Introduction to logic and typed λ-calculus

Frédéric Blanqui

INRIA

Tsinghua University, March 2008

Outline

First-order term algebra

we assume given a set \mathcal{X} of variables x, y, \ldots and a signature Σ, i.e. a set \mathcal{F} of function symbols f, g, \ldots equipped with an arity function $\operatorname{ar}: \mathcal{F} \rightarrow \mathbb{N}$
a term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ is either:

- a variable x
- or a function symbol f of arity $n(\operatorname{ar}(f)=n)$ applied to n terms t_{1}, \ldots, t_{n} written $f t_{1} \ldots t_{n}$

Example of first-order term algebra

arithmetic expressions can be represented by taking for \mathcal{F} :

- 0 of arity 0 for zero
- s of arity 1 for successor
- + of arity 2 for addition
- \times of arity 2 for multiplication
examples of terms: $0, s(s 0), s(s 0) \times s(s 0)$

Higher-order terms

by higher-order terms, we mean terms with binding constructions like in $\sum_{i=1}^{n} x_{i}, \iint_{\Omega} f(x, y) d x d y, \forall x P(x), \ldots$ [Fiore-Plotkin-Turi 1999]
the binding arity of a function symbol f is a sequence of natural numbers $\left[k_{1} ; \ldots ; k_{n}\right](n \in \mathbb{N}$ is the arity of $f)$, each k_{i} denoting the number of variables bounds in the i-th argument of f

- Σ whose arguments are $1, n$ and x_{i} has binding arity $[0 ; 0 ; 1]$ since i is bound in x_{i}
- \iint whose arguments are Ω and $f(x, y)$ has binding arity [0; 2] since x and y are bound in $f(x, y)$
- \forall whose argument is $P(x)$ has binding arity [1] since x is bound in $P(x)$

Higher-order term algebra

we assume given a set \mathcal{X} of variables x, y, \ldots
a set \mathcal{F} of function symbols f, g, \ldots of fixed binding arity
a term is either:

- a variable x
- or a function symbol f of binding arity $\left[k_{1} ; \ldots ; k_{n}\right]$ applied to n terms t_{1}, \ldots, t_{n} written $f\left(x_{1}^{1} \ldots x_{1}^{k_{1}} \cdot t_{1}\right) \ldots\left(x_{n}^{1} \ldots x_{n}^{k_{n}} . t_{n}\right)$
examples: $\sum_{i=1}^{n} x_{i}$ is represented by $\Sigma 1 n\left(i . x_{i}\right)$, and $\iint_{\Omega} f(x, y) d x d y$ is represented by $\iint \Omega(x y . f(x, y))$

α-conversion

in higher-order term algebra, bound variables are not significative and can be renamed without changing the meaning:
$\sum_{i=1}^{n} x_{i}=\sum_{j=1}^{n} x_{j}$ and $\iint_{\Omega} f(x, y) d x d y=\iint_{\Omega} f(u, v) d u d v$ and $\forall x P(x)=\forall y P(y)$
renaming of bound variables is called $\underline{\alpha}$-conversion and written $=\alpha$ this is an equivalence relation
in fact, higher-order terms are usually defined as the set of α-equivalence classes

Free and bound variables

the set $F V(t)$ of variables free in t is defined as follows:

- $F V(x)=\{x\}$
- $F V\left(f\left(x_{1}^{1} \ldots x_{1}^{k_{1}} \cdot t_{1}\right) \ldots\left(x_{n}^{1} \ldots x_{n}^{k_{n}} \cdot t_{n}\right)\right)=$
$\left(F V\left(t_{1}\right) \backslash\left\{x_{1}^{1}, \ldots, x_{1}^{k_{1}}\right\}\right) \cup \ldots \cup\left(F V\left(t_{n}\right) \backslash\left\{x_{n}^{1}, \ldots, x_{n}^{k_{n}}\right\}\right)$
a term is closed if it has no free variable $(F V(t)=\emptyset)$

Higher-order substitution

with higher-order terms, substitution must take care of bound variables
example with a symbol λ of binding arity [1]:

- $(\lambda y . v)_{x}^{u}=\lambda y . v$ if $y=x$
- $(\lambda y . v)_{x}^{u}=\lambda y . v_{x}^{u}$ if $y \neq x$ and $y \notin F V(u)$
- $(\lambda y \cdot v)_{x}^{u}=\lambda z . v_{y x}^{z u}$ if $y \neq x$ and $y \in F V(u)$ and $z \notin F V(v)$ requires an α-conversion to avoid variable capture
example: $(\lambda y \cdot x)_{x}^{y}=\lambda z . y$

Example of higher-order algebra: the untyped λ-calculus

the pure untyped λ-calculus is the higher-order term algebra with the following symbols:

- λ of binding arity [1] for abstraction
- @ of binding arity [0;0] for application
$@(t, u)$ is often simply written $t u$
the evaluation of a function application is called β-reduction:

$$
(\lambda x . t) u \rightarrow_{\beta} t_{x}^{u}
$$

λ-calculus has been invented by Alonzo Church in 1928

Computational power of the untyped λ-calculus

it is possible to express any computable function in λ-calculus i.e. λ-calculus is Turing-complete
$0=\lambda x y \cdot y \quad$ (iterate 0 time x on y)
$1=\lambda x y \cdot x y \quad$ (iterate 1 time x on y)
$2=\lambda x y \cdot x(x y) \quad$ (iterate 2 times x on y)
$+=\lambda p q x y \cdot p x(q x y)$
$\times=\lambda p q x y \cdot p(q x) y$
...
example: $2+2 \rightarrow_{\beta}^{*} 4$

Relations on terms

given two relations \rightarrow_{R} and \rightarrow_{S}, let $\rightarrow_{R} \rightarrow_{S}$ be their composition:

$$
t \rightarrow_{R} \rightarrow_{S} v \text { if there is } u \text { such that } t \rightarrow_{R} u \text { and } u \rightarrow_{s} v
$$ given a relation \rightarrow_{R}, we denote by:

$\triangleright \leftarrow_{R}$ its inverse: $t \leftarrow_{R} u$ if $u \rightarrow_{R} t$

- \rightarrow_{R}^{k} its k iteration:
- \rightarrow_{R}^{0} is its reflexive closure $\left(t \rightarrow_{R}^{0} u\right.$ if $\left.t=u\right)$
- \rightarrow_{R}^{k+1} is the composition of \rightarrow_{R}^{R} and \rightarrow_{R}^{k}
- \rightarrow_{R}^{+}its transitive closure $\left(\rightarrow_{R}^{+}=\bigcup\left\{\rightarrow_{R}^{k} \mid k>0\right\}\right)$
- \rightarrow_{R}^{*} its reflexive and transitive closure $\left(\rightarrow_{R}^{*}=\bigcup\left\{\rightarrow_{R}^{k} \mid k \geq 0\right\}\right)$
- $=R_{R}$ its reflexive, symmetric and transitive closure

Confluence and Church-Rosser properties

a relation R is:

- confluent if $(\forall t u v) t \rightarrow{ }_{R}^{*} u, v \Rightarrow(\exists w) u, v \rightarrow_{R}^{*} w$
- Church-Rosser if $(\forall t u) t={ }_{R} u \Rightarrow(\exists w) t, u \rightarrow_{R}^{*} w$ these properties are equivalent
example: β-reduction is confluent [Church-Rosser 1936]

Non-terminating terms and fixpoints

a relation R is terminating (or well-founded, noetherian, strongly normalizing) if there is no infinite sequence of R steps $t_{0} R t_{1} R \ldots$
λ-calculus has non-terminating terms:
$(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta} \ldots$
λ-calculus has fixpoints:
with $Y=\lambda f .\left(\lambda x . f_{x x}\right)(\lambda x . f x x)$, we have $Y f \rightarrow_{\beta} f(Y f) \rightarrow_{\beta} \ldots$

How to get rid of bound variables ?

bound variables creates technical difficulties (see the notion of substitution, ...)
some of these difficulties can be avoided by using a first-order representation of λ-terms
there are two approaches:

- Schönfinkel's combinators (1920)
- de Bruijn indices (1972)

Schönfinkel's combinatory logic (1920)

- purely applicative terms are the terms made of variables and applications only
- SK-terms are the closed terms made of the constants S and K and applications only
combinatorial completeness: for all purely applicative term t whose free variables are x_{1}, \ldots, x_{n}, there exist an SK-term A such that $A x_{1} \ldots x_{n}=t$ in the following first-order equational theory:
- $S_{x y z}=x z(y z)$
- $K x y=x$
(A represents the λ-term $\lambda x_{1} \ldots x_{n} t$)

de Bruijn indices (1972)

a bound variable x is replaced by the number of λ 's one has to go through before reaching the one that binds x

- $\lambda x \lambda y y$ is represented by $\lambda \lambda 0$
- $\lambda x \lambda y x$ is represented by $\lambda \lambda 1$
then α-conversion boils down to syntactic equality

Explicit substitutions (1973 - today)

the atomic meta-level higher-order substitution can be defined in more atomic terms by extending the term algebra with substitutions and using suitable rules

$$
\begin{aligned}
x[x / v] & =v & \\
y[x / v] & =y & \text { if } x \neq y \\
(t u)[x / v] & =t[x / v] u[x / v] & \\
(\lambda y t)[x / v] & =\lambda y t[x / v] & \\
t[x / v][y / w] & =t[y / w][x / v[y / w]] &
\end{aligned}
$$

finding rules deciding this equational theory and having good properties motivated many researches (see [Kesner 2007])

Typed term algebra

pure untyped algebra can be restricted by considering a typing discipline
we assume given a set \mathbb{T} of types
in arities, a natural number k is replaced by a type sequence of length k together with an output type, written $\left[T_{1} ; \ldots ; T_{k}\right] T$ example: let $\mathbb{T}=\{B, N\}$ for booleans and natural numbers

