# New uses in Symmetric Cryptography: From Cryptanalysis to Designing

### Clémence Bouvier <sup>1,2</sup>

including joint works with Augustin Bariant<sup>2</sup>, Pierre Briaud<sup>1,2</sup>, Anne Canteaut<sup>2</sup>, Pyrros Chaidos<sup>3</sup>, Gaëtan Leurent<sup>2</sup>, Léo Perrin<sup>2</sup> and Vesselin Velichkov<sup>4,5</sup>

<sup>1</sup>Sorbonne Université, <sup>2</sup>Inria Paris, <sup>3</sup>National & Kapodistrian University of Athens, <sup>4</sup>University of Edinburgh, <sup>5</sup>Clearmatics, London

May 20th, 2022



Ínnin\_

### Some motivations

### A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

| Category | Parameters      | Security Level (bits) | Bounty              |
|----------|-----------------|-----------------------|---------------------|
| Easy-    | <del>r=6-</del> | <del>9</del> -        | <del>\$2,000-</del> |
| Fasy-    |                 | 45-                   | <del>\$4,000-</del> |
| Medium-  | r=14            | -22                   | <del>\$6,000-</del> |
| Hard-    | r-10            | -28-                  | \$12,000            |
| Hard     |                 | - 46                  | \$26,000            |

| Category | Parameters | Security Level (bits) | Bounty             |
|----------|------------|-----------------------|--------------------|
| Easy     | N=4, m=3   | 25                    | <del>\$2,000</del> |
| Easy     | N=6, m=2   | 25                    | \$4,000            |
| Medium   | N=7, m=2   | 29                    | \$6,000            |
| Hard     | N=5, m=3   | 30                    | \$12,000           |
| Hard     | N=8, m=2   | 33                    | \$26,000           |

| Category        | Parameters | Security Level (bits) | Bounty             |
|-----------------|------------|-----------------------|--------------------|
| <del>Easy</del> | RP=3       | 8                     | <del>\$2,000</del> |
| Easy            | RP=8       | 16                    | \$4,000            |
| Medium          | RP=1)      | 24                    | \$6,000            |
| Hard            | RP=19      | 32                    | \$12,000           |
| Hard            | RP=24      | 40                    | \$26,000           |

(a) Feistel-MiMC

(b) Rescue Prime

(c) Poseidon

🖙 Bariant, <u>Bouvier</u>, Leurent, Perrin

Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

Total Bounty Budget: \$200 000

### Some motivations

### A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

| Category | Parameters      | Security Level (bits) | Bounty              |
|----------|-----------------|-----------------------|---------------------|
| Easy-    | <del>r=6-</del> | <del>9</del> -        | <del>\$2,000-</del> |
| Fasy-    |                 | 45-                   | <del>\$4,000-</del> |
| Medium-  | r=14            | -22                   | <del>\$6,000-</del> |
| Hard-    | r-10            | -29-                  | \$12,000            |
| Hard     |                 | - 46                  | \$26,000            |

| Category | Parameters | Security Level (bits) | Bounty             |
|----------|------------|-----------------------|--------------------|
| Easy     | N=4, m=3   | 25                    | <del>\$2,000</del> |
| Easy     | N=6, m=2   | 25                    | \$4,000            |
| Medium   | N=7, m=2   | 29                    | \$6,000            |
| Hard     | N=5, m=3   | 30                    | \$12,000           |
| Hard     | N=8, m=2   | 33                    | \$26,000           |

| Category        | Parameters | Security Level (bits) | Bounty             |
|-----------------|------------|-----------------------|--------------------|
| <del>Easy</del> | RP=3       | 8                     | <del>\$2,000</del> |
| Easy            | RP=8       | 16                    | <del>\$4,000</del> |
| Medium          | RP=13      | 24                    | <del>\$6,000</del> |
| Hard            | RP=19      | 32                    | \$12,000           |
| Hard            | RP=24      | 40                    | \$26,000           |

(a) Feistel-MiMC

(b) Rescue Prime

(c) Poseidon

🖙 Bariant, <u>Bouvier</u>, Leurent, Perrin

Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

Total Bounty Budget: \$200 000

More and more primitives

### Some motivations

### A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

| Category | Parameters      | Security Level (bits) | Bounty              |
|----------|-----------------|-----------------------|---------------------|
| Easy-    | r=6-            | <del></del>           | S2;000-             |
| Fasy-    | retil           | 45                    | \$4,000-            |
| Medium-  | <del>r=14</del> | -22-                  | <del>66;000</del> - |
| Hard-    | r-10            | -29-                  | \$12,000            |
| Hard     | r=22-           | - 46                  | \$26,000            |

| Category | Parameters | Security Level (bits) | Bounty             |
|----------|------------|-----------------------|--------------------|
| Easy     | N=4, m=3   | 25                    | <del>\$2,000</del> |
| Easy     | N=6, m=2   | 25                    | \$4,000            |
| Medium   | N=7, m=2   | 29                    | \$6,000            |
| Hard     | N=5, m=3   | 30                    | \$12,000           |
| Hard     | N=8, m=2   | 33                    | \$26,000           |

| Category | Parameters | Security Level (bits) | Bounty             |
|----------|------------|-----------------------|--------------------|
| Easy     | RP=3       | 8                     | <del>\$2,000</del> |
| Easy     | RP=8       | 16                    | <del>\$4,000</del> |
| Medium   | RP=13      | 24                    | \$6,000            |
| Hard     | RP=19      | 32                    | \$12,000           |
| Hard     | RP=24      | 40                    | \$26,000           |

(a) Feistel-MiMC

(b) Rescue Prime

(c) Poseidon

🖙 Bariant, <u>Bouvier</u>, Leurent, Perrin

Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

Total Bounty Budget: \$200 000

More and more primitives that need to be better understood!

