First attack

Clamping attacks

Low-Data Attack

Conclusion

Low-Memory Attacks against 2-Round Even-Mansour using the 3-XOR Problem

Gaëtan Leurent, Ferdinand Sibleyras

Inria, France

Crypto 2019

 First attack

Clamping attacks

Low-Data Attack

Conclusion

1-Round Even-Mansour

Most-Simple permutation-based block cipher. Original by Even and Mansour, Asiacrypt 91. Single-key by Dunkelman *et al.*, Eurocrypt 2012.

Introduction First attack Clamping attacks Low-Data Attack •00000000

1-Round Even-Mansour

Most-Simple permutation-based block cipher. Original by Even and Mansour, Asiacrypt 91. Single-key by Dunkelman et al., Eurocrypt 2012.

n-bit to *n*-bit public permutation *P*. $\left.\right\}$ secure block cipher *E*. *n*-bit secret key K.

Introduction First attack Clamping attacks Low-Data Attack ••••••••

1-Round Even-Mansour

Most-Simple permutation-based block cipher. Original by Even and Mansour, Asiacrypt 91. Single-key by Dunkelman et al., Eurocrypt 2012.

n-bit to *n*-bit public permutation *P*. $\left.\right\}$ secure block cipher *E*. *n*-bit secret key K.

1EM

m

Ρ

E(m)

D = number of calls to keyed E. Q = number of calls to the public P. 1EM provable security up to $DQ \ll 2^n$.

 \implies Security up to birthday bound $2^{n/2}$.

troduction	First attack	Clamping attacks	Low-Data Attack	Conclusion
0000000	0000	000	000	000

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

In

roduction	First attack	Clamping attacks	Low-Data Attack	Conclusion
000000	0000	000	000	000

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0, 1\}^n,$

Int

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$

roduction	First attack	Clamping attacks	Low-Data Attack	Conclusion
0000000	0000	000	000	000

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0, 1\}^n,$

Int

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$
$$\implies x \oplus E(x) \oplus y \oplus P(y) = 0$$

duction	First attack	Clamping attacks	Low-Data Attack	Conclusion
000000	0000	000	000	000

Cryptanalysis in $DQ = DT = 2^n$ originally by Daemen, Asiacrypt 91.

 $\forall x, y \in \{0,1\}^n,$

Intro

$$x \oplus y = K \iff P(y) \oplus E(x) = K$$

 $\implies x \oplus E(x) \oplus y \oplus P(y) = 0$

Cryptanalysis via *n*-bit collision search

Let $f_0(x) = x \oplus E(x)$ and $f_1(y) = y \oplus P(y)$. Find a collision between f_0 and f_1 , guess $K = x \oplus y$.

 \implies No gap between the best proofs and attacks.

First attack

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour

Extension by Bogdanov *et al.*, Eurocrypt 2012. Keeps it simple and secure beyond birthday-bound.

First attack

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour

Extension by Bogdanov *et al.*, Eurocrypt 2012. Keeps it simple and secure beyond birthday-bound.

Provably secure up to $2^{2n/3}$. Best cryptanalysis time complexity: $T = 2^n/n$.

First attack

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour

Extension by Bogdanov *et al.*, Eurocrypt 2012. Keeps it simple and secure beyond birthday-bound.

Provably secure up to $2^{2n/3}$. Best cryptanalysis time complexity: $T = 2^n/n$.

GAP

There remains a significant gap between the proof, $2^{2n/3}$, and the best attacks in $T = 2^n/n$.

