Chapter 1

OPTIMIZATIONS FOR FASTER EXECUTION OF
ESTEREL PROGRAMS

Dumitru Potop-Butucaru *
IRISA, Campus de Beaulieu, 35042 Rennes, France
Dumitru.Potop@irisa.fr

Robert de Simone
INRIA, 2004 rte. des Lucioles, 06902 Sophia Antipolis Cedex, France
Robert.De_Simone@inria.fr

Abstract

The fine-grained parallelism and the need for determinism are traditional issues
in the design of real-time embedded software. In addition, the increasing com-
plexity of the specifications requires an increasing use of higher level formalisms.
The Esterel language offers natural solutions to all these problems, but its com-
pilation proved challenging, so that efficient compilation techniques have only
recently been proposed. Consisting essentially in direct simulation of the reactive
primitives of the language, these techniques now need to be accommodated with
traditional issues of Esterel: the definition of formal semantics, the construc-
tive causality, and the design of analysis and optimization methods that are both
efficient and correct.

‘We address these problems by defining a new intermediate model, called GRC,
for the representation of Esterel programs. The GRC representation preserves
much of the initial program structure while making the control flow pattern and
the hierarchical state structure explicit. It fully complies with the semantics of Es-
terel, and, most important, it is a good support for efficient analysis, optimization,
and code generation algorithms based on static analysis.

The use of a GRC-based approach results in significant efficiency and gen-
erality gains. The approach could be extended to the hardware compilation of
Esterel and to the compilation of other synchronous languages with fine-grained
parallelism.

*Partly supported by the ARTIST European project

2

Keywords: Causality, code generation, compiler, embedded system, Esterel, intermediate
representation, optimization, static analysis, synchronous.

1. Introduction

Sequential languages like C and assembly are still widely used in the devel-
opment of reactive real-time embedded systems, even for applications that are
most naturally described as concurrent systems. Real-time operating systems
(RTOS) are used in these cases to schedule the resulting sequential processes,
thus providing the needed concurrency. Two problems arise from here. The
first is that a RTOS can be unpredictable, making functional and timing verifica-
tion difficult. The second is that RTOS-level scheduling can be very inefficient
for applications involving fine-grained parallelism, due to context switching
overhead.

The synchronous approach [BB91, Hal93, BCET03] uses classical hardware
concepts in order to provide deterministic concurrency and better verification
capabilities. The execution of a synchronous system is cyclic, driven by a global
clock. At each clock cycle the system reads the inputs, computes its reaction,
and outputs the result. The code executed during a clock cycle is loop-free and
the clock is operated by the system itself, allowing precise timing control. The
underlying synchronous model also allows the use of the well-studied functional
verification techniques developed for synchronous circuits, so that the approach
is a good basis for the development of safety-critical embedded software.

On the other hand, the high semantic standards behind the synchronous lan-
guages (e.g. Esterel [BG92], Lustre [HCRP91], Signal [LGLL91]) made their
correct and efficient implementation a challenging task. A particular difficulty
is here that all the informations which might affect a given variable at a given
clock cycle must be compiled before the variable is used. A typical example is
the signal absence, which can only be decided after negative information about
all potential emissions has been propagated. The fine-grained parallelism and
the intricate instruction ordering make run-time scheduling inefficient, due to
the context switching overhead. In consequence, implementation code is often
generated by compiling away all internal concurrency!, while proceeding in
a single-loop periodic evaluation of all the instructions of the program. The
synchronous specification is transformed into a single sequential (C) reaction
function where all the operations have been statically scheduled using auxiliary
variables and tests. A small run-time executive interfaces with the asynchronous
environment to read the inputs and decide when to call the reaction function.

'In distributed, multi-processor implementations like the one proposed by Caspi et al. [CGP99], some
concurrency is preserved between specification parts operating on different processors

Optimizations for Faster Execution of Esterel Programs 3

A program written in a concurrent synchronous language like Esterel and its
desired sequential implementation are very different objects. For this reason,
all Esterel compilers use intermediate representations, and each intermediate
representation determines in turn the capabilities of the associated compiling
technique. The first implementations of Esterel [BG92, Est00] used mathe-
matical models (Mealy machines and digital circuits) as intermediate repre-
sentations. Consequently, the resulting C code was either needlessly large, or
slow. More recent compilers [Edw02, WBCT00] use control-flow graphs that
are easily translated into well-structured C code, but are too far from Esterel to
represent its exact semantics or to support a number of efficient analysis and
optimizations.

This paper presents a new approach to the compilation of the Esterel language
which achieves significant performance and generality improvements by using
the GRC (GRaph Code) intermediate representation.

The main contribution of the paper is the definition of the GRC code, which
uses two graph-based structures — a hierarchical state representation (HSR)
and a concurrent control-flow graph (CCFG) — to preserve most of the struc-
tural information of the Esterel program while making the control flow explicit
with few graph-building primitive nodes. The hierarchical state can be seen
as a structured data memory that preserves state information across reactions.
In each instant, a set of activation conditions (triggers) is computed from this
memory state, to drive the execution towards active instructions (for historical
reasons such activation triggers are generally called clocks in reactive syn-
chronous terminology). Because of the formal synchronous semantics these
clocks enjoy nice properties (a computation is only triggered when its outcome
will be consumed, and vice-versa). In the current GRC scheme, the computa-
tion of activation clocks from the current state has to be performed first thing in
each reaction. But then the actual data instruction blocks will only be activated
at proper pace.

On the new format, we introduce several transformations, mostly semantics-
preserving optimization algorithms based on static analysis methods. Due to
the mathematical nature of the GRC model these optimization can be formally
proved sound, although we shall not insist on this aspect in the current paper.
Benchmarks indicate the strong interest of the approach in terms of potential
optimizing gains. The overall compilation scheme can be seen either as an
attempt to produce efficient software code, or efficient simulation code for
hardware representations (a goal equally followed by the simulation semantics
of VHDL and Verilog hardware description languages, but without our strong
synchronous semantics).

We focus here on the generation of software simulation code by defining a
GRC-to-C translation scheme that handles all GRC-acyclic and circuit-acyclic
Esterel programs. We shall disregard here the topics of simulating cyclic GRC

4

specifications, or of determining program correctness in the sense of construc-
tive causality at GRC level. Advances in that direction can be found in [PBO2].
The efficiency of our approach is supported by benchmarks comparing our
GRC-based compiler grc2c to existing compilers.

The paper is organized as follows. Section 2 is devoted to an informal
presentation of the Esterel language, including the description of the small
example which will be used throughout the paper. A review of the existing
Esterel compilers is given in section 3. The next three sections describe our
new approach. In section 4 we define the GRC intermediate representation:
its primitives, their semantics, and the Esterel translation to GRC. We also
insist here on some causal correctness (acyclicity) issues relating GRC and the
digital circuits. Section 5 presents the GRC-level optimization algorithms that
are currently used in our compiler. The software code generation technique,
based on efficient state encoding and static scheduling, is described in section
6. Section 7 presents experimental results comparing grc2c with existing
compilers, and we conclude with some suggestions about how to extend this
work.

2. The Esterel language

Esterel [BG92, Est00, BdS91] is a design language for the representation
of reactive real-time embedded systems. It has a full-fledged formal opera-
tional semantics [Ber99, PB02] which solves tricky modeling issues such as the
proper definition of global synchronous reactive behaviors and the constructive
causality in control flow propagation. Esterel specifications can be translated
into sequential software code, digital synchronous circuits, or a combination of
both, but our work only concerns its software compilation.

Through its intuitive, highly-readable imperative style, Esterel tries to com-
bine strong modeling features together with efficient compilation purposes. As
illustrated by the small example of fig. 1.1, Esterel features the control flow
operators of a language like C (sequence, loop), but also provides concurrency,
preemption, and a synchronous, clock-driven execution model. In each clock
cycle the inputs are read, and the program computes its reaction by resuming
the control threads and running them until suspension. The communication is
done through broadcast signals which are either present or absent in each clock
cycle. The signal S is present if a statement “emit S” is executed during the
cycle, and absent otherwise.

