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First-order term algebra

we assume given a set X of variables x , y , . . .
and a signature Σ, i.e. a set F of function symbols f , g , . . .
equipped with an arity function ar : F → N

a term t ∈ T (Σ,X ) is either:

I a variable x

I or a function symbol f of arity n (ar(f ) = n) applied to n terms
t1, . . . , tn written ft1 . . . tn
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Example of first-order term algebra

arithmetic expressions can be represented by taking for F :

I 0 of arity 0 for zero

I s of arity 1 for successor

I + of arity 2 for addition

I × of arity 2 for multiplication

I . . .

examples of terms: 0, s(s0), s(s0)× s(s0)
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Higher-order terms

by higher-order terms, we mean terms with binding constructions
like in Σn

i=1xi ,
∫∫

Ω f (x , y)dxdy , ∀xP(x), . . . [Fiore-Plotkin-Turi
1999]

the binding arity of a function symbol f is a sequence of natural
numbers [k1; . . . ; kn] (n ∈ N is the arity of f ), each ki denoting the
number of variables bounds in the i-th argument of f

I Σ whose arguments are 1, n and xi has binding arity [0; 0; 1]
since i is bound in xi

I
∫∫

whose arguments are Ω and f (x , y) has binding arity [0; 2]
since x and y are bound in f (x , y)

I ∀ whose argument is P(x) has binding arity [1] since x is bound
in P(x)
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Higher-order term algebra

we assume given a set X of variables x , y , . . .
a set F of function symbols f , g , . . . of fixed binding arity

a term is either:

I a variable x

I or a function symbol f of binding arity [k1; . . . ; kn] applied to n
terms t1, . . . , tn written f (x1

1 . . . x
k1
1 .t1) . . . (x1

n . . . x
kn
n .tn)

examples: Σn
i=1xi is represented by Σ1n(i .xi ), and

∫∫
Ω f (x , y)dxdy

is represented by
∫∫

Ω(xy .f (x , y))
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α-conversion

in higher-order term algebra, bound variables are not significative
and can be renamed without changing the meaning:

Σn
i=1xi = Σn

j=1xj and
∫∫

Ω f (x , y)dxdy =
∫∫

Ω f (u, v)dudv and
∀xP(x) = ∀yP(y)

renaming of bound variables is called α-conversion and written =α

this is an equivalence relation

in fact, higher-order terms are usually defined as the set of
α-equivalence classes
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Free and bound variables

the set FV (t) of variables free in t is defined as follows:

I FV (x) = {x}
I FV (f (x1

1 . . . x
k1
1 .t1) . . . (x1

n . . . x
kn
n .tn)) =

(FV (t1) \ {x1
1 , . . . , x

k1
1 }) ∪ . . . ∪ (FV (tn) \ {x1

n , . . . , x
kn
n })

a term is closed if it has no free variable (FV (t) = ∅)
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Higher-order substitution

with higher-order terms, substitution must take care of bound
variables

example with a symbol λ of binding arity [1]:

I (λy .v)u
x = λy .v if y = x

I (λy .v)u
x = λy .vu

x if y 6= x and y /∈ FV (u)

I (λy .v)u
x = λz .v z

y
u
x if y 6= x and y ∈ FV (u) and z /∈ FV (v)

requires an α-conversion to avoid variable capture

example: (λy .x)y
x = λz .y
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Example of higher-order algebra: the untyped λ-calculus

the pure untyped λ-calculus is the higher-order term algebra with
the following symbols:

I λ of binding arity [1] for abstraction

I @ of binding arity [0; 0] for application

@(t, u) is often simply written tu

the evaluation of a function application is called β-reduction:

(λx .t)u →β tu
x

λ-calculus has been invented by Alonzo Church in 1928
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Computational power of the untyped λ-calculus

it is possible to express any computable function in λ-calculus
i.e. λ-calculus is Turing-complete

0 = λxy .y (iterate 0 time x on y)
1 = λxy .xy (iterate 1 time x on y)
2 = λxy .x(xy) (iterate 2 times x on y)
. . .
+ = λpqxy .px(qxy)
× = λpqxy .p(qx)y
. . .

example: 2 + 2→∗β 4
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Relations on terms

given two relations →R and →S , let →R→S be their composition:

t →R→S v if there is u such that t →R u and u →S v

given a relation →R , we denote by:

I ←R its inverse: t ←R u if u →R t
I →k

R its k iteration:
I →0

R is its reflexive closure (t →0
R u if t = u)

