = S. By IH, Γ⊢ u : S → T and Γ⊢ s : S. Thus, Γ⊢ v : V.

Corollary: if $\psi(\Gamma, v, V) = \text{true}$, then $\Gamma \vdash v : V$.

Completeness

Lemma: if $\Gamma \vdash v : V$, then $\phi(\Gamma, v) = V \neq \text{error}$.

Proof. By induction on $\Gamma \vdash v : V$.

(var)
$$\overline{\prod \vdash x : S}$$
 if $(x, S) \in \Gamma$. We have $v = x$ and $V = S$. Thus,
 $\phi(\Gamma, v) = V$.
(abs) $\frac{\Gamma \cup \{(x, S)\} \vdash t : T}{\prod \vdash \lambda x^S . t : S \to T}$ if $x \notin \operatorname{dom}(\Gamma)$. We have $v = \lambda x^S . t$ and
 $V = S \to T$. By IH, $\phi(\Gamma \cup \{(x, S)\}, t) = T \neq \operatorname{error.}$ Thus,
 $\phi(\Gamma, v) = V \neq \operatorname{error.}$
(app) $\frac{\Gamma \vdash u : S \to T \quad \Gamma \vdash s : S}{\prod \vdash u : S \to T \not = \operatorname{error.} T \vdash s : S}$. We have $v = us$ and $V = T$. By IH,
 $\phi(\Gamma, u) = S \to T \not = \operatorname{error.}$ and $\phi(\Gamma, s) = S \not = \operatorname{error.}$ Thus,
 $\phi(\Gamma, v) = V \not = \operatorname{error.}$

Corollary: if $\Gamma \vdash v : V$, then $\psi(\Gamma, v, V) =$ true.

Outline

Simply-typed λ -terms

Decidability of type-checking (Church approach)

Type inference (Curry approach)

Type inference

Problem: given v, is it decidable whether there exists Γ and V such that $\Gamma \vdash v : V$?

Problem for completeness: v has no unique type...

 $\lambda x.x$ has type int \rightarrow int, (int \rightarrow int) \rightarrow (int \rightarrow int), ...

Idea: use type variables !

every type of $\lambda x.x$ is an instance of the type schema $\alpha \rightarrow \alpha$

Type schema

Types and typing are extended with type variables:

- S is the set of type schema S, T, \ldots made of:
 - type variables $\alpha, \beta, \ldots \in \mathcal{V}$
 - type constants bool, int, float, $\ldots \in \mathcal{B}$
 - function types $S \rightarrow T$, where S and T are type schema

Type substitutions $\theta, \rho, \sigma, \ldots$ are finite maps from \mathcal{V} to \mathcal{S} .

Lemma: if $\Gamma \vdash v : V$ then, for all type substitution ρ , $\Gamma \rho \vdash v : V \rho$

Type schema compatibility

Two type schema S and T (with distinct type variables) are compatible if there is a type substitution ρ such that $S\rho = T\rho$.

This is unification (Jacques Herbrand, 1930) !

Unification problem

- a unification constraint is a pair of type schema (S, T)
- a unification problem is a set of unification constraints
- ▶ a solution to a unification problem $\{(S_1, T_1,)..., (S_n, T_n)\}$ is a substitution ρ such that $S_1\rho = T_1\rho, ..., S_n\rho = T_n\rho$
- ▶ a unification problem is in solved form if it is of the form $\{(\alpha_1, T_1), \ldots, (\alpha_n, T_n)\}$ and, for all $i \leq j$, $\alpha_i \notin T_j$

Remark: a solved form is a substitution

Unification algorithm

A configuration is a pair of problems (C, D) with D in solved form.

Rewrite the initial configuration (C, \emptyset) as much as possible by using the following rules:

$$\begin{array}{rcl} \{(S,S)\} \cup C,D & \mapsto & C,D \\ \{(S_1 \rightarrow T_1, S_2 \rightarrow T_2)\} \cup C,D & \mapsto & \{(S_1,S_2), (T_1,T_2)\} \cup C,D \\ & \{(\alpha,S)\} \cup C,D & \mapsto & C^S_{\alpha}, \{(\alpha,S)\} \cup D^S_{\alpha} \text{ if } \alpha \notin S \\ & \{(S,\alpha)\} \cup C,D & \mapsto & C^S_{\alpha}, \{(\alpha,S)\} \cup D^S_{\alpha} \text{ if } \alpha \notin S \\ & C,D & \mapsto & \text{error otherwise} \end{array}$$

Example

Let
$$C = \{(\alpha, \beta \to \gamma), (\gamma \to \beta, \beta \to \gamma)\}.$$

 C, \emptyset
 $\mapsto \{(\gamma \to \beta, \beta \to \gamma)\}, \{(\alpha, \beta \to \gamma)\}$
 $\mapsto \{(\gamma, \beta), (\beta, \gamma)\}, \{(\alpha, \beta \to \gamma)\}$
 $\mapsto \{(\beta, \beta)\}, \{(\gamma, \beta), (\alpha, \beta \to \beta)\}$
 $\mapsto \{(\gamma, \beta), (\alpha, \beta \to \beta)\}$

Unification algorithm

A configuration is a pair of problems (C, D) with D in solved form.