Our small example has four input signals and one output signal. Meant to
model a cyclic computation like a communication protocol, the core of our
example is the loop which awaits the input I, emits 0, and then awaits J before
instantly restarting. The local signal END signals the completion of loop cycles.

Optimizations for Faster Execution of Esterel Programs 5

module Example: input I,J,KILL,SUSP; output O;
suspend
trap T in /exception handler, performs the preemption
signal END in
loop %basic computation loop
await I;emit Oj;await J;emit END
end
I
%preemption protocol, triggered by KILL
await KILL;await END;exit T
end
end;
when SUSP Ysuspend signal
end module

Figure 1.1. A simple Esterel program modeling a cyclic computation (like a communication
protocol) which can be interrupted between cycles and which can be suspended

When started, the await statement waits for the next clock cycle where its
signal is present. The computation of all the other statements present in our
example is performed during a single clock cycle, so that the await statements
are the only places where control can be suspended between reactions (they
preserve the state of the program between cycles). A direct consequence is
that the signals I and J must come in different clock cycles in order not to be
discarded.

clock | inputs | outputs | comments
0 any all inputs discarded
1 I (6]
2 KILL preemption protocol triggered
3 nothing happens
4 J,SUSP suspend, J discarded
5 J END emitted, T raised, program terminates

Figure 1.2. A possible execution trace for our example

The loop is preempted by the exception handling statement trap when
“exit T” is executed. In this case, trap instantly terminates, control is given
in sequence, and the program terminates. The preemption protocol is triggered
by the input signal KILL, but the exception T is raised only when END is emitted.
The program is suspended — no computation is performed and the state is kept
unchanged — in clock cycles where the SUSP signal is received. A possible
execution trace for our program is given in fig. 1.2.

The operations that compose a reaction are causally ordered by the control
flow and by the signal communication. A signal S can be tested in a clock

6

cycle only after its status has been determined. The signal becomes present as
soon as it has been emitted. It becomes absent when we can determine that
no “emit S” statement can be executed during the current clock cycle. The
signal causality may lead to deadlocks in the computation of a reaction despite
the fact that the code of a reaction is loop-free. Programs that can deadlock
(e.g. present T then emit T end) are incorrect and must be rejected at
compilation.

Determining whether a program can deadlock or not is not easy. The seman-
tics of Esterel is constructive, in the sense that the absence of signals must be
determined without any kind of guess. To do so, one has to notice that accord-
ing to decisions already made in the current reaction all the emissions of the
signal are invalidated. The recursive fact propagation is exemplified with the
following (correct) statement:

emit S;
present T then

present S else emit T end
end

When the statement is started, the signal S is emitted and the control is blocked
on the test on signal T, whose status is still unknown. The present status of S is
then propagated into the not yet executed code. There, it invalidates the else
branch of the test on S, so that T becomes absent, and execution can proceed.
Note that our execution involved the evaluation of code (the test on S) that will
never be executed.

Due to its constructive semantics, Esterel has a natural semantic model as
Synchronous Digital Circuits, at schematic gate level, endowed with intuition-
istic constructive semantics [Ber99]. In turn, such circuits have a natural opera-
tional interpretation in terms of Finite State Mealy Machines. Thus, all Esterel
modeling primitives are provided meaning as hierarchical constructs allowing
to build compound objects in each of these domains. Actually, this goes for
reactive control flow structuring primitives, while the language also offers data
handling of a classical imperative nature (assignments).

3. Related work

Four approaches have been proposed for the compilation of Esterel into
sequential code. Historically the first, the automata-based approach [BG92,
Bre02] basically follows the Structural Operational Semantics of the language to
produce a flat, global automaton that is then encoded in C. Performed by means
of exhaustive symbolic simulation, the automaton expansion also determines the
causal correctness of the specification and solves all the interleaving problems
that are due to constructivity. The automata-based C code is theoretically the

Optimizations for Faster Execution of Esterel Programs 7

fastest possible, as only semantically active code is executed in each state. It can
also be exponentially larger than the source, due to state-wise code replication.

Several approaches have been proposed to reduce the size of the generated
code. The automata compiler of the Polis group [BCG199] uses binary deci-
sion diagrams to identify code that can be shared between states. The HIPPCO
automaton optimizer of Castelluccia et al. [CDO97] uses code sharing, inlin-
ing, and re-ordering of tests to improve not only the code size, but also the
execution time (on average and for privileged paths). The Esterel compiler of
Bres [Bre02, Est00] does not use the unoptimized automaton representation.
It directly generates code where common sub-trees are shared inside a state.
While these techniques improve the quality of the generated code, the number
of states still explodes for most meaningful examples to the point where the
generation of the automaton is intractable.

Surprisingly, benchmarks show that grc2c-generated code is often equally
fast or faster than the theoretically-optimal automata-based code. The reason is
probably twofold. First, the limited size of the processor caches penalizes the
usually larger automata-based executables. Second, the GRC code optimiza-
tions leave only few redundancies, and the generated code is well-structured.
The code generated by grc2c can also be exponentially smaller because the
translation does not involve state-wise code duplication.

The circuit-based compilers [Est00] start by structurally translating the
Esterel program into a sequential digital circuit, at netlist level. The compiler
then generates C code that is a levelized compiled logic simulator. At each
reaction, the code emulates circuit activity by evaluating in an ordered manner
all the gates of the circuit. The circuit-based code is compact, quasi-linear in
the size of the initial Esterel program. It is also slow because all the gates are
evaluated in each clock cycle.

The circuit-based code is always slower than its grc2c-generated counter-
part, sometimes by factors of 50. The encoding of all program operators using
Boolean gates also leads to a larger code size, except for the small examples
where aggressive circuit optimizations can be applied.

The Saxo compiler of Closse et al. [WBCT00, CPPT02] uses a discrete-
event interpretation of Esterel to generate a compiled event-driven simulator.
The compiler flow is similar to that of VeriSUIF [FLLO95], but Esterel’s syn-
chronous semantics are used to highly simplify the approach. An event graph
intermediate representation is used here to split the program into alist of guarded
procedures. The guards intuitively correspond to events that trigger computa-
tion. At each clock cycle, the simulation engine traverses the list once, from
the beginning to the end, and executes the procedures with an active guard. The
execution of a procedure may modify the guards for the current cycle and for
the next cycle.

The resulting code is much faster than the circuit-based one, as the guards
prevent the evaluation of semantically-inactive code. At the same time, two
reasons make it slower than its grc2c-generated counterpart: First, it does
not exploit the hierarchy of exclusion relations determined by switching state-
ments like the tests. Second, optimization is less effective because the program
hierarchy is lost when the state is (very redundantly) encoded using guards.

The EC compiler of Edwards [Edw02] has been a major source of inspiration
in our work. It treats Esterel as having control-flow semantics (in the spirit of
[LPM99, Muc97]) in order to take advantage of the initial program hierarchy and
produce efficient, well-structured C code. The Esterel program is first translated
here into a concurrent control-flow graph (CCFG) representing the computation
of a reaction. The translation makes the control flow explicit and encodes the
state access operations using tests and assignments of integer variables. The
back-end accepts only acyclic CCFGs. Its static scheduling algorithm takes
advantage of the mutual exclusions between parts of the program and generates
code that uses program counter variables instead of simple Boolean guards.
The result is therefore faster than its Saxo-generated counterpart.

EC and grc2c share many common aspects. Both use control-flow graphs
as intermediate representations and both use static scheduling to generate well-
structured code. Moreover, the GRC-level CCFG and the CCFG of the EC
compiler are very similar in form because they are obtained through similar
Esterel-specific demultiplexing and code duplication. Essential differences re-
main, however: EC takes a syntax-driven approach in determining the internal
concurrency of the Esterel program. Parallel threads are identified on the Esterel
source and hard-coded in the CCFG-level state encoding with tests and assign-
ments over integer variables. The approach of grc2c is semantics-driven, aimed
at achieving better optimization. The GRC code preserves the state structure
of the initial Esterel program and uses static analysis techniques to determine
redundancies in the activation pattern. Thus, it is able to simplify both the final
state representation and the CCFG. For this reason, grc2c generates faster code
than EC.

