
Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Cryptanalysis of the counter mode of
operation

Ferdinand Sibleyras
joint work with Gaëtan Leurent

Inria, équipe SECRET

April 10, 2018

1 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction
• Cryptography: Alice encrypts then sends messages to Bob.
• Symmetric: Alice and Bob share the same key.
• Public channel: Eve (attacker) can see and/or manipulate
what is being sent.

...11001101011...

Alice

Eve

Bob

2 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction

Block Cipher

Ek : {0, 1}n → {0, 1}n

A family of permutations indexed by a key (AES, 3DES, ...)
where n is the bit size of the permutation or block’s size.

Mode of operation
Describes how to use a block cipher along with a plaintext
message of arbitrary length to achieve some concrete
cryptographic goals.

3 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction

Block Cipher

Ek : {0, 1}n → {0, 1}n

A family of permutations indexed by a key (AES, 3DES, ...)
where n is the bit size of the permutation or block’s size.

Mode of operation
Describes how to use a block cipher along with a plaintext
message of arbitrary length to achieve some concrete
cryptographic goals.

3 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction

Modes are classified according to their goals:

• There are encryption modes (CBC, CTR, ...).
They aim at hiding the plaintext.
→ Plaintext recovery attacks.

• There are authentication modes (GMAC, ...).
They aim at authenticating the plaintext.
→ Forgery attacks.

• There are authenticated encryption modes (GCM, ...).
They aim at both authenticating and hiding the plaintext.

4 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction

Modes are classified according to their goals:

• There are encryption modes (CBC, CTR, ...).
They aim at hiding the plaintext.
→ Plaintext recovery attacks.

• There are authentication modes (GMAC, ...).
They aim at authenticating the plaintext.
→ Forgery attacks.

• There are authenticated encryption modes (GCM, ...).
They aim at both authenticating and hiding the plaintext.

4 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Introduction

Modes are classified according to their goals:

• There are encryption modes (CBC, CTR, ...).
They aim at hiding the plaintext.
→ Plaintext recovery attacks.

• There are authentication modes (GMAC, ...).
They aim at authenticating the plaintext.
→ Forgery attacks.

• There are authenticated encryption modes (GCM, ...).
They aim at both authenticating and hiding the plaintext.

4 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

IV‖0

Ek

m0

c0

m1

c1

Ek

IV‖1

m2

c2

Ek

IV‖2

m3

c3

Ek

IV‖3

mi : The plaintext. Ek : The block cipher.
ci : The ciphertext. IV : The Initialisation Value.

ci = Ek(IV‖i)⊕mi

Akin to a stream cipher: keystream XORed with the plaintext.
Inputs IV‖i to the block cipher never repeat.

5 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

IV‖0

Ek

m0

c0

m1

c1

Ek

IV‖1

m2

c2

Ek

IV‖2

m3

c3

Ek

IV‖3

mi : The plaintext. Ek : The block cipher.
ci : The ciphertext. IV : The Initialisation Value.

ci = Ek(IV‖i)⊕mi

Akin to a stream cipher: keystream XORed with the plaintext.

Inputs IV‖i to the block cipher never repeat.

5 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

IV‖0

Ek

m0

c0

m1

c1

Ek

IV‖1

m2

c2

Ek

IV‖2

m3

c3

Ek

IV‖3

mi : The plaintext. Ek : The block cipher.
ci : The ciphertext. IV : The Initialisation Value.

ci = Ek(IV‖i)⊕mi

Akin to a stream cipher: keystream XORed with the plaintext.
Inputs IV‖i to the block cipher never repeat.

5 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

Let Ki = Ek(IV‖i) the ith block of keystream.
• If Ek is a good Pseudo-Random Function (PRF) then all Ki

are random and this is a one-time-pad.
• A block cipher is a Pseudo-Random Permutation (PRP)
therefore Ki are all distinct: Ki 6= Kj ∀i 6= j .

Security proof (σ the number of blocks)

AdvCPA
CTR-Ek

(σ) ≤ AdvPRF
Ek

(σ) ≤ AdvPRP
Ek

(σ) + σ2/2n+1

Distinguishing attack

After σ ' 2n/2 encrypted blocks we expect a collision on the Ki

with high probability in the case of a random ciphertext.
That is the birthday bound coming from the birthday paradox.

6 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

Let Ki = Ek(IV‖i) the ith block of keystream.
• If Ek is a good Pseudo-Random Function (PRF) then all Ki

are random and this is a one-time-pad.
• A block cipher is a Pseudo-Random Permutation (PRP)
therefore Ki are all distinct: Ki 6= Kj ∀i 6= j .