I →k+1
R is the composition of →R and →k

R

I →+
R its transitive closure (→+

R =
⋃
{→k

R | k > 0})
I →∗R its reflexive and transitive closure (→∗R =

⋃
{→k

R | k ≥ 0})
I =R its reflexive, symmetric and transitive closure
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Confluence and Church-Rosser properties

a relation R is:

I confluent if (∀tuv)t →∗R u, v ⇒ (∃w)u, v →∗R w

I Church-Rosser if (∀tu)t =R u ⇒ (∃w)t, u →∗R w

these properties are equivalent

example: β-reduction is confluent [Church-Rosser 1936]
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Non-terminating terms and fixpoints

a relation R is terminating (or well-founded, noetherian, strongly
normalizing) if there is no infinite sequence of R steps t0Rt1R . . .

λ-calculus has non-terminating terms:
(λx .xx)(λx .xx)→β (λx .xx)(λx .xx)→β . . .

λ-calculus has fixpoints:
with Y = λf .(λx .fxx)(λx .fxx), we have Yf →β f (Yf )→β . . .
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How to get rid of bound variables ?

bound variables creates technical difficulties (see the notion of
substitution, . . . )

some of these difficulties can be avoided by using a first-order
representation of λ-terms

there are two approaches:

I Schönfinkel’s combinators (1920)

I de Bruijn indices (1972)
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Schönfinkel’s combinatory logic (1920)

I purely applicative terms are the terms made of variables and
applications only

I SK -terms are the closed terms made of the constants S and K
and applications only

combinatorial completeness: for all purely applicative term t whose
free variables are x1, . . . , xn, there exist an SK -term A such that
Ax1 . . . xn = t in the following first-order equational theory:

I Sxyz = xz(yz)

I Kxy = x

(A represents the λ-term λx1 . . . xnt)
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de Bruijn indices (1972)

a bound variable x is replaced by the number of λ’s one has to go
through before reaching the one that binds x

I λxλyy is represented by λλ0

I λxλyx is represented by λλ1

then α-conversion boils down to syntactic equality
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Explicit substitutions (1973 - today)

the atomic meta-level higher-order substitution can be defined in
more atomic terms by extending the term algebra with
substitutions and using suitable rules

x [x/v ] = v
y [x/v ] = y if x 6= y

(tu)[x/v ] = t[x/v ]u[x/v ]
(λyt)[x/v ] = λyt[x/v ]

t[x/v ][y/w ] = t[y/w ][x/v [y/w ]]

finding rules deciding this equational theory and having good
properties motivated many researches (see [Kesner 2007])
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Typed term algebra

pure untyped algebra can be restricted by considering a typing
discipline

we assume given a set T of types

in arities, a natural number k is replaced by a type sequence of
length k together with an output type, written [T1; . . . ; Tk ]T

example: let T = {B,N} for booleans and natural numbers

I + has arity [N; N]N

I if has arity [B; N; N]N

I ∀N has arity [[N]B]B (quantification over N)
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Typed terms

well typed terms are defined as follows:

let Γ be a function mapping variables to types

(var)
x : T ∈ Γ

Γ ` x : T

(fun)

ar(f ) = [T1; . . . ; Tn]B

Ti = [T 1
i ; . . . ; T ki

i ]Ui

Γ, x1
i : T 1

i , . . . , x
ki
i : T ki

i ` ti : Ui

Γ ` f (x1
1 . . . x

k1
1 .t1) . . . (x1

n . . . x
kn
n .tn) : B
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Simple types

the set of simple types T→(B) over a set of type constants B is the
first-order term algebra with the following symbols:

I a symbol of arity 0 for every type constant

I the arrow type constructor → of arity 2

examples: B, B → B, (B → B)→ B, . . .
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Example of typed HO algebra: the simply-typed λ-calculus

the simply-typed λ-calculus is the simply-typed higher-order term
algebra with the following symbols:

I λU
T of binding arity [[T ]U](T → U)

I @U
T of binding arity [T → U; T ]U

introduced by Church in 1937

it is confluent and terminating [Turing 1942]
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Computational power of λ→

representing natural numbers as terms of type (ι→ ι)→ (ι→ ι):
0 = λxy .y (iterate x 0 times on y)
1 = λxy .xy (iterate x 1 times on y)
2 = λxy .x(xy) (iterate x 2 times on y)
. . .
λ→ can express any element of the smallest set of functions from
Nk to N closed for composition and containing polynomials and the
characteristic functions of {0} and N \ {0} [Schwichtenberg 1976]

examples: + = λpqxy .px(qxy), × = λpqxy .p(qx)y , . . .
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Logical language

allows to denote objects and express facts about them

I objects are represented by terms of some term algebra

I facts about objects (propositions) are represented by terms of
the following typed higher-order term algebra:

I user-defined predicate symbols P, Q, . . . of arity [ι; . . . ; ι]o
I ⊥ : o (proposition always false)
I ¬ : [o]o (negation)
I c : [o; o]o where c ∈ {∧,∨,⇒,⇔} (logical connectors)
I κι : [[ι]o]o where κ ∈ {∃,∀} (first-order quantifiers)

where ι is the type of objects and o is the type of propositions
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Natural deduction: the rules of logic

let Γ denote a set of propositions (the assumptions)

(hyp)
A ∈ Γ

Γ ` A

(⊥E )
Γ ` ⊥
Γ ` A

(¬I )
Γ ∪ {A} ` ⊥

Γ ` ¬A
(¬E )

Γ ` A Γ ` ¬A

Γ ` ⊥

I stands for introduction, E for elimination
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Natural deduction: the rules of logic

(∧I )
Γ ` A Γ ` B

Γ ` A ∧ B

(∧E1)
Γ ` A ∧ B

Γ ` A
(∧E2)

Γ ` A ∧ B

Γ ` B
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Natural deduction: the rules of logic

(∨I1)
Γ ` A

Γ ` A ∨ B
(∨I2)

Γ ` B

Γ ` A ∨ B

(∨E )
Γ ` A ∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C

Γ ` C
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Natural deduction: the rules of logic

(∀I )
Γ ` A x /∈ FV (Γ)

Γ ` ∀xA

(∀E )
Γ ` ∀xA
Γ ` At

x

(∃I )
Γ ` At

x

Γ ` ∃xA

(∃E )
Γ ` ∃xA Γ ∪ {A} ` B x /∈ FV (Γ,B)

Γ ` B
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Natural deduction: the rules of logic

(⇒I )
Γ ∪ {A} ` B

Γ ` A⇒ B

(⇒E )
Γ ` A⇒ B Γ ` A

Γ ` B

for classical logic, add also the rule:

(excluded-middle)
Γ ` A ∨ ¬A

Frédéric Blanqui Introduction to logic and typed λ-calculus



Provability

a proposition A is true if there is a derivation of ∅ ` A

example: A⇒ (B ⇒ A) is provable:

A ∈ {A,B}
(hyp)

{A,B} ` A
(⇒I )

{A} ` B ⇒ A
(⇒I )

∅ ` A⇒ (B ⇒ A)

this presentation of logic (natural deduction) is independently due
to Stanislaw Jaskowski and Gerhard Gentzen in 1934
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1+1=2 ?

representing objects by first-order terms
with 0 of arity 0, s of arity 1 and + of arity 2

taking the predicate symbol = of arity [ι; ι; o]

let Γ be the following set of axioms:
I = is an equivalence relation:

I ∀x .x = x
I ∀x .∀y .x = y ⇒ y = x
I ∀x .∀y .∀z .x = y ∧ y = z ⇒ x = z

I definition of +:
I ∀x .x + 0 = x
I ∀x .∀y .x + (sy) = s(x + y)
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1+1=2 !

proof of Γ ` s0 + s0 = s(s0) on board
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yet, we have seen that 1 + 1→∗β 2 when representing natural
numbers as simply-typed λ-terms of type (ι→ ι)→ (ι→ ι)

representing objects by simply-typed λ-terms provide more
computational power, hence simpler proofs if we add the following
deduction rule:

(conv)
Γ ` A A =β B

Γ ` B

deduction steps are made modulo β-equivalence
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with deduction modulo, the proof of Γ ` 1 + 1 = 2 becomes:

∀x .x = x ∈ Γ
(hyp)

Γ ` ∀x .x = x
(∀E )

Γ ` s(s0) = s(s0)
(conv)

Γ ` s0 + s0 = s(s0)
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Deduction modulo

more generally, natural deduction can be extended into natural
deduction modulo a decidable congruence on propositions ≡:

(conv)
Γ ` A A ≡ B

Γ ` B

[Dowek-Hardin-Kirchner 1998]
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Simple type theory and higher-order logic

objects are the simply-typed λ-terms whose type is in T→({ι})

i -th-order logic allows quantifications κσ : [[σ]o]o (κ ∈ {∃, ∀})
over any type σ ∈ T→({ι, o}) such that order(σ) < i
higher-order logic allows quantifications over any type