3.1 Program correctness issues. Acyclicity

The constructive semantics of Esterel, introduced in section 2, is based on
fact propagation schemes traversing at each instant not only the active parts of
the program, but also inactive ones. This comes in contradiction with the phi-
losophy of efficient code generation. For this reason, the constructive causality
is usually subsumed in this context by a more restrictive requirement, namely
acyclicity.

Acyclicity cannot be formally defined at the syntactic level of Esterel pro-
grams, as it largely depends on connections drawn between signal emissions

Optimizations for Faster Execution of Esterel Programs 9

and corresponding receptions. It was first defined at the level of circuits, and
was simply rephrased on event graphs and CCFGs. Acyclicity is then dependent
on both the intermediate representation and the translation scheme. Regardless
of the intermediate representation, acyclicity represents the (strict) restriction
of the constructive model where the evaluation process can be performed in
the same order at each clock cycle. Thus, it supports the generation of effi-
cient statically-scheduled C code and represents a cheap, syntactic correctness
criterion.

Among the compiling techniques that are able to handle large Esterel pro-
grams, the circuit-based approach is the only one currently able to analyze and
compile cyclic programs (by transforming cyclic parts into equivalent acyclic
ones). However, the procedure is expensive, requiring symbolic state space ex-
ploration and circuit resynthesis [SBT96, Tom97, Edw03]. In practice, acyclic-
ity is the most used correctness criterion for Esterel programs, and the only
working on large specifications.

Most meaningful programs are acyclic, regardless of the intermediate com-
piler representation. However, differences subsist, the circuit-based compilers
accepting more correct programs due to the finer grain of their intermediate rep-
resentation. The GRC-based approach supports a refinement technique making
the GRC-level acyclicity equivalent to the circuit-level one. Thus, we pave the
way towards defining acyclicity as a representation-independent correctness
criterion.

4. The GRC intermediate representation

The translation of the Esterel source into GRC (for GRaph Code) makes
the control flow explicit while preserving an important part of the structural
information. The resulting GRC model consists of two objects: a concurrent
control-flow graph (CCFG) representing the behavior of the Esterel program
and a hierarchical state representation (HSR), historically called selection tree.
The CCFG represents in an operational fashion the computation of an instant
(the transition function). During each reaction, the dynamic CCFG operates on
the static HSR by marking/unmarking component subtrees with “active” tags
as they are activated or deactivated by the semantics.

4.1 The Hierarchical State Representation

The hierarchical state representation of a GRC model is an abstraction of the
syntax tree of the initial Esterel program. It preserves the modular structure
of the program while forgetting about behavioral statements. The HSR of
our example is presented in fig. 1.3, along with intuitive tags showing the
correspondence between HSR nodes and Esterel statements.

10

The square-shaped HSR leaves correspond there to simple program state-
ments, like await, where control can be suspended between clock cycles. The
oval-shaped intermediate nodes correspond to composed statements. Specific
HSR tags mark the combination mode in nodes having more than one child.
Exclusive nodes, tagged with #, correspond to sequences and to if-then-else Es-
terel statements. Parallel nodes, tagged with | |, correspond to parallel Esterel
constructs. Simple statements that cannot retain control between clock cycles
(e.g. emit, exit) are discarded in the construction of the HSR.

The HSR nodes of indices 0 and 1 do not correspond to program statements.
They are automatically generated at program level in order to represent the start
state of the program, where no statement is active, but the program is.

0 (#)program

1] 2 ()suspend
program
start

await | await J

Figure 1.3. The hierarchical state representation (HSR) of our example

Each node of the state representation is endowed with a selection status flag
(a Boolean data variable) which records at run-time the current activity status
of the corresponding subprogram. Selection statuses are checked and modified
by state access operations performed from the CCFG (and described in the next
section). We say that a state representation node is active if its selection status
is true. The definition naturally extends to the associated Esterel statement.

We shall see later that optimization methods will introduce more HSR tags,
computed by static analysis of both the HSR and the CCFG. In essence these
tags will record redundancy in the selection statuses. For instance it is often
the case that a branch of parallel construct is always active, in which case
the associated selection status and the CCFG code managing it can safely be
removed. Thus, the HSR acts both as a state representation and as a high-level
information repository.

4.2 The Concurrent Control-Flow Graph

We pictured in fig. 1.4 the CCFG associated with our small example. In-
tuitively, control enters the flowgraph at each execution instant through the

Optimizations for Faster Execution of Esterel Programs 11

topmost node. Then, it follows the edges until complete traversal of the flow-
graph.

fus}
7
[8]] [9]
I J
exit 8 exit 9
emit mit EN|
nter enter
pause(6) pause(10) inactive(6) pause(6) inactive(6) pause(10) trapT(10)
Par.sync.(5) Parallel synchronizer(5)
pause(5) trapT(5) pause(5)
T
Cexit3> v
Cexit 2>
Cexit 0>

Figure 1.4. The concurrent control-flow graph (CCFG) of our example

All the edges of our example are oriented control edges representing con-
trol flow and signal emit/present dependencies. Control edges propagate
the control and the signal statuses between typed computation nodes. Esterel
programs involving data manipulations may also require the use of data de-
pendency edges, representing scheduling constraints not implied by the control
ones.

A computation node has a number of named input and output ports to which
edges will be connected according to the translation rules. Each control edge
connects exactly one output port to one input port. Several edges (or none)
can be connected to every given port. Most nodes also contain a data access
operation, allowing them to test/update user-defined variables or selection sta-
tuses. During a reaction, a node is executed when it receives enough control
and signal information through its input ports. It performs then its computation,
which may involve the activation of its data operation, and propagates the re-
sults through its output ports. We now describe the nodes and the specific data
access operations by exemplifying on fig. 1.4. Note that we dropped (for space
reasons) most input and output port names from our graphical representation.
Explanations will make up for this inconvenience.

12

A unique Tick node (topmost in our example) serves in every CCFG as
unique control entry point for the behavioral reactions. It bears a single output
port, called cont.

At each clock cycle, the Tick node activates the Switch node decoding the
status of the HSR node of index 0. Switch nodes represent the locations where
the status of exclusive HSR nodes is decoded in order to resume the appropriate
sub-statement. For instance, the Switch node decoding the HSR node 0 will
decide whether the program is in the start state or in a subsequent execution
instant. In the first case, HSR node 1 is active, and the Switch gives control to
the output port labeled [1]. In the second case HSR node 2 is active, and control
is given to output port [2] to resume the program body. Switch nodes are an
essential part of our state representation scheme, allowing later an efficient
encoding that uses multiway branching instructions.

If the program is in the start state, control is given to a sequence of Call
nodes performing state update operations. The program exits the start state by
setting to false the selection status of the node 1 (with a call to exit 1). Then, it
recursively activates the statements all the way from suspend to await I and
await KILL by performing enter operations on the HSR nodes 2, 3,4, 5, 6, 7,
8, 10, and 11. The trapezoidal nodes are the Fork and the synchronizer Sync
nodes corresponding to the parallel statement (HSR index 5).

If the program is not in the start state, then we have to perform the suspension
test on signal SUSP. The associated Test node has one input port, named go,
which represents the test trigger. It has no signal input port because the signal
SUSP, which is not emitted within the program, is treated like a data variable.
The node has two output ports, named then and else (the latter is identified with
a dot). If the test succeeds, the hierarchical state decoding is interrupted and
control (given to the then port) leaves the flowgraph thereby suspending the
execution of the program until the next clock cycle. We also say in this case
that the program pauses.