First attack	Clamping attacks	Low-Data Attack
0000	000	000

Our Approach

Best information theoretic attack trade-off: $DQ^2 = 2^{2n}$. This matches the proof only in $D = Q = 2^{2n/3}$. Best time complexity cryptanalysis in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

Introduction

2EM

First attack

Clamping attacks

Low-Data Attack

Conclusion

Our Approach

Best information theoretic attack trade-off: $DQ^2 = 2^{2n}$. This matches the proof only in $D = Q = 2^{2n/3}$. Best time complexity cryptanalysis in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

In this work, we use the fact that: $\forall x, y, z \in \{0, 1\}^n$,

$$\begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \end{cases} \iff \begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \\ P_2(z) \oplus E(x) &= K \end{cases}$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Our Approach

Best information theoretic attack trade-off: $DQ^2 = 2^{2n}$. This matches the proof only in $D = Q = 2^{2n/3}$. Best time complexity cryptanalysis in $T = 2^n/n$ but it uses also a lot of memory and/or online data!

In this work, we use the fact that: $\forall x, y, z \in \{0, 1\}^n$,

$$\begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \end{cases} \iff \begin{cases} x \oplus y &= K \\ P_1(y) \oplus z &= K \\ P_2(z) \oplus E(x) &= K \end{cases}$$
$$\implies \begin{cases} x \oplus y \oplus P_1(y) \oplus z &= 0 \\ x \oplus E(x) \oplus y \oplus P_2(z) &= 0 \end{cases}$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

3-XOR Problem

Definition (Collision problem)

Given two functions f_0, f_1 , find two inputs (x_0, x_1) such that $f_0(x_0) \oplus f_1(x_1) = 0$.

First attack

Clamping attacks

Low-Data Attack

Conclusion

3-XOR Problem

Definition (Collision problem)

Given two functions f_0, f_1 , find two inputs (x_0, x_1) such that $f_0(x_0) \oplus f_1(x_1) = 0$.

Definition (3-XOR problem)

Given three functions f_0 , f_1 , f_2 , find three inputs (x_0, x_1, x_2) such that $f_0(x_0) \oplus f_1(x_1) \oplus f_2(x_2) = 0$.

First attack

Clamping attacks

Low-Data Attack

Conclusion

3-XOR Problem

Definition (Collision problem)

Given two functions f_0, f_1 , find two inputs (x_0, x_1) such that $f_0(x_0) \oplus f_1(x_1) = 0$.

Definition (3-XOR problem)

Given three functions f_0 , f_1 , f_2 , find three inputs (x_0, x_1, x_2) such that $f_0(x_0) \oplus f_1(x_1) \oplus f_2(x_2) = 0$.

Definition (3-XOR problem with lists)

Given three lists L_0, L_1, L_2 , find three elements $(e_0, e_1, e_2) \in L_0 \times L_1 \times L_2$ such that $e_0 \oplus e_1 \oplus e_2 = 0$.

Introduction
000000000

Clamping attacks

Low-Data Attack

Conclusion

Gap of the 3-XOR Problem

Definition (3-XOR problem with lists)

Given three lists L_0, L_1, L_2 , find three elements $(e_0, e_1, e_2) \in L_0 \times L_1 \times L_2$ such that $e_0 \oplus e_1 \oplus e_2 = 0$.

Cryptanalysis of *n*-bit 2EM as a 3-XOR with 2*n*-bit elements.

Introduction
0000000000

Clamping attacks

Low-Data Attack

Conclusion

Gap of the 3-XOR Problem

Definition (3-XOR problem with lists)

Given three lists L_0, L_1, L_2 , find three elements $(e_0, e_1, e_2) \in L_0 \times L_1 \times L_2$ such that $e_0 \oplus e_1 \oplus e_2 = 0$.

Cryptanalysis of *n*-bit 2EM as a 3-XOR with 2*n*-bit elements.

Solving Random 3-XOR with 2*n*-bit elements

Requires $|L_0| \cdot |L_1| \cdot |L_2| = 2^{2n}$ so at least one list of size $2^{2n/3}$. $|L_0| = |L_1| = |L_2| = 2^{2n/3}$ is enough: compute sum of all triples to find a solution.