- + has arity $[N ; N] N$
- if has arity $[B ; N ; N] N$
- \forall_{N} has arity $[[N] B] B$ (quantification over N)

Typed terms

well typed terms are defined as follows:
let Γ be a function mapping variables to types

$$
\begin{gathered}
\text { (var) } \frac{x: T \in \Gamma}{\Gamma \vdash x: T} \\
\text { ar }(f)=\left[T_{1} ; \ldots ; T_{n}\right] B \\
T_{i}=\left[T_{i}^{1} ; \ldots ; T_{i}^{k_{i}}\right] U_{i} \\
\text { (fun) } \frac{\Gamma, x_{i}^{1}: T_{i}^{1}, \ldots, x_{i}^{k_{i}}: T_{i}^{k_{i}} \vdash t_{i}: U_{i}}{\Gamma \vdash f\left(x_{1}^{1} \ldots x_{1}^{k_{1}} \cdot t_{1}\right) \ldots\left(x_{n}^{1} \ldots x_{n}^{k_{n}} \cdot t_{n}\right): B}
\end{gathered}
$$

Simple types

the set of simple types $\mathbb{T}^{\rightarrow}(\mathcal{B})$ over a set of type constants \mathcal{B} is the first-order term algebra with the following symbols:

- a symbol of arity 0 for every type constant
- the arrow type constructor \rightarrow of arity 2
examples: $B, B \rightarrow B,(B \rightarrow B) \rightarrow B, \ldots$

Example of typed HO algebra: the simply-typed λ-calculus

the simply-typed λ-calculus is the simply-typed higher-order term algebra with the following symbols:

- λ_{T}^{U} of binding arity $[[T] U](T \rightarrow U)$
- $@_{T}^{U}$ of binding arity $[T \rightarrow U ; T] U$
introduced by Church in 1937
it is confluent and terminating [Turing 1942]

Computational power of $\lambda \rightarrow$

representing natural numbers as terms of type $(\iota \rightarrow \iota) \rightarrow(\iota \rightarrow \iota)$:
$0=\lambda x y \cdot y \quad$ (iterate $\times 0$ times on y)
$1=\lambda x y \cdot x y \quad$ (iterate $x 1$ times on y)
$2=\lambda x y \cdot x(x y) \quad$ (iterate $x 2$ times on $y)$
λ^{\rightarrow} can express any element of the smallest set of functions from \mathbb{N}^{k} to \mathbb{N} closed for composition and containing polynomials and the characteristic functions of $\{0\}$ and $\mathbb{N} \backslash\{0\}$ [Schwichtenberg 1976]
examples: $+=\lambda p q x y . p x(q x y), x=\lambda p q x y \cdot p(q x) y, \ldots$

Outline

Logical language

allows to denote objects and express facts about them

- objects are represented by terms of some term algebra
- facts about objects (propositions) are represented by terms of the following typed higher-order term algebra:
- user-defined predicate symbols P, Q, \ldots of arity $[\iota ; \ldots ; \iota] 0$
- \perp : o (proposition always false)
- \neg : [o]o (negation)
- $c:[o ; o] o$ where $c \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ (logical connectors)
- $\kappa_{\iota}:[[\iota] 0]$ o where $\kappa \in\{\exists, \forall\}$ (first-order quantifiers)
where ι is the type of objects and o is the type of propositions

Natural deduction: the rules of logic

let Γ denote a set of propositions (the assumptions)

$$
\begin{aligned}
\text { (hyp) } & \frac{A \in \Gamma}{\Gamma \vdash A} \\
(\perp E) & \frac{\Gamma \vdash \perp}{\Gamma \vdash A} \\
(\neg I) \frac{\Gamma \cup\{A\} \vdash \perp}{\Gamma \vdash \neg A} & (\neg E) \frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \perp}
\end{aligned}
$$

I stands for introduction, E for elimination

Natural deduction: the rules of logic

$$
\begin{gathered}
(\wedge I) \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \\
(\wedge E 1) \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \quad(\wedge E 2) \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B}
\end{gathered}
$$

Natural deduction: the rules of logic

$$
\begin{array}{lll}
(\vee / 1) & \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \quad(\vee / 2) & \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \\
(\vee E) & \frac{\Gamma \vdash A \vee B \quad \Gamma \cup\{A\} \vdash C}{} & \Gamma \cup\{B\} \vdash C \\
\Gamma \vdash C
\end{array}
$$

Natural deduction: the rules of logic

$$
\begin{gathered}
(\forall I) \frac{\Gamma \vdash A \quad x \notin F V(\Gamma)}{\Gamma \vdash \forall x A} \\
(\forall E) \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A_{x}^{t}} \\
(\exists I) \frac{\Gamma \vdash A_{x}^{t}}{\Gamma \vdash \exists x A} \\
(\exists E) \quad \frac{\Gamma \vdash \exists x A \quad \Gamma \cup\{A\} \vdash B \quad x \notin F V(\Gamma, B)}{\Gamma \vdash B}
\end{gathered}
$$