If the test fails, the sub-statements of suspend are recursively resumed. In
practice, this amounts to resuming the branches of the parallel statement i.e.
checking that they are active (with the Test nodes reading the selection statuses
of the HSR nodes 6 and 10), decoding their internal status (with the Switch
nodes on the HSR nodes 7 and 10), and giving control to the appropriate await
signal tests. Note how the internal signal communication on END is encoded
using a control edge that connects its emission with its test.

When a parallel branch completes its execution for the current clock cycle,
it reports to the parallel synchronizer Sync node its completion code (inactive,
paused, terminated, or exited through some exception). When all the branches
complete the execution of the cycle, the Sync node can compute the completion

Optimizations for Faster Execution of Esterel Programs 13

code of the parallel statement? and activate the appropriate output port. In our
case, the parallel can pause (suspend until the next clock cycle) or raise the
exception T. In the first case, the control directly leaves the flowgraph. In the
second case the program terminates, as exit 0 sets the program status to inactive.

CCFG semantics We have presented here the intuitive, control-flow seman-
tics of the GRC flowgraph. Its formal constructive simulation semantics [PB02]
is based on the constructive circuit semantics of Berry [Ber99]. Under construc-
tive semantics, each control edge of the CCFG has astatus of L, true, orfalse.
The value L means “not yet resolved, not stabilized”. In the beginning of each
clock cycle, the status of all control edges (with the exception of the inputs)
is set to L. The computation of a reaction consists in incrementally assigning
a value of true (to represent execution or signal presence) or false (to rep-
resent inactivity or signal absence) to every control edge. There are technical
intricacies such as the fact that a signal becomes present (true value) as soon
as it has been emitted, while it can be turned to absent (false value) only
when all emissions have been provably discarded by control-flow choices (the
sequential implementation will avoid this problem by properly scheduling the
corresponding assignments so that all emissions precede all signal tests).

The incremental computation of the statuses is performed by the CCFG
nodes, which change their output as soon as their inputs change. The compu-
tation of a node may have side-effects that model state access and data access
operations. Good properties of the computation nodes (monotony) guarantee
that once the Boolean status of a control edge is established, it does not change
for the current reaction. Thus, the computation converges in finite time. In
so-called constructively causal programs, signal values are all defined (i.e., not
1) in the end of each reaction from every reachable configuration of the system.

Well-formedness properties Not every GRC specification built with the
previously-defined nodes is meaningful. Otherwise said, while the CCFG of
a GRC specification is not explicitly structured, it has to satisfy a number of
well-formedness properties insuring its correct operation. Here are some of the
most important:

m apart from the internal signal and data dependencies, the CCFG must be
acyclic

2If at least a parallel branch has reported an exception code, then the parallel itself completes with an
exception (the highest-level among those generated by branches). If no branch reported an exception code,
but at least one paused, then the parallel pauses. Otherwise, the parallel terminates its execution and gives
control in sequence.

14

m the state decoding part of the CCFG has to be hierarchic, following the
HSR structure. Moreover, all state update nodes must occur after the
state decoding nodes.

These properties are insured by the translation scheme defined in the following
section and must be preserved by all GRC optimization algorithms.

4.3 Esterel to GRC translation

Most Esterel statements have distinct start and resumption behaviors. For
instance, the signal test is performed by “await S only when the statement
is resumed. This multiplexing of behaviors produces intuitive, high-level con-
structs, very useful in the development of large applications. At the same time,
it prohibits most control flow optimizations, as the start and resume behav-
iors are usually subject to different redundancies. The main purpose of the
Esterel translation to GRC is to make the control flow explicit and allow its
optimization.

In an approach borrowed from Berry’s circuit translation [Ber92, Ber99],
the translation of Esterel into GRC is based on a structural unfolding using
well-defined patterns associated to the primitive statements. The translation
involves two phases. The structural phase builds the HSR, the graph nodes, and
the control dependencies not corresponding to signals. The link phase properly
connects with control edges the ports corresponding to signal emission and
reception, and connects with data dependency edges the data operations that
access the same shared variable.

HSbRt su(rjface start degth S, | resume
sub-tree code # code 8:
Pl
surface(q) depth(q)
cgggs term pause cgggs term pause

Figure 1.5. Translation of p = suspend g when S

For each statement three objects are generated: the HSR sub-tree, the sur-
face code, representing the start behavior, and the depth code, representing the
resumption behavior of the statement. For instance, the suspend statement is
translated using the pattern pictured in fig. 1.5. To obtain the GRC representa-
tion, the three components are then put together at global level using the pattern
of fig. 1.6.

Optimizations for Faster Execution of Esterel Programs 15

HSR tree CCFG N

O

[1] [2]
0 (#)program T

1]
rogram
P o body
subtree

Figure 1.6. The global context

surface(body) depth(body)
terminate(2) terminate(2)

Cexit 0>

Well-studied semantic reasons [Ber99] often require a certain separation
between the start and the resume code associated with a statement. Performing
it, as we do, in a systematic and thorough way has the disadvantage of increasing
the GRC code size. However, the duplication may also reduce the number
and scope of signal and data dependencies, thus helping the optimization and
software code generation algorithms. More parsimonious code duplication
schemes like that of Edwards [Edw02] are supported by GRC, but we did not
evaluate them in practice.

4.4 Acyclic GRC specifications

In section 3.1 we introduced the notion of cyclic program, showing that it
depends on the chosen intermediate representation and compiling scheme. We
also explained why it is important in practice to unify the circuit-level and GRC-
level notions of acyclicity. We now derive a partial solution to this problem.
More exactly, we use the similarity between the Esterel translations to GRC
and digital circuits in order to determine the origin of the differences between
the two notions of acyclicity. Based on this analysis, we define a minimal
transformation of the GRC code that unifies the two notions, but still allows the
generation of efficient C code.

The result is weak in formulation, as it relies specific, unoptimized trans-
lation schemes. It is nevertheless important, because it offers a road-map for
developing flowgraph- and circuit-based compilers that accept the same classes
of programs.

The translation of Esterel into digital circuits is usually performed by en-
coding the control flow with wires (and gates), while the state is represented
using Boolean registers. Without losing generality, we shall use throughout
this section the circuit translation of Potop-Butucaru [PB02]. This one, a close
variant of the “reference” circuit translation of Berry, is exemplified in fig. 1.7.

16

a. HSR encoding b. CCFG [y [2] [CLK
encoding
SusP
:f>* 6l [10]
< > 1 1|
(0] ,) O oy
syncl? i8] [12]
[2]=[3]=[4]=[5] program J KILL
pauses —
wle) ()
0—1 |_|

B1| €1 11| 121 {sync
[e T |
<8> <9 <11> <12> @ @ @
| | T @‘ program
<8> <9> <111 <12> terminates
<9> <8> <12>

Figure 1.7. The circuit translation of our example. Unfilled gates perform the circuit-level
state encoding. To emphasize the similarity with the GRC representation of fig. 1.3 and 1.4, we
divided the circuit in two parts. To obtain the global circuit, connect the wires with identical
< num > or [num)] labels.

The circuit translation is very similar in form to our GRC translation: It
is based on patterns associated to the primitive statements of Esterel, and the
final circuit is obtained by structurally combining and linking these patterns. In
fact, one can consider the GRC code as an intermediate step in the translation of
Esterel into digital circuits, a step where the basic Esterel structures (state, tests,
synchronizations) have not yet been encoded with logic gates. For instance,
most of the gates and wires of fig. 1.7 can be obtained from the corresponding
GRC representation (fig. 1.3 and 1.4) through simple expansion operations.
We emphasized with darker gates the expansion of the topmost Switch node,
and with dotted boxes the expansion of the parallel synchronizers.

In both circuits and GRC specifications generated from Esterel programs we
can identify a distinct class of components whose role is exclusively to encode
the state of the program for the next instant. In GRC, these components are
the enter and exit state update operations. In the circuit of fig. 1.7 they are
the unfilled gates and thin wires that drive the registers. These state encoding
components never determine cycles, so that we can remove them in order to
perform our analysis using simplified versions of the CCFG flowgraph and of the
circuit. Fig. 1.8 gives the simplified CCFG and circuit associated with a small
example that has the particularity of being GRC-cyclic, but circuit-acyclic.