Security proof (σ the number of blocks)

AdvCPA
CTR-Ek

(σ) ≤ AdvPRF
Ek

(σ) ≤ AdvPRP
Ek

(σ) + σ2/2n+1

Distinguishing attack

After σ ' 2n/2 encrypted blocks we expect a collision on the Ki

with high probability in the case of a random ciphertext.
That is the birthday bound coming from the birthday paradox.

6 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

CBC and CTR

Both modes are:
• widely deployed
• proven secure up to
birthday bound (2n/2)

• allowing attacks when
nearing the bound

CBC mode

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Folklore assumptions [Ferguson, Schneier, Kohno]

CTR leaks very little data. [...] It would be reasonable to limit the
cipher mode to 260 blocks, which allows you to encrypt 264 bytes
but restricts the leakage to a small fraction of a bit.
When using CBC mode you should be a bit more restrictive. [...]
We suggest limiting CBC encryption to 232 blocks or so.

7 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

CBC and CTR

Both modes are:
• widely deployed
• proven secure up to
birthday bound (2n/2)

• allowing attacks when
nearing the bound

CBC mode

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Folklore assumptions [Ferguson, Schneier, Kohno]

CTR leaks very little data. [...] It would be reasonable to limit the
cipher mode to 260 blocks, which allows you to encrypt 264 bytes
but restricts the leakage to a small fraction of a bit.
When using CBC mode you should be a bit more restrictive. [...]
We suggest limiting CBC encryption to 232 blocks or so.

7 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

From a distinguishing attack to a plaintext recovery attack ?
• If we know mi , we recover Ki = ci ⊕mi .

• We can observe repeated encryptions of a secret S that is
cj = Kj ⊕ S for many different j .

• The distinguishing attack uses Ki ⊕ Kj 6= 0 which implies
Ki ⊕ cj 6= S ∀i 6= j .

Main Idea
Collect many keystream blocks Ki and encryptions of secret block
cj = Kj ⊕ S ; then look for a value s such that Ki ⊕ cj 6= s ∀i 6= j .

8 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

From a distinguishing attack to a plaintext recovery attack ?
• If we know mi , we recover Ki = ci ⊕mi .
• We can observe repeated encryptions of a secret S that is
cj = Kj ⊕ S for many different j .

• The distinguishing attack uses Ki ⊕ Kj 6= 0 which implies
Ki ⊕ cj 6= S ∀i 6= j .

Main Idea
Collect many keystream blocks Ki and encryptions of secret block
cj = Kj ⊕ S ; then look for a value s such that Ki ⊕ cj 6= s ∀i 6= j .

8 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

From a distinguishing attack to a plaintext recovery attack ?
• If we know mi , we recover Ki = ci ⊕mi .
• We can observe repeated encryptions of a secret S that is
cj = Kj ⊕ S for many different j .

• The distinguishing attack uses Ki ⊕ Kj 6= 0 which implies
Ki ⊕ cj 6= S ∀i 6= j .

Main Idea
Collect many keystream blocks Ki and encryptions of secret block
cj = Kj ⊕ S ; then look for a value s such that Ki ⊕ cj 6= s ∀i 6= j .

8 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

The counter mode (CTR)

From a distinguishing attack to a plaintext recovery attack ?
• If we know mi , we recover Ki = ci ⊕mi .
• We can observe repeated encryptions of a secret S that is
cj = Kj ⊕ S for many different j .

• The distinguishing attack uses Ki ⊕ Kj 6= 0 which implies
Ki ⊕ cj 6= S ∀i 6= j .

Main Idea
Collect many keystream blocks Ki and encryptions of secret block
cj = Kj ⊕ S ; then look for a value s such that Ki ⊕ cj 6= s ∀i 6= j .

8 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Missing difference problem

Main Idea
Collect many keystream blocks Ki ∈ A and encryptions of secret
block cj = Kj ⊕ S ∈ B; then look for a value s ∈ S such that
∀(a, b) ∈ A× B, s 6= a⊕ b .

The missing difference problem
• Given A and B, and a hint S three sets of n-bit words
• Find S ∈ S such that:

∀(a, b) ∈ A× B, S 6= a⊕ b .

9 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Missing difference problem

Main Idea
Collect many keystream blocks Ki ∈ A and encryptions of secret
block cj = Kj ⊕ S ∈ B; then look for a value s ∈ S such that
∀(a, b) ∈ A× B, s 6= a⊕ b .

The missing difference problem
• Given A and B, and a hint S three sets of n-bit words
• Find S ∈ S such that:

∀(a, b) ∈ A× B, S 6= a⊕ b .