Natural deduction: the rules of logic

$$
\begin{aligned}
& (\Rightarrow I) \frac{\Gamma \cup\{A\} \vdash B}{\Gamma \vdash A \Rightarrow B} \\
(\Rightarrow E) & \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}
\end{aligned}
$$

for classical logic, add also the rule:

$$
\text { (excluded-middle) } \overline{\Gamma \vdash A \vee \neg A}
$$

Provability

a proposition A is true if there is a derivation of $\emptyset \vdash A$
example: $A \Rightarrow(B \Rightarrow A)$ is provable:
$\frac{A \in\{A, B\}}{\{A, B\} \vdash A}($ hyp $)$
$\frac{\{A\} \vdash B \Rightarrow A}{\emptyset \vdash A \Rightarrow(B \Rightarrow A)}(\Rightarrow I)$
this presentation of logic (natural deduction) is independently due to Stanislaw Jaskowski and Gerhard Gentzen in 1934

$1+1=2$?

representing objects by first-order terms with 0 of arity $0, s$ of arity 1 and + of arity 2
taking the predicate symbol $=$ of arity $[\iota ; \iota ; o]$
let Γ be the following set of axioms:

- = is an equivalence relation:
- $\forall x . x=x$
- $\forall x . \forall y \cdot x=y \Rightarrow y=x$
- $\forall x \cdot \forall y \cdot \forall z \cdot x=y \wedge y=z \Rightarrow x=z$
- definition of + :
- $\forall x \cdot x+0=x$
- $\forall x . \forall y \cdot x+(s y)=s(x+y)$

$1+1=2!$

 proof of $\Gamma \vdash s 0+s 0=s(s 0)$ on boardyet, we have seen that $1+1 \rightarrow_{\beta}^{*} 2$ when representing natural numbers as simply-typed λ-terms of type $(\iota \rightarrow \iota) \rightarrow(\iota \rightarrow \iota)$
representing objects by simply-typed λ-terms provide more computational power, hence simpler proofs if we add the following deduction rule:

$$
\text { (conv) } \frac{\Gamma \vdash A \quad A={ }_{\beta} B}{\Gamma \vdash B}
$$

deduction steps are made modulo β-equivalence
with deduction modulo, the proof of $\Gamma \vdash 1+1=2$ becomes:

$$
\begin{gathered}
\frac{\forall x \cdot x=x \in \Gamma}{\Gamma \vdash \forall x \cdot x=x}(h y p) \\
\frac{\Gamma \vdash s(s 0)=s(s 0)}{\Gamma \vdash s 0+s 0=s(s 0)}(\forall E) \\
(c o n v)
\end{gathered}
$$

Deduction modulo

more generally, natural deduction can be extended into natural deduction modulo a decidable congruence on propositions \equiv :

$$
(c o n v) \frac{\Gamma \vdash A \quad A \equiv B}{\Gamma \vdash B}
$$

[Dowek-Hardin-Kirchner 1998]

Simple type theory and higher-order logic

objects are the simply-typed λ-terms whose type is in $\mathbb{T} \rightarrow(\{\iota\})$
i-th-order logic allows quantifications $\kappa_{\sigma}:[[\sigma] o] \circ(\kappa \in\{\exists, \forall\})$ over any type $\sigma \in \mathbb{T} \rightarrow(\{\iota, o\})$ such that $\operatorname{order}(\sigma)<i$ higher-order logic allows quantifications over any type

- $\operatorname{order}(\iota)=0$
- $\operatorname{order}(o)=1$
- $\operatorname{order}\left(T_{1} \rightarrow \ldots \rightarrow T_{n} \rightarrow B\right)=1+\max \left\{\operatorname{order}\left(T_{i}\right) \mid 1 \leq i \leq n\right\}$
examples: ι is of order 0 (first-order logic), $\iota \rightarrow \iota \rightarrow \iota$ and $\iota \rightarrow \iota \rightarrow o$ are of order 1 (second-order logic), $(\iota \rightarrow \iota) \rightarrow \iota$ and $(\iota \rightarrow o) \rightarrow o$ are of order 2 (third-order logic), etc.

