Introduction to logic and typed A-calculus

Frédéric Blanqui
INRIA

Tsinghua University, March 2008

Frédéric Blanqui Introduction to logic and typed \-calculus

Outline

Frédéric Blanqui i ic and typed

First-order term algebra

we assume given a set X of variables x, y, ...
and a signature ¥, i.e. a set F of function symbols f, g, ...
equipped with an arity function ar : 7 — N

aterm t € 7(X, X) is either:

» a variable x

» or a function symbol f of arity n (ar(f) = n) applied to n terms
t1,...,t, written ft; ... t,

Frédéric Blanqui Introduction to logic and typed \-calculus

Example of first-order term algebra

arithmetic expressions can be represented by taking for F:
» 0 of arity O for zero

» s of arity 1 for successor

» + of arity 2 for addition

» x of arity 2 for multiplication

> ...

examples of terms: 0, s(s0), s(s0) x s(s0)

Frédéric Blanqui Introduction to logic and typed \-calculus

Higher-order terms

by higher-order terms, we mean terms with binding constructions
like in X1 x;, [[q f(x,y)dxdy, VxP(x), ...[Fiore-Plotkin-Turi
1999]

the binding arity of a function symbol f is a sequence of natural
numbers [ki;...; k] (n € N is the arity of f), each k; denoting the
number of variables bounds in the j-th argument of f

» Y whose arguments are 1, n and x; has binding arity [0; 0; 1]
since i is bound in x;

» [whose arguments are Q and f(x,y) has binding arity [0; 2]
since x and y are bound in f(x,y)

» V whose argument is P(x) has binding arity [1] since x is bound
in P(x)

Frédéric Blanqui Introduction to logic and typed \-calculus

Higher-order term algebra

we assume given a set X of variables x, y, ...
a set F of function symbols f, g, ... of fixed binding arity

a term is either:
> a variable x
» or a function symbol f of binding arity [ki;...; k,] applied to n

terms ti,. .., t, written f(xi .. .xfl.tl) (X)

examples: Y7, x; is represented by ¥1n(i.x;), and [[o, f(x, y)dxdy
is represented by [[Q(xy.f(x,y))

Frédéric Blanqui Introduction to logic and typed \-calculus

a-conversion

in higher-order term algebra, bound variables are not significative
and can be renamed without changing the meaning:

YPyx =X_;x and [Jq f(x,y)dxdy = [[f(u, v)dudv and
VxP(x) = VyP()

renaming of bound variables is called a-conversion and written =,
this is an equivalence relation

in fact, higher-order terms are usually defined as the set of
a-equivalence classes

Frédéric Blanqui Introduction to logic and typed \-calculus

Free and bound variables

the set FV/(t) of variables free in t is defined as follows:
> FV(x) = {x}
> FV(F(xd . oxftt) o (xE X t,)) =

(FV(t)\ o) UL U (EV () \ I, . xbe)

a term is closed if it has no free variable (FV/(t) = ()

Frédéric Blanqui Introduction to logic and typed \-calculus

Higher-order substitution

with higher-order terms, substitution must take care of bound
variables

example with a symbol A of binding arity [1]:

> (Ay.v)!i=Ayvify=x

> (Ayv)i=X Ay vl ify#xandy ¢ FV(u)

> (Ayv)i=Xz.vilify#xandy e FV(u)and z ¢ FV(v)

y X
requires an a-conversion to avoid variable capture

example: (A\y.x)% = A\z.y

Frédéric Blanqui Introduction to logic and typed \-calculus

Example of higher-order algebra: the untyped A-calculus

the pure untyped A-calculus is the higher-order term algebra with
the following symbols:

») of binding arity [1] for abstraction
» @ of binding arity [0; 0] for application

O(t, u) is often simply written tu
the evaluation of a function application is called 3-reduction:
(Ax.t)u —p5 t

A-calculus has been invented by Alonzo Church in 1928

Frédéric Blanqui Introduction to logic and typed \-calculus

Computational power of the untyped A-calculus

it is possible to express any computable function in A-calculus
i.e. A-calculus is Turing-complete