9 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Simple Sieving Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

0 2n

S ×××××××××××××××××××××××××××××××

Compute all ai ⊕ bj , remove results from a sieve S.

Analysis: case |S| = 2n via coupon collector problem
• To exclude 2n candidates of S , we need n · 2n values ai ⊕ bj

• Lists A and B of size
√
n · 2n/2. Complexity: Õ(2n)

10 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Simple Sieving Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

0 2n

S ×××××××××××××××××××××××××××××××

Compute all ai ⊕ bj , remove results from a sieve S.

Analysis: case |S| = 2

• To exclude 1 candidate of S , we need 2n values ai ⊕ bj
• Lists A and B of size 2n/2. Complexity: Õ(2n)

10 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7?

⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?

⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?
⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?
⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?
⊕ s

• Make a guess and verify.

• Complexity Õ(2n/2
√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Searching Algorithm [McGrew, FSE’13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

?
⊕ s

• Make a guess and verify.
• Complexity Õ(2n/2

√
|S|)

with unbalanced A, B.

Try Guess (s)

for a in A do
if (s ⊕ a) ∈ B then

return 0
return 1

11 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Known-prefix Sieving
a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

0
0
2
2
3
4
5

0
1
2
2
4
5
6

0 2n2n−z

S ××××××××

• Assume S starts with z zero bits (more generally, linear
subspace with dim〈S〉 = n − z)

• Sort lists, consider ai ’s and bj ’s with matching z-bit prefix

• Complexity: Õ(2n/2 + 2dim〈S〉)
• Looking for collision + needed number of collisions

• Complexity: Õ(2n/2) when dim〈S〉 ≤ n/2

12 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Simulation

We challenge the false assumptions we made like independence of
the {a⊕ b}. Approximations seem good enough.

Ran simulations with n = 64 bits and z = n/2 = 32 zeros.
• Each round we compare two lists of 2n/2 elements.
• Each round we expect 2n/2 partial collisions.
• Coupon collector predicts n/2 · ln(2) · 2n/2 partial collisions to
recover S , that is 23 rounds on expectation.

• Simulation gives an idea of what is hidden in the O notations.

Consistent speed of leaking
In every runs, after 16 rounds the sieve was left between 419 and
560 candidates of S only.

13 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Simulation

20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

Number of iterations

P
r(
su
cc
es
s)

Theoretical lower bound
3700 simulations.

Figure: Probability of success of the known prefix sieving knowing 232

encryptions of a 32-bit secret against the number of chunks of 232

keystream blocks of size n = 64 bits used. 14 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Fast Convolution Sieving
a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

0 2n

S ××
×
××
××
×

××
××
××

××
××
×

19
××
×
××××
××
××
××
××

15
××
××
××
××
××

××
××
××

×
17

××
××
××××
××
×

11
××××
××
××

××
××
×

××
××

17
×××
×
××
××
××

×
11

×××
××
××

××
×
××
××
×

15
×××
××
××

××
×
××
12

××
××
××××××
××

12
××
××
×××
××
×

××
××

14
• Instead of computing full sieve, use buckets (ie. truncate)
• With enough data, missing difference has smallest bucket with
high probability

• Eg. 22n/3 queries, sieving with 22n/3 buckets of 2n/3 elements

15 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Computing the sieve

0 2n

A
0 2n

B ×
10

×
1

×
1

×××
30

×
1

××
200

××
2

××
20

××
2

××
200

××
20

××
2

0 2n

S ××
×
××
××
×

××
××
××

××
××
×

19
××
×
××××
××
××
××
××

15
××
××
××
××
××

××
××
××

×
17

××
××
××××
××
×

11
××××
××
××

××
××
×

××
××

17
×××
×
××
××
××

×
11

×××
××
××

××
×
××
××
×

15
×××
××
××

××
×
××
12

××
××
××××××
××

12
××
××
×××
××
×

××
××

14

• Count buckets for A and B
• CX [i] =

∣∣{x ∈ X ∣∣ T (x) = i
}∣∣

• Discrete convolution can be computed efficiently with the Fast
Walsh-Hadamard transform!

• Complexity: Õ(22n/3) for arbitrary S

16 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Computing the sieve

• Count buckets for A and B
• CX [i] =

∣∣{x ∈ X ∣∣ T (x) = i
}∣∣

• CS [i] = |{(a, b) ∈ A× B | T (a⊕ b) = i}|

=
∑
a∈A
|{b ∈ B | T (a⊕ b) = i}|

=
∑
a∈A

CB[i ⊕ T (a)]

=
∑

j∈{0,1}n−t

CA[j] · CB[i ⊕ j]

• Discrete convolution can be computed efficiently with the Fast
Walsh-Hadamard transform!

