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Single-key by Dunkelman et al., Eurocrypt 2012.

n-bit to n-bit public permutation P. . g K
. secure block cipher E.
n-bit secret key K.
P
D = number of calls to keyed E,

@ = number of calls to the public P,
1EM provable security up to DQ < 2". H— K

— Security up to birthday bound 2"/2.
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L . - P
Cryptanalysis via n-bit collision search
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= No gap between the best proofs and attacks.
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Extension by Bogdanov et al., Eurocrypt 2012.
Keeps it simple and secure beyond birthday-bound.

Provably secure up to 227/3.
Best cryptanalysis time complexity: T = 2"/n.

GAP

There remains a significant gap between the proof, 227/3, and the
best attacks in T =2"/n.

2EM
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First result : A Link to the 3-XOR

2EM
X
X ® ydhPily) ® z =0
{ x® E(x) & y ® Py(z) =0 yj%K
Cryptanalysis via the 3-XOR Problem with 2n-bit functions p (y)Pl
fo(x)= X | x ® E(x) 1 s
Aly)=y@Pily) || v ;
h(z)=z || Pi2) ’
PQ(Z)*
Solve the 3-XOR problem between fy, i and f. D— K
Guess K=x@ y.
E(x)
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|Lo| = |L1| = |La| = 22"/3 is enough: compute sum of all triples to find a solution.

So we have a proof and Information Theoretical attack in 227/3.
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Definition (3-XOR problem with lists)

Given three lists Lo, L1, Ly, find three elements (ep, €1, &) € Lo X L1 X Ly such that
e Derde =0.

Cryptanalysis of n-bit 2EM as a 3-XOR with 2n-bit elements.

Solving Random 3-XOR with 2n-bit elements

Requires |Lo| - |L1]| - |L2| = 22" so at least one list of size 22"/3.
|Lo| = |L1] = |La| = 22"/3 is enough: compute sum of all triples to find a solution.

So we have a proof and Information Theoretical attack in 227/3.
However best algorithms run in time T = O(2"/n)...

—> We found the same gap... again !

8/23



Introduction First attack

Clamping attacks Low-Data Attack Conclusion
000000080 0000

000 [e]e]e} [e]e]e}

Our Strategy

3-XOR solving
Two main techniques:

Multicollision based [Nikolic&Sasakil5] and Linear algebra based [Joux09].
Roughly same asymptotic time complexity.
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Our Strategy

3-XOR solving

Two main techniques:
Multicollision based [Nikolic&Sasakil5] and Linear algebra based [Joux09].
Roughly same asymptotic time complexity.

2EM cryptanalysis

Except for one, [DDKS16], all previous cryptanalysis use multicollision based
techniques.

Exhibiting the link to 3-XOR allows us to deeply explore linear algebra based

techniques for cryptanalysis.
Benefits : Reduced online complexity AND memory both arguably costlier than time.

9/23



Introduction
00000000e

First attack
0000

Clamping attacks

000

Low-Data Attack Conclusion
000 000

2-Round Even-Mansour: Results

Ref Data Queries Time Memory Param.
[NWW13]  27Inn/nKP  2"Inn/n 2"Inn/n 2"Inn/n
[DDKS13] 2*7 KP 2"Inn/n 2"Inn/n 2"Inn/n
[DDKS16] 2"/An  CP 2"/An 2"/An AN 0O<A<i
[IsoShil7]  2"Inn/nCP  2"Inn/n 2"Inn/n 2"Inn/n

2An CP 2"Inn/n 2"Inn/n 2"Inn/n

2"3/n CP 2728 2"3/n 2n /28 logn< < n
This Work  n KP 27/y/n  2"/\/n 2n/\/n
This Work 29 Kp 2n=d/2  on/p on—d/2 0<d<n
This Work 29 Kp 2n—d/2 2"In%n/n? 2n=d/2 0<d<n
This Work  An KP 27/An  2"/An pAn 0<A<1

red means ©(2")
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4. Solve the 3-XOR over Ly, Ly, Ls. b
5. Guess K = x @ y for the solution found. Pl(y)l
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Joux’s Technique

Compute M s.t. Lg- M = 0,]|/n;
L =1Ly M
h=Lr- M,
Look for partial n-bit collisions between L} and L;
Check if Solution.

o 0bdH=

Complexity

ILi| = |Lo| = 5 = |Lo| - |La] - |Lo] = 2"V

) memory and computations.

N
Si%
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First attack on 2EM

2EM
1. Lo > X | x@ E(x) 57
2. 11> yaP(y) | y
3. 1p3 z | Pa2) , Pk
4. Solve the 3-XOR over Ly, Ly, L,. p
5. Guess K = x @ y for the solution found. !
Pi(y)—
Complexity using Joux’s technique w = 2n 276% K
D = n online queries (Known Plaintext) p
Q= \2/—"5 offline queries 2
Pa(z)—
O(\2/_HE) memory and computations. O— K
E(x)
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3. >  PYZ) Z Y—
Py
Let D =29 thus @ = 2"~9/2 = DQ*=22"y P
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Easy Clamping
We are NOT in the random 3-XOR case.
2EM
1. [p> X | x@ E(x) X
2. L1> yohPily) | * x |0 S— K
3. [L> P2_1(z’) || >k>k|0 y—
Py
Let D =29 thus @ = 2"~9/2 = DQ*=22"y P
Only compute for y and z' with d/2 trailing zeroes. 1(y) S— K
Only keep x @& E(x) with d/2 trailing zeroes. z—]
P.
3-XOR after clamping = 2
Z —_—
|Lo| = D/2d/2 — 0d/2 2( ) é}— K
Reduced lists of 2n — d/2-bit elements. E(x)
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Other 3-XOR algorithms