Quantification over predicates (impredicativity)

in simple type theory/higher-order logic, we can quantify over predicates like in:

$$
\forall_{0} P . P \Rightarrow P
$$

such a formula is said impredicative since P can be replaced by the formula itself, yielding $\left(\forall_{0} P . P \Rightarrow P\right) \Rightarrow\left(\forall_{0} P . P \Rightarrow P\right)$

Quantification over predicates (impredicativity)

quantification over predicates allows to define other predicates:

$A \wedge B$	$\forall C .(A \Rightarrow B \Rightarrow C) \Rightarrow C$
$A \vee B$	$\forall C .(A \Rightarrow C) \Rightarrow(B \Rightarrow C) \Rightarrow C$
$\exists x . P$	$\forall C .(\forall x \cdot P x \Rightarrow C) \Rightarrow C$
\perp	$\forall C . C$
$x=y$	$\forall P . P x \Rightarrow P y$
$x \in \mathbb{N}$	$\forall P . P 0 \Rightarrow(\forall y . P y \Rightarrow P(y+1)) \Rightarrow P x$

Cut elimination

$$
\frac{\frac{\pi_{1}=\overline{\Gamma, A \vdash B}}{\Gamma \vdash A \Rightarrow B}(\Rightarrow I) \quad \pi_{2}=\overline{\Gamma \vdash A}}{\Gamma \vdash B}
$$

can be simplified into π_{1}^{\prime} where π_{1}^{\prime} is obtained from π_{1} by:

- removing A from the hypotheses of π_{1}
- replacing every subproof $\frac{A \in \Gamma \cup \Delta}{\Gamma \cup \Delta \vdash A}$ of π_{1} by π_{2}^{Δ} where π_{2}^{Δ} is π_{2} with Γ replaced by $\Gamma \cup \Delta$ (weakening)

Cut elimination

other simplifications exist for the other combinations of an introduction rule followed by an elimination rule
in intuitionistic logic (i.e. without the excluded-middle rule), cut elimination terminates [Gentzen 1934]

Properties of cut-free proofs

in intuitionistic logic, a cut-free assumption-free proof necessarily ends with an introduction rule

- if $A \vee B$ has a cut-free assumption-free proof then either A or B has a (cut-free) proof
- if $\exists x A$ has a cut-free assumption-free proof then it contains t such that A_{x}^{t} has a (cut-free) proof

Program extraction

program specification: $S=\forall x \exists y P(x, y)$
given an assumption-free proof of S, cut-elimination provides a way, given x, to compute y such that $P(x, y)$ holds
an intuitionnistic proof of a program specification provides bug-free program!

Outline

Curry-Howard isomorphism

a proof can be represented by a λ-term/program
first described by Curry in 1958 and extended by Howard in 1969

logic	λ-calculus/programming
formula	program type
connector/quantifier	type constructor
proof	term/program
logical rule	term constructor
assumption	variable
cut elimination	program evaluation

Example: \Rightarrow

logic	λ-calculus
\Rightarrow	arrow type \rightarrow
$\Rightarrow I$	abstraction $\lambda:[[A] B](A \Rightarrow B)$
$\Rightarrow E$	application $@:[A \Rightarrow B ; A] B$
\Rightarrow-cut	$(\lambda x t) u \rightarrow t_{x}^{u}$

Example: \Rightarrow

$$
\begin{gathered}
\text { (hyp) } \frac{x: A \in \Gamma}{\Gamma \vdash x: A} \\
(\Rightarrow I) \frac{\Gamma \cup\{x: A\} \vdash t: B}{\Gamma \vdash \lambda x t: A \Rightarrow B} \\
(\Rightarrow E) \\
\frac{\Gamma \vdash t: A \Rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B}
\end{gathered}
$$

Cut elimination

$$
\frac{\pi_{1}=\overline{\Gamma, x: A \vdash t: B}}{\frac{\Gamma \vdash \lambda x t: A \Rightarrow B}{}(\Rightarrow I) \quad \pi_{2}=\overline{\Gamma \vdash u: A}}
$$

π_{1}^{\prime} corresponds to t_{χ}^{u}

Other logical connector: \wedge

logic	λ-calculus
\wedge	cartesian product \times
$\wedge I$	pairing $\langle-,-\rangle:[A ; B](A \times B)$
$\wedge E 1$	1st projection $\pi_{1}:[A \times B] A$
$\wedge E 2$	2nd projection $\pi_{2}:[A \times B] B$
\wedge-cut	$\pi_{i}\left\langle x_{1}, x_{2}\right\rangle \rightarrow x_{i}$

$$
\frac{\Gamma \vdash t_{1}: T_{1} \Gamma \vdash t_{2}: T_{2}}{\Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle: T_{1} \times T_{2}} \frac{\Gamma \vdash p: T_{1} \times T_{2}}{\pi_{i} p: T_{i}}
$$

Other logical connector:

logic	λ-calculus
\vee	disjoint sum +
$\vee / 1$	1st injection $\iota_{1}:[A](A+B)$
$\vee / 2$	2nd injection $\iota_{2}:[B](A+B)$
$\vee E$	pattern-matching match $:[A+B ;[A] C ;[B] C] C$
V-cut	match $\iota_{i} t$ with $\left\{\iota_{1} x \mapsto u_{1}, \iota_{2} x \mapsto u_{2}\right\} \rightarrow u_{i x}^{t}$

$$
\frac{\Gamma \vdash t: T_{i}}{\Gamma \vdash \iota_{i} t: T_{1}+T_{2}} \frac{\Gamma \vdash t: T_{1}+T_{2} \quad \Gamma, x: T_{1} \vdash u_{1}: U \quad \Gamma, x: T_{2} \vdash u_{2}: U}{\Gamma \vdash \text { match } t \text { with }\left\{\iota_{1} x \mapsto u_{i}, \iota_{2} x \mapsto u_{2}\right\}: U}
$$