0= MAxy.y (iterate O time x on y)
1= MAxy.xy (iterate 1 time x on y)
2 = Axy.x(xy) (iterate 2 times x on y)

+ = Apgxy.px(qxy)
x = Apgxy.p(gx)y

example: 2 42 —>E 4

Frédéric Blanqui Introduction to logic and typed \-calculus

Relations on terms

given two relations —g and —g, let —gr—s be their composition:
t —r—s v if there is u such that t g v and v —g5 v

given a relation —g, we denote by:

> «—pitsinverse: t —pr uifu—gt
> —k its k iteration:

» —% is its reflexive closure (t —% v if t = u)
» —5 is the composition of —g and —&
+ o + _ k
> — its transitive closure (—5 = U{—%| k > 0})
> —% its reflexive and transitive closure (—% = |J{—k| k > 0})

> =g its reflexive, symmetric and transitive closure

Frédéric Blanqui Introduction to logic and typed \-calculus

Confluence and Church-Rosser properties

a relation R is:
> confluent if (Vtuv)t —% u,v = (Iw)u,v =% w
» Church-Rosser if (Vtu)t =g u= (Iw)t,u =% w

these properties are equivalent

example: (-reduction is confluent [Church-Rosser 1936]

Frédéric Blanqui Introduction to logic and typed \-calculus

Non-terminating terms and fixpoints

a relation R is terminating (or well-founded, noetherian, strongly
normalizing) if there is no infinite sequence of R steps tpRt1R . ..

A-calculus has non-terminating terms:
(Ax.xx)(Ax.xx) =g (Ax.xx)(Ax.xx) =3 ...

A-calculus has fixpoints:
with Y = Af.(Ax.fxx)(Ax.fxx), we have Yf —g f(Yf) —g5 ...

Frédéric Blanqui Introduction to logic and typed \-calculus

How to get rid of bound variables ?

bound variables creates technical difficulties (see the notion of
substitution, ...)

some of these difficulties can be avoided by using a first-order
representation of A-terms

there are two approaches:
» Schonfinkel's combinators (1920)
» de Bruijn indices (1972)

Frédéric Blanqui Introduction to logic and typed \-calculus

Schonfinkel's combinatory logic (1920

» purely applicative terms are the terms made of variables and
applications only

> SK-terms are the closed terms made of the constants S and K
and applications only

combinatorial completeness: for all purely applicative term t whose
free variables are xi, ..., xp, there exist an SK-term A such that
Axjy ...X, =t in the following first-order equational theory:

> Sxyz = xz(yz)
> Kxy = x
(A represents the A-term Axj ... Xxpt)

Frédéric Blanqui Introduction to logic and typed \-calculus

de Bruijn indices (1972)

a bound variable x is replaced by the number of A's one has to go
through before reaching the one that binds x

> Ax\yy is represented by A0
> AxAyx is represented by A1

then a-conversion boils down to syntactic equality

Frédéric Blanqui Introduction to logic and typed \-calculus

Explicit substitutions (1973 - today)

the atomic meta-level higher-order substitution can be defined in
more atomic terms by extending the term algebra with
substitutions and using suitable rules

x[x/v]
y[x/v] =y
(tu)[x/v] = t[x/v]ulx/v]
(At)[x/v] = Ayt[x/v]
tix/vlly/w] = tly/w][x/v[y/w]]

4

if x#y

finding rules deciding this equational theory and having good
properties motivated many researches (see [Kesner 2007])

Frédéric Blanqui Introduction to logic and typed \-calculus

Typed term algebra

pure untyped algebra can be restricted by considering a typing
discipline

we assume given a set T of types

in arities, a natural number k is replaced by a type sequence of
length k together with an output type, written [Ty;...; T¢] T

example: let T = {B, N} for booleans and natural numbers
» + has arity [N; N|N

» if has arity [B; N; N]N

» Yy has arity [[N]B]B (quantification over N)