• Complexity: Õ(22n/3) for arbitrary S

16 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Computing the sieve

• Count buckets for A and B
• CX [i] =

∣∣{x ∈ X ∣∣ T (x) = i
}∣∣

• CS [i] = |{(a, b) ∈ A× B | T (a⊕ b) = i}|

=
∑
a∈A
|{b ∈ B | T (a⊕ b) = i}|

=
∑
a∈A

CB[i ⊕ T (a)]

=
∑

j∈{0,1}n−t

CA[j] · CB[i ⊕ j]

• Discrete convolution can be computed efficiently with the Fast
Walsh-Hadamard transform!

• Complexity: Õ(22n/3) for arbitrary S

16 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Then we hope that S is in the bucket with lowest counter:

T (S)
?
= argminCS [i]

And we can finish with Known-prefix Sieving to recover the rest.

In fact, we can check several candidates and simply hope it is in
one of buckets with low counter. The more data, the less bucket
candidates we need to try.

17 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Simulation

Figure: Results for
√
n22n/3 data; counting over 2n/3 bits.

20 22 24 26 28 210
0.4

0.6

0.8

1

Number of bucket candidates

P
r(
su
cc
es
s)

n = 12
n = 24
n = 48

18 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Missing difference problem algorithms

Algorithms for the missing difference problem

Simple Sieving Complexity Õ(2n) [McGrew]
Searching Complexity Õ(2n/2

√
|S|) [McGrew]

Known-prefix Sieving Complexity Õ(2n/2 + 2dim〈S〉)

Fast Convolution Sieving Complexity Õ(22n/3)

• Improved algorithm if S is a linear subspace
• In particular still near optimal when dim〈S〉 = n/2

• Improved algorithm for arbitrary S at the cost of data
• First algorithm with complexity below 2n in that case

19 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Missing difference problem algorithms

Algorithms for the missing difference problem

Simple Sieving Complexity Õ(2n) [McGrew]
Searching Complexity Õ(2n/2

√
|S|) [McGrew]

Known-prefix Sieving Complexity Õ(2n/2 + 2dim〈S〉)

Fast Convolution Sieving Complexity Õ(22n/3)

• Improved algorithm if S is a linear subspace
• In particular still near optimal when dim〈S〉 = n/2

• Improved algorithm for arbitrary S at the cost of data
• First algorithm with complexity below 2n in that case

19 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Missing difference problem algorithms

Algorithms for the missing difference problem

Simple Sieving Complexity Õ(2n) [McGrew]
Searching Complexity Õ(2n/2

√
|S|) [McGrew]

Known-prefix Sieving Complexity Õ(2n/2 + 2dim〈S〉)

Fast Convolution Sieving Complexity Õ(22n/3)

• Improved algorithm if S is a linear subspace
• In particular still near optimal when dim〈S〉 = n/2

• Improved algorithm for arbitrary S at the cost of data
• First algorithm with complexity below 2n in that case

19 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Back to Cryptanalysis

New Tools, New Attacks
Known-prefix → plaintext recovery on CTR mode
Fast Convolution → forgery on GMAC and Poly1305

First, let’s look at a practical setting that gives enough power to
the attacker to fully describe an attack.

20 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

BEAST Attack Setting [Duong & Rizzo 2011]

User

https://

Public WiFi

Attacker

Injects JS

Captures
encrypted traffic

• Attacker has access to the network
(eg. public WiFi)

1. Attacker uses JS to generate traffic
• Tricks victim to malicious site
• JS makes cross-origin requests

2. Attacker captures encrypted data

• Chosen plaintext attack
• Chosen-Prefix Secret-Suffix model
M → E(M‖S)

[Hoang &al., Crypto’15]

21 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to CTR (CPSS queries)
• Plaintext recovery using the known-prefix sieving algorithm
• Two kind of queries; half-block and full-block headers:

Q1 H1 S1 S2 S3 S4

Q2 H1 H2 S1 S2 S3 S4

1. Recover S1 using the first block of each query:
A = {E(H1‖H2)}

}
→ Missing difference: 0‖(S1 ⊕ H2).B = {E(H1‖S1)}

2. When S1 is known, recover S2, with Q2 queries:
A = {E(H1‖H2)}

}
→ Missing difference: (S1 ⊕ H1)‖(S2 ⊕ H2).B = {E(S1‖S2)}

3. When S2 is known, recover S3:
A = {E(H1‖H2)}

}
→ Missing difference: (S2 ⊕ H1)‖(S3 ⊕ H2).B = {E(S2‖S3)}

4. . . .