So we have a proof and Information Theoretical attack in $2^{2n/3}$. However best algorithms run in time $T = O(2^n/n)$...

Introduction
0000000000

Clamping attacks

Low-Data Attack

Conclusion

Gap of the 3-XOR Problem

Definition (3-XOR problem with lists)

Given three lists L_0, L_1, L_2 , find three elements $(e_0, e_1, e_2) \in L_0 \times L_1 \times L_2$ such that $e_0 \oplus e_1 \oplus e_2 = 0$.

Cryptanalysis of *n*-bit 2EM as a 3-XOR with 2*n*-bit elements.

Solving Random 3-XOR with 2*n*-bit elements

Requires $|L_0| \cdot |L_1| \cdot |L_2| = 2^{2n}$ so at least one list of size $2^{2n/3}$. $|L_0| = |L_1| = |L_2| = 2^{2n/3}$ is enough: compute sum of all triples to find a solution.

So we have a proof and Information Theoretical attack in $2^{2n/3}$. However best algorithms run in time $T = O(2^n/n)$...

 \implies We found the same gap... again !

Introduction
00000000

Clamping attacks

Low-Data Attack

Conclusion

Our Strategy

3-XOR solving

Two main techniques: Multicollision based [Nikolic&Sasaki15] and Linear algebra based [Joux09]. Roughly same asymptotic time complexity.

Introduction
00000000

Clamping attacks

Low-Data Attack

Conclusion

Our Strategy

3-XOR solving

Two main techniques: Multicollision based [Nikolic&Sasaki15] and Linear algebra based [Joux09]. Roughly same asymptotic time complexity.

2EM cryptanalysis

Except for one, [DDKS16], all previous cryptanalysis use multicollision based techniques.

Exhibiting the link to 3-XOR allows us to deeply explore linear algebra based techniques for cryptanalysis.

Benefits : Reduced online complexity AND memory both arguably costlier than time.

Introduction
00000000

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour: Results

Ref	Data	Queries	Time	Memory	Param.
[NWW13] [DDKS13] [DDKS16] [IsoShi17]	$\begin{array}{c} 2^{n} \ln n/n \text{ KP} \\ 2^{\lambda n} \text{ KP} \\ 2^{n}/\lambda n \text{ CP} \\ 2^{n} \ln n/n \text{ CP} \\ 2^{\lambda n} \text{ CP} \\ 2^{n}\beta/n \text{ CP} \end{array}$	$2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/\lambda n$ $2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/2^{\beta}$	$2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/\lambda n$ $2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n} \beta/n$	$2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{\lambda n}$ $2^{n} \ln n/n$ $2^{n} \ln n/n$ $2^{n}/2^{\beta}$	$0 < \lambda < rac{1}{3}$ log $n \le eta < n$
This Work This Work This Work This Work	$ \begin{array}{ccc} n & {\rm KP} \\ 2^d & {\rm KP} \\ 2^d & {\rm KP} \\ \lambda n & {\rm KP} \end{array} $	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^n/n}$ $\frac{2^n \ln^2 n/n^2}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^{\lambda n}}$	$egin{array}{ll} 0 < d < n \ 0 < d < n \ 0 < \lambda < 1 \end{array}$

red means $\tilde{\Theta}(2^n)$

First attack ●○○○ Clamping attacks

Low-Data Attack

Conclusion

First attack on 2EM

- **1.** $L_0 \ni x \mid | x \oplus E(x)$ **2.** $L_1 \ni y \oplus P_1(y) \mid y$
- **3.** $L_2 \ni z \mid P_2(z)$
- **4.** Solve the 3-XOR over L_0 , L_1 , L_2 .
- **5.** Guess $K = x \oplus y$ for the solution found.