Frédéric Blanqui Introduction to logic and typed \-calculus

Typed terms

well typed terms are defined as follows:

let I be a function mapping variables to types

x:Terl
V) T
ar(f)y=1[T;...; T,]|B

T =[Th.. Tk]U

Coxd s Th X9 TR 6 U

fun i ! X
(fun) FEf(xd . oxt) (Xt xKt,) B

Frédéric Blanqui Introduction to logic and typed \-calculus

Simple types

the set of simple types T (B3) over a set of type constants B is the
first-order term algebra with the following symbols:

» a symbol of arity O for every type constant

» the arrow type constructor — of arity 2

examples: B, B— B, (B— B) — B, ...

Frédéric Blanqui Introduction to logic and typed \-calculus

Example of typed HO algebra: the simply-typed A-calculus

the simply-typed A-calculus is the simply-typed higher-order term
algebra with the following symbols:

> \Y of binding arity [[T]U](T — U)
» @Y of binding arity [T — U; T|U
introduced by Church in 1937

it is confluent and terminating [Turing 1942]

Frédéric Blanqui Introduction to logic and typed \-calculus

Computational power of \™

representing natural numbers as terms of type (v — ¢) — (¢ — ¢):
0= Axy.y (iterate x 0 times on y)

1= Axy.xy (iterate x 1 times on y)

2= Axy.x(xy) (iterate x 2 times on y)

AT can express any element of the smallest set of functions from
Nk to N closed for composition and containing polynomials and the
characteristic functions of {0} and N\ {0} [Schwichtenberg 1976]

examples: + = Apgxy.px(gxy), x = Apgxy.p(gx)y, ...

Frédéric Blanqui Introduction to logic and typed \-calculus

Outline

Frédéric Blanqui i ic and typed

Logical language

allows to denote objects and express facts about them

> objects are represented by terms of some term algebra

» facts about objects (propositions) are represented by terms of
the following typed higher-order term algebra:

user-defined predicate symbols P, Q, ...of arity [¢;...;t]o
L : o (proposition always false)

- : [o]o (negation)

¢ : [o; o]o where ¢ € {A,V,=, <} (logical connectors)

k. : [[t]o]o where k € {3,V} (first-order quantifiers)

where ¢ is the type of objects and o is the type of propositions

vV vy vy VvYy

Frédéric Blanqui Introduction to logic and typed \-calculus

Natural deduction: the rules of logic

let I denote a set of propositions (the assumptions)

h Aecl
(hyp) =2
M=_1
(LE) 2

ru{A}+ L [FA TH-A

e S

| stands for introduction, E for elimination

Frédéric Blanqui Introduction to logic and typed \-calculus

Natural deduction: the rules of logic

NN-A r=B

(A1) rN-AAB

AE1 r'-AAB AED rN-AAB
WED) —ra E) repe

Frédéric Blanqui Introduction to logic and typed \-calculus

Natural deduction: the rules of logic

N-B

(Vi) FrAvVE

rrave 2

rN-AvB TU{A}FC TU{B}FC
(VE) r-c

Frédéric Blanqui Introduction to logic and typed \-calculus

Natural deduction: the rules of logic

FrEA xé¢ FV(T
(v1) rkim =

[VxA
M- AL

(VE)

o r- At
(30) - 3xA

[F3xA TU{A}FB x¢FV(,B)
(3E) reB

Introduction to logic and typed \-calculus

Frédéric Blanqui

Natural deduction: the rules of logic

ru{Al+B

G Frass

rN-A=B THA
N-B

(=E)

for classical logic, add also the rule:

(eXClUded-mlddIe) m

Frédéric Blanqui Introduction to logic and typed \-calculus

Provability

a proposition A is true if there is a derivation of) - A

example: A= (B = A) is provable:
Ac {A B)
{A B} A
{A}-B= A
P-A=(B=A)

(hyp)
(=1)
=)

this presentation of logic (natural deduction) is independently due
to Stanislaw Jaskowski and Gerhard Gentzen in 1934