22 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to CTR (CPSS queries)
• Plaintext recovery using the known-prefix sieving algorithm
• Two kind of queries; half-block and full-block headers:

Q1 H1 S1 S2 S3 S4

Q2 H1 H2 S1 S2 S3 S4

1. Recover S1 using the first block of each query:
A = {E(H1‖H2)}

}
→ Missing difference: 0‖(S1 ⊕ H2).B = {E(H1‖S1)}

2. When S1 is known, recover S2, with Q2 queries:
A = {E(H1‖H2)}

}
→ Missing difference: (S1 ⊕ H1)‖(S2 ⊕ H2).B = {E(S1‖S2)}

3. When S2 is known, recover S3:
A = {E(H1‖H2)}

}
→ Missing difference: (S2 ⊕ H1)‖(S3 ⊕ H2).B = {E(S2‖S3)}

4. . . .

22 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to CTR (CPSS queries)
• Plaintext recovery using the known-prefix sieving algorithm
• Two kind of queries; half-block and full-block headers:

Q1 H1 S1 S2 S3 S4

Q2 H1 H2 S1 S2 S3 S4

1. Recover S1 using the first block of each query:
A = {E(H1‖H2)}

}
→ Missing difference: 0‖(S1 ⊕ H2).B = {E(H1‖S1)}

2. When S1 is known, recover S2, with Q2 queries:
A = {E(H1‖H2)}

}
→ Missing difference: (S1 ⊕ H1)‖(S2 ⊕ H2).B = {E(S1‖S2)}

3. When S2 is known, recover S3:
A = {E(H1‖H2)}

}
→ Missing difference: (S2 ⊕ H1)‖(S3 ⊕ H2).B = {E(S2‖S3)}

4. . . .
22 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to CTR (CPSS queries)

Remarks on this attack:
• We perform the Known-prefix sieving twice per block of secret.
• We reuse queries so we don’t need additional queries to
uncover additional blocks of secret.

• Once you gathered enough queries to recover S1 and S2 it is
probably enough to recover all of the secret.

Full Asymptotic Complexity

Queries O(
√
n · 2n/2)

Memory O(
√
n · 2n/2)

Time O(n · 2n/2)

23 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to CTR (CPSS queries)

Remarks on this attack:
• We perform the Known-prefix sieving twice per block of secret.
• We reuse queries so we don’t need additional queries to
uncover additional blocks of secret.

• Once you gathered enough queries to recover S1 and S2 it is
probably enough to recover all of the secret.

Full Asymptotic Complexity

Queries O(
√
n · 2n/2)

Memory O(
√
n · 2n/2)

Time O(n · 2n/2)

23 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Wegman-Carter Authentication Modes

• Wegman-Carter: build a MAC from a universal hash function
and a PRF

WC(N,M) = Hk1(M)⊕ Fk2(N).

AdvMAC
WC[H,F] ≤ AdvPRF

F + ε+ 2−n

• Wegman-Carter-Shoup: use a block cipher as a PRF

WCS(N,M) = Hk1(M)⊕ Ek2(N),

Example: Polynomial-based hashing (GMAC, Poly1305-AES)

0

m1

�H

m2

�H

len(M)

�H

EkN

τ

24 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to GMAC
Authentication of one block A of authenticated data in a given
Galois field:

MAC(N,A) = A · H2 ⊕ H ⊕ Ek(N)

with N a never repeating nonce, H the hash key.

Collect many signatures for A and A′, then ∀i 6= j :

MAC(i ,A)⊕MAC(j ,A′) 6= A · H2 ⊕ H ⊕ A′ · H2 ⊕ H

6= (A⊕ A′) · H2

• Solve the missing difference problem.
• Invert A⊕ A′, get H2.
• Find the square root, get H, the hash key!

25 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to GMAC
Authentication of one block A of authenticated data in a given
Galois field:

MAC(N,A) = A · H2 ⊕ H ⊕ Ek(N)

with N a never repeating nonce, H the hash key.
Collect many signatures for A and A′, then ∀i 6= j :

MAC(i ,A)⊕MAC(j ,A′) 6= A · H2 ⊕ H ⊕ A′ · H2 ⊕ H

6= (A⊕ A′) · H2

• Solve the missing difference problem.
• Invert A⊕ A′, get H2.
• Find the square root, get H, the hash key!

25 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Application to GMAC
Authentication of one block A of authenticated data in a given
Galois field:

MAC(N,A) = A · H2 ⊕ H ⊕ Ek(N)

with N a never repeating nonce, H the hash key.
Collect many signatures for A and A′, then ∀i 6= j :

MAC(i ,A)⊕MAC(j ,A′) 6= A · H2 ⊕ H ⊕ A′ · H2 ⊕ H

6= (A⊕ A′) · H2

• Solve the missing difference problem.
• Invert A⊕ A′, get H2.
• Find the square root, get H, the hash key!