Optimizations for Faster Execution of Esterel Programs 17
start

present I then
present S then
pause
else
pause
end

nothing term(1) term(2) pause(2
1;
emit S term pause

— !
(@ (b)

Figure 1.8. Esterel example (a) that is GRC-cyclic (b), but circuit-acyclic (c).

After the simplification of the unneeded state encoding components, a very
simple correspondence exists between the GRC nodes and edges and the circuit
gates and wires. The simplified GRC code is in fact an abstracted version of
the simplified circuit code, which means that a GRC-acyclic Esterel program
is always circuit-acyclic.

At this point, we are able to see that expanding into logic gates a node of
type Switch or Test cannot lead to the removal of a cycle, as the resulting
logic gates bear the same static dependencies® as the initial node. Thus, only
the circuit expansion of a parallel synchronizer Sync node can remove causal
dependencies.

inactive[0]
K,[0] Ky[0] K,[0]
Ko K Ky -e
Kol 1] Ky[1] K,[1]
inactive[1]

Figure 1.9. The circuit-level parallel synchronizer for two parallel branches (0 and 1). The
completion codes are encoded with integers: termination = Ko, pause = K, the n*” surrounding
trap =Kn+1. With this encoding, computing the completion code of the parallel statement consists
in taking the greatest code produced by a branch.

Meanwhile, the circuit expansion of a synchronizer, given in fig. 1.9, is quite
complex and does not offer support for the generation of efficient sequential
code. To allow a better encoding, we shall try to keep the gates grouped into

3The static dependency relation between ports (input and output, without distinction) of nodes of a CCFG
graph, denoted with —, is the smallest transitive relation such that (1) if ¢ is an input port and o an output
port of the same node, then ¢ — o and (2) if a control arc connects in the CCFG the output port o with the
input port ¢, then o — 4. The CCFG is cyclic if p — p for some port p.

18

larger blocks. We define here a technique that allows us, in cases where the
circuit is acyclic, but the GRC code not, to split the synchronizer into a minimal
number of components of a form that allows a simple software encoding.

The observation that allows our minimal refinement concerns the internal
structure of the parallel synchronizers: The static dependencies between syn-
chronizer ports that disappear through circuit expansion are K; [br] — K;, with
J < 4. All the other dependencies (K;[br] — K;,7 > ¢ and Inactive[br]| —
K;) are preserved. The indices 7 and j range here over possible completion
codes (following the encoding defined in fig. 1.9), while br ranges over HSR
indices of branches of the corresponding parallel statement.

When a GRC synchronizer is part of a cycle, static dependencies link syn-
chronizer outputs to synchronizer inputs: K; — K; [br] for some % and j. If the
circuit expansion breaks the cycle, then 57 < 7. Otherwise, the cycle cannot be
broken by circuit expansion. We are then looking for the minimal expansion of
a synchronizer, under given constraints of the form Kj — K;[br], j < i.

We shall be splitting the synchronizers into parts that correspond to sets of
consecutive completion codes. A parallel synchronizer SYNC handling com-
pletion codes from 0 to n can be split into SYNC[0, k1].... ,SYNC[k;, n] with
0 < k1 < ... <k <n. Here, SYNC[k;, ki+1] receives the completion code
wires K; [br], k; <4 < ki1, produces the outputs K;, k; < ¢ < kj41, and:

» if k; = 0, then SYNC[k;, ki 1] receives the inputs Inactive[br].

m ifk; # 0, then SYNC[k;, ki1 1] receives from SYNC[k;_1, ki] one carry wire
per parallel branch.

Thus, our problem is to determine a sequence 0 < k1 < ... < k, < m of
minimal length 7 such that for each static dependency Kj — K;[br] (j < 1)
there exists 1 < ¢ < r such that i < k¢ < 7 (so that the cycle determined
by K; — K;[br] is broken through refinement). The algorithm that determines
such a sequence is given next. It takes as parameter the set DEPEND of pairs
(4,1) such that a static dependency K3 — K;[br] (j < %) exists in the GRC code,
and returns the list LIST of splitting points (numeric completion codes):

LIST:=NewVoidList ;
for code:=0 to n do
if (i,code) in DEPEND then
Append (LIST,code) ;
RemoveDependenciesBrokenByNewSplitPoint (DEPEND, code)
end
end

We do not formally prove here the minimality of the resulting split. Intuitively,
it is determined by the fact that split points are only appended to the list when

Optimizations for Faster Execution of Esterel Programs 19

this is required. For instance, if only one dependency exists (like in fig. 1.8),
the synchronizer shall be split in two parts.

S. Analysis and optimizations

The translation of Esterel into both circuits and flowgraph-based formats
like GRC usually results in code that is far from optimal. There are good
reasons for this: Translations have to be structurally defined, so that the code
resulting from a subprogram includes elements allowing it to be handled in any
surrounding reactive context. For instance, provision is made in the translated
code to let any subcomponent be started, resumed, or preempted. In addition,
the translated form maintains the activity information everywhere, consuming
memory elements for the state representation. Very often, large parts of the
program do not need such a heavy complete encapsulation (because they are
always active, to mention a simple case), and the description can be drastically
simplified.

For FSMs and digital circuits well-studied optimization techniques exist,
based on mathematical properties of the underlying formal models: bisimu-
lation minimization in the first case, combinational and sequential logic opti-
mization in the second. These techniques come together with very efficient
algorithms and software tools. However, they are mostly of a global nature, so
that they are generally not able to handle industrial-size specifications. At GRC
level one can hope to define optimizations based on static analysis techniques,
less complete but more efficient in complexity of analysis (low-exponent poly-
nomial). One main prospect in the introduction of the GRC format was indeed
to be able to describe and formally justify such optimizations on a well-defined
representation model. Some work has already been done in this direction in the
existing flowgraph-based compilers. Still, results lack generality and formal
support, due essentially to limitations of the intermediate compiler representa-
tions.

The optimization of a GRC specification is performed in two phases. First,
potential redundancies between state encoding elements are detected through
static analysis of the GRC code, and represented with tags on the HSR. The tags
are then used in the second phase, where actual optimizations (by removal of
edges and nodes) are performed on the CCFG. Actually, the tags are also used
to improve software encoding, but this aspect shall be presented in section 6.

The CCFG simplification phase may unveil more redundancies between state
elements, so that the optimization can be iterated to further savings. Current
practice shows that three optimization cycles (tag computation followed by
flowgraph simplification) are enough on our largest examples to reach full op-
timization.

20

5.1 HSR tag computation

The HSR serves two purposes in a GRC representation. It completes the
semantics of the flowgraph by keeping track of the state hierarchy and it also is
a repository for tags representing potential redundancies in the state represen-
tation. The choice of tags is given by their utility (experimentally determined)
in the optimization and encoding process. In addition to # and | |, that were
already defined, we currently use the tags: nt: and void:. Here is their
meaning:

m void: indicates that the tagged HSR node never remains active at the
end of a reaction. The associated statement is either never started, or
instantly preempted upon start.

m nt: (for non-terminating) indicates that the selection status of the tagged
HSR node is always equal to that of its parent. The tag is of specific
interest on direct children of parallel nodes. In general, a parallel branch
can terminate while other branches (and thus the parallel itself) remain
active. This, however, is not the case when the branch never terminates,
or when it only does so by raising an exception, thereby aborting the
whole parallel construct.

Note that other tags can be easily defined for use with different analysis and
optimization techniques. Promising analysis algorithms need, for instance,
information about loop scopes, or the refinement of the exclusion relation into
sequence and conditional exclusion. Our set of tags is only a first version, with
already good practical results.

The computation of tags currently relies on algorithms of linear complexity
in the size of the GRC specification. We set the void: tag on the HSR node
of index n if it falls in one of the following cases: (1) The CCFG contains no
enter(n) operation. (2) All of n’s children are tagged with void:. (3) The
parallel node n has at least one child tagged with both void: and nt:. (4) The
node n is child of a parallel node itself tagged with void:.