Frédéric Blanqui Introduction to logic and typed \-calculus

1+1=27

representing objects by first-order terms
with 0 of arity 0, s of arity 1 and + of arity 2

taking the predicate symbol = of arity [i; ¢; 0]

let I be the following set of axioms:
» = is an equivalence relation:

> Vx.x = x

> YxVyx=y=y=x

> VxVyVzx=yAy=z=>x=2z
» definition of +:

» Vx.x+0=x

» VxVy.x+(sy) =s(x+y)

Frédéric Blanqui Introduction to logic and typed \-calculus

1+1=21

proof of [- s0 + s0 = s(s0) on board

Frédéric Blanqui Introduction to logic and typed \-calculus

yet, we have seen that 1 + 1 —>E 2 when representing natural
numbers as simply-typed A-terms of type (¢t — ¢) — (v — ¢)

representing objects by simply-typed A-terms provide more
computational power, hence simpler proofs if we add the following
deduction rule:

A A=3B

(conv) S

deduction steps are made modulo S-equivalence

Frédéric Blanqui Introduction to logic and typed \-calculus

with deduction modulo, the proof of [=1+ 1 = 2 becomes:

Vxx=xel

T FWxx = x
I+ s(s0) = s(s0)

' s0+ s0 = s(s0)

(hyp)
(VE)

(conv)

Frédéric Blanqui Introduction to logic and typed \-calculus

Deduction modulo

more generally, natural deduction can be extended into natural
deduction modulo a decidable congruence on propositions =:

NrN-A A=B

(conv) B

[Dowek-Hardin-Kirchner 1998|

Frédéric Blanqui Introduction to logic and typed \-calculus

Simple type theory and higher-order logic

objects are the simply-typed A\-terms whose type is in T ({¢})

i-th-order logic allows quantifications x, : [[c]o]o (k € {3,V})
over any type o € T ({¢, 0}) such that order(c) < i
higher-order logic allows quantifications over any type

» order(t) =0
» order(o) =1
» order(T1 — ... — Tp — B) =1+ max{order(T;) | 1 <i < n}

examples: ¢ is of order O (first-order logic), ¢ — ¢+ — ¢ and
t — ¢ — o are of order 1 (second-order logic), (¢ — ¢t) — ¢ and
(t — 0) — o are of order 2 (third-order logic), etc.

Frédéric Blanqui Introduction to logic and typed \-calculus

Quantification over predicates (impredicativity)

in simple type theory/higher-order logic, we can quantify over
predicates like in:

VoP.P =P

such a formula is said impredicative since P can be replaced by the
formula itself, yielding (VoP.P = P) = (V,P.P = P)

Frédéric Blanqui Introduction to logic and typed \-calculus

Quantification over predicates (impredicativity)

quantification over predicates allows to define other predicates:

ANB

VC(A=B=C(C)=C

AV B

VC.(A=C)=(B=(C)=C

dx.P

VC.(Vx.Px = C)= C

1

vC.C

X=y

VP.Px = Py

xeN

VP.P0 = (Vy.Py = P(y + 1)) = Px

Frédéric Blanqui Introduction to logic and typed \-calculus

Cut elimination

r-B (=£)

can be simplified into 7} where 7] is obtained from 7y by:

» removing A from the hypotheses of m;
AclTuA

FTUAFA
where 75 is T with I replaced by [U A (weakening)

> replacing every subproof of m by 75

Frédéric Blanqui Introduction to logic and typed \-calculus

Cut elimination

other simplifications exist for the other combinations of an
introduction rule followed by an elimination rule

in intuitionistic logic (i.e. without the excluded-middle rule),
cut elimination terminates [Gentzen 1934]

Frédéric Blanqui

Introduction to logic and typed \-calculus

Properties of cut-free proofs

in intuitionistic logic, a cut-free assumption-free proof necessarily
ends with an introduction rule

» if AV B has a cut-free assumption-free proof then either A or B
has a (cut-free) proof

» if 9xA has a cut-free assumption-free proof then it contains t
such that A! has a (cut-free) proof

Frédéric Blanqui Introduction to logic and typed \-calculus

Program extraction

program specification: S = Vx3yP(x, y)

given an assumption-free proof of S, cut-elimination provides a
way, given x, to compute y such that P(x,y) holds

an intuitionnistic proof of a program specification provides bug-free
program !