25 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Key recovery as a missing difference problem
• Fix two messages M 6= M ′, capture MACs

• ai = MAC(i ,M) = HK1(M)⊕ Ki

• bj = MAC(j ,M ′) = HK1(M ′)⊕ Kj

• ai ⊕ bj 6= HK1(M)⊕ HK1(M ′)

• For polynomial hashing, easy to recover universal hash key
from HK1(M)⊕ HK1(M ′)

• Sieving algorithm recovers H(M)⊕ H(M ′) with
Õ(2n/2) queries and Õ(2n) computations

• Independently done in another Eurocrypt paper!

Optimal Forgeries Against Polynomial-Based MACs and GCM
Atul Luykx, Bart Preneel [Eurocrypt ’18]

• Fast convolution sieving recovers H(M)⊕ H(M ′) with
Õ(22n/3) queries and computations

• First universal forgery attack with less than 2n operations

26 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Key recovery as a missing difference problem
• Fix two messages M 6= M ′, capture MACs

• ai = MAC(i ,M) = HK1(M)⊕ Ki

• bj = MAC(j ,M ′) = HK1(M ′)⊕ Kj

• ai ⊕ bj 6= HK1(M)⊕ HK1(M ′)

• For polynomial hashing, easy to recover universal hash key
from HK1(M)⊕ HK1(M ′)

• Sieving algorithm recovers H(M)⊕ H(M ′) with
Õ(2n/2) queries and Õ(2n) computations

• Independently done in another Eurocrypt paper!

Optimal Forgeries Against Polynomial-Based MACs and GCM
Atul Luykx, Bart Preneel [Eurocrypt ’18]

• Fast convolution sieving recovers H(M)⊕ H(M ′) with
Õ(22n/3) queries and computations

• First universal forgery attack with less than 2n operations

26 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Key recovery as a missing difference problem
• Fix two messages M 6= M ′, capture MACs

• ai = MAC(i ,M) = HK1(M)⊕ Ki

• bj = MAC(j ,M ′) = HK1(M ′)⊕ Kj

• ai ⊕ bj 6= HK1(M)⊕ HK1(M ′)

• For polynomial hashing, easy to recover universal hash key
from HK1(M)⊕ HK1(M ′)

• Sieving algorithm recovers H(M)⊕ H(M ′) with
Õ(2n/2) queries and Õ(2n) computations

• Independently done in another Eurocrypt paper!

Optimal Forgeries Against Polynomial-Based MACs and GCM
Atul Luykx, Bart Preneel [Eurocrypt ’18]

• Fast convolution sieving recovers H(M)⊕ H(M ′) with
Õ(22n/3) queries and computations

• First universal forgery attack with less than 2n operations

26 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Impacts
How practical can be the plaintext recovery attack on CTR ?
• Mostly used with AES, famous 128-bit block cipher, as part of
GCM. 90% of Firefox HTTPS traffic uses AES-GCM.

• Requires 128× 264 bits = 256 exbibytes over one session
• 2016 global IP traffic is 82.3 exbibytes per month [Cisco]

• SSHv2 implements CTR with 3DES, a 64-bit block cipher.
• Requires 64× 232 bits = 32 gibibytes
• Quickly attainable with modern internet speed

Sweet32 attack
Attack in the BEAST setting with birthday bound complexity
already shown to be a threat over the web in previous work by
Bhargavan and Leurent.
This is the Sweet32 attack on CBC mode, more commonly used
with 64-bit block ciphers.

27 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Impacts
How practical can be the plaintext recovery attack on CTR ?
• Mostly used with AES, famous 128-bit block cipher, as part of
GCM. 90% of Firefox HTTPS traffic uses AES-GCM.

• Requires 128× 264 bits = 256 exbibytes over one session
• 2016 global IP traffic is 82.3 exbibytes per month [Cisco]

• SSHv2 implements CTR with 3DES, a 64-bit block cipher.
• Requires 64× 232 bits = 32 gibibytes
• Quickly attainable with modern internet speed

Sweet32 attack
Attack in the BEAST setting with birthday bound complexity
already shown to be a threat over the web in previous work by
Bhargavan and Leurent.
This is the Sweet32 attack on CBC mode, more commonly used
with 64-bit block ciphers.

27 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Impacts
How practical can be the plaintext recovery attack on CTR ?
• Mostly used with AES, famous 128-bit block cipher, as part of
GCM. 90% of Firefox HTTPS traffic uses AES-GCM.

