Introduction to logic and typed λ -calculus

Frédéric Blanqui

INRIA

Tsinghua University, March 2008

Outline

we assume given a set \mathcal{X} of variables x, y, \ldots and a signature Σ , *i.e.* a set \mathcal{F} of function symbols f, g, \ldots equipped with an arity function $ar : \mathcal{F} \to \mathbb{N}$

- a term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ is either:
- a variable x
- or a function symbol f of arity n (ar(f) = n) applied to n terms t_1, \ldots, t_n written $ft_1 \ldots t_n$

arithmetic expressions can be represented by taking for \mathcal{F} :

- 0 of arity 0 for zero
- s of arity 1 for successor
- + of arity 2 for addition
- \blacktriangleright × of arity 2 for multiplication

▶ ...

examples of terms: 0, s(s0), $s(s0) \times s(s0)$

by higher-order terms, we mean terms with <u>binding constructions</u> like in $\sum_{i=1}^{n} x_i$, $\iint_{\Omega} f(x, y) dx dy$, $\forall x P(x)$, ... [Fiore-Plotkin-Turi 1999]

the <u>binding arity</u> of a function symbol f is a sequence of natural numbers $[k_1; \ldots; k_n]$ ($n \in \mathbb{N}$ is the arity of f), each k_i denoting the number of variables bounds in the *i*-th argument of f

- Σ whose arguments are 1, n and x_i has binding arity [0; 0; 1] since i is bound in x_i
- More for the set of the set
- ➤ ∀ whose argument is P(x) has binding arity [1] since x is bound in P(x)

we assume given a set \mathcal{X} of variables x, y, \ldots a set \mathcal{F} of function symbols f, g, \ldots of fixed binding arity

a term is either:

- a variable x
- ▶ or a function symbol f of binding arity [k₁;...; k_n] applied to n terms t₁,..., t_n written f(x₁¹...x₁^{k₁}.t₁)...(x_n¹...x_n^{k_n}.t_n)

examples: $\sum_{i=1}^{n} x_i$ is represented by $\sum \ln(i.x_i)$, and $\iint_{\Omega} f(x, y) dx dy$ is represented by $\iint \Omega(xy.f(x, y))$

in higher-order term algebra, bound variables are not significative and can be renamed without changing the meaning:

$$\sum_{i=1}^{n} x_i = \sum_{j=1}^{n} x_j$$
 and $\iint_{\Omega} f(x, y) dx dy = \iint_{\Omega} f(u, v) du dv$ and $\forall x P(x) = \forall y P(y)$

renaming of bound variables is called $\underline{\alpha}$ -conversion and written $=_{\alpha}$

this is an equivalence relation

in fact, higher-order terms are usually defined as the set of $\alpha\text{-equivalence classes}$

the set FV(t) of variables <u>free</u> in t is defined as follows:

a term is closed if it has no free variable ($FV(t) = \emptyset$)

with higher-order terms, substitution must take care of bound variables

example with a symbol λ of binding arity [1]:

example: $(\lambda y.x)_x^y = \lambda z.y$

the pure untyped $\lambda\text{-calculus}$ is the higher-order term algebra with the following symbols:

- λ of binding arity [1] for abstraction
- ▶ @ of binding arity [0;0] for application

Q(t, u) is often simply written tu

the evaluation of a function application is called β -reduction:

$$(\lambda x.t)u \rightarrow_{\beta} t_x^u$$

 $\lambda\text{-calculus}$ has been invented by Alonzo Church in 1928

it is possible to express any computable function in λ -calculus *i.e.* λ -calculus is Turing-complete

$$0 = \lambda xy.y \quad (\text{iterate 0 time } x \text{ on } y)$$

$$1 = \lambda xy.xy \quad (\text{iterate 1 time } x \text{ on } y)$$

$$2 = \lambda xy.x(xy) \quad (\text{iterate 2 times } x \text{ on } y)$$

$$\dots$$

$$+ = \lambda pqxy.px(qxy)$$

$$\times = \lambda pqxy.p(qx)y$$

$$\dots$$

example: $2 + 2 \rightarrow^*_{\beta} 4$

given two relations \rightarrow_R and \rightarrow_S , let $\rightarrow_R \rightarrow_S$ be their composition:

 $t \rightarrow_R \rightarrow_S v$ if there is u such that $t \rightarrow_R u$ and $u \rightarrow_S v$

given a relation \rightarrow_R , we denote by:

$$\blacktriangleright \leftarrow_R \text{ its inverse: } t \leftarrow_R u \text{ if } u \rightarrow_R t$$

 $\blacktriangleright \rightarrow_{P}^{k}$ its k iteration:

- \rightarrow^0_R is its reflexive closure $(t \rightarrow^0_R u \text{ if } t = u)$ \rightarrow^{k+1}_R is the composition of \rightarrow_R and \rightarrow^k_R
- $\blacktriangleright \rightarrow_{P}^{+}$ its transitive closure $(\rightarrow_{P}^{+} = \bigcup \{ \rightarrow_{P}^{k} | k > 0 \})$
- ▶ \rightarrow^*_{R} its reflexive and transitive closure ($\rightarrow^*_{R} = \bigcup \{ \rightarrow^k_{R} | k \ge 0 \}$)
- \blacktriangleright =_R its reflexive, symmetric and transitive closure

a relation R is:

- <u>confluent</u> if $(\forall tuv)t \rightarrow^*_R u, v \Rightarrow (\exists w)u, v \rightarrow^*_R w$
- <u>Church-Rosser</u> if $(\forall tu)t =_R u \Rightarrow (\exists w)t, u \rightarrow_R^* w$

these properties are equivalent

example: β -reduction is confluent [Church-Rosser 1936]

a relation R is <u>terminating</u> (or well-founded, noetherian, strongly normalizing) if there is no infinite sequence of R steps $t_0Rt_1R...$

 λ -calculus has non-terminating terms: $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$

 λ -calculus has fixpoints: with $Y = \lambda f.(\lambda x.fxx)(\lambda x.fxx)$, we have $Yf \rightarrow_{\beta} f(Yf) \rightarrow_{\beta} \dots$ bound variables creates technical difficulties (see the notion of substitution, \ldots)

some of these difficulties can be avoided by using a first-order representation of $\lambda\text{-terms}$

there are two approaches:

- Schönfinkel's combinators (1920)
- de Bruijn indices (1972)

- purely applicative terms are the terms made of variables and applications only
- SK-terms are the closed terms made of the constants S and K and applications only

<u>combinatorial completeness</u>: for all purely applicative term t whose free variables are x_1, \ldots, x_n , there exist an *SK*-term *A* such that $Ax_1 \ldots x_n = t$ in the following first-order equational theory:

- Sxyz = xz(yz)
- Kxy = x

(A represents the λ -term $\lambda x_1 \dots x_n t$)

a bound variable x is replaced by the number of λ 's one has to go through before reaching the one that binds x

- $\lambda x \lambda y y$ is represented by $\lambda \lambda 0$
- $\lambda x \lambda y x$ is represented by $\lambda \lambda 1$

then α -conversion boils down to syntactic equality

the atomic meta-level higher-order substitution can be defined in more atomic terms by extending the term algebra with substitutions and using suitable rules

$$x[x/v] = v$$

$$y[x/v] = y$$

$$(tu)[x/v] = t[x/v]u[x/v]$$

$$(\lambda yt)[x/v] = \lambda yt[x/v]$$

$$t[x/v][y/w] = t[y/w][x/v[y/w]]$$

finding rules deciding this equational theory and having good properties motivated many researches (see [Kesner 2007])

pure untyped algebra can be restricted by considering a typing discipline

we assume given a set $\ensuremath{\mathbb{T}}$ of types

in arities, a natural number k is replaced by a type sequence of length k together with an output type, written $[T_1; ...; T_k]T$

example: let $\mathbb{T} = \{B, N\}$ for booleans and natural numbers

- \blacktriangleright + has arity [N; N]N
- ▶ if has arity [B; N; N]N
- ▶ \forall_N has arity [[N]B]B (quantification over N)

well typed terms are defined as follows:

let Γ be a function mapping variables to types

$$(\operatorname{var}) \quad \frac{x: T \in \Gamma}{\Gamma \vdash x: T}$$

$$ar(f) = [T_1; \ldots; T_n]B$$

$$T_i = [T_i^1; \ldots; T_i^{k_i}]U_i$$

$$(\operatorname{fun}) \quad \frac{\Gamma, x_i^1: T_i^1, \ldots, x_i^{k_i}: T_i^{k_i} \vdash t_i: U_i}{\Gamma \vdash f(x_1^1 \ldots x_1^{k_1}.t_1) \ldots (x_n^1 \ldots x_n^{k_n}.t_n): B}$$

the set of simple types $\mathbb{T}^{\rightarrow}(\mathcal{B})$ over a set of type constants \mathcal{B} is the first-order term algebra with the following symbols:

- a symbol of arity 0 for every type constant
- the arrow type constructor \rightarrow of arity 2

examples: $B, B \rightarrow B, (B \rightarrow B) \rightarrow B, \ldots$

the simply-typed $\lambda\text{-calculus}$ is the simply-typed higher-order term algebra with the following symbols:

- λ_T^U of binding arity $[[T]U](T \rightarrow U)$
- $@_T^U$ of binding arity $[T \rightarrow U; T]U$

introduced by Church in 1937

it is confluent and terminating [Turing 1942]

. . .

representing natural numbers as terms of type $(\iota \rightarrow \iota) \rightarrow (\iota \rightarrow \iota)$: $0 = \lambda xy.y$ (iterate x 0 times on y) $1 = \lambda xy.xy$ (iterate x 1 times on y) $2 = \lambda xy.x(xy)$ (iterate x 2 times on y)

 λ^{\rightarrow} can express any element of the smallest set of functions from \mathbb{N}^k to \mathbb{N} closed for composition and containing polynomials and the characteristic functions of $\{0\}$ and $\mathbb{N} \setminus \{0\}$ [Schwichtenberg 1976]

examples: $+ = \lambda pqxy.px(qxy), \times = \lambda pqxy.p(qx)y, \dots$

Outline

allows to denote objects and express facts about them

- objects are represented by terms of some term algebra
- facts about objects (propositions) are represented by terms of the following typed higher-order term algebra:
 - user-defined predicate symbols P, Q, \ldots of arity $[\iota; \ldots; \iota]o$
 - $\perp : o$ (proposition always false)
 - $\neg : [o]o$ (negation)
 - ▶ c : [o; o]o where $c \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$ (logical connectors)
 - $\kappa_{\iota} : [[\iota]o]o$ where $\kappa \in \{\exists, \forall\}$ (first-order quantifiers)

where ι is the type of objects and o is the type of propositions

let Γ denote a set of propositions (the assumptions)

(hyp)
$$\frac{A \in \Gamma}{\Gamma \vdash A}$$
$$(\perp E) \quad \frac{\Gamma \vdash \bot}{\Gamma \vdash A}$$
$$(\neg I) \quad \frac{\Gamma \cup \{A\} \vdash \bot}{\Gamma \vdash \neg A} \quad (\neg E) \quad \frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot}$$

I stands for introduction, E for elimination

$$(\land I) \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$
$$(\land E1) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad (\land E2) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

$$(\vee I1) \quad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad (\vee I2) \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$
$$(\vee E) \quad \frac{\Gamma \vdash A \lor B \quad \Gamma \cup \{A\} \vdash C \quad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C}$$

Natural deduction: the rules of logic

$$(\forall I) \quad \frac{\Gamma \vdash A \quad x \notin FV(\Gamma)}{\Gamma \vdash \forall xA}$$
$$(\forall E) \quad \frac{\Gamma \vdash \forall xA}{\Gamma \vdash A_x^t}$$
$$(\exists I) \quad \frac{\Gamma \vdash A_x^t}{\Gamma \vdash \exists xA}$$
$$(\exists E) \quad \frac{\Gamma \vdash \exists xA \quad \Gamma \cup \{A\} \vdash B \quad x \notin FV(\Gamma, B)}{\Gamma \vdash B}$$