Frédéric Blanqui Introduction to logic and typed \-calculus

Outline

Frédéric Blanqui i ic and typed

Curry-Howard isomorphism

a proof can be represented by a A-term/program

first described by Curry in 1958 and extended by Howard in 1969

logic A-calculus/programming
formula program type
connector/quantifier type constructor
proof term/program
logical rule term constructor
assumption variable
cut elimination program evaluation

Frédéric Blanqui Introduction to logic and typed \-calculus

logic A-calculus
= arrow type —
=/ | abstraction X : [[A]B](A = B)
=E application @ : [A = B; A|B
=-cut (Axt)u — t

Frédéric Blanqui Introduction to logic and typed \-calculus

x:Ael

(hve) T A

Fru{x:At+t:B
=D T A= B

N-t:A=B IT+u:A
M~tu: B

(=E)

Frédéric Blanqui Introduction to logic and typed \-calculus

Cut elimination

m= Lx:AFt: B
(=1) —
NXMxt: A= B m= TFu:A
M= (Axt)u: B

(=E)

7y corresponds to t!

Frédéric Blanqui Introduction to logic and typed \-calculus

Other logical connector: A

logic A-calculus

A cartesian product X

Al | pairing (_,) : [A; B](A x B)
AE1 | 1st projection 7y : [A x B]A
AE2 | 2nd projection > : [A x B|B
A-cut i (X1, X2) — X;

TEty: Ty TEH: Ty, TEp:Tix T
r|—<t1,t2>ZT1XT2 7T,'pZT,'

Frédéric Blanqui Introduction to logic and typed \-calculus

Other logical connector: V

logic A-calculus
\% disjoint sum +
VIl 1st injection ¢ : [A](A+ B)
VI2 2nd injection ¢y : [B](A+ B)
VE | pattern-matching match : [A+ B; [A|C; [B]C]C
V-cut | match ¢;t with {t1x — vy, 1x — wp} — uib

Fr=t:T; FrEt: T+ T Tox:Thikw:U Tox:Tokuw:U
Tt T+ T I+ match t with {¢1x — uj, tox — wp} 2 U

Frédéric Blanqui Introduction to logic and typed \-calculus

Propositional logic

up to now, we have:

types/propositions T = X|T—>T|TxT|T+T
terms/proofs t = x| Ax: T.t|tt|(t,t)|mt|]t
| match t with {¢] x +— t, 0] x — t}
contexts/assumptions I = 0|, x: T

type annotations are necessary for type unicity:

Mx:Tru:U Mrt: Ty r=t: 7,
FTEXM: T T—=U TH2t:Ti4+ T THSE: T+ To

Frt:T1+T, Iox:ThikFuw:U Tix:TobFuw: U

[+ match t with {¢]?x — uj, 10 x —) : U

Frédéric Blanqui Introduction to logic and typed \-calculus

Outline

Frédéric Blanqui i ic and typed

System F [Girard 1971]

Curry-Howard isomorphism for quantification on propositions:

types T= X|T—T|VXT
terms t = x| Ax: T.t|tt|AXT | tT
contexts T = 0|F,x:T

FEt:T X¢r MEv:vXT
M EAXt:VXT rEvU:TY

Frédéric Blanqui Introduction to logic and typed \-calculus

Computational power of system F

with natural numbers of type N = VX(X — X)— (X — X):
0 =AXMXxy.y (iterate O times x on y)

1 =AXXxy.xy (iterate 1 times x on y)

2 = AXAxy.x(xy) (iterate 2 times x on y)

system F can express any function whose existence is provable in
second-order arithmetic

examples: s = ApAXAxy.x(pXxy), + = A\pgAXAxy.pNsq,
X = ApgAXAxy.pN(4q)0, power = ApgAXAxy.gN(xp)1, ...

