Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Security of Modes of Operation and other provably secure cryptographic schemes

Ferdinand Sibleyras

Inria, France

23 October 2020

Counter Mode (CTR)

EM 0000000000000 DbHtS MACs

SUNDAE

Conclusion

Symmetric Cryptography

- Cryptography: Preserve authenticity and privacy of data.
- Symmetric: Assume the existence of a shared secret and random key.
- Public channel: Attacker can record and/or manipulate what is being sent.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Building Blocks

A (trusted) primitive

Resistant to known attacks.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Building Blocks

A (trusted) primitive

Resistant to known attacks.

A (proven) mode of operation A way to use the primitive.

Counter Mode (CTR)

2EM

ObHtS MACs

SUNDAE

Conclusion

Security of Modes of Operation

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Security of Modes of Operation

Cryptanalysis of Modes

Attacking the mode without attacking the primitive.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Introduction

Block Cipher

 $E:\{0,1\}^\kappa\times\{0,1\}^n\to\{0,1\}^n$

A family of **permutations** indexed by a key where *n* is the bit size of the permutation or block size. Example: AES has n = 128, 3DES has n = 64.

\square	

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Introduction

Block Cipher

 $E:\{0,1\}^\kappa\times\{0,1\}^n\to\{0,1\}^n$

A family of **permutations** indexed by a key where *n* is the bit size of the permutation or block size. Example: AES has n = 128, 3DES has n = 64.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Introduction

Block Cipher

 $E:\{0,1\}^\kappa\times\{0,1\}^n\to\{0,1\}^n$

A family of **permutations** indexed by a key where *n* is the bit size of the permutation or block size. Example: AES has n = 128, 3DES has n = 64.

Describes how to use a **block cipher** along with a plaintext message of **arbitrary length** to achieve some concrete cryptographic goals.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Introduction

Modes are classified according to their goals:

• There are encryption modes (CBC, CTR, ...). They aim at hiding the plaintext.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Introduction

Modes are classified according to their goals:

- There are encryption modes (CBC, CTR, ...). They aim at hiding the plaintext.
- There are authentication modes (ECBC, GMAC, ...). They aim at authenticating the plaintext.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Introduction

Modes are classified according to their goals:

- There are encryption modes (CBC, CTR, ...). They aim at hiding the plaintext.
- There are authentication modes (ECBC, GMAC, ...). They aim at authenticating the plaintext.
- There are authenticated encryption modes (GCM, SUNDAE, ...). They aim at both authenticating and hiding the plaintext.

Diagram of the Counter Mode (CTR) [SP 800-38A, 2001]

 m_i : The plaintext. E_k : The block cipher. c_i : The ciphertext.IV : The Initialisation Value. $c_i = E_k(|V||i) \oplus m_i$

Diagram of the Counter Mode (CTR) [SP 800-38A, 2001]

 m_i : The plaintext. E_k : The block cipher. c_i : The ciphertext.IV : The Initialisation Value. $c_i = E_k(|V||i) \oplus m_i$

* Akin to a stream cipher: keystream XORed with the plaintext.
* Inputs IV||*i* to the block cipher never repeat.

Counter Mode (CTR) 00000000000 2EM 000000000000000000 DbHtS MACs

UNDAE 00000 Conclusion

The counter mode (CTR) [SP 800-38A, 2001]

- Let $K_i = E_k(|V||i)$ the *i*th block of keystream.
 - If E_k is a good Pseudo-Random Function (PRF) then all K_i are random and this is a one-time-pad.
 - A block cipher is a Pseudo-Random Permutation (PRP) therefore K_i are all distinct: K_i ≠ K_j ∀i ≠ j.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

JNDAE

Conclusion

The counter mode (CTR) [SP 800-38A, 2001]

- Let $K_i = E_k(|V||i)$ the *i*th block of keystream.
 - If E_k is a good Pseudo-Random Function (PRF) then all K_i are random and this is a one-time-pad.
 - A block cipher is a Pseudo-Random Permutation (PRP) therefore K_i are all distinct: K_i ≠ K_j ∀i ≠ j.

Distinguishing attack

Truly random keystream blocks would eventually collide.

How many blocks do we expect to gather before we observe a collision ?

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Birthday Paradox

Given 30 people, what is the probability that two of them share the same birthday? more than 70%!

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Birthday Paradox

Given 30 people, what is the probability that two of them share the same birthday? more than 70%!

How many random *n*-bit words do we expect to collect before a collision $(K_i = K_j)$? About $2^{n/2}$ collected blocks!

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Security of CTR

Distinguisher of CTR

 $\mathcal{O}(2^{n/2})$ blocks of ciphertext are **sufficient** to distinguish CTR from an ideal encryption scheme.