Propositional logic

up to now, we have:

$$
\begin{aligned}
\text { types/propositions } \quad T= & X|T \rightarrow T| T \times T \mid T+T \\
\text { terms/proofs } \quad t= & x|\lambda x: T . t| t t|\langle t, t\rangle| \pi_{i} t \mid \iota_{i}^{T} t \\
& \mid \text { match } t \text { with }\left\{\iota_{1}^{T} \times \mapsto, \iota_{2}^{T} \times \mapsto t\right\}
\end{aligned}
$$

contexts/assumptions $\Gamma=\emptyset \mid \Gamma, x: T$
type annotations are necessary for type unicity:

$$
\begin{gathered}
\frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T . u: T \rightarrow U} \\
\frac{\Gamma \vdash t: T_{1}}{\Gamma \vdash \iota_{1}^{T_{2}} t: T_{1}+T_{2}}
\end{gathered} \frac{\Gamma \vdash t: T_{2}}{\Gamma \vdash \iota_{2}^{T_{1}} t: T_{1}+T_{2}} .
$$

Outline

System F [Girard 1971]

Curry-Howard isomorphism for quantification on propositions:

$$
\begin{aligned}
\text { types } & T & =X|T \rightarrow T| \forall X T \\
\text { terms } & t & =x|\lambda x: T . t| t t|\Lambda X T| t T \\
\text { contexts } & \Gamma & =\emptyset \mid \Gamma, x: T \\
& & \frac{\Gamma \vdash t: T \quad X \notin \Gamma}{\Gamma \vdash \Lambda X t: \forall X T} \quad \frac{\Gamma \vdash v: \forall X T}{\Gamma \vdash v U: T_{X}^{U}}
\end{aligned}
$$

Computational power of system F

with natural numbers of type $N=\forall X(X \rightarrow X) \rightarrow(X \rightarrow X)$:
$0=\Lambda X \lambda x y \cdot y \quad$ (iterate 0 times x on y)
$1=\Lambda X \lambda x y \cdot x y \quad$ (iterate 1 times x on y)
$2=\Lambda X \lambda x y \cdot x(x y) \quad$ (iterate 2 times x on $y)$
system F can express any function whose existence is provable in second-order arithmetic

$$
\begin{aligned}
& \text { examples: } s=\lambda p \wedge X \lambda x y . x(p X x y),+=\lambda p q \wedge X \lambda x y . p N s q, \\
& \times=\lambda p q \wedge X \lambda x y \cdot p N(+q) 0, \text { power }=\lambda p q \wedge X \lambda x y \cdot q N(\times p) 1, \ldots
\end{aligned}
$$

Data types in system F

$$
\begin{aligned}
& A \times B=\forall X .(A \rightarrow B \rightarrow X) \rightarrow X \\
& \langle x, y\rangle=\Lambda X \lambda f . f x y \\
& \pi_{1} x=x A(\lambda x y \cdot x) \\
& \pi_{2} x=x B(\lambda x y \cdot y) \\
& A+B=\forall X .(A \rightarrow X) \rightarrow(B \rightarrow X) \rightarrow X \\
& \iota_{1} x=\Lambda X \lambda u_{1} u_{2} \cdot u_{1} x \\
& \iota_{2} x=\Lambda X \lambda u_{1} u_{2} \cdot u_{2} x \\
& \operatorname{case}_{C} t \text { with }\left\{\iota_{1} x \mapsto u_{1} \mid \iota_{2} x \mapsto u_{2}\right\}=t C\left(\lambda x u_{1}\right)\left(\lambda x u_{2}\right)
\end{aligned}
$$

Inductive data types

many other data types can be built using \times and + :

$$
T=X|1| T \times T|T+T| \mu X . T
$$

- natural numbers $\mathbb{N}=\mu X .1+X$

$$
\begin{aligned}
& 0=\iota_{1} \\
& s=\iota_{2}
\end{aligned}
$$

- binary trees $\mathbb{T}=\mu X .1+X \times X$ leaf $=\iota_{1}$
node $=\iota_{2}$

Inductive data types in system F

- $\llbracket X \rrbracket=X$
- $\llbracket 1 \rrbracket=\forall X . X \rightarrow X$
$-\llbracket A \times B \rrbracket=\forall X .(\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket \rightarrow X) \rightarrow X(X$ fresh $)$
- $\llbracket A+B \rrbracket=\forall X .(\llbracket A \rrbracket \rightarrow X) \rightarrow(\llbracket B \rrbracket \rightarrow X) \rightarrow X(X$ fresh $)$
- $\llbracket \mu X . T \rrbracket=\forall X . \llbracket T \rrbracket$
example: $\llbracket \mu X .1+X \rrbracket=\forall X .(1 \rightarrow X) \rightarrow(X \rightarrow X) \rightarrow X$