The nt: flag is set on all the children of unary HSR nodes. In addition,
it is set onto direct children of parallel nodes based on the following analysis
of the CCFG parallel synchronizers: Let p be a parallel HSR node, let c be
one of its children, and let s1, ..., sy be the parallel synchronizers associated
with p. Then, we set the nt: tag on c if none of s1,. .., Sy receives a control
edge representing the normal termination of the parallel branch c (i.e. if the
translation did not generate such an edge or if it has been optimized out). For
our example, the result of the tagging phase is given in fig. 1.10(a).

Optimizations for Faster Execution of Esterel Programs 21

[1] [2]
7 10
[8] [9] [[12]
! J 1L END
exit 9
emit mit ENI xit 11
nter 1 exit 12
nter enter
pause(6) pause(10) trapT(10)
Parallel synchronizer(5)
trapT(5) pause(5)
v
Cexit2>
a. tagged HSR b. simplified CCFG Cexit 0>

Figure 1.10. 'Tagged HSR and optimized CCFG for our example

5.2 CCFG optimizations

We apply on GRC flowgraphs two types of simplifications: (1) state ac-
cess/update protocol simplifications that take into account the new HSR tags
and (2) “internal” graph simplifications that do not use state representation
information.

Simplifications based on HSR tags. These simplifications take into ac-
count the state representation redundancies that are represented with tags in
order to simplify the state access/update protocol by removing unneeded oper-
ations. In many cases, maintaining the coherency of the flowgraph also requires
the removal of the driver flowgraph nodes. The following simplifications are
currently performed:

m the Switch nodes are simplified by erasing the outputs corresponding to
void: branches. If only one output remains, the node is deleted, and the
output is directly connected to the go input.

m Test nodes whose target is tagged with void: ornt: are deleted. If only
one of the tags is set on the target, then the go input is directly connected
to either then, if the tag isnt:, or else, for a void: tag.

m state update operations whose target is tagged with void: or nt: are
deleted. The associated Call node is also deleted, and its output is directly
connected to its input.

22

Internal flowgraph simplifications. Derived for the most part from clas-
sical control-flow optimization techniques, the “internal” graph simplifications
delete dead code, reduce the number of dependencies, and simplify the nodes.
We mention three techniques that proved very effective in practice:

m the constructive sweep intuitively corresponds to constant propagation
and to dead code removal. Dead code is identified by performing a
symbolic execution of the GRC code where all accessible control paths
are explored in parallel (linear complexity). Then, we can delete control
edges that have not been traversed. We also delete some of the adjacent
nodes:

— Call, Test, and Switch nodes whose go input port receives no more
edges, as well as Sync nodes whose input edges have all been
deleted.

— Test nodes whose expression has been uniformly set to true or false
due to the removal of signal edges.

m the dependency simplification consists of removing certain signal and
data dependencies between exclusive control branches (e.g. branches of
a test). We currently perform the simplification on tests (Test or Switch
nodes) whose expression only involves input signals or state tests.

m the useless code simplification consists of deleting code that does not
drive actions on data (state changes, output signal emissions, or user data
update).

Figure 1.10(b) shows the result of the simplifications on the control-flow graph
of our example.

6. Code generation

Once tagged and optimized, a GRC model is translated into sequential C
code. There are two important steps in this translation, to further improve
efficiency. First, a state encoding is choosed so that various enter and exit
operations of the CCFG can be collapsed into fewer C-level data operations.
Second, a proper static scheduling of the parallel threads in the CCFG is syn-
thesized. We recall that our approach currently handles only GRC-acyclic and
circuit-acyclic specifications, due essentially to the static scheduling algorithm
which allows an efficient, low-overhead encoding of the context switches.

6.1 State encoding

The state encoding must allow the hierarchic (top-down) identification of
the active program statements, through successive tests corresponding to the

Optimizations for Faster Execution of Esterel Programs 23

XX01: start instant

0011: await I,await KILL active
1011: await J, await KILL active
0011: await I,await END active
1111: await J, await END active
XXX0: program terminated

(b)

Figure 1.11. State encoding for our example: (a) the bit allocation, optimized according to the
HSR tags and (b) the encoding of the reachable states of the program.

state decoding nodes of the CCFG. Our encoding technique basically tries to
minimize the number and complexity of the state access operations performed
in a clock cycle, but without performing code duplication (like the automaton
expansion does).

The encoding algorithm starts by associating an integer test variable to HSR
nodes where a state decoding decision may be necessary:

m exclusive selection nodes having more than one child not tagged with
void:

m children of a parallel node that are not tagged with nt:

In the first case, the n children that are not tagged with void: are assigned
indices from O to n — 1, and the variable is set to 2 to mark the activation of the
branch of index z (and the de-activation of all the other). In the second case, the
variable is set to 1 when the parallel branch is active. Otherwise, it is 0. The
variable assignment can in fact be further optimized, as the activation bits are
in many cases redundant.

The second encoding phase uses exclusiveness properties to minimize the
size of the representation. The basic remark is here that variables associated to
nodes on different sub-trees of an exclusive selection node will never be decoded
in the same reaction. Then, they can share the same implementation variable to
minimize the executable size and the cache-miss probability. The multiplexing
algorithm is actually performed at bit level, in a bottom up fashion. This phase
defines the final mapping of the state operations onto the state variables of the
implementation.

Figure 1.11 pictures the bit allocation pattern of our example and gives the
encoding of the reachable states. For instance, 0011 represents an active pro-
gram (bitO=1) that is not in the start reaction (bit1=1) and that awaits the signals
I and KILL.

24

In order to match the HSR encoding, the state access primitives are trans-
formed into assignments and tests of the integer state variable. This step is
essential in the generation of efficient code, as each assignment operation usu-
ally encodes multiple state update primitives.

6.2 Scheduling and C code generation

To be executed on a sequential machine, the operations of the concurrent
CCFG must be scheduled, i.e. totally ordered in a way that complies with the
causality relation. A scheduling algorithm works by interleaving the concurrent
branches of the CCFG using context switches where the execution of a branch is
suspended and another branch is resumed. Context switches take time, and effi-
cient schedules should have as few of them as possible. Determining a schedule
with a minimal number of context switches is NP-complete, but our approach
produces acceptable code using a simple depth-first scheduling algorithm.

The CCFG represents with edges all control and data causality, so that
any topological order is a valid schedule. To avoid complex, data-dependent
scheduling issues, only acyclic GRC specifications are accepted for code gen-
eration. In these cases, a topological order always exists and any topological
order gives a static schedule, i.e. one that works at each clock cycle.

if (state&binary(0001)){ /*program is activex/
if (statekbinary(0010)){ /*not boot instant*/

if (1SUSP) {
int par = 1 ; /*parallel completion code, init. with the minimal code*/
bool cs = false ; /*context switch variablex/
bool END = 0 ; /*the internal signal, initially absent*/

/*parallel branch 2 starts the execution*/
if (state&binary(0100)) { cs=true ; /*suspend execution on branch 2%/}
else if (KILL) { state&=binary(1011) ; }
/*parallel branch 1 starts the execution*/
if (state&binary(1000)){ if(J){ END=1 ; state&=binary(0111) ; } }
else{ if(I){ 0=1 ; statel|=binary(1000) ; } }
/*parallel branch 2 is resumed*/
if(cs){ if (END){ par=2 ; } }
/*parallel synchronization codex/
if (par==2){ emit_0() ; state=binary(0000) ; }
¥
Yelse{ /*boot instant*/ state=binary(0010) ; }
}else{ error(‘‘program already terminated’’) ; }

Figure 1.12. Resulting C code. Note the Boolean context switch variable cs that is used to
resume the second parallel branch after the first one is executed. The global variable state is
initialized with 0001.