Natural deduction: the rules of logic

$$(\Rightarrow I) \quad \frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \Rightarrow B}$$
$$(\Rightarrow E) \quad \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \quad \Gamma \vdash A$$

for classical logic, add also the rule:

$$(\mathsf{excluded-middle}) \quad \overline{\Gamma \vdash A \lor \neg A}$$

a proposition A is true if there is a derivation of $\emptyset \vdash A$

example: $A \Rightarrow (B \Rightarrow A)$ is provable:

$$\frac{A \in \{A, B\}}{\{A, B\} \vdash A} (hyp)$$
$$\frac{A \in \{A, B\} \vdash A}{\{A\} \vdash B \Rightarrow A} (\Rightarrow I)$$
$$(\Rightarrow I)$$
$$\emptyset \vdash A \Rightarrow (B \Rightarrow A) (\Rightarrow I)$$

this presentation of logic (natural deduction) is independently due to Stanislaw Jaskowski and Gerhard Gentzen in 1934

representing objects by first-order terms with 0 of arity 0, s of arity 1 and + of arity 2

taking the predicate symbol = of arity [$\iota; \iota; o$]

let Γ be the following set of axioms:

- ▶ = is an equivalence relation:
 - $\forall x.x = x$
 - $\forall x. \forall y. x = y \Rightarrow y = x$
 - $\forall x. \forall y. \forall z. x = y \land y = z \Rightarrow x = z$
- definition of +:
 - ► $\forall x.x + 0 = x$
 - $\forall x.\forall y.x + (sy) = s(x + y)$

proof of $\Gamma \vdash s0 + s0 = s(s0)$ on board

yet, we have seen that $1 + 1 \rightarrow^*_{\beta} 2$ when representing natural numbers as simply-typed λ -terms of type $(\iota \rightarrow \iota) \rightarrow (\iota \rightarrow \iota)$

representing objects by simply-typed λ -terms provide more computational power, hence simpler proofs if we add the following deduction rule:

$$(conv) \quad \frac{\Gamma \vdash A \quad A =_{\beta} B}{\Gamma \vdash B}$$

deduction steps are made modulo β -equivalence

with deduction modulo, the proof of $\Gamma \vdash 1 + 1 = 2$ becomes:

$$\frac{\frac{\forall x.x = x \in \Gamma}{\Gamma \vdash \forall x.x = x} (hyp)}{\frac{\Gamma \vdash \forall x.x = x}{\Gamma \vdash s(s0) = s(s0)}} (\forall E) \\ \frac{\Gamma \vdash s0 + s0 = s(s0)}{\Gamma \vdash s0 + s0 = s(s0)} (conv)$$

more generally, natural deduction can be extended into natural deduction modulo a decidable congruence on propositions \equiv :

$$(conv) \quad \frac{\Gamma \vdash A \quad A \equiv B}{\Gamma \vdash B}$$

[Dowek-Hardin-Kirchner 1998]

objects are the simply-typed λ -terms whose type is in $\mathbb{T}^{\rightarrow}({\iota})$

i-th-order logic allows quantifications $\kappa_{\sigma} : [[\sigma]o]o \ (\kappa \in \{\exists, \forall\})$ over any type $\sigma \in \mathbb{T}^{\rightarrow}(\{\iota, o\})$ such that $order(\sigma) < i$ higher-order logic allows quantifications over any type

- order $(\iota) = 0$
- order(o) = 1
- order $(T_1 \rightarrow \ldots \rightarrow T_n \rightarrow B) = 1 + max\{order(T_i) \mid 1 \le i \le n\}$

examples: ι is of order 0 (first-order logic), $\iota \to \iota \to \iota$ and $\iota \to \iota \to o$ are of order 1 (second-order logic), $(\iota \to \iota) \to \iota$ and $(\iota \to o) \to o$ are of order 2 (third-order logic), etc.

in simple type theory/higher-order logic, we can quantify over predicates like in:

$$\forall_o P.P \Rightarrow P$$

such a formula is said <u>impredicative</u> since *P* can be replaced by the formula itself, yielding $(\forall_o P.P \Rightarrow P) \Rightarrow (\forall_o P.P \Rightarrow P)$

quantification over predicates allows to define other predicates:

$A \wedge B$	$\forall C.(A \Rightarrow B \Rightarrow C) \Rightarrow C$
$A \lor B$	$\forall C.(A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$
$\exists x.P$	$\forall C.(\forall x.Px \Rightarrow C) \Rightarrow C$
	$\forall C.C$
x = y	$\forall P.Px \Rightarrow Py$
$x \in \mathbb{N}$	$\forall P.P0 \Rightarrow (\forall y.Py \Rightarrow P(y+1)) \Rightarrow Px$

$$\frac{\pi_1 = \frac{\Gamma}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}} (\Rightarrow I) \qquad \pi_2 = \frac{\dots}{\Gamma \vdash A} (\Rightarrow E)$$

can be simplified into π'_1 where π'_1 is obtained from π_1 by:

- removing A from the hypotheses of π_1
- replacing every subproof A ∈ Γ ∪ Δ
 Γ ∪ Δ ⊢ Α
 of π₁ by π^Δ₂
 where π^Δ₂ is π₂ with Γ replaced by Γ ∪ Δ (weakening)

other simplifications exist for the other combinations of an introduction rule followed by an elimination rule

in intuitionistic logic (*i.e.* without the excluded-middle rule), cut elimination terminates [Gentzen 1934]

in intuitionistic logic, a cut-free assumption-free proof necessarily ends with an introduction rule

- If A ∨ B has a cut-free assumption-free proof then either A or B has a (cut-free) proof
- If ∃xA has a cut-free assumption-free proof then it contains t such that A^t_x has a (cut-free) proof

program specification: $S = \forall x \exists y P(x, y)$

given an assumption-free proof of S, cut-elimination provides a way, given x, to compute y such that P(x, y) holds

an intuitionnistic proof of a program specification provides $\underline{bug-free}$ program !

Outline

a proof can be represented by a $\lambda\text{-term/program}$

first described by Curry in 1958 and extended by Howard in 1969

logic	λ -calculus/programming
formula	program type
connector/quantifier	type constructor
proof	term/program
logical rule	term constructor
assumption	variable
cut elimination	program evaluation

logic	λ -calculus	
\Rightarrow	arrow type \rightarrow	
⇒I	abstraction $\lambda : [[A]B](A \Rightarrow B)$	
$\Rightarrow E$	application $@: [A \Rightarrow B; A]B$	
⇒-cut	$(\lambda xt)u ightarrow t^u_x$	

$$(hyp) \quad \frac{x : A \in \Gamma}{\Gamma \vdash x : A}$$
$$(\Rightarrow I) \quad \frac{\Gamma \cup \{x : A\} \vdash t : B}{\Gamma \vdash \lambda x t : A \Rightarrow B}$$
$$(\Rightarrow E) \quad \frac{\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

. . .

 π_1' corresponds to $t_{\!\scriptscriptstyle X}^{u}$

logic	λ -calculus	
\land	cartesian product $ imes$	
$\wedge I$	pairing $\langle _, _ \rangle$: [A; B](A $ imes$ B)	
$\wedge E1$	1st projection $\pi_1 : [A \times B]A$	
$\wedge E2$	2nd projection $\pi_2 : [A \times B]B$	
∧-cut	$\pi_i \langle x_1, x_2 angle o x_i$	

 $\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \langle t_1, t_2 \rangle : T_1 \times T_2} \quad \frac{\Gamma \vdash \rho : T_1 \times T_2}{\pi_i \rho : T_i}$

logic	λ -calculus	
V	disjoint sum +	
∨/1	1st injection $\iota_1 : [A](A+B)$	
∨/2	2nd injection $\iota_2 : [B](A+B)$	
$\vee E$	pattern-matching match : $[A + B; [A]C; [B]C]C$	
V-cut	match $\iota_i t$ with $\{\iota_1 x \mapsto u_1, \iota_2 x \mapsto u_2\} \rightarrow u_i t_X$	