I order(ι) = 0

I order(o) = 1

I order(T1 → . . .→ Tn → B) = 1 + max{order(Ti ) | 1 ≤ i ≤ n}

examples: ι is of order 0 (first-order logic), ι→ ι→ ι and
ι→ ι→ o are of order 1 (second-order logic), (ι→ ι)→ ι and
(ι→ o)→ o are of order 2 (third-order logic), etc.
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Quantification over predicates (impredicativity)

in simple type theory/higher-order logic, we can quantify over
predicates like in:

∀oP.P ⇒ P

such a formula is said impredicative since P can be replaced by the
formula itself, yielding (∀oP.P ⇒ P)⇒ (∀oP.P ⇒ P)
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Quantification over predicates (impredicativity)

quantification over predicates allows to define other predicates:

A ∧ B ∀C .(A⇒ B ⇒ C )⇒ C

A ∨ B ∀C .(A⇒ C )⇒ (B ⇒ C )⇒ C

∃x .P ∀C .(∀x .Px ⇒ C )⇒ C

⊥ ∀C .C
x = y ∀P.Px ⇒ Py

x ∈ N ∀P.P0⇒ (∀y .Py ⇒ P(y + 1))⇒ Px
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Cut elimination

π1 =

. . .

Γ,A ` B
(⇒I )

Γ ` A⇒ B π2 =

. . .

Γ ` A
(⇒E )

Γ ` B

can be simplified into π′1 where π′1 is obtained from π1 by:

I removing A from the hypotheses of π1

I replacing every subproof
A ∈ Γ ∪∆

Γ ∪∆ ` A
of π1 by π∆

2

where π∆
2 is π2 with Γ replaced by Γ ∪∆ (weakening)
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Cut elimination

other simplifications exist for the other combinations of an
introduction rule followed by an elimination rule

in intuitionistic logic (i.e. without the excluded-middle rule),
cut elimination terminates [Gentzen 1934]
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Properties of cut-free proofs

in intuitionistic logic, a cut-free assumption-free proof necessarily
ends with an introduction rule

I if A ∨ B has a cut-free assumption-free proof then either A or B
has a (cut-free) proof

I if ∃xA has a cut-free assumption-free proof then it contains t
such that At

x has a (cut-free) proof
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Program extraction

program specification: S = ∀x∃yP(x , y)

given an assumption-free proof of S , cut-elimination provides a
way, given x , to compute y such that P(x , y) holds

an intuitionnistic proof of a program specification provides bug-free
program !
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Curry-Howard isomorphism

a proof can be represented by a λ-term/program

first described by Curry in 1958 and extended by Howard in 1969

logic λ-calculus/programming

formula program type

connector/quantifier type constructor

proof term/program

logical rule term constructor

assumption variable

cut elimination program evaluation
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Example: ⇒

logic λ-calculus

⇒ arrow type →
⇒I abstraction λ : [[A]B](A⇒ B)

⇒E application @ : [A⇒ B; A]B

⇒-cut (λxt)u → tu
x
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Example: ⇒

(hyp)
x : A ∈ Γ

Γ ` x : A

(⇒I )
Γ ∪ {x : A} ` t : B

Γ ` λxt : A⇒ B

(⇒E )
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B
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Cut elimination

π1 =

. . .

Γ, x : A ` t : B
(⇒I )

Γ ` λxt : A⇒ B π2 =

. . .

Γ ` u : A
(⇒E )

Γ ` (λxt)u : B

π′1 corresponds to tu
x
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Other logical connector: ∧

logic λ-calculus

∧ cartesian product ×
∧I pairing 〈 , 〉 : [A; B](A× B)

∧E1 1st projection π1 : [A× B]A

∧E2 2nd projection π2 : [A× B]B

∧-cut πi 〈x1, x2〉 → xi

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` 〈t1, t2〉 : T1 × T2

Γ ` p : T1 × T2

πip : Ti
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Other logical connector: ∨

logic λ-calculus

∨ disjoint sum +

∨I1 1st injection ι1 : [A](A + B)

∨I2 2nd injection ι2 : [B](A + B)