Counter Mode (CTR)

2EM 000000000000000000 DbHtS MACs

SUNDAE

Conclusion

Security of CTR

Distinguisher of CTR

 $\mathcal{O}(2^{n/2})$ blocks of ciphertext are **sufficient** to distinguish CTR from an ideal encryption scheme.

Modes of Operation usually comes with a proof:

Security proof (σ the number of blocks)

 $\mathsf{Adv}_{\mathtt{CTR}-E}^{\mathsf{IND}\$-\mathsf{CPA-N}}(\sigma) \leq \mathsf{Adv}_{E}^{\mathsf{prf}}(\sigma) \leq \mathsf{Adv}_{E}^{\mathsf{prp}} + \sigma^{2}/2^{n+1}$

Proof of CTR

 $\Omega(2^{n/2})$ blocks of ciphertext are **necessary** to distinguish CTR from an ideal encryption scheme.

 \implies The security of CTR is **tight** at birthday bound.

Counter Mode (CTR)

2EM 000000000000000000 DbHtS MACs

SUNDAE

Conclusion

Publications – in this talk

 "The Missing Difference Problem, and Its Applications to Counter Mode Encryption"
 Gaëtan Leurent, Ferdinand Sibleyras; EUROCRYPT 2018

 "Low-Memory Attacks Against Two-Round Even-Mansour Using the 3-XOR Problem"
 Gaëtan Leurent, Ferdinand Sibleyras; CRYPTO 2019

- Generic Attacks Against Beyond-Birthday-Bound MACs" Gaëtan Leurent, Mridul Nandi, Ferdinand Sibleyras; **CRYPTO 2018**
- "Release of Unverified Plaintext: Tight Unified Model and Application to ANYDAE"

Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi, Somitra Sanadhya, Ferdinand Sibleyras; **ToSC 2019**

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Publications – other

- Generic Attack on Iterated Tweakable FX Constructions" Ferdinand Sibleyras; CT-RSA 2020
- "On the Security Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis"
 Dhiman Saha, Yu Sasaki, Danping Shi, Ferdinand Sibleyras, Siwei Sun, Yingjie Zhang; ToSC 2020
- "New results on Gimli: full-permutation distinguishers and improved collisions" Antonio Flórez-Gutiérrez, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, André Schrottenloher, Ferdinand Sibleyras; ASIACRYPT 2020

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

CBC and **CTR**

Both modes are:

- widely deployed
- proven secure up to birthday bound
- Distinguisher when nearing the bound

Folklore assumptions [Ferguson, Schneier, Kohno]

CTR leaks very little data. [...] It would be reasonable to limit the cipher mode to 2^{60} blocks, which allows you to encrypt 2^{64} bytes but restricts the leakage to a small fraction of a bit. When using CBC mode you should be a bit more restrictive. [...] We suggest limiting CBC encryption to 2^{32} blocks or so.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Beyond the Distinguisher

From a distinguishing attack to a plaintext recovery attack?

- If we know m_i , we recover $K_i = c_i \oplus m_i$.
- We can observe repeated encryptions of a secret S that is $c_j = K_j \oplus S$ for many different j.
- The distinguishing attack uses $K_i \oplus K_j \neq 0$ which implies $K_i \oplus c_j \neq S \ \forall i \neq j$.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Beyond the Distinguisher

From a distinguishing attack to a plaintext recovery attack?

- If we know m_i , we recover $K_i = c_i \oplus m_i$.
- We can observe repeated encryptions of a secret S that is $c_j = K_j \oplus S$ for many different j.
- The distinguishing attack uses $K_i \oplus K_j \neq 0$ which implies $K_i \oplus c_j \neq S \ \forall i \neq j$.

Main Idea

Collect many keystream blocks K_i and encryptions of secret block $c_j = K_j \oplus S$; then look for a value s such that $K_i \oplus c_j \neq s \ \forall i \neq j$.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Missing difference problem

The missing difference problem

- Given \mathcal{A} and \mathcal{B} , and a hint \mathcal{S} three sets of *n*-bit words
- Find $S \in S$ such that:

 $\forall (a,b) \in \mathcal{A} \times \mathcal{B}, \ S \neq a \oplus b$.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Missing difference problem

Main Idea

Collect many keystream blocks $K_i \in \mathcal{A}$ and encryptions of secret block $c_j = K_j \oplus S \in \mathcal{B}$; then look for a value $s \in \mathcal{S}$ such that $\forall (a, b) \in \mathcal{A} \times \mathcal{B}, s \neq a \oplus b$.

The missing difference problem

- Given \mathcal{A} and \mathcal{B} , and a hint \mathcal{S} three sets of *n*-bit words
- Find $S \in S$ such that:

 $\forall (a,b) \in \mathcal{A} \times \mathcal{B}, \ S \neq a \oplus b .$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Simple Sieving Algorithm

Compute all $a_i \oplus b_j$, remove results from a sieve S.