Frédéric Blanqui Introduction to logic and typed \-calculus

Data types in system F

AxB=VX.(A—B—X)—X
(x,y) = ANXAf.fxy

m1x = xA(Axy.x)

max = xB(Axy.y)

A+B:VX.(A—>X)—>(B—>X)—>X

t1x = AXAugus.uix

tox = NXAupup.upx

casec t with {t1x — u1 | tox — wa} = tC(Axup)(Axur)

Frédéric Blanqui Introduction to logic and typed \-calculus

Inductive data types

many other data types can be built using x and +:
T=X|1|TxT|T+T]|uXT

> natural numbers N = pX.1+ X
S = 1o

> binary trees T = pX.1+ X x X
leaf = 11
node = 1

Frédéric Blanqui Introduction to logic and typed \-calculus

Inductive data types in system F

» [XI=X

> [1] = VX.X — X

> [Ax B] =VX.([A] — [B] — X) — X (X fresh)

» [A+ B] = VX.([A] — X) — ([B] — X) — X (X fresh)
> [uX.T] =VX.[T]

example: [uX.1+X]=YX.(1—-X) = (X = X)— X

Frédéric Blanqui Introduction to logic and typed \-calculus

Outline

Frédéric Blanqui i ic and typed

Proofs as objects

so far we have seen that:

> objects are A-terms of type o € T ({¢}), the set of object types:
a A-term t is an object if [F t : o where [maps every free
object variable of t to some object type

» proofs are \-terms of type a Curry-Howard type:
a A-term tis a proof if [+t : T where T is a Curry-Howard
type and I maps every free predicate variable of t to a
Curry-Howard type

Frédéric Blanqui Introduction to logic and typed \-calculus

» taking ¢ : 0, object types can be seen as predicates and objects
as proofs (e.g. N is a predicate and 0, s0, ...are proofs of N)

» to extend the Curry-Howard isomorphism to quantifications on
objects, proofs can be seen as objects:
> the type corresponding to Vx : T.U is often written MNx : T.U
T — U is the particular case of MNx : T.U when x ¢ FV(U)

Mx: TFu:U FrM-v:MNx:T.U TkHt: T
FM=Xx:Tw:Nx: T.U MN=vt: UE

> the type corresponding to 3x : T.U is often written x : T.U
T x U is the particular case of £x : T.U when x ¢ FV/(U)

Fr=t: T Thu:U! Thv:XIx:T.U Thv:XIx:T.U
MNe(t,u) : Ex: T.U Memv: T I mv: T

Frédéric Blanqui Introduction to logic and typed \-calculus

Pure Type Systems

all previous systems are instances of the following general
framework [Barendregt 1992]:

> let S be a set of sorts (e.g. 0)

> the algebra of types and terms is:

t:s€8|X6X|)\X:t.t|tt||‘|x:t.t‘

» valid contexts:

)
FI THET:seS8
Flox: T

Frédéric Blanqui Introduction to logic and typed \-calculus

Pure Type Systems

> let A C S? be a set of typing axioms for sorts:

FIo(s,s)e A
Ns:s

> let R C S? be a set of product formation rules:

r-T:s Tx:THEU:s (s,s)eR
M=MNx:T.U:¢

» conversion rule:

Mt:T T=3T
Mt 71/

Frédéric Blanqui Introduction to logic and typed \-calculus

Pure Type Systems

» valid terms:
FI x:Terl

MEx: T
Mx: TrFu:U THENx: T.U:s€8
MEXx:Tw:MNx: T.U
lFv:lx: T.U THt: T
M=t UL

Frédéric Blanqui Introduction to logic and typed \-calculus

Barendregt's A\-cube

for instance, take S = {0,0} and A = {(0,0)}:

R allowed constructions | example of valid context
(0,0) | simple types Feiofiv—u
(0,0) | dependent types Fiv:o,P:v—o0
(O, 0) | polymorphic types Firiof:o—1
(0,0) | type constructors Fiio,P:o—o

R = S? is the Calculus of Constructions [Coquand-Huet 1988]

this is the basis of the Coq system

Frédéric Blanqui Introduction to logic and typed \-calculus

What about proofs by induction ?

induction principle on the set N of natural numbers:
rec :VP:N= 0.P0= (Vn:N.Pn=- P(sn)) = Vn:N.Pn

cut elimination rules:

recPuv0 —, u
recPuv(sn) —, vn(recPuvn)

non-dependent case:

rec :VX:0X=(N=X=X)=N=X

Frédéric Blanqui Introduction to logic and typed \-calculus

Defining functions by induction

definition of addition by induction on its 2nd argument:

+=Ap:N.\q: N.rec'Np(An: N.Ar : N.sr)q

cut elimination rules:

+p0 —35 P
+p(sn) —p, s(+pn)

Frédéric Blanqui Introduction to logic and typed \-calculus

Defining functions by induction

a more readable presentation using a fixpoint:
+= Ap:N.Ag:N.
match g with

{0 — p,
sn+— s(+pn)}

Frédéric Blanqui Introduction to logic and typed \-calculus

Polymorphic and dependent inductive types

polymorphic lists of fixed length (polymorphic arrays):

list :
nil

cons :
: VA :0.¥n: N.listAn = Vp : N.listAp = listA(n + p)

app

app =

o=N=o0
VA : o.listA0
VA :o0.¥n:N.A= listAn = listA(sn)

AA o0 An NN : listAn. Ap : N.AP : listAp.
match N with

{nilA+— P,

consAxqQ +— consAx(q + p)(appAqQpP)}

Frédéric Blanqui Introduction to logic and typed \-calculus

Inductive predicates

ordering on natural numbers:

sorted lists:

sorted :
sortedy :
sorted; :
sorteds :

<:N=N=o0
<o @ ¥x:N.O<x
<s 0 Vx:NVy :Nx<y=sx<sy

VA :o0.¥n:N.listAn = o

VA : o.sortedA0(nilA)

VA : 0.Vx : A.sortedAl(consAx0(nilA))
VA:0Vx:AVy: AVn:NVN : listAn.
sortedA(n + 1)(consAynN) = x <y

= sortedA(n + 2)(consAx(n + 1)(consAynN))

Frédéric Blanqui Introduction to logic and typed \-calculus

» transitive closure of a relation and Tarski's fixpoint theorem

» correctness and completeness of a type-checking algorithm for
the simply-typed A-calculus

> correctness and completeness of a type-inference algorithm for
pure untyped A-terms in the simply-typed A-calculus

» strong normalization proof of —g3 in the simply-typed A-calculus
based on Tait and Girard's notion of computability

Frédéric Blanqui Introduction to logic and typed \-calculus

Bibliography

» History of Lambda-Calculus and Combinatory logic, F. Cardone
and J. R. Hindley, to appear in Vol. 5 of the Handbook of the
History of Logic, Elsevier, www-maths.swan.ac.uk/staff/
jrh/papers/JRHHislamWeb.pdf

» The Lambda Calculus: Its Syntax and Semantics (2nd ed.), H.
Barendregt, North-Holland, 1984

» Lambda Calculi with types, H. Barendregt, in the Handbook of
Logic in Computer Science, Oxford University Press, 1992

> Rewrite Systems, N. Dershowitz and J.-P. Jouannaud, in the
Handbook of Theoretical Computer Science, North Holland,
1990

» Term Rewriting Systems, Cambridge Tracts in Theoretical
Computer Science, Vol. 55, Cambridge University Press, 2003

Frédéric Blanqui Introduction to logic and typed \-calculus

www-maths.swan.ac.uk/staff/jrh/papers/JRHHislamWeb.pdf
www-maths.swan.ac.uk/staff/jrh/papers/JRHHislamWeb.pdf