∨E pattern-matching match : [A + B; [A]C ; [B]C ]C

∨-cut match ιi t with {ι1x 7→ u1, ι2x 7→ u2} → ui
t
x

Γ ` t : Ti

Γ ` ιi t : T1 + T2

Γ ` t : T1 + T2 Γ, x : T1 ` u1 : U Γ, x : T2 ` u2 : U

Γ ` match t with {ι1x 7→ ui , ι2x 7→ u2} : U
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Propositional logic

up to now, we have:

types/propositions T = X | T → T | T × T | T + T
terms/proofs t = x | λx : T .t | tt | 〈t, t〉 | πi t | ιTi t

| match t with {ιT1 x 7→ t, ιT2 x 7→ t}
contexts/assumptions Γ = ∅ | Γ, x : T

type annotations are necessary for type unicity:

Γ, x : T ` u : U

Γ ` λx : T .u : T → U

Γ ` t : T1

Γ ` ιT2
1 t : T1 + T2

Γ ` t : T2

Γ ` ιT1
2 t : T1 + T2

Γ ` t : T1 + T2 Γ, x : T1 ` u1 : U Γ, x : T2 ` u2 : U

Γ ` match t with {ιT2
1 x 7→ ui , ι

T1
2 x 7→ u2} : U
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System F [Girard 1971]

Curry-Howard isomorphism for quantification on propositions:

types T = X | T → T | ∀XT
terms t = x | λx : T .t | tt | ΛXT | tT

contexts Γ = ∅ | Γ, x : T

Γ ` t : T X /∈ Γ

Γ ` ΛXt : ∀XT

Γ ` v : ∀XT

Γ ` vU : TU
X
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Computational power of system F

with natural numbers of type N = ∀X (X→X )→(X→X ):
0 = ΛXλxy .y (iterate 0 times x on y)
1 = ΛXλxy .xy (iterate 1 times x on y)
2 = ΛXλxy .x(xy) (iterate 2 times x on y)
. . .
system F can express any function whose existence is provable in
second-order arithmetic

examples: s = λpΛXλxy .x(pXxy), + = λpqΛXλxy .pNsq,
× = λpqΛXλxy .pN(+q)0, power = λpqΛXλxy .qN(×p)1, . . .
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Data types in system F

A× B = ∀X .(A→ B → X )→ X
〈x , y〉 = ΛXλf .fxy
π1x = xA(λxy .x)
π2x = xB(λxy .y)

A + B = ∀X .(A→ X )→ (B → X )→ X
ι1x = ΛXλu1u2.u1x
ι2x = ΛXλu1u2.u2x
caseC t with {ι1x 7→ u1 | ι2x 7→ u2} = tC (λxu1)(λxu2)
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Inductive data types

many other data types can be built using × and +:

T = X | 1 | T × T | T + T | µX .T

I natural numbers N = µX .1 + X
0 = ι1
s = ι2

I binary trees T = µX .1 + X × X
leaf = ι1
node = ι2
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Inductive data types in system F

I [[X ]] = X

I [[1]] = ∀X .X → X

I [[A× B]] = ∀X .([[A]]→ [[B]]→ X )→ X (X fresh)

I [[A + B]] = ∀X .([[A]]→ X )→ ([[B]]→ X )→ X (X fresh)

I [[µX .T ]] = ∀X .[[T ]]

example: [[µX .1 + X ]] = ∀X .(1→ X )→ (X → X )→ X
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Proofs as objects

so far we have seen that:

I objects are λ-terms of type σ ∈ T→({ι}), the set of object types:
a λ-term t is an object if Γ ` t : σ where Γ maps every free
object variable of t to some object type

I proofs are λ-terms of type a Curry-Howard type:
a λ-term t is a proof if Γ ` t : T where T is a Curry-Howard
type and Γ maps every free predicate variable of t to a
Curry-Howard type
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I taking ι : o, object types can be seen as predicates and objects
as proofs (e.g. N is a predicate and 0, s0, . . . are proofs of N)

I to extend the Curry-Howard isomorphism to quantifications on
objects, proofs can be seen as objects:

I the type corresponding to ∀x : T .U is often written Πx : T .U
T → U is the particular case of Πx : T .U when x /∈ FV (U)

Γ, x : T ` u : U

Γ ` λx : T .u : Πx : T .U

Γ ` v : Πx : T .U Γ ` t : T

Γ ` vt : U t
x

I the type corresponding to ∃x : T .U is often written Σx : T .U
T × U is the particular case of Σx : T .U when x /∈ FV (U)