Analysis: case $|S| = 2^n$ via coupon collector problem

- To exclude 2^n candidates of *S*, we need $n \cdot 2^n$ values $a_i \oplus b_i$
 - Lists \mathcal{A} and \mathcal{B} of size $\sqrt{n} \cdot 2^{n/2}$. Complexity: $\tilde{\mathcal{O}}(2^n)$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Simple Sieving Algorithm

Compute all $a_i \oplus b_j$, remove results from a sieve S.

Analysis: case |S| = 2

- To exclude 1 candidate of *S*, we need 2^n values $a_i \oplus b_i$
 - Lists \mathcal{A} and \mathcal{B} of size $2^{n/2}$. Complexity: $\tilde{\mathcal{O}}(2^n)$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Known-prefix Sieving

- Assume S starts with z zero bits (more generally, $\dim \langle S \rangle = n z$)
- Sort lists, consider a_i 's and b_j 's with matching z-bit prefix

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Known-prefix Sieving

- Assume S starts with z zero bits (more generally, $\dim \langle S \rangle = n z$)
- Sort lists, consider a_i's and b_j's with matching z-bit prefix
- Complexity: $\tilde{\mathcal{O}}(2^{n/2} + 2^{\dim \langle S \rangle})$
 - Looking for collision + needed number of collisions

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Known-prefix Sieving

- Assume S starts with z zero bits (more generally, $\dim \langle S \rangle = n z$)
- Sort lists, consider a_i 's and b_j 's with matching z-bit prefix
- Complexity: $\tilde{\mathcal{O}}(2^{n/2} + 2^{\dim\langle S \rangle})$
 - Looking for collision + needed number of collisions
- Complexity: $ilde{\mathcal{O}}(2^{n/2})$ when dim $\langle \mathcal{S}
 angle \leq n/2$

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Fast Convolution Sieving

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Fast Convolution Sieving

- Instead of computing full sieve, use buckets (ie. truncate)
- With enough data, missing difference has smallest bucket with high probability
 - Eg. $2^{2n/3}$ queries, sieving with $2^{2n/3}$ buckets of $2^{n/3}$ elements

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Computing the sieve

- Count buckets for ${\mathcal A}$ and ${\mathcal B}$
 - $C_{\mathcal{X}}[i] = \left| \left\{ x \in \mathcal{X} \mid T(x) = i \right\} \right|$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Computing the sieve

- Count buckets for ${\mathcal A}$ and ${\mathcal B}$

•
$$C_{\mathcal{X}}[i] = \left| \left\{ x \in \mathcal{X} \mid T(x) = i \right\} \right|$$

• $C_{\mathcal{S}}[i] = \left| \left\{ (a, b) \in \mathcal{A} \times \mathcal{B} \mid T(a \oplus b) = i \right\} \right|$
 $= \sum_{a \in \mathcal{A}} \left| \left\{ b \in \mathcal{B} \mid T(a \oplus b) = i \right\} \right|$
 $= \sum_{a \in \mathcal{A}} C_{\mathcal{B}}[i \oplus T(a)]$
 $= \sum_{j \in \{0,1\}^{n-t}} C_{\mathcal{B}}[j] \cdot C_{\mathcal{B}}[i \oplus j]$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Computing the sieve

- Count buckets for ${\mathcal A}$ and ${\mathcal B}$

•
$$C_{\mathcal{X}}[i] = |\{x \in \mathcal{X} \mid T(x) = i\}|$$

• $C_{\mathcal{S}}[i] = |\{(a, b) \in \mathcal{A} \times \mathcal{B} \mid T(a \oplus b) = i\}|$
 $= \sum_{a \in \mathcal{A}} |\{b \in \mathcal{B} \mid T(a \oplus b) = i\}|$
 $= \sum_{a \in \mathcal{A}} C_{\mathcal{B}}[i \oplus T(a)]$
 $= \sum_{j \in \{0,1\}^{n-t}} C_{\mathcal{B}}[i \oplus j]$

- Discrete convolution can be computed efficiently with the Fast Walsh-Hadamard transform!
 - Complexity: $ilde{\mathcal{O}}(|\mathcal{C}_{\mathcal{S}}|)$ for arbitrary \mathcal{S}

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

And we can recover the rest of S with the Known-prefix Sieving.