 $\frac{\Gamma \vdash t: T_i}{\Gamma \vdash \iota_i t: T_1 + T_2} \quad \frac{\Gamma \vdash t: T_1 + T_2 \quad \Gamma, x: T_1 \vdash u_1: U \quad \Gamma, x: T_2 \vdash u_2: U}{\Gamma \vdash \text{match } t \text{ with } \{\iota_1 x \mapsto u_i, \iota_2 x \mapsto u_2\}: U}$

up to now, we have:

type annotations are necessary for type unicity:

$$\frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T.u: T \rightarrow U} \quad \frac{\Gamma \vdash t: T_1}{\Gamma \vdash \iota_1^{T_2} t: T_1 + T_2} \quad \frac{\Gamma \vdash t: T_2}{\Gamma \vdash \iota_2^{T_1} t: T_1 + T_2}$$

$$\frac{\Gamma \vdash t: T_1 + T_2 \quad \Gamma, x: T_1 \vdash u_1: U \quad \Gamma, x: T_2 \vdash u_2: U}{\Gamma \vdash \mathsf{match} \ t \ \mathsf{with} \ \{\iota_1^{T_2} x \mapsto u_i, \iota_2^{T_1} x \mapsto u_2\}: U$$

Outline

Curry-Howard isomorphism for quantification on propositions:

types $T = X | T \rightarrow T | \forall XT$ terms $t = x | \lambda x : T.t | tt | \Lambda XT | tT$ contexts $\Gamma = \emptyset | \Gamma, x : T$ $\Gamma \vdash t : T \quad X \notin \Gamma \qquad \Gamma \vdash v : \forall XT$

$$\overline{\Gamma \vdash \Lambda Xt : \forall XT} \qquad \overline{\Gamma \vdash vU : T_X^U}$$

with natural numbers of type $N = \forall X(X \rightarrow X) \rightarrow (X \rightarrow X)$: $0 = \Lambda X \lambda xy.y$ (iterate 0 times x on y) $1 = \Lambda X \lambda xy.xy$ (iterate 1 times x on y) $2 = \Lambda X \lambda xy.x(xy)$ (iterate 2 times x on y)

. . .

system F can express any function whose existence is provable in second-order arithmetic

examples: $s = \lambda p \Lambda X \lambda xy.x(pXxy), + = \lambda pq \Lambda X \lambda xy.pNsq,$ $\times = \lambda pq \Lambda X \lambda xy.pN(+q)0, power = \lambda pq \Lambda X \lambda xy.qN(\times p)1, \dots$

$$A \times B = \forall X. (A \to B \to X) \to X$$

$$\langle x, y \rangle = \Lambda X \lambda f. fxy$$

$$\pi_1 x = x A(\lambda xy. x)$$

$$\pi_2 x = x B(\lambda xy. y)$$

$$\begin{array}{l} A + B = \forall X.(A \rightarrow X) \rightarrow (B \rightarrow X) \rightarrow X \\ \iota_1 x = \Lambda X \lambda u_1 u_2. u_1 x \\ \iota_2 x = \Lambda X \lambda u_1 u_2. u_2 x \\ \mathsf{case}_C \ t \ \text{with} \ \{\iota_1 x \mapsto u_1 \mid \iota_2 x \mapsto u_2\} = t C(\lambda x u_1)(\lambda x u_2) \end{array}$$

many other data types can be built using \times and +:

$$T = X \mid 1 \mid T \times T \mid T + T \mid \mu X.T$$

natural numbers N =
$$\mu X.1 + X$$

0 = ι_1
s = ι_2
binary trees T = $\mu X.1 + X \times X$
leaf = ι_1
node = ι_2

$$\blacktriangleright \llbracket 1 \rrbracket = \forall X . X \to X$$

$$\blacktriangleright \llbracket A \times B \rrbracket = \forall X . (\llbracket A \rrbracket \to \llbracket B \rrbracket \to X) \to X \ (X \text{ fresh})$$

▶
$$\llbracket A + B \rrbracket = \forall X.(\llbracket A \rrbracket \to X) \to (\llbracket B \rrbracket \to X) \to X (X \text{ fresh})$$

$$\blacktriangleright \llbracket \mu X.T \rrbracket = \forall X.\llbracket T \rrbracket$$

example: $\llbracket \mu X.1 + X \rrbracket = \forall X.(1 \rightarrow X) \rightarrow (X \rightarrow X) \rightarrow X$

Outline

so far we have seen that:

- objects are λ-terms of type σ ∈ T[→]({ι}), the set of object types:
 a λ-term t is an object if Γ ⊢ t : σ where Γ maps every free object variable of t to some object type
- Proofs are λ-terms of type a Curry-Howard type: a λ-term t is a proof if Γ ⊢ t : T where T is a Curry-Howard type and Γ maps every free predicate variable of t to a Curry-Howard type

- ► taking *ι* : *o*, object types can be seen as predicates and objects as proofs (*e.g.* N is a predicate and 0, *s*0, ... are proofs of N)
- to extend the Curry-Howard isomorphism to quantifications on objects, proofs can be seen as objects:
 - the type corresponding to ∀x : T.U is often written Πx : T.U T → U is the particular case of Πx : T.U when x ∉ FV(U)

$$\frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T.u: \Pi x: T.U} \quad \frac{\Gamma \vdash v: \Pi x: T.U \quad \Gamma \vdash t: T}{\Gamma \vdash vt: U_x^t}$$

the type corresponding to ∃x : T.U is often written Σx : T.U T × U is the particular case of Σx : T.U when x ∉ FV(U)

$$\frac{\Gamma \vdash t : \mathcal{T} \quad \Gamma \vdash u : \mathcal{U}_{x}^{t}}{\Gamma \vdash \langle t, u \rangle : \Sigma x : \mathcal{T}. \mathcal{U}} \quad \frac{\Gamma \vdash v : \Sigma x : \mathcal{T}. \mathcal{U}}{\Gamma \vdash \pi_{1} v : \mathcal{T}} \quad \frac{\Gamma \vdash v : \Sigma x : \mathcal{T}. \mathcal{U}}{\Gamma \vdash \pi_{2} v : \mathcal{T}_{x}^{\pi_{1} v}}$$

all previous systems are instances of the following general framework [Barendregt 1992]:

- let S be a set of sorts (*e.g. o*)
- the algebra of types and terms is:

$$t = s \in S \mid x \in \mathcal{X} \mid \lambda x : t.t \mid tt \mid \Pi x : t.t$$

valid contexts:

$$\vdash \emptyset$$
$$\vdash \Gamma \quad \Gamma \vdash T : s \in S$$
$$\vdash \Gamma, x : T$$

• let $\mathcal{A} \subseteq \mathcal{S}^2$ be a set of typing axioms for sorts:

$$rac{dash \mathsf{\Gamma} \quad (s,s') \in \mathcal{A}}{\mathsf{\Gamma}dash s:s'}$$

• let $\mathcal{R} \subseteq \mathcal{S}^2$ be a set of product formation rules:

$$\frac{\Gamma \vdash T : s \quad \Gamma, x : T \vdash U : s' \quad (s, s') \in \mathcal{R}}{\Gamma \vdash \Pi x : T.U : s'}$$

conversion rule:

$$\frac{\Gamma \vdash t: T \quad T =_{\beta} T'}{\Gamma \vdash t: T'}$$

► valid terms: $\frac{\vdash \Gamma \quad x : T \in \Gamma}{\Gamma \vdash x : T}$ $\frac{\Gamma, x : T \vdash u : U \quad \Gamma \vdash \Pi x : T.U : s \in S}{\Gamma \vdash \lambda x : T.u : \Pi x : T.U}$ $\frac{\Gamma \vdash v : \Pi x : T.U \quad \Gamma \vdash t : T}{\Gamma \vdash vt : U_x^t}$ for instance, take $\mathcal{S} = \{o, \Box\}$ and $\mathcal{A} = \{(o, \Box)\}$:

\mathcal{R}	allowed constructions	example of valid context
(<i>o</i> , <i>o</i>)	simple types	$\vdash \iota: o, f: \iota \to \iota$
(<i>o</i> ,□)	dependent types	$\vdash \iota: o, P: \iota \to o$
(□, 0)	polymorphic types	$\vdash \iota: o, f: o \rightarrow \iota$
(\Box,\Box)	type constructors	$\vdash \iota: o, P: o \rightarrow o$