Generalized 3-XOR algorithm for w-bit elements and |Lo| - |L1| - [Lo| = 2"

Wagner’s generalized birthday

Combine two lists and look for a collision.
T = O((|Lo| - |L]) + |L2|) M= O(|Ly| + |L|)

And two more by [Bouillaguet, Delaplace, Fouque. ToSC 2018]:
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Realistic 3-XOR algorithm.
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2-Round Even-Mansour: Results

Strategy Data Queries Time Memory Param.
Joux’s technique n KP 2"//n 2"/\/n 2"/\/n
Clamping + BDF algo 29 KP 27=9/2 2n/p 2n=d/2 0<d<n

Clamping + BDP algo 2¢ KP 2792 2nin2p/p? 2792 0<d<n

red means ©(2")
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Low-Data Attack on 2EM

2EM
X
Collision over (1 — A)n bits for free. y D— K
L; and L, contain 2*" elements and reused for different .
P
Complexity '
. Pi(y)—
Data D = A\n. P— K
Memory O(22™). z—]
Time T=Q=0(%). P,
Px(z)—]
O— K
E(x)
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Some Take-aways

Clamping + algo
After easy clamping we can use a generic 3-XOR algorithm.
Faster 3-XOR solver = Faster 2EM cryptanalysis!
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Some Take-aways

2EM

Clamping + algo 5
After easy clamping we can use a generic 3-XOR algorithm.
Faster 3-XOR solver = Faster 2EM cryptanalysis! y S— K
Linear algebra vs Multicollision P,
Roughly as much computations. Py (y)—]
But less memory. B— K

71
Low-Data Attack P,
Uses D = Anand T =2"/(An). Ps(z)—]
= D =2" D— K
Matches the 1EM proof DT < 27 for 0 < A < 1 — n1n2) 4 (1), 0

E(x
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Generalization of the Reduction

4EM
We've shown 2EM as a 3-XOR with 2n-bit elements and...

Lists for 4EM cryptanalysis using the 5-XOR problem. =
Lo> X0 . . E(xo) PI(X)1<)
L1 > x3 @ Pi(x1) Pi(x1) . . 2
Ly > X2 X2 D P2(X2) P2(X2) . P(x2)
L3> . X3 x3 D P3(X3) P3 (X3) X3

L4 > . . X4 Xq D P4(X4)
P3(X3)
X4

P4(X4)
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Generalization of the Reduction

4EM
We've shown 2EM as a 3-XOR with 2n-bit elements and...
Lists for 4EM cryptanalysis using the 5-XOR problem. Xl
Lo> X0 . . E(xo) PI(X)1<)
L1 > x3 @ Pi(x1) Pi(x1) . . 2
Ly > X2 X2 D P2(X2) P2(X2) . P (x2)
L3> : x3 x3 @ P3(x3) P3(x3) X3
Ly > . . X4 Xq D P4(X4)
P3(X3)
rEM cryptanalysis as a special (r + 1)-XOR with rn-bit elements. =
Can we use this to improve cryptanalysis of rEM with r > 37 Py(x)
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2-Round Even-Mansour: Results

Strategy Data Queries  Time Memory Param.
Joux's technique n KP 27//n 2"/\/n 2"/\/n

Clamping + BDF algo 2¢ KP 27=9/2 27/ 2n=d/2 0<d<n
Clamping + BDP algo 2¢ KP 2792 2nin2p/p?> 27-9/2  0<d<n
Low-Data An KP  27/An  2"/An AN 0<A<l

e Link between 2EM cryptanalysis and the 3-XOR Problem.
e Explore existing and new linear algebra techniques.

e Significantly reduce online data and memory usage (previous bottleneck).
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Low-Data Attack on 2EM

1. Collect An plaintext/ciphertext pairs for Ly and compute Ms.
2. Pick a new (1 — An)-bit value a:

2.1 For all An-bit value u: let y = 2/ = (alu) - M1 and fill L; and
L.

2.2 Solve the 3-XOR over Ly, Ly, Ly using Joux's technique.
(Only an (n+ An)-bit collision)

2.3 Clear L; and L,. Loop if no solution.

3. Guess K = x @ y for the solution found.
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Low-Data Attack on 2EM

1. Collect An plaintext/ciphertext pairs for Ly and compute Ms.
2. Pick a new (1 — An)-bit value a:

2.1 For all An-bit value u: let y = 2/ = (alu) - M1 and fill L; and
L.

2.2 Solve the 3-XOR over Ly, Ly, Ly using Joux's technique.
(Only an (n+ An)-bit collision)

2.3 Clear L; and L,. Loop if no solution.

3. Guess K = x @ y for the solution found.

Complexity of Low-Data Attack

Each loop pr. of success: )\n22’\”/2(”+/\”) — NI,
Each loop uses 22" computations.

D= An.

T=Q=0(%).

O(2*") memory.
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