Introduction First attack Clamping 000000000 0000 000 000		Clamping attacks	Low-Data Attack
		Joux's Techniq 2n bits	ue
L ₀	$= \begin{array}{c} 1 \cdot 1 \cdot 1 1 1 \\ \cdot 1 \cdot \cdot 1 1 1 \\ 1 1 \cdot 1 \cdot$	$\begin{array}{c}1&1&\cdot&1&\cdot&\cdot&1&\cdot&1\\1&1&1&1&1&1&1&1&1\\\cdot&1&1&\cdot&1&\cdot$	$ \begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$

Conclusion

 $e_0 \oplus e_1 \oplus e_2 = 0 \iff e_0 \cdot M \oplus e_1 \cdot M \oplus e_2 \cdot M = 0$ 3-XOR with $L_0, L_1, L_2 \iff$ 3-XOR with $L_0 \cdot M, L_1 \cdot M, L_2 \cdot M$

rod	uction	
00	00000	

Clamping attacks

Low-Data Attack

Conclusion

Joux's Technique

- **1.** Compute M s.t. $L_0 \cdot M = 0_n ||I_n;$
- **2.** $L'_1 = L_1 \cdot M;$
- **3.** $L'_2 = L_2 \cdot M;$
- **4.** Look for partial *n*-bit collisions between L'_1 and L'_2 ;
- 5. Check if Solution.

Complexity

 $|L_0| = n$ $|L_1| = |L_2| = \frac{2^n}{\sqrt{n}}$

 $\implies |L_0| \cdot |L_1| \cdot |L_2| = 2^{2n} \checkmark$

 $\mathcal{O}(\frac{2^n}{\sqrt{n}})$ memory and computations.

Int	rodu	iction	
mu	rout	ICTION	
00		0000	
00			

Clamping attacks

Low-Data Attack

Conclusion

First attack on 2EM

- **1.** $L_0 \ni x \qquad || \qquad x \oplus E(x)$
- **2.** $L_1 \ni y \oplus P_1(y) \mid \mid y$
- **3.** $L_2 \ni z \mid P_2(z)$
- **4.** Solve the 3-XOR over L_0 , L_1 , L_2 .
- **5.** Guess $K = x \oplus y$ for the solution found.

Complexity using Joux's technique w = 2n

D = n online queries (Known Plaintext) $Q = \frac{2^n}{\sqrt{n}}$ offline queries

 $\mathcal{O}(\frac{2^n}{\sqrt{n}})$ memory and computations.

Int	rod	lic	tior	1
		i u u		
00	00		00	0

Clamping attacks

Low-Data Attack

Conclusion

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad y$
- **3.** $L_2 \ni z \mid P_2(z)$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Easy Clamping

We are NOT in the random 3-XOR case.

- 1. $L_0 \ni x \qquad || \qquad x \oplus E(x)$ 2. $L_1 \ni y \oplus P_1(y) \qquad || \qquad y$
- **3.** $L_2 \ni P_2^{-1}(z') || z'$

Introduction 000000000	First attack	Clamping attacks	Low-Data Attack	Conclusion
		F CI ·		

Easy Clamping

We are **NOT** in the random 3-XOR case.

- **1.** $L_0 \ni x \parallel x \oplus E(x)$
- **2.** $L_1 \ni y \oplus P_1(y) || \qquad y$ **3.** $L_2 \ni P_2^{-1}(z') || \qquad z'$

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2 = 2^{2n}\sqrt{2}$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

Introduction 000000000	First attack	Clamping attacks ●○○	Low-Data Attack	Conclusion	
	Ea	sy Clamping			

We are **NOT** in the random 3-XOR case.