• Requires 128× 264 bits = 256 exbibytes over one session
• 2016 global IP traffic is 82.3 exbibytes per month [Cisco]

• SSHv2 implements CTR with 3DES, a 64-bit block cipher.
• Requires 64× 232 bits = 32 gibibytes
• Quickly attainable with modern internet speed

Sweet32 attack
Attack in the BEAST setting with birthday bound complexity
already shown to be a threat over the web in previous work by
Bhargavan and Leurent.
This is the Sweet32 attack on CBC mode, more commonly used
with 64-bit block ciphers.

27 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Counter-measures

1. Use AES, or any good 128-bit block cipher.
• Make n big enough so that 2n/2 is impractical.
• Most obvious choice for most new implementations.

2. Forget block ciphers, use a PRF.
• CTR is perfectly secure as long as we use a good PRF.
• Dedicated PRF are rare but many solutions exist (XoP).

3. Forget CTR, use advanced Beyond Birthday Bound schemes.
• They have a proof with better security bounds.
• CENC is a BBB scheme derived from CTR. [Iwata, FSE’06]

4. Simply rekey frequently.
• Rekeying way before 2n/2 blocks efficiently prevents the attack.
• Maybe the easiest hotfix.

28 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Counter-measures

1. Use AES, or any good 128-bit block cipher.
• Make n big enough so that 2n/2 is impractical.
• Most obvious choice for most new implementations.

2. Forget block ciphers, use a PRF.
• CTR is perfectly secure as long as we use a good PRF.
• Dedicated PRF are rare but many solutions exist (XoP).

3. Forget CTR, use advanced Beyond Birthday Bound schemes.
• They have a proof with better security bounds.
• CENC is a BBB scheme derived from CTR. [Iwata, FSE’06]

4. Simply rekey frequently.
• Rekeying way before 2n/2 blocks efficiently prevents the attack.
• Maybe the easiest hotfix.

28 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Counter-measures

1. Use AES, or any good 128-bit block cipher.
• Make n big enough so that 2n/2 is impractical.
• Most obvious choice for most new implementations.

2. Forget block ciphers, use a PRF.
• CTR is perfectly secure as long as we use a good PRF.
• Dedicated PRF are rare but many solutions exist (XoP).

3. Forget CTR, use advanced Beyond Birthday Bound schemes.
• They have a proof with better security bounds.
• CENC is a BBB scheme derived from CTR. [Iwata, FSE’06]

4. Simply rekey frequently.
• Rekeying way before 2n/2 blocks efficiently prevents the attack.
• Maybe the easiest hotfix.

28 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Counter-measures

1. Use AES, or any good 128-bit block cipher.
• Make n big enough so that 2n/2 is impractical.
• Most obvious choice for most new implementations.

2. Forget block ciphers, use a PRF.
• CTR is perfectly secure as long as we use a good PRF.
• Dedicated PRF are rare but many solutions exist (XoP).

3. Forget CTR, use advanced Beyond Birthday Bound schemes.
• They have a proof with better security bounds.
• CENC is a BBB scheme derived from CTR. [Iwata, FSE’06]

4. Simply rekey frequently.
• Rekeying way before 2n/2 blocks efficiently prevents the attack.
• Maybe the easiest hotfix.

28 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Conclusion

Case Previous This work Improved attacks
S affine subspace CTR
of dim n/2 . Õ(23n/4) Õ(2n/2) plaintext recovery.
No prior info on S . GMAC, Poly1305
ie. |S| = 2n . Õ(2n) Õ(22n/3) universal forgery.

Especially when n = 64 bits, main take away :

• CTR mode not more secure than CBC (Sweet32).
• Frequent rekeying away from birthday bound will prevent these
attacks.

29 / 29

Introduction The counter mode Missing difference problem Cryptanalysis Conclusion

Conclusion

Case Previous This work Improved attacks
S affine subspace CTR
of dim n/2 . Õ(23n/4) Õ(2n/2) plaintext recovery.
No prior info on S . GMAC, Poly1305
ie. |S| = 2n . Õ(2n) Õ(22n/3) universal forgery.

Especially when n = 64 bits, main take away :

• CTR mode not more secure than CBC (Sweet32).
• Frequent rekeying away from birthday bound will prevent these
attacks.

29 / 29

Supporting Slides

Fast Walsh-Hadamard transform

We need an efficient algorithm to compute the multiplication of a
Hadamard matrix Hm by a vector of size 2m in O(m · 2m).

H =

[
1 1
1 −1

]

Hm =
1

2m/2H
⊗m

That is the fast Walsh-Hadamard transform (FWHT), akin to a
fast Fourier transform.