Γ ` t : T Γ ` u : U t
x

Γ ` 〈t, u〉 : Σx : T .U

Γ ` v : Σx : T .U

Γ ` π1v : T

Γ ` v : Σx : T .U

Γ ` π2v : Tπ1v
x
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Pure Type Systems

all previous systems are instances of the following general
framework [Barendregt 1992]:

I let S be a set of sorts (e.g. o)

I the algebra of types and terms is:

t = s ∈ S | x ∈ X | λx : t.t | tt | Πx : t.t

I valid contexts:
` ∅

` Γ Γ ` T : s ∈ S
` Γ, x : T
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Pure Type Systems

I let A ⊆ S2 be a set of typing axioms for sorts:

` Γ (s, s ′) ∈ A
Γ ` s : s ′

I let R ⊆ S2 be a set of product formation rules:

Γ ` T : s Γ, x : T ` U : s ′ (s, s ′) ∈ R
Γ ` Πx : T .U : s ′

I conversion rule:
Γ ` t : T T =β T ′

Γ ` t : T ′
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Pure Type Systems

I valid terms:
` Γ x : T ∈ Γ

Γ ` x : T

Γ, x : T ` u : U Γ ` Πx : T .U : s ∈ S
Γ ` λx : T .u : Πx : T .U

Γ ` v : Πx : T .U Γ ` t : T

Γ ` vt : Ut
x
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Barendregt’s λ-cube

for instance, take S = {o,�} and A = {(o,�)}:

R allowed constructions example of valid context

(o, o) simple types ` ι : o, f : ι→ ι

(o,�) dependent types ` ι : o,P : ι→ o

(�, o) polymorphic types ` ι : o, f : o → ι

(�,�) type constructors ` ι : o,P : o → o

R = S2 is the Calculus of Constructions [Coquand-Huet 1988]

this is the basis of the Coq system

Frédéric Blanqui Introduction to logic and typed λ-calculus



What about proofs by induction ?

induction principle on the set N of natural numbers:

rec : ∀P : N⇒ o.P0⇒ (∀n : N.Pn⇒ P(sn))⇒ ∀n : N.Pn

cut elimination rules:

recPuv0 →ι u
recPuv(sn) →ι vn(recPuvn)

non-dependent case:

rec ′ : ∀X : o.X ⇒ (N⇒ X ⇒ X )⇒ N⇒ X
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Defining functions by induction

definition of addition by induction on its 2nd argument:

+ = λp : N.λq : N.rec ′Np(λn : N.λr : N.sr)q

cut elimination rules:

+p0 →∗βι p

+p(sn) →∗βι s(+pn)

Frédéric Blanqui Introduction to logic and typed λ-calculus



Defining functions by induction

a more readable presentation using a fixpoint:

+ = λp : N.λq : N.
match q with
{0 7→ p,
sn 7→ s(+pn)}
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Polymorphic and dependent inductive types

polymorphic lists of fixed length (polymorphic arrays):

list : o ⇒ N⇒ o
nil : ∀A : o.listA0

cons : ∀A : o.∀n : N.A⇒ listAn⇒ listA(sn)
app : ∀A : o.∀n : N.listAn⇒ ∀p : N.listAp ⇒ listA(n + p)

app = λA : o.λn : N.λN : listAn.λp : N.λP : listAp.
match N with
{nilA 7→ P,
consAxqQ 7→ consAx(q + p)(appAqQpP)}
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Inductive predicates

ordering on natural numbers:

≤ : N⇒ N⇒ o
≤0 : ∀x : N.0 ≤ x
≤s : ∀x : N.∀y : N.x ≤ y ⇒ sx ≤ sy

sorted lists:

sorted : ∀A : o.∀n : N.listAn⇒ o
sorted0 : ∀A : o.sortedA0(nilA)
sorted1 : ∀A : o.∀x : A.sortedA1(consAx0(nilA))
sorted2 : ∀A : o.∀x : A.∀y : A.∀n : N.∀N : listAn.

sortedA(n + 1)(consAynN)⇒ x ≤ y
⇒ sortedA(n + 2)(consAx(n + 1)(consAynN))
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On board

I transitive closure of a relation and Tarski’s fixpoint theorem

I correctness and completeness of a type-checking algorithm for
the simply-typed λ-calculus

I correctness and completeness of a type-inference algorithm for
pure untyped λ-terms in the simply-typed λ-calculus

I strong normalization proof of →β in the simply-typed λ-calculus
based on Tait and Girard’s notion of computability
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