1.
$$L_0 \ni x \qquad || \qquad x \oplus E(x)$$

3.
$$L_2 \ni P_2^{-1}(z') || **|0$$

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2 = 2^{2n} \checkmark$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

Introduction	First at	ttack	Clampin ●○○	g attacks	Low-Data 000	Attack	Conclusion
	T in the new d		Easy C	Clamping			
vve are NC	I in the rand	om 3-7	NUR case.			2EM	
1 . <i>L</i> ₀ ∋	X		$x \oplus E(x)$				x
2. <i>L</i> ₁ ∋	$y\oplus P_1(y)$		* * 0				K K
3. $L_2 \ni$	$P_{2}^{-1}(z')$		* * 0			y	<u> </u>

Let $D = 2^d$ thus $Q = 2^{n-d/2} \implies DQ^2$ Only compute for y and z' with d/2 trailing zeroes. Only keep $x \oplus E(x)$ with d/2 trailing zeroes.

3-XOR after clamping

$$\begin{split} |L_0| &= D/2^{d/2} = 2^{d/2} \\ |L_1| &= |L_2| = Q = 2^{n-d/2} \\ \text{Reduced lists of } 2n - d/2 \text{-bit elements.} \end{split}$$

$$\Rightarrow DQ^2 = 2^{2n} \checkmark$$

$$y \xrightarrow{P_1} K$$

$$P_1(y) \xrightarrow{P_2} K$$

$$P_2(z) \xrightarrow{F_2} K$$

$$E(x)$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Other 3-XOR algorithms

Generalized 3-XOR algorithm for w-bit elements and $|L_0| \cdot |L_1| \cdot |L_2| = 2^w$:

Wagner's generalized birthday

Combine two lists and look for a collision.

 $T = \mathcal{O}\Big((|L_0| \cdot |L_1|) + |L_2|\Big)$

$$M = \mathcal{O}\Big(|L_1| + |L_2|\Big)$$

And two more by [Bouillaguet, Delaplace, Fouque. ToSC 2018]:

First attack

Clamping attacks

Low-Data Attack

Conclusion

Other 3-XOR algorithms

Generalized 3-XOR algorithm for w-bit elements and $|L_0| \cdot |L_1| \cdot |L_2| = 2^w$:

Wagner's generalized birthday

Combine two lists and look for a collision. $\mathcal{T} = \mathcal{O}((|L_0| \cdot |L_1|) + |L_2|)$

$$M = \mathcal{O}\Big(|L_1| + |L_2|\Big)$$

And two more by [Bouillaguet, Delaplace, Fouque. ToSC 2018]:

Repeat $\mathcal{O}(|L_0|/w)$ times Joux's algorithm. Realistic 3-XOR algorithm. $\mathcal{T} = \mathcal{O}(|L_0| \cdot (|L_1| + |L_2|)/w)$

$$M = \mathcal{O}\Big(|L_1| + |L_2|\Big)$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Other 3-XOR algorithms

Generalized 3-XOR algorithm for w-bit elements and $|L_0| \cdot |L_1| \cdot |L_2| = 2^w$:

Wagner's generalized birthday

Combine two lists and look for a collision. $\mathcal{T} = \mathcal{O}((|L_0| \cdot |L_1|) + |L_2|)$

$$M = \mathcal{O}\Big(|L_1| + |L_2|\Big)$$

And two more by [Bouillaguet, Delaplace, Fouque. ToSC 2018]:

Repeat $\mathcal{O}(|L_0|/w)$ times Joux's algorithm. Realistic 3-XOR algorithm. $\mathcal{T} = \mathcal{O}(|L_0| \cdot (|L_1| + |L_2|)/w)$

$$M = \mathcal{O}(|L_1| + |L_2|)$$

Revisited Baran-Demaine-Pătrașcu 3-SUM algorithm

Best known asymptotic complexity but impractical for realistic w. $T = O((|L_0| \cdot |L_1| + |L_2|) \cdot \ln^2(w)/w^2) \qquad M =$

$$M = \mathcal{O}(|L_1| + |L_2|)$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Other 3-XOR algorithms

Generalized 3-XOR algorithm for w-bit elements and $|L_0| \cdot |L_1| \cdot |L_2| = 2^w$:

Wagner's generalized birthday

 $T = \mathcal{O}\left(2^n \cdot \ln^2(n)/n^2\right)$

Combine two lists and look for a collision. $\mathcal{T} = \mathcal{O}(2^n)$

$$M = \mathcal{O}\left(2^{n-d/2}\right)$$

And two more by [Bouillaguet, Delaplace, Fouque. ToSC 2018]:

Repeat $\mathcal{O}(|L_0|/w)$ times Joux's algorithm. Realistic 3-XOR algorithm. $T = \mathcal{O}(2^n/n)$

$$M = \mathcal{O}\left(2^{n-d/2}\right)$$

Revisited Baran-Demaine-Pătrașcu 3-SUM algorithm

Best known asymptotic complexity but impractical for realistic w.

$$M = \mathcal{O}\left(2^{n-d/2}\right)$$

First attack

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour: Results

Strategy	Dat	а	Queries	Time	Memory	Param.
Joux's technique Clamping + BDF algo Clamping + BDP algo Low-Data	n 2 ^d 2 ^d λn	KP KP KP KP	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^n/n}$ $\frac{2^n \ln^2 n/n^2}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^{\lambda n}}$	0 < d < n 0 < d < n $0 < \lambda < 1$

red means $\tilde{\Theta}(2^n)$

 $e_0 \oplus e_1 \oplus e_2 = 0 \iff e_0 \cdot M \oplus e_1 \cdot M \oplus e_2 \cdot M = 0$ 3-XOR with $L_0, L_1, L_2 \iff$ 3-XOR with $L_0 \cdot M, L_1 \cdot M, L_2 \cdot M$

19/23

First attack

Clamping attacks

Low-Data Attack

Conclusion

Low-Data Attack on 2EM

Collision over $(1 - \lambda)n$ bits for free. L_1 and L_2 contain $2^{\lambda n}$ elements and reused for different α .

First attack

Clamping attacks

Low-Data Attack

Conclusion

Low-Data Attack on 2EM

Collision over $(1 - \lambda)n$ bits for free. L_1 and L_2 contain $2^{\lambda n}$ elements and reused for different α .

Complexity

Data $D = \lambda n$. Memory $\mathcal{O}(2^{\lambda n})$. Time $T = Q = \mathcal{O}(\frac{2^n}{\lambda n})$.

Clamping + algo

After easy clamping we can use a generic 3-XOR algorithm. Faster 3-XOR solver \implies Faster 2EM cryptanalysis!

Clamping attacks

Low-Data Attack

Conclusion

Some Take-aways

Clamping + algo

After easy clamping we can use a generic 3-XOR algorithm. Faster 3-XOR solver \implies Faster 2EM cryptanalysis!

Linear algebra vs Multicollision

Roughly as much computations. But less memory.

Low-Data Attack

Conclusion •00

Some Take-aways

Clamping + algo

After easy clamping we can use a generic 3-XOR algorithm. Faster 3-XOR solver \implies Faster 2EM cryptanalysis!

Linear algebra vs Multicollision

Roughly as much computations. But less memory.

Low-Data Attack

Uses $D = \lambda n$ and $T = 2^n / (\lambda n)$. $\implies DT = 2^n$

Matches the 1EM proof $DT < 2^n$ for $0 < \lambda < 1 - \frac{\ln(n \ln 2)}{n \ln 2} + o(1)$.

First attack

Clamping attacks

Low-Data Attack

Conclusion

Generalization of the Reduction

We've shown 2EM as a 3-XOR with 2n-bit elements and...

First attack

Clamping attacks

Low-Data Attack

Conclusion

Generalization of the Reduction

We've shown 2EM as a 3-XOR with 2*n*-bit elements and...