To determine an acceptable static schedule, the code generator uses a simple
“greedy” approach. Throughout the scheduling process, the list of concur-
rent branches is cyclically traversed from the beginning to the end. The code
generator then uses a depth-first traversal technique to schedule as much as
possible of the current concurrent branch before, if necessary, suspending it

Optimizations for Faster Execution of Esterel Programs 25

and going to the next after performing a context switch. Fig. 1.12 shows the
reaction function generated for our example. The variable state holds the state
representation. The context switches are encoded using Boolean guards. The
example needs only one (cs) in order to resume, if necessary, control on the sec-
ond parallel branch. In general, the resulting code is well-structured, as guards
corresponding to lower-level concurrent threads are subsumed to higher-level
ones.

7. Results

To measure the efficiency of our approach we developed a prototype GRC-
based optimizing compiler, called grc2c, that plugs into the Esterel compiler
system [Est00] developed at INRIA/CMA. The prototype compiles all GRC-
acyclic Esterel programs and implements the optimizations described in this
paper. In-depth technical information concerning the implementation is pro-
vided in [PBO2].

example description Esterel(LC) CCFG nodes
statements | initial | optimized

1-tcint turbochannel bus 516 798 375 46.9%
2-wristwatch berry’s example[Est00] 533 834 366 43.8%
3-atds100 video generator 1122 2119 1059 | 49.9%
4-mca200 shock absorber[CEGT96] 3769 4562 3596 | 78.8%
5-Chorus 0OS model[WBCT00] 4751 6299 3539 56.1%
6-Fuel avionics fuel controller 4986 8544 4516 | 52.8%
7-cabine avionics display[BBF+ 00] 10991 18872 8037 | 42.5%
8-global avionics controller 15831 18852 | 13253 | 70.3%

Table 1.1. Testbench examples: description and GRC optimization results

We compared the output of grc2c with the output of four other compilers:
The automata compiler of Bres[Bre02], the circuit-based compiler of Berry
[Est00], the EC compiler of Edwards [Edw02], and the Saxo compiler of Closse
et al. [WBC100]. A state-of-the-art sequential circuit optimizer (SIS/blifopt
[SSL192]) has been used whenever possible on the intermediate netlist repre-
sentation of the circuit-based compiler.

The examples of the testbench are, wristwatch excepted, industrial exam-
ples of controllers, either directly programmed in Esterel or obtained through
automatic translation from SyncCharts [And96] specifications. Table 1.1 gives
the initial and optimized specification sizes, and a short description for each
of our 8 examples. The LC statement count is good estimation of the Esterel
specification size. The unoptimized number of nodes in the GRC flowgraph is
always larger than the LC count due to the demultiplexing and to the structural

26

code duplication. However, despite variations in the optimization ratios, the
optimized figures always fall under the LC count, meaning that our systematic
code duplication pays off. Recall that the optimization algorithms are all linear,

| example | automata | circuit | EC | Saxo | grc2c |
1-tcint 0.30 0.66° | 025] 036 | 0.25
2-wristwatch 0.95 1.40° 1.26 1.29 0.95
3-atds100 0.05 3.69° | 0.14 | 0.12 | 0.08
4-mca200 4 48.19° | 2.61 | 3.68 1.88
5-chorus 4 5429 | 276 | 530 | 1.10
6-fuel 4 37.66 | =7 | 16.81 | 15.65
7-cabine 4 -6 713197 | 29.26
8-global 4 6 —7 | 5745 | 43.27

Table 1.2. Generated code speed (sec/1Mcycle)

so that the optimization phase does not represent a bottleneck in the compilation
process. On the test machine (a Linux/PIII/1GHz/128M) it takes less than 1
minute for the largest example, depending quasi-linearly on the specification
size.

| example | automata | circuit | EC | Saxo | grc2c |
1-tcint 72.8 114 [115] 153 17.5
2-wristwatch 14.8 11.2° | 133 | 16.1 14.7
3-atds100 28.8 31.3° | 217 | 339 | 337
4-mca200 4 171.8° | 702 | 789 | 67.7
5-chorus 7 2303 | 99.5 | 104.1 | 98.6
6-fuel 4 2014 | =7 | 1475 | 168.7
7-cabine 4 6 —7 1 256.1 | 196.8
8-global —* 6 —7 1 309.1 | 273.9

Table 1.3. Object code size (Kbytes)

For each example, the C routines generated by the 5 compilers have been
compiled using “gcc2.96 -07 and then run for 1 million cycles to determine
the average reaction time. The input sequences were either provided by the pro-
grammer of the application or (when none provided) generated pseudorandom

4Out of memory or timeout (1 hour) during automaton expansion

5The intermediate circuit representation has been aggressively optimized using SIS/blifopt prior to C code
generation (only possible on small- to medium-sized specifications).

6gcc -0 exhausted system memory during compilation.

"The code was not available for tests.

Optimizations for Faster Execution of Esterel Programs 27

inputs satisfying the given environmental constraints. The results are presented
in the tables 1.2 and 1.3.

The three flowgraph-based compilers (EC, Saxo, and grc2c) produce similar
figures in both speed and size. Among them, grc2c generates faster code,
while the differences in code size are not relevant. This seems to indicate that
(1) removing redundant state tests (like we do) greatly improves the code speed
and (2) the C language encoding of grc2c could be improved to match on small
examples the EC-generated code size.

As expected, the code generated by the circuit-based compiler is slow, even
when the intermediate circuit representation has been aggressively optimized.
The circuit-based code is also very large and difficult to compile.

Surprisingly, only one example results into grc2c-generated code that is
slower than its automata-based counterpart. This is probably due to the fact that
the (small) processor caches penalize larger programs, and to the fact that GRC-
level optimizations leave only few redundancies in the state representation. The
automata-based compilation is restricted to small programs, even more than
circuit optimization. For all but 3 examples in our testbench, we interrupted
the automaton expansion after 1 hour.

The global grc2c compilation time, including GRC code generation, opti-
mization, and C encoding, is negligible. It increases from several seconds to
approximately 2 minutes, following the size of the GRC specification. The
grc2c-generated C code is easily compiled by gcc.

8. Conclusion and Future work

We introduced in this paper a new intermediate model, called GRC, for the
representation of Esterel programs. The GRC representation makes the control
flow of the Esterel program explicit, but also preserves information about its
initial structure. Thus, its supports a variety of efficient analysis, optimization,
and sequential code generation algorithms based on low-cost static analysis.
Benchmarks show that the GRC-based grc2c compiler generates faster code
than the other high-capacity compilers, for a similar code size.

The GRC representation has well-defined formal semantics, allowing us to
(1) prove the correctness of the software code with respect to the constructive
semantics of Esterel and (2) maintain a close relation between GRC and circuit
translations of an Esterel program. We were therefore able to define a notion of
acyclic GRC description and match it with the corresponding one on circuits.
The result is of special practical interest, since acyclicity is the main correctness
criterion used for Esterel programs.

The grc2c compiler has been implemented as a module of the INRIA/CMA
Esterel version 5 compiler system. At the same time, some of the optimizations
defined in this paper have been incorporated into Esterel Studio, an industrial

28

Esterel-based environment for the design and verification of complex systems-
on-a-chip (SoC).

Other applications are possible, in addition to generating software code for
Esterel. The GRC-based approach could be easily adapted to compile other
synchronous languages and formalisms with fine-grained parallelism, such as
ECL [LS99] or the SyncCharts [And96]. However, the most obvious applica-
tion of Esterel is the generation of optimized digital circuit code for Esterel:
The analysis and optimizations presented in this paper are not software-specific
and some experiments [PB01] suggest that applying them to Esterel-generated
circuits would result in important simplifications. Such Esterel-specific sim-
plifications should be performed before the main circuit optimization phase in
order to improve its output and (usually long) execution time. However, apply-
ing the simplifications on flat netlists would be inefficient. Instead, the GRC
code should be used as a target-independent representation for (Esterel-specific)
optimizations based on high-level structural information. The optimized GRC
code should then be translated into a netlist and passed to a state-of-the-art
circuit optimizer. Such a GRC-based optimized circuit generator is under con-
struction at Columbia University under the supervision of Stephen Edwards.