• $2^{2n/3}$ queries, sieving with $2^{2n/3}$ buckets of $2^{n/3}$ elements

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Practical Security

BEAST Attack Setting [Duong and Rizzo, 2011]

- Attacker has access to the network (*eg.* public WiFi)
- 1. Attacker uses JS to generate traffic
 - Tricks victim to malicious site
 - JS makes cross-origin requests
- 2. Attacker captures encrypted data
- Chosen plaintext attack
- Chosen-Prefix Secret-Suffix model
 - $H \to \operatorname{Enc}(H \| S)$

[Hoang et al., Crypto'15]

Public WiFi

Counter Mode (CTR)

E**M** 0000000000000 DbHtS MACs

SUNDAE

Conclusion

Application to CTR (CPSS queries)

- Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries; half-block and full-block headers:

$$Q_1$$
 H_1
 S_1
 S_2
 S_3
 S_4
 Q_2
 H_1
 H_2
 S_1
 S_2
 S_3
 S_4

1. Recover S_1 using the first block of each query: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}$ $\mathcal{B} = \{\mathcal{E}(H_1 || S_1)\}$ $\} \rightarrow$ Missing difference: $0 || (S_1 \oplus H_2).$

Counter Mode (CTR)

EM 0000000000000 DbHtS MACs

SUNDAE

Conclusion

Application to CTR (CPSS queries)

- · Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries; half-block and full-block headers:

1. Recover S_1 using the first block of each query: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}\$ $\mathcal{B} = \{\mathcal{E}(H_1 || S_1)\}\$ $\} \rightarrow Missing difference:$ $0 || (S_1 \oplus H_2).$ 2. When S_1 is known, recover S_2 , with Q_2 queries: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}\$ $\mathcal{B} = \{\mathcal{E}(S_1 || S_2)\}\$ $\} \rightarrow Missing difference:$ $(S_1 \oplus H_1) || (S_2 \oplus H_2).$

Counter Mode (CTR)

EM

DbHtS MACs

SUNDAE

Conclusion

Application to CTR (CPSS queries)

- Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries; half-block and full-block headers:

$$Q_1$$
 H_1
 S_1
 S_2
 S_3
 S_4
 Q_2
 H_1
 H_2
 S_1
 S_2
 S_3
 S_4

1. Recover S_1 using the first block of each query:

$$\begin{array}{l} \mathcal{A} = \{ \mathcal{E}(H_1 \| H_2) \} \\ \mathcal{B} = \{ \mathcal{E}(H_1 \| S_1) \} \end{array} \right\} \rightarrow \text{Missing difference:} \qquad 0 \| (S_1 \oplus H_2) \| \\ \end{array}$$

- 2. When S_1 is known, recover S_2 , with Q_2 queries:
 - $\begin{array}{l} \mathcal{A} = \{ \mathcal{E}(H_1 \| H_2) \} \\ \mathcal{B} = \{ \mathcal{E}(S_1 \| S_2) \} \end{array} \right\} \rightarrow \text{Missing difference: } (S_1 \oplus H_1) \| (S_2 \oplus H_2). \end{array}$
- **3.** When S_2 is known, recover S_3 :

$$\begin{array}{c} \mathcal{A} = \{ \mathcal{E}(H_1 \| H_2) \} \\ \mathcal{B} = \{ \mathcal{E}(S_2 \| S_3) \} \end{array} \right\} \rightarrow \text{Missing difference: } (S_2 \oplus H_1) \| (S_3 \oplus H_2). \\ 4. \dots \end{array}$$

Counter Mode (CTR)

2EM 000000000000000000 ObHtS MAC

SUNDAE

Conclusion

Results

We defined the **missing difference problem** and **improved** the algorithms to solve it in particular for some cases:

Case	Previous	This work	Improved attacks
${\cal S}$ affine subspace	$\tilde{O}(2^{3n/4})$	$\tilde{\alpha}(2n/2)$	CTR
of dim $n/2$	$O(2^{\prime})$		plaintext recovery
No prior info	$\tilde{O}(2^n)$	$ ilde{\mathcal{O}}(2^{2n/3})$	GMAC, Poly1305
<i>ie.</i> $ S = 2^n$	0(2)		universal forgery

Main take away :

Counter Mode (CTR)

2EM 000000000000000 ObHtS MAC

SUNDAE

Conclusion

Results

We defined the **missing difference problem** and **improved** the algorithms to solve it in particular for some cases:

Case	Previous	This work	Improved attacks
${\cal S}$ affine subspace	$\tilde{O}(2^{3n/4})$	$ ilde{\mathcal{O}}(2^{n/2})$	CTR
of dim $n/2$	$O(2^{\prime})$		plaintext recovery
No prior info	$\tilde{O}(2^n)$	$ ilde{\mathcal{O}}(2^{2n/3})$	GMAC, Poly1305
ie. $ \mathcal{S} = 2^n$	0(2)		universal forgery

Main take away :

- CTR mode not more secure than CBC.
- Frequent rekeying away from birthday bound will prevent these attacks.