Outline

Proofs as objects

so far we have seen that:

- objects are λ-terms of type $\sigma \in \mathbb{T}^{\rightarrow}(\{\iota\})$, the set of object types: a λ-term t is an object if $\Gamma \vdash t: \sigma$ where Γ maps every free object variable of t to some object type
- proofs are λ-terms of type a Curry-Howard type:
a λ-term t is a proof if $\Gamma \vdash t: T$ where T is a Curry-Howard type and Γ maps every free predicate variable of t to a Curry-Howard type
- taking $\iota: o$, object types can be seen as predicates and objects as proofs (e.g. \mathbb{N} is a predicate and $0, s 0, \ldots$ are proofs of \mathbb{N})
- to extend the Curry-Howard isomorphism to quantifications on objects, proofs can be seen as objects:
- the type corresponding to $\forall x: T . U$ is often written $\Pi x: T . U$ $T \rightarrow U$ is the particular case of $\Pi x: T . U$ when $x \notin F V(U)$

$$
\frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T . u: \Pi x: T . U} \frac{\Gamma \vdash v: \Pi x: T . U \quad \Gamma \vdash t: T}{\Gamma \vdash v t: U_{x}^{t}}
$$

- the type corresponding to $\exists x: T . U$ is often written $\Sigma x: T . U$ $T \times U$ is the particular case of $\Sigma x: T . U$ when $x \notin F V(U)$

$$
\frac{\Gamma \vdash t: T \quad \Gamma \vdash u: U_{x}^{t}}{\Gamma \vdash\langle t, u\rangle: \Sigma x: T . U} \frac{\Gamma \vdash v: \Sigma x: T . U}{\Gamma \vdash \pi_{1} v: T} \frac{\Gamma \vdash v: \Sigma x: T . U}{\Gamma \vdash \pi_{2} v: T_{x}^{\pi_{1} v}}
$$

Pure Type Systems

all previous systems are instances of the following general framework [Barendregt 1992]:

- let \mathcal{S} be a set of sorts (e.g. o)
- the algebra of types and terms is:

$$
t=s \in \mathcal{S}|x \in \mathcal{X}| \lambda x: t . t|t t| \Pi x: t . t
$$

- valid contexts:

$$
\begin{gathered}
\vdash \emptyset \\
\qquad \Gamma \quad \Gamma \vdash T: s \in \mathcal{S} \\
\vdash \Gamma, x: T
\end{gathered}
$$

Pure Type Systems

- let $\mathcal{A} \subseteq \mathcal{S}^{2}$ be a set of typing axioms for sorts:

$$
\frac{\vdash \Gamma\left(s, s^{\prime}\right) \in \mathcal{A}}{\Gamma \vdash s: s^{\prime}}
$$

- let $\mathcal{R} \subseteq \mathcal{S}^{2}$ be a set of product formation rules:

$$
\frac{\Gamma \vdash T: s \quad \Gamma, x: T \vdash U: s^{\prime} \quad\left(s, s^{\prime}\right) \in \mathcal{R}}{\Gamma \vdash \Pi x: T . U: s^{\prime}}
$$

- conversion rule:

$$
\frac{\Gamma \vdash t: T \quad T={ }_{\beta} T^{\prime}}{\Gamma \vdash t: T^{\prime}}
$$

Pure Type Systems

- valid terms:

$$
\begin{gathered}
\frac{\vdash \Gamma \quad x: T \in \Gamma}{\Gamma \vdash x: T} \\
\frac{\Gamma, x: T \vdash u: U \quad \Gamma \vdash \Pi x: T . U: s \in \mathcal{S}}{\Gamma \vdash \lambda x: T . u: \Pi x: T . U} \\
\frac{\Gamma \vdash v: \Pi x: T . U \quad \Gamma \vdash t: T}{\Gamma \vdash v t: U_{x}^{t}}
\end{gathered}
$$

Barendregt's λ-cube

for instance, take $\mathcal{S}=\{o, \square\}$ and $\mathcal{A}=\{(o, \square)\}$:

\mathcal{R}	allowed constructions	example of valid context
(o, o)	simple types	$\vdash \iota: o, f: \iota \rightarrow \iota$
(o, \square)	dependent types	$\vdash \iota: o, P: \iota \rightarrow o$
(\square, o)	polymorphic types	$\vdash \iota: o, f: o \rightarrow \iota$
(\square, \square)	type constructors	$\vdash \iota: o, P: o \rightarrow o$

$\mathcal{R}=\mathcal{S}^{2}$ is the Calculus of Constructions [Coquand-Huet 1988]
this is the basis of the Coq system

What about proofs by induction ?