Lists for 4EM	cryptanalysis	using the	5-XOR	problem.
---------------	---------------	-----------	-------	----------

$L_0 \ni$	<i>x</i> 0			$E(x_0)$
$L_1 i$	$x_1\oplus P_1(x_1)$	$P_1(x_1)$		
$L_2 \ni$	<i>x</i> ₂	$x_2 \oplus P_2(x_2)$	$P_2(x_2)$	
$L_3 \ni$		<i>x</i> 3	$x_3 \oplus P_3(x_3)$	$P_{3}(x_{3})$
$L_4 \ni$			<i>x</i> 4	$x_4 \oplus P_4(x_4)$

First attack

Clamping attacks

Low-Data Attack

Conclusion

Generalization of the Reduction

We've shown 2EM as a 3-XOR with 2n-bit elements and...

Lists for 4EM cryptanalysis using the 5-XOR problem.

$L_0 \ni$	<i>x</i> 0			$E(x_0)$
$L_1 \ni$	$x_1\oplus P_1(x_1)$	$P_1(x_1)$		
$L_2 \ni$	<i>x</i> ₂	$x_2 \oplus P_2(x_2)$	$P_2(x_2)$	
$L_3 \ni$		<i>x</i> 3	$x_3 \oplus P_3(x_3)$	$P_{3}(x_{3})$
$L_4 \ni$			<i>x</i> 4	$x_4\oplus P_4(x_4)$

*r*EM cryptanalysis as a special (r + 1)-XOR with *rn*-bit elements. Can we use this to improve cryptanalysis of *r*EM with $r \ge 3$?

-

First attack

Clamping attacks

Low-Data Attack

Conclusion

2-Round Even-Mansour: Results

Strategy	Data	a	Queries	Time	Memory	Param.
Joux's technique Clamping + BDF algo Clamping + BDP algo Low-Data	n 2 ^d 2 ^d λn	KP KP KP KP	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^n/n}$ $\frac{2^n\ln^2 n/n^2}{2^n/\lambda n}$	$\frac{2^n/\sqrt{n}}{2^{n-d/2}}$ $\frac{2^{n-d/2}}{2^{\lambda n}}$	0 < d < n 0 < d < n $0 < \lambda < 1$

- Link between 2EM cryptanalysis and the 3-XOR Problem.
- Explore existing and new linear algebra techniques.
- Significantly reduce online data and memory usage (previous bottleneck).

Low-Data Attack on 2EM

- 1. Collect λn plaintext/ciphertext pairs for L_0 and compute M_s .
- **2.** Pick a new $(1 \lambda n)$ -bit value α :
 - **2.1** For all λn -bit value u: let $y = z' = (\alpha || u) \cdot M_s^{-1}$ and fill L_1 and L_2 .
 - **2.2** Solve the 3-XOR over L_0 , L_1 , L_2 using Joux's technique. (Only an $(n + \lambda n)$ -bit collision)
 - **2.3** Clear L_1 and L_2 . Loop if no solution.
- **3.** Guess $K = x \oplus y$ for the solution found.

Low-Data Attack on 2EM

- 1. Collect λn plaintext/ciphertext pairs for L_0 and compute M_s .
- **2.** Pick a new $(1 \lambda n)$ -bit value α :
 - **2.1** For all λn -bit value u: let $y = z' = (\alpha || u) \cdot M_s^{-1}$ and fill L_1 and L_2 .
 - **2.2** Solve the 3-XOR over L_0 , L_1 , L_2 using Joux's technique. (Only an $(n + \lambda n)$ -bit collision)
 - **2.3** Clear L_1 and L_2 . Loop if no solution.
- **3.** Guess $K = x \oplus y$ for the solution found.

Complexity of Low-Data Attack

Each loop pr. of success:
$$\lambda n 2^{2\lambda n} / 2^{(n+\lambda n)} = \lambda n 2^{\lambda n-n}$$
.
Each loop uses $2^{\lambda n}$ computations.
 $D = \lambda n$

$$T = Q = \mathcal{O}(rac{2^n}{\lambda n}).$$

 $\mathcal{O}(2^{\lambda n})$ memory.