Rewrite the initial configuration (C, \emptyset) as much as possible by using the following rules:

$$\begin{array}{rcl} \{(S,S)\} \cup C,D & \mapsto & C,D \\ \{(S_1 \rightarrow T_1, S_2 \rightarrow T_2)\} \cup C,D & \mapsto & \{(S_1,S_2), (T_1,T_2)\} \cup C,D \\ & \{(\alpha,S)\} \cup C,D & \mapsto & C^S_{\alpha}, \{(\alpha,S)\} \cup D^S_{\alpha} \text{ if } \alpha \notin S \\ & \{(S,\alpha)\} \cup C,D & \mapsto & C^S_{\alpha}, \{(\alpha,S)\} \cup D^S_{\alpha} \text{ if } \alpha \notin S \\ & C,D & \mapsto & \text{error otherwise} \end{array}$$

Correctness: if $(C, \emptyset) \mapsto^* (\emptyset, \theta)$, then θ is a solution of C.

Completeness: if ρ is a solution of C, then there are θ and σ such that $(C, \emptyset) \mapsto^* (\emptyset, \theta)$ and $\rho = \theta \sigma$ (ρ is an instance of θ).

Application to type inference

Problem: given v, is it decidable whether there exists Γ and V such that $\Gamma \vdash v : V$?

We first define a computable function ϕ which, given Γ , ν and V such that $FV(\nu) \subseteq dom(\Gamma)$, returns a unification problem:

Correctness: if ρ satisfies $\phi(\Gamma, v, V)$, then $\Gamma \rho \vdash v : V \rho$.

Completeness: if $\Gamma \rho \vdash v : V\rho$, then ρ can be extended into a solution of $\phi(\Gamma, v, V)$.

Type inference

Problem: given v, is it decidable whether there exists Γ and V such that $\Gamma \vdash v : V$?

Assume that $FV(v) = \{x_1, \ldots, x_n\}.$

• Let
$$\Delta = \{(x_1, \alpha_1), \dots, (x_n, \alpha_n)\}$$
 with $\alpha_1, \dots, \alpha_n \neq \text{variables}$.

• Let β be a fresh type variable.

Then, let:

ψ(v) = (Δθ, βθ) if φ(Δ, v, β) has most general solution θ
 ψ(v) = error otherwise

Correctness: if $\psi(v) = (\Delta, S)$, then $\Delta \vdash v : S$.

Completeness: if $\Gamma \vdash v : V$, then there are Δ , S and σ such that $\psi(v) = (\Delta, S)$, $\Delta \sigma \subseteq \Gamma$ and $S\sigma = V$.

Example

Is $\lambda x.xx$ typable ?

$$\begin{aligned} \phi(\emptyset, \lambda \mathbf{x}.\mathbf{x}\mathbf{x}, \beta) \\ &= \{(\beta, \alpha \to \gamma)\} \cup \phi(\{(\mathbf{x}, \alpha)\}, \mathbf{x}\mathbf{x}, \gamma) \\ &= \{(\beta, \alpha \to \gamma)\} \cup \phi(\{(\mathbf{x}, \alpha)\}, \mathbf{x}, \delta \to \gamma) \cup \phi(\{(\mathbf{x}, \alpha)\}, \mathbf{x}, \delta) \\ &= \{(\beta, \alpha \to \gamma), (\alpha, \delta \to \gamma), (\alpha, \delta)\} \end{aligned}$$

$$(\phi(\emptyset, \lambda x. xx, \beta), \emptyset) \mapsto (\{(\alpha, \delta \to \gamma), (\alpha, \delta)\}, \{(\beta, \alpha \to \gamma)\}) \mapsto (\{(\delta \to \gamma, \delta)\}, \{(\alpha, \delta \to \gamma), (\beta, (\delta \to \gamma) \to \gamma)\}) \mapsto \text{error}$$

because there is no type T such that $T = T \rightarrow S = (T \rightarrow S) \rightarrow S$ = $((T \rightarrow S) \rightarrow S) \rightarrow S = (((T \rightarrow S) \rightarrow S) \rightarrow S) \rightarrow S = \dots$