induction principle on the set \mathbb{N} of natural numbers:

$$
r e c: ~ \forall P: \mathbb{N} \Rightarrow o . P 0 \Rightarrow(\forall n: \mathbb{N} . P n \Rightarrow P(s n)) \Rightarrow \forall n: \mathbb{N} . P n
$$

cut elimination rules:

$$
\begin{array}{rll}
\operatorname{recPuv0} & \rightarrow_{\iota} & u \\
\operatorname{recPuv}(s n) & \rightarrow_{\iota} & v n(r e c P u v n)
\end{array}
$$

non-dependent case:

$$
\mathrm{rec}^{\prime}: \forall X: o . X \Rightarrow(\mathbb{N} \Rightarrow X \Rightarrow X) \Rightarrow \mathbb{N} \Rightarrow X
$$

Defining functions by induction

definition of addition by induction on its 2nd argument:

$$
+=\lambda p: \mathbb{N} . \lambda q: \mathbb{N} . \operatorname{rec}{ }^{\prime} \mathbb{N} p(\lambda n: \mathbb{N} . \lambda r: \mathbb{N} . s r) q
$$

cut elimination rules:

$$
\begin{array}{rll}
+p 0 & \rightarrow_{\beta \iota}^{*} & p \\
+p(s n) & \rightarrow_{\beta \iota}^{*} & s(+p n)
\end{array}
$$

Defining functions by induction

a more readable presentation using a fixpoint:

$$
\begin{aligned}
+= & \lambda p: \mathbb{N} \cdot \lambda q: \mathbb{N} . \\
& \text { match } q \text { with } \\
& \{0 \mapsto p, \\
& s n \mapsto s(+p n)\}
\end{aligned}
$$

Polymorphic and dependent inductive types

polymorphic lists of fixed length (polymorphic arrays):

$$
\begin{aligned}
\text { list } & : 0 \Rightarrow \mathbb{N} \Rightarrow o \\
\text { nil } & : \forall A: o . l i s t A 0 \\
\text { cons }: & \forall A: o . \forall n: \mathbb{N} . A \Rightarrow \operatorname{listAn} \Rightarrow \operatorname{list} A(s n) \\
\text { app } & : \forall A: o . \forall n: \mathbb{N} . \text { listAn } \Rightarrow \forall p: \mathbb{N} . \operatorname{list} A p \Rightarrow \operatorname{list} A(n+p) \\
\text { app }= & \lambda A: o . \lambda n: \mathbb{N} . \lambda N: \text { listAn. } \lambda p: \mathbb{N} . \lambda P: \text { listAp. } \\
& \text { match } N \text { with } \\
& \{\text { nil } A \mapsto P, \\
& \text { consAxqQ} \mapsto \operatorname{consAx(q+p)(appAqQpP)\} }
\end{aligned}
$$

Inductive predicates

ordering on natural numbers:

$$
\begin{aligned}
& \leq: \mathbb{N} \Rightarrow \mathbb{N} \Rightarrow 0 \\
& \leq_{0}: \forall x: \mathbb{N} .0 \leq x \\
& \leq_{s}: \forall x: \mathbb{N} . \forall y: \mathbb{N} . x \leq y \Rightarrow s x \leq s y
\end{aligned}
$$

sorted lists:

$$
\begin{aligned}
& \text { sorted : } \forall A \text { : o. } \forall n: \mathbb{N} \text {.listAn } \Rightarrow 0 \\
& \text { sorted }_{0} \text { : } \forall A \text { : o.sortedA0(nilA) } \\
& \text { sorted }_{1}: \forall A \text { : o. } \forall x: A . \operatorname{sortedA1}(\operatorname{consAx0(nilA))} \\
& \text { sorted }_{2} \text { : } \forall A: o . \forall x: A . \forall y: A . \forall n: \mathbb{N} . \forall N: l i s t A n . \\
& \operatorname{sorted} A(n+1)(\text { consAynN }) \Rightarrow x \leq y \\
& \Rightarrow \operatorname{sorted} A(n+2)(\operatorname{consAx}(n+1)(\operatorname{consAynN}))
\end{aligned}
$$

On board

- transitive closure of a relation and Tarski's fixpoint theorem
- correctness and completeness of a type-checking algorithm for the simply-typed λ-calculus
- correctness and completeness of a type-inference algorithm for pure untyped λ-terms in the simply-typed λ-calculus
- strong normalization proof of \rightarrow_{β} in the simply-typed λ-calculus based on Tait and Girard's notion of computability

Bibliography

- History of Lambda-Calculus and Combinatory logic, F. Cardone and J. R. Hindley, to appear in Vol. 5 of the Handbook of the History of Logic, Elsevier, www-maths.swan.ac.uk/staff/ jrh/papers/JRHHislamWeb.pdf
- The Lambda Calculus: Its Syntax and Semantics (2nd ed.), H. Barendregt, North-Holland, 1984
- Lambda Calculi with types, H. Barendregt, in the Handbook of Logic in Computer Science, Oxford University Press, 1992
- Rewrite Systems, N. Dershowitz and J.-P. Jouannaud, in the Handbook of Theoretical Computer Science, North Holland, 1990
- Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, Vol. 55, Cambridge University Press, 2003