 $\mathcal{R} = S^2$ is the <u>C</u>alculus <u>of</u> <u>C</u>onstructions [Coquand-Huet 1988]

this is the basis of the Coq system

induction principle on the set \mathbb{N} of natural numbers:

$$\mathit{rec}:\forall P:\mathbb{N}\Rightarrow o.P0\Rightarrow (\forall n:\mathbb{N}.Pn\Rightarrow P(\mathit{sn}))\Rightarrow\forall n:\mathbb{N}.Pn$$

cut elimination rules:

$$recPuv0 \rightarrow_{\iota} u$$

 $recPuv(sn) \rightarrow_{\iota} vn(recPuvn)$

non-dependent case:

$$\mathit{rec}': \forall X: o.X \Rightarrow (\mathbb{N} \Rightarrow X \Rightarrow X) \Rightarrow \mathbb{N} \Rightarrow X$$

definition of addition by induction on its 2nd argument:

$$+ = \lambda p : \mathbb{N}.\lambda q : \mathbb{N}.rec'\mathbb{N}p(\lambda n : \mathbb{N}.\lambda r : \mathbb{N}.sr)q$$

cut elimination rules:

$$+p0 \rightarrow^*_{eta \iota} p \ +p(sn) \rightarrow^*_{eta \iota} s(+pn)$$

a more readable presentation using a fixpoint:

$$+ = \lambda p : \mathbb{N} \cdot \lambda q : \mathbb{N}.$$

match q with
 $\{0 \mapsto p,$
 $sn \mapsto s(+pn)\}$

polymorphic lists of fixed length (polymorphic arrays):

$$\begin{array}{ll} \textit{list} &: o \Rightarrow \mathbb{N} \Rightarrow o\\ \textit{nil} &: \forall A : o.\textit{listA0}\\ \textit{cons} &: \forall A : o.\forall n : \mathbb{N}.A \Rightarrow \textit{listAn} \Rightarrow \textit{listA(sn)}\\ \textit{app} &: \forall A : o.\forall n : \mathbb{N}.\textit{listAn} \Rightarrow \forall p : \mathbb{N}.\textit{listAp} \Rightarrow \textit{listA(n+p)} \end{array}$$

ordering on natural numbers:

$$\leq : \mathbb{N} \Rightarrow \mathbb{N} \Rightarrow o \leq_0 : \forall x : \mathbb{N}.0 \leq x \leq_s : \forall x : \mathbb{N}.\forall y : \mathbb{N}.x \leq y \Rightarrow sx \leq sy$$

sorted lists:

 $\begin{array}{l} \textit{sorted}: \ \forall A : o.\forall n : \mathbb{N}.\textit{listAn} \Rightarrow o \\ \textit{sorted}_0: \ \forall A : o.\textit{sortedA0(nilA)} \\ \textit{sorted}_1: \ \forall A : o.\forall x : A.\textit{sortedA1(consAx0(nilA))} \\ \textit{sorted}_2: \ \forall A : o.\forall x : A.\forall y : A.\forall n : \mathbb{N}.\forall N : \textit{listAn}. \\ \textit{sortedA(n+1)(consAynN)} \Rightarrow x \leq y \\ \Rightarrow \textit{sortedA(n+2)(consAx(n+1)(consAynN))} \end{array}$

- transitive closure of a relation and Tarski's fixpoint theorem
- correctness and completeness of a type-checking algorithm for the simply-typed λ-calculus
- correctness and completeness of a type-inference algorithm for pure untyped λ-terms in the simply-typed λ-calculus
- ► strong normalization proof of →_β in the simply-typed λ-calculus based on Tait and Girard's notion of computability

Bibliography

- History of Lambda-Calculus and Combinatory logic, F. Cardone and J. R. Hindley, to appear in Vol. 5 of the Handbook of the History of Logic, Elsevier, www-maths.swan.ac.uk/staff/ jrh/papers/JRHHislamWeb.pdf
- The Lambda Calculus: Its Syntax and Semantics (2nd ed.), H. Barendregt, North-Holland, 1984
- Lambda Calculi with types, H. Barendregt, in the Handbook of Logic in Computer Science, Oxford University Press, 1992
- Rewrite Systems, N. Dershowitz and J.-P. Jouannaud, in the Handbook of Theoretical Computer Science, North Holland, 1990
- Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, Vol. 55, Cambridge University Press, 2003