Many directions remain to be explored. First, it is essential to pursue the
development of new GRC-level analysis and optimization techniques. The
domain seems promising due to the large quantity of Esterel structural informa-
tion not yet exploited. An interesting problem is here to determine the amount
of code duplication that results in the best size/speed ratio, and to reduce the
unneeded duplication by sharing identical branches.

A second direction that we would like to investigate is the generation of
efficient simulation code for correct cyclic GRC specifications, thereby raising
the applicability to the same class of programs as the automata- and circuit-
based compilers. Once cycles have been precisely located and proved correct,
an idea would be to run them locally under the 3-valued constructive semantics
of circuits. Some advances in this direction can be found in Potop-Butucaru
[PBO2]. Other schemes would require substituting the cyclic GRC subgraph
by another, equivalent acyclic one. Of particular interest is here the resynthesis
technique of Edwards [Edw03], which performs a controlled code duplication
that preserves many of the structures of the initial circuit. The technique could be
extended to perform a similar GRC-level resynthesis while still using the current
circuit-level analysis. Another question, related but nevertheless distinct, would
be to find GRC-level static analysis approximation methods that give sufficient
conditions for correctness in cyclic cases, and then try to derive a corresponding,
more dynamic scheduling scheme which could cope with different ordering
according to different state configurations.

Finally, we are investigating the possibility of a union, at intermediate repre-
sentation level, between Esterel and the synchronous data-flow language Signal,

REFERENCES 29

for analysis and efficient simulation purposes. The main goal would be here
to use Esterel for specifying behaviors and Signal for specifying architectural
aspects. The high-level intermediate structures of the Signal compiler — the
clock tree and the conditional dependency graph — are respectively similar in
function and form to the HSR and the CCFG of the GRC code. The first rep-
resents the hierarchy of the activation conditions, while the second represents
the actual control and data flow. However, important differences exits: The
HSR of a GRC specification represents the internal structure of the Esterel pro-
gram, closely followed by the state encoding/decoding part of the CCFG. In
the Signal compiler, the activation conditions of the clock tree are synthesized
from (clock) constraints on the input and output signals. Thus, the union would
require the ability to assign/derive complex interface constraints to/from an
Esterel specification.

References

[And96] Charles André. Representation and analysis of reactive behaviors:
A synchronous approach. In Proceedings CESA’96, Lille, France,
July 1996. Also available as I3S technical report RR 95-52.

[BBO1] Albert Benveniste and Gérard Berry. The synchronous approach
to reactive and real-time systems. Proceedings of the IEEE,
79(9):1270-1282, 1991.

[BBFt00] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot,
Eric Nassor, and Robert de Simone. Esterel: A formal method
applied to avionic software development. Science of Computer
Programming, 36:5-25, 2000.

[BCE1T03] Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halb-
wachs, Paul LeGuernic, and Robert de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1):64-83,
2003.

[BCG1T99] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, A. Sangiovanni-Vincentelli, E. Sentovich, and
K. Suzuki. Synthesis of software programs for embedded con-
trol applications. IEEE Transactions on Computer-Aided Design,
18(6):834-849, 1999.

[BdAS91] Frédéric Boussinot and Robert de Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293-1304, 1991.

[Ber92] Gérard Berry. Esterel on hardware. Philosophical Transactions of
the Royal Society of London, Series A, 339:87-104, 1992.
[Ber99] Gérard Berry. The constructive semantics of Pure Esterel. Draft

book available at http://www.esterel-technologies.com/, 1999.

30

[BGI2]

[Bre02]

[CDO97]

[CEGT96]

[CGP99]

[CPPT02]

[Edw02]

[Edw03]

[Est00]

[FLLO95]

[Hal93]

[HCRPI1]

Gérard Berry and Georges Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation. Science
of Computer Programming, 19(2):87-152, 1992.

Yannis Bres. Exploration implicite et explicite de I’espace d’états
atteignables de circuits logiques Esterel (Implicit and explicit ex-
ploration of the reachable state space of Esterel logic circuits).
PhD thesis, Ecole des Mines de Paris, december 2002.

Claude Castelluccia, Walid Dabbous, and Sean O’Malley. Gener-
ating efficient protocol code from an abstract specification. IEEE/
ACM Transactions on Networking, 5(4):514-524, 1997.

M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, K. Suzuki, and A. Sangiovanni-Vincentelli. A case
study in computer-aided co-design of embedded systems. Design
Automation for Embedded Systems, 1:51-67, 1996.

Paul Caspi, Alain Girault, and Daniel Pilaud. Automatic distri-
bution of reactive systems for asynchronous networks of proces-
sors. IEEE Transactions on Software Engineering,25(3):416-427,
1999.

Etienne Closse, Michel Poize, Jacques Pulou, Patrick Vernier, and
Daniel Weil. Saxo-RT: Interpreting Esterel semantic on a sequen-
tial execution structure. In Florence Maraninchi, Alain Girault,
and Eric Rutten, editors, Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier, 2002.

Stephen Edwards. An Esterel compiler for large control-dominated
systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 21(2), February 2002.

Stephen Edwards. Making cyclic circuits acyclic. In Proceedings
of the 40th conference on Design automation, Anaheim, CA, USA,
2003.

The Esterel manual, part of the Esterel version 5.92 distribution.
Available for download at www.esterel-technologies.com, 2000.

Robert French, Monica Lam, Jeremy Levitt, and Kunle Oluko-
tun. A general method for compiling event-driven simulations.
In Proceedings of the 32nd Design Automation Conference, San
Francisco, CA, USA, 1995.

Nicolas Halbwachs. Synchronous programming of reactive sys-
tems. Kluwer Academic Publishers, 1993.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-

laud. The synchronous data flow programming language Lustre.
Proceedings of the IEEE, 79(9):1305-1320, 1991.

REFERENCES 31

[LGLLO91]

[LPM99]

[LS99]

[Muc97]

[PBO1]

[PB02]

[SBT96]

[SSL192]

[Tom97]

[WBCT00]

Paul LeGuernic, Thierry Gauthier, Michel LeBorgne, and Claude
LeMaire. Programming real-time applications with Signal. Pro-
ceedings of the IEEE, 79(9):1321-1336, 1991.

Jaejin Lee, David Padua, and Samuel Midkiff. Basic compiler al-
gorithms for parallel programs. In Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, Atlanta, GA, USA, 1999.

Luciano Lavagno and Ellen Sentovich. ECL: A specification en-
vironment for system-level design. In Proceedings of the 36th
Design Automation Conference, New Orleans, LA, 1999.

Steven Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, 1997.

Dumitru Potop-Butucaru. Fast redundancy elimination using high-
level structural information from Esterel. RR 4330, INRIA, Sophia
Antipolis, France, 2001.

Dumitru Potop-Butucaru. Optimizations for faster simulation of
Esterel programs. PhD thesis, Ecole des Mines de Paris, November
2002.

Tom Shiple, Gérard Berry, and Hervé Touati. Constructive analysis
of cyclic circuits. In Proceedings of the International Design and
Testing Conference, Paris, France, 1996.

Ellen Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon,
Rajeev Murgai, Alexander Saldanha, Hamid Savoj, Paul Stephan,
Robert Brayton, and Alberto Sangiovanni-Vincentelli. SIS: A sys-
tem for sequential circuit synthesis. Memorandum M92/41, UCB,
ERL, 1992.

Horia Toma. Analyse constructive et optimisation séquentielle
des circuits générés a partir du langage synchrone réactif Es-
terel (Constructive analysis and sequential optimizations of cir-
cuits generated from the synchronous reactive language Esterel).
PhD thesis, Ecole des Mines de Paris, September 1997.

Daniel Weil, Valérie Bertin, Etienne Closse, Michel Poize, Patrick
Vernier, and Jacques Pulou. Efficient compilation of Esterel for
real-time embedded systems. In Proceedings CASES2000, San
Jose, CA, USA, 2000.