Counter Mode (CTR)

2EM ●00000000000000000 DbHtS MACs

SUNDAE

Conclusion

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR)

2EM

DbHtS MACs

DOODOO

Conclusion

1-Round Even-Mansour [Even and Mansour, 1991]

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

Counter Mode (CTR)

2EM

DbHtS MACs

00000

Conclusion

1-Round Even-Mansour [Even and Mansour, 1991]

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0,1\}^n,$

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$

Counter Mode (CTR)

2EM

DbHtS MACs

UNDAE

Conclusion

1-Round Even-Mansour [Even and Mansour, 1991]

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0,1\}^n,$

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$

 $\implies x \oplus E(x) \oplus y \oplus P(y) = 0$

Counter Mode (CTR)

2EM

DbHtS MACs

JNDAE 00000 Conclusion

1-Round Even-Mansour [Even and Mansour, 1991]

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0, 1\}^n,$

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$

 $\implies x \oplus E(x) \oplus y \oplus P(y) = 0$

Cryptanalysis via *n*-bit collision search

Let $f_0(x) = x \oplus E(x)$ and $f_1(y) = y \oplus P(y)$. Find a collision between f_0 and f_1 , guess $K = x \oplus y$.

 \implies No gap between the best proofs and attacks.

Counter Mode (CTR)

2EM

DbHtS MACs

UNDAE

Conclusion

Our Approach

Best information-theoretic attack trade-off: $DQ^2 = 2^{2n}$. Tight for $D = Q = 2^{2n/3}$. Best computational attack in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Our Approach

Best information-theoretic attack trade-off: $DQ^2 = 2^{2n}$. Tight for $D = Q = 2^{2n/3}$. Best computational attack in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

In this work, we use the fact that: $\forall x, y, z \in \{0, 1\}^n$,

$$\begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \end{cases} \iff \begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \\ P_2(z) \oplus E(x) &= K \end{cases}$$

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Our Approach

Best information-theoretic attack trade-off: $DQ^2 = 2^{2n}$. Tight for $D = Q = 2^{2n/3}$. Best computational attack in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

In this work, we use the fact that: $\forall x, y, z \in \{0, 1\}^n$,

$$\begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \end{cases} \iff \begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \\ P_2(z) \oplus E(x) &= K \end{cases}$$
$$\implies \begin{cases} x \oplus y \oplus P_1(y) \oplus z &= 0 \\ x \oplus E(x) \oplus y \oplus P_2(z) &= 0 \end{cases}$$

Counter Mode (CTR)

2EM

DbHtS MACs

DODOOO

Conclusion

First result : A Link to the 3-XOR

Counter Mode (CTR)

2EM

DbHtS MACs

Conclusion

First result : A Link to the 3-XOR

$$\begin{cases} x \oplus y \oplus P_1(y) \oplus z = 0 \\ x \oplus E(x) \oplus y \oplus P_2(z) = 0 \end{cases}$$

Cryptanalysis via the 3-XOR Problem with 2n-bit functions

$$egin{array}{rll} f_0(x) &=& x & || & x \oplus E(x) \ f_1(y) &=& y \oplus P_1(y) & || & y \ f_2(z) &=& z & || & P_2(z) \end{array}$$

Find x, y, z such that $f_0(x) \oplus f_1(y) \oplus f_2(z) = 0$; Guess $K = x \oplus y$.

Counter Mode (CTR

2EM

DbHtS MACs

SUNDAE

Conclusion

3-XOR Problem

Definition (Collision problem)

Given two functions f_0, f_1 , find two inputs (x_0, x_1) such that $f_0(x_0) \oplus f_1(x_1) = 0$.

Definition (3-XOR problem)

Given three functions f_0 , f_1 , f_2 , find three inputs (x_0, x_1, x_2) such that $f_0(x_0) \oplus f_1(x_1) \oplus f_2(x_2) = 0$.

Definition (3-XOR problem with lists)

Given three lists L_0, L_1, L_2 , find three elements $(e_0, e_1, e_2) \in L_0 \times L_1 \times L_2$ such that $e_0 \oplus e_1 \oplus e_2 = 0$.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

3-XOR solving

Two main techniques: Multicollision-based [Nikolic&Sasaki15] and Linear algebra-based [Joux09]. Roughly the same asymptotic time complexity.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Strategy

3-XOR solving

Two main techniques: Multicollision-based [Nikolic&Sasaki15] and Linear algebra-based [Joux09]. Roughly the same asymptotic time complexity.

2EM cryptanalysis

Except for one, [DDKS16], all previous cryptanalysis use multicollision-based techniques.