1 / 6

Supporting Slides

Fast XOR-counting

CK FWHT

CE FWHT

* FWHT CX

Figure: Fast XOR-counting algorithm

Note that FWHT−1 = FWHT.
We hope that :

S2n/3
?
= argmin

i
CX [i]

2 / 6

Supporting Slides

Fast XOR-counting

CK FWHT

CE FWHT

* FWHT CX

Figure: Fast XOR-counting algorithm

Note that FWHT−1 = FWHT.
We hope that :

S2n/3
?
= argmin

i
CX [i]

2 / 6

Supporting Slides

Fast XOR-counting

For an Ω(1) probability of success on the first trial assuming
independence of the counters (/!\ False as

∑
CX = |K × E| .) :

Complexity

O(
√
n · 22n/3) queries

O(n · 22n/3) + O(n
√
n · 2n/2) bits memory (counters + sieving)

O(n · 22n/3) + O(n
√
n · 2n/2) computations (FWHT + sieving)

3 / 6

Supporting Slides

(a) Results for lists size of 3 · 22n/3

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12 bits
n = 24 bits

(b) Results for n = 24 bits

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

' 4.90 · 22n/3 data
3 · 22n/3 data

4 / 6

Supporting Slides

(a) Results for n = 32 bits;√
n22n/3 ' 5.66 · 22n/3 data

20 22 24 26 28 210
0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

counting over 22 bits
counting over 21 bits

(b) Results for
√
n22n/3 data; counting

over 2n/3 bits

20 22 24 26 28 210
0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12
n = 24
n = 48

5 / 6

Supporting Slides

Poly1305
For a key r , some nonce N and message M of length q the
Poly1305’s MAC is defined as:

T (M,N) = ((c1r
q+c2r

q−1+...+cqr) mod 2130−5)+Ek(N) mod 2128

Then for two messages M, M ′ the missing difference will be :

((c1−c ′1)rq+(c2−c ′2)rq−1+...+(cq−c ′q)r) mod 2130−5 mod 2128

Choose M and M ′ so that (cq − c ′q) = 1, (ci − c ′i) = 0 and the
missing difference will be r as r < 2124 by construction. This is the
hash key!
Note : As we play with modular addition and not xor operation we
have to compute a cyclic convolution using fast Fourier transform
instead of Walsh-Hadamard.

6 / 6

Supporting Slides

Poly1305
For a key r , some nonce N and message M of length q the
Poly1305’s MAC is defined as:

T (M,N) = ((c1r
q+c2r

q−1+...+cqr) mod 2130−5)+Ek(N) mod 2128

Then for two messages M, M ′ the missing difference will be :

((c1−c ′1)rq+(c2−c ′2)rq−1+...+(cq−c ′q)r) mod 2130−5 mod 2128

Choose M and M ′ so that (cq − c ′q) = 1, (ci − c ′i) = 0 and the
missing difference will be r as r < 2124 by construction. This is the
hash key!
Note : As we play with modular addition and not xor operation we
have to compute a cyclic convolution using fast Fourier transform
instead of Walsh-Hadamard.

6 / 6

Supporting Slides

Poly1305
For a key r , some nonce N and message M of length q the
Poly1305’s MAC is defined as:

T (M,N) = ((c1r
q+c2r

q−1+...+cqr) mod 2130−5)+Ek(N) mod 2128

Then for two messages M, M ′ the missing difference will be :

((c1−c ′1)rq+(c2−c ′2)rq−1+...+(cq−c ′q)r) mod 2130−5 mod 2128

Choose M and M ′ so that (cq − c ′q) = 1, (ci − c ′i) = 0 and the
missing difference will be r as r < 2124 by construction. This is the
hash key!

Note : As we play with modular addition and not xor operation we
have to compute a cyclic convolution using fast Fourier transform
instead of Walsh-Hadamard.

6 / 6

Supporting Slides

Poly1305
For a key r , some nonce N and message M of length q the
Poly1305’s MAC is defined as:

T (M,N) = ((c1r
q+c2r

q−1+...+cqr) mod 2130−5)+Ek(N) mod 2128

Then for two messages M, M ′ the missing difference will be :

((c1−c ′1)rq+(c2−c ′2)rq−1+...+(cq−c ′q)r) mod 2130−5 mod 2128

Choose M and M ′ so that (cq − c ′q) = 1, (ci − c ′i) = 0 and the
missing difference will be r as r < 2124 by construction. This is the
hash key!
Note : As we play with modular addition and not xor operation we
have to compute a cyclic convolution using fast Fourier transform
instead of Walsh-Hadamard.

6 / 6

	Introduction
	The counter mode
	Missing difference problem
	Cryptanalysis
	Conclusion
	Supporting Slides