Exhibiting the link to 3-XOR allows us to deeply explore linear algebra-based techniques for cryptanalysis. Benefits : Reduced online complexity AND memory both arguably costlier than time.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Joux's Technique [Joux, 2009] 2*n* bits

$egin{array}{cccccccccccccccccccccccccccccccccccc$
--

 $e_0 \oplus e_1 \oplus e_2 = 0 \iff e_0 \cdot M \oplus e_1 \cdot M \oplus e_2 \cdot M = 0$ 3-XOR with $L_0, L_1, L_2 \iff$ 3-XOR with $L_0 \cdot M, L_1 \cdot M, L_2 \cdot M$

Counter Mode (CTR)

2EM

ObHtS MACs

SUNDAE 000000 Conclusion

Joux's Technique [Joux, 2009]

- **1.** Compute M s.t. $L_0 \cdot M = 0_n ||I_n;$
- **2.** $L'_1 = L_1 \cdot M;$
- **3.** $L'_2 = L_2 \cdot M;$
- **4.** Look for partial *n*-bit collisions between L'_1 and L'_2 ;
- 5. Check if Solution.

Complexity

 $|L_0| = n$ $|L_1| = |L_2| = \frac{2^n}{\sqrt{n}}$

 $\implies |L_0| \cdot |L_1| \cdot |L_2| = 2^{2n} \checkmark$

 $\mathcal{O}(\frac{2^n}{\sqrt{n}})$ memory and computations.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad y$
- **3.** $L_2 \ni z \mid P_2(z)$

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad y$
- **3.** $L_2 \ni P_2^{-1}(z') || z'$

 DbHtS MACs

SUNDAE

Conclusion

Easy Clamping

We are NOT in the random 3-XOR case.

- **1.** $L_0 \ni x \mid x \oplus E(x)$
- **2.** $L_1 \ni y \oplus P_1(y) || \qquad y$ **3.** $L_2 \ni P_2^{-1}(z') || \qquad z'$

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2 = 2^{2n}\sqrt{2}$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

Introduction	Counter Mode (CTR)	2EM	DbHtS MACs	
000000000000000000000000000000000000000	0000000000	0000000000000	000000	

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad ** |0..0$
- **2.** $L_1 \ni y \oplus P_1(y) || **|0..0$ **3.** $L_2 \ni P_2^{-1}(z') || **|0..0$

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2 = 2^{2n} \checkmark$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

Introduction	Counter Mode (CTR)	2EM	DbHtS MACs	SUI
000000000000	0000000000	0000000000000	0000000	000

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad * * |0..0$
- **2.** $L_1 \ni y \oplus P_1(y) || ** |0..0$ **3.** $L_2 \ni P_2^{-1}(z') || ** |0..0$

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2 = 2^{2n}\sqrt{2}$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

3-XOR after clamping

$$|L_0| = D/2^{d/2} = 2^{d/2}$$

 $|L_1| = |L_2| = Q = 2^{n-d/2}$
Reduced lists of $2n - d/2$ -bit elements

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Known 3-XOR Solvers

By [Bouillaguet, Delaplace, Fouque. ToSC 2018] with w = 2n - d/2:

Repeat $\mathcal{O}(|L_0|/w)$ times Joux's algorithm. Realistic 3-XOR algorithm. $T = \mathcal{O}(2^n/n)$

$$M = \mathcal{O}\left(2^{n-d/2}\right)$$

Revisited Baran-Demaine-Pătrașcu 3-SUM algorithm

Best known asymptotic complexity but impractical for realistic w.

 $T = \mathcal{O}\left(2^n \cdot \ln^2(n)/n^2\right) \qquad \qquad M = \mathcal{O}\left(2^{n-d/2}\right)$

Strategy	Dat	а	Queries	Time	Memory	Param.
Clamping + BDF algo	2 ^{<i>d</i>}	ΚP	$2^{n-d/2}$	2 ⁿ /n	$2^{n-d/2}$	0 < <i>d</i> < <i>n</i>
Clamping + BDP algo	2^d	ΚP	$2^{n-d/2}$	$2^{n} \ln^{2} n/n^{2}$	$2^{n-d/2}$	0 < d < n

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Joux's Technique... but smaller

36 / 54

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Low-Data Attack on 2EM

- **1.** Collect λn plaintext/ciphertext pairs for L_0 and compute M_s .
- **2.** Pick a new $(n \lambda n)$ -bit value α :
 - **2.1** For all λn -bit value u: let $y = z' = (\alpha || u) \cdot M_s^{-1}$ and fill L_1 and L_2 .
 - **2.2** Solve the 3-XOR over L_0 , L_1 , L_2 using Joux's technique. (Only an $(n + \lambda n)$ -bit collision)
 - **2.3** Clear L_1 and L_2 . Loop if no solution.
- **3.** Guess $K = x \oplus y$ for the solution found.

 L_1 and L_2 contain $2^{\lambda n}$ elements and reused for different α .

Complexity

Data $D = \lambda n$. Memory $\mathcal{O}(2^{\lambda n})$. Time $T = Q = \mathcal{O}(\frac{2^n}{\lambda n})$.

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

Results

Ref	Data	Queries	Time	Memory	Param.
[NWW13] [DDKS13] [DDKS16] [IsoShi17]	$ \begin{array}{ccc} 2^{n} \ln n/n K \\ 2^{\lambda n} & K \\ 2^{n}/\lambda n & C \\ 2^{n} \ln n/n C \\ 2^{\lambda n} & C \\ 2^{n}\beta/n & C \\ \end{array} $	$\begin{array}{ccc} & 2^n \ln n/n \\ & 2^n \ln n/n \\ & 2^n / \lambda n \\ & 2^n \ln n/n \\ & 2^n \ln n/n \\ & 2^n 2^{\beta} \end{array}$	$2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/\lambda n$ $2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n} \beta/n$	$2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{\lambda n}$ $2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/2^{\beta}$	$0 < \lambda < rac{1}{3}$ log $n \le eta < n$
Clamping + BDF Clamping + BDP Low-Data	2 ^d K 2 ^d K λn K	$\sum_{n=d/2}^{2n-d/2} 2^{n-d/2}$ $\sum_{n=d/2}^{2n-d/2} 2^n/\lambda n$	$\frac{2^n/n}{2^n \ln^2 n/n^2}$ $\frac{2^n/\lambda n}{2^n/\lambda n}$	$2^{n-d/2}$ $2^{n-d/2}$ $2^{\lambda n}$	$egin{array}{llllllllllllllllllllllllllllllllllll$

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR

2EM

DbHtS MACs

SUNDAE

Conclusion

Double-bloc Hash-then-Sum MACs

How to build a deterministic MAC secure beyond birthday bound?

DbHtS Strategy

Doubling the state size to 2n so that an internal state collision only happens after $\mathcal{O}(2^n)$ processed blocks.

 $MAC(m) = E(\Sigma(m)) \oplus E'(\Theta(m))$

Many constructions: SUM-ECBC, GCM-SIV2, PMAC+, LightMAC+, 3kf9, ... Most DbHtS constructions came with a proof up to $\Omega(2^{2n/3})$ blocks but no attacks.

Counter Mode (CTR)

2EM 0000000000000000 DbHtS MACs

SUNDAE

Conclusion

SUM-ECBC [Yasuda, 2010]

 $MAC(m) = E_{k_2}(\Sigma(m)) \oplus E_{k_4}(\Theta(m))$

Counter Mode (CTR)

DbHtS MACs

5UNDAE

Conclusion

4-way collision for double-hash-then-sum schemes

Look for a quadruple of messages X, Y, Z, T that satisfies:

$$\mathcal{R}(X, Y, Z, T) := \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \\ \Theta(T) = \Theta(X) \end{cases}$$

 $\mathcal{R}(X, Y, Z, T) \implies \mathsf{MAC}(X) \oplus \mathsf{MAC}(Y) \oplus \mathsf{MAC}(Z) \oplus \mathsf{MAC}(T) = 0$

$$MAC(X) = E(\Sigma(X)) \oplus E'(\Theta(X)) \qquad E'(\Theta(T)) \oplus E(\Sigma(T)) = MAC(T)$$

$$\| MAC(Y) = E(\Sigma(Y)) \oplus E'(\Theta(Y)) \qquad E'(\Theta(Z)) \oplus E(\Sigma(Z)) = MAC(Z)$$

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

5UNDAE

Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X, Y, Z, T:

$$\begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases} \implies \Theta(T) = \Theta(X). \end{cases}$$

Thus
$$\mathcal{R}(X, Y, Z, T) \iff \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases}$$
 a 3*n*-bit condition.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

5UNDAE

Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X, Y, Z, T:

$$\begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases} \implies \Theta(T) = \Theta(X).$$

Thus
$$\mathcal{R}(X, Y, Z, T) \iff \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases}$$
 a 3*n*-bit condition.

Query complexity

There are $\simeq q_t^4$ quadruples for a 3*n*-bit condition. A good one with high probability after $q_t \simeq 2^{3n/4}$ queries.

Counter Mode (CTR)

2EM 00000000000000 DbHtS MACs

SUNDAE 000000 Conclusion

Finding a good quadruple

- 1. Define and build L_0, L_1, L_2, L_3 of size $2^{3n/4}$.
- 2. Solve the 4-XOR problem on those lists.

Algorithm cost

Step 1 costs $q_t = \mathcal{O}(2^{3n/4})$ queries and as much memory.

Step 2 is about solving an instance of the 4-XOR problem. Using the memory efficient technique it costs in $\mathcal{O}(2^{3n/4})$ memory and $\mathcal{O}(2^{3n/2})$ time.

Exploiting particularities

When the solutions are related, we can solve the 4-XOR problem in $\mathcal{O}(2^{6n/7})$ queries, time and memory.

Introd	luction	
0000	000000000	

Counter Mode (CTR)

2EM

DbHtS MACs

SUNDAE

Conclusion

	Proofs	Attacks (this work)		
Mode	Queries	Queries	Time	Туре
SUM-ECBC	$\Omega(2^{3n/4})$	$\mathcal{O}(2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{3n/2})$	Universal
		$\mathcal{O}(2^{6n/7})$	$\widetilde{\mathcal{O}}(2^{6n/7})$	Universal
GCM-SIV2	$\Omega(2^{2n/3})$	$\mathcal{O}(2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{3n/2})$	Universal
		$\mathcal{O}(2^{6n/7})$	$\widetilde{\mathcal{O}}(2^{6n/7})$	Universal
PMAC+	$\Omega(2^{3n/4})$	$\mathcal{O}(2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{3n/2})$	Existential
LightMAC+	$\Omega(2^{3n/4})$	$\mathcal{O}(2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{3n/2})$	Existential
	$\Omega(2^n)$			
1kPMAC $+$	$\Omega(2^{2n/3})$	$\mathcal{O}(2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{3n/2})$	Existential
3kf9	$\Omega(2^{3n/4})$	$\mathcal{O}(\sqrt[4]{n}\cdot 2^{3n/4})$	$\widetilde{\mathcal{O}}(2^{5n/4})$	Universal
1kf9	$\Omega(2^{2n/3})$	$\mathcal{O}(2^{n/2})$	$\widetilde{\mathcal{O}}(2^{n/2})$	Universal

Later bounds [KLL20] proved the optimality of our attack for many schemes. Our attack contradicts a flawed proof of LightMAC+ [RSA:Naito18]. The proof of 1kf9 was known wrong and our attack shows it cannot be fixed.

Counter Mode (CTR)

DbHtS MACs

SUNDAE

Conclusion

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR)

2EM 000000000000000 ODDHtS MACs

Conclusion

SUNDAE [Banik et al. 2018]

Authenticated Encryption

Encrypt (a, m) into (a, c, T) where T authenticates a and m.

Counter Mode (CTR)

DbHtS MACs

 Conclusion

SIV structure

Encryption

Use the output tag as the IV for encryption.

Counter Mode (CTR)

DbHtS MACs

 Conclusion

SIV structure

Decryption

Use the received tag as an IV and authenticate again to verify if the tags match.

Counter Mode (CTR)

2EM

ObHtS MACs

Conclusion

SIV structure

Release of Unverified Plaintext (RUP) Security [Andreeva et al., 2014] Is the security compromised if an adversary has access to unverified decryption?

Counter Mode (CTR)

DbHtS MACs

 Conclusion

Simple RUP Attack on SUNDAE

Universal Forgery

Direct access to E_k : we can reconstruct the tag of any message.

Counter Mode (CTR)

ObHtS MACs

SUNDAE

Conclusion

Simple RUP Attack on SUNDAE FIXED

Universal Forgery

Direct access to E_k : we can reconstruct the tag of any message.

Denying the attack

Use a $fix_1(\cdot)$ function: fix the LSB to 1.

The adversary cannot simulate the authentication process anymore.

Counter Mode (CTR)

2EM

DbHtS MACs

Conclusion

MONDAE

Result

 $\mathsf{fix}_1(\cdot)$ function: fix the LSB to 1. MONDAE is provably RUP secure as well as AE secure.

Counter Mode (CTR)

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion ●○○

Organisation

Туре	Scheme	Strategy
Encryption	Counter Mode (CTR)	Missing Difference
Block Cipher	2-round Even-Mansour	3-XOR
Authentication	Double-bloc Hash-then-Sum MACs	4-XOR
Authenticated Encryption	SUNDAE	RUP attack

Counter Mode (CTR)

2EM 00000000000000000 ODDHtS MAC

JNDAE

Conclusion

Conclusion

This thesis explored many aspects of provably secure symmetric schemes:

- We improved computational cryptanalysis for CTR (plaintext recovery), GMAC, SUM-ECBC, 2EM;
- We closed Information Theoretic Gaps for DbHtS MACs (later proof), XHX2 (instance of tweakable FX);
- We increased the robustness of SUNDAE at no cost with MONDAE.

Cryptanalysis and Proofs complete and even inspire each-other to fully assess the information theoretic security of a provable scheme.

Counter Mode (CTR

2EM 00000000000000000 DbHtS MACs

SUNDAE

Conclusion

New Directions

- The Computational vs Information Theoretic gap may be explained by fine-grained complexity theory. (3-XOR for 2EM, 4-XOR for DbHtS)
- Proofs in the ideal model are **usually** fine but it doesn't allow for a clear separation between the security of the scheme and the security of its primitive.