# Content

### New uses in Symmetric Cryptography: From Cryptanalysis to Designing.



#### Emerging uses in symmetric cryptography

- A need of new primitives
- Comparison with "usual" case

### On the algebraic degree of MiMC<sub>3</sub>

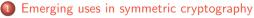
- Preliminaries
- Exact degree
- Integral attacks

### **Practical Attacks**

### Anemoi

- CCZ-equivalence
- New Mode

need of new primitives omparison with "usual" case



- A need of new primitives
- Comparison with "usual" case

### 2 On the algebraic degree of MiMC<sub>3</sub>

- Preliminaries
- Exact degree
- Integral attacks

### 3 Practical Attacks

### 4 Anemoi

- CCZ-equivalence
- New Mode

# Background

Symmetric cryptography: we assume that a key is already shared.

- $\star$  Stream cipher
- ⋆ Block cipher

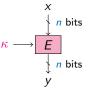
#### A need of new primitives Comparison with "usual" cas

# Background

Symmetric cryptography: we assume that a key is already shared.

- ★ Stream cipher
- $\star$  Block cipher

- $\star$  input: *n*-bit block *x*
- $\star$  parameter: k-bit key  $\kappa$
- \* output: *n*-bit block  $y = E_{\kappa}(x)$
- $\star$  symmetry: E and  $E^{-1}$  use the same  $\kappa$



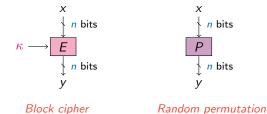
Block cipher

# Background

Symmetric cryptography: we assume that a key is already shared.

- ★ Stream cipher
- $\star$  Block cipher

- $\star$  input: *n*-bit block *x*
- $\star$  parameter: k-bit key  $\kappa$
- \* output: *n*-bit block  $y = E_{\kappa}(x)$
- $\star$  symmetry: E and  $E^{-1}$  use the same  $\kappa$



A need of new primitives Comparison with "usual" case

### A need of new primitives

**Problem**: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- Systems of Zero-Knowledge (ZK) proofs
   Example: SNARKs, STARKs, Bulletproofs

Primitives designed to minimize the number of multiplications in finite fields.

A need of new primitives Comparison with "usual" case

### A need of new primitives

**Problem**: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- Systems of Zero-Knowledge (ZK) proofs
   Example: SNARKs, STARKs, Bulletproofs

Primitives designed to minimize the number of multiplications in finite fields.

### $\Rightarrow$ What differs from the "usual" case?

A need of new primitives Comparison with "usual" case

### Comparison with "usual" case

### A new environment

# "Usual" case \* Field size: $\mathbb{F}_{2^n}$ , with $n \simeq 4, 8$ (AES: n = 8). \* Operations:

logical gates/CPU instructions

### Arithmetization-friendly

- \* Field size:  $\mathbb{F}_q$ , with  $q \in \{2^n, p\}, p \simeq 2^n$ ,  $n \ge 64$ .
- \* Operations: large finite-field arithmetic

A need of new primitives Comparison with "usual" case

# Comparison with "usual" case

### A new environment

### "Usual" case

\* Field size:

 $\mathbb{F}_{2^n}$ , with  $n \simeq 4, 8$  (AES: n = 8).

\* Operations: logical gates/CPU instructions

### Arithmetization-friendly

- \* Field size:  $\mathbb{F}_q$ , with  $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$ .
- \* Operations: large finite-field arithmetic

### New properties

### "Usual" case

 $\star$  Operations:

 $y \leftarrow R(x)$ 

\* Efficiency: implementation in software/hardware

# Arithmetization-friendly

 $\star$  Operations:

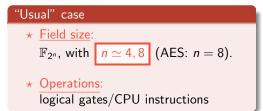
$$y == R(x)$$

\* Efficiency: integration within advanced protocols

A need of new primitives Comparison with "usual" case

# Comparison with "usual" case

### A new environment



#### Arithmetization-friendly

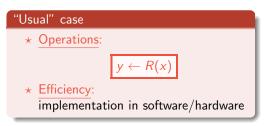
\* Field size:

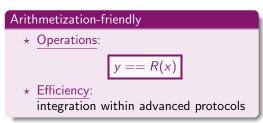
Find size:  

$$\mathbb{F}_q$$
, with  $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$ 

\* Operations: large finite-field arithmetic

### New properties





Preliminaries Exact degree Integral attacks

#### Emerging uses in symmetric cryptography

- A need of new primitives
- Comparison with "usual" case

### On the algebraic degree of MiMC<sub>3</sub>

- Preliminaries
- Exact degree
- Integral attacks

### Practical Attacks

### 4 Anemoi

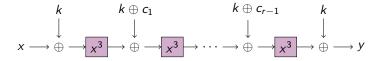
- CCZ-equivalence
- New Mode

Preliminaries Exact degree Integral attacks

# The block cipher MiMC

- $\star$  Minimize the number of multiplications in  $\mathbb{F}_{2^n}$ .
- ★ Construction of MiMC<sub>3</sub> [Albrecht et al., EC16]:
  - \* *n*-bit blocks (*n* odd  $\approx$  129)
  - $\star$  *n*-bit key *k*
  - \* decryption : replacing  $x^3$  by  $x^s$  where

$$s = (2^{n+1} - 1)/3$$



Preliminaries Exact degree Integral attacks

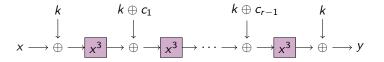
# The block cipher MiMC

- \* Minimize the number of multiplications in  $\mathbb{F}_{2^n}$ .
- ★ Construction of MiMC<sub>3</sub> [Albrecht et al., EC16]:
  - \* *n*-bit blocks (*n* odd  $\approx$  129)
  - ★ n-bit key k
  - \* decryption : replacing  $x^3$  by  $x^s$  where  $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil .$ 

| n | 129 | 255 | 769 | 1025 |
|---|-----|-----|-----|------|
| R | 82  | 161 | 486 | 647  |

Number of rounds for MiMC instances.



Preliminaries Exact degree Integral attacks

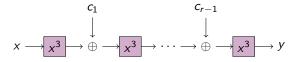
# The block cipher MiMC

- $\star$  Minimize the number of multiplications in  $\mathbb{F}_{2^n}$ .
- ★ Construction of MiMC<sub>3</sub> [Albrecht et al., EC16]:
  - $\star$  *n*-bit blocks (*n* odd  $\approx$  129)
  - $\star$  *n*-bit key *k*
  - \* decryption : replacing  $x^3$  by  $x^s$  where  $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil \ .$ 

| n | 129 | 255 | 769 | 1025 |
|---|-----|-----|-----|------|
| R | 82  | 161 | 486 | 647  |

Number of rounds for MiMC instances.



Preliminaries Exact degree Integral attacks

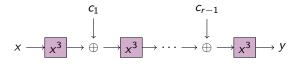
# The block cipher MiMC

- \* Minimize the number of multiplications in  $\mathbb{F}_{2^n}$ .
- ★ Construction of MiMC<sub>3</sub> [Albrecht et al., EC16]:
  - $\star$  *n*-bit blocks (*n* odd  $\approx$  129)
  - ★ n-bit key k
  - \* decryption : replacing  $x^3$  by  $x^s$  where  $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil \ .$ 

| n | 129 | 255 | 769 | 1025 |
|---|-----|-----|-----|------|
| R | 82  | 161 | 486 | 647  |

Number of rounds for MiMC instances.



Bouvier, Canteaut, Perrin
 On the Algebraic Degree of Iterated Power Functions

Preliminaries Exact degree Integral attacks

# Algebraic degree

Let  $f : \mathbb{F}_2^n \to \mathbb{F}_2$ , there is a unique multivariate polynomial in  $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$ :

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$$

This is the Algebraic Normal Form (ANF) of f.

#### Definition

Algebraic Degree of  $f : \mathbb{F}_2^n \to \mathbb{F}_2$ :

 $\deg^{a}(f) = \max\left\{\operatorname{wt}(u): u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0\right\},\$ 

Preliminaries Exact degree Integral attacks

# Algebraic degree

Let  $f : \mathbb{F}_2^n \to \mathbb{F}_2$ , there is a unique multivariate polynomial in  $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$ :

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where  $a_u \in \mathbb{F}_2$ ,  $x^u = \prod_{i=1}^n x_i^{u_i}$ 

This is the Algebraic Normal Form (ANF) of f.

#### Definition

Algebraic Degree of  $f : \mathbb{F}_2^n \to \mathbb{F}_2$ :

$$\deg^{a}(f) = \max \left\{ \operatorname{wt}(u) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0 \right\} \,,$$

If  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ , then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where  $F(x) = (f_1(x), ..., f_m(x)).$ 

Preliminaries Exact degree Integral attacks

# Algebraic degree

Let  $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ . Then using the isomorphism  $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$ ,

there is a unique univariate polynomial representation on  $\mathbb{F}_{2^n}$  of degree at most  $2^n - 1$ :

$$\mathcal{F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in\mathbb{F}_{2^n}$$

#### Definition

Algebraic degree of  $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ :

$$\deg^{\mathsf{a}}(\mathsf{F}) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \neq 0\}$$

Example:

 $\deg^{u}(x\mapsto x^{3})=3 \qquad \qquad \deg^{a}(x\mapsto x^{3})=2$ 

Preliminaries Exact degree Integral attacks

# Algebraic degree

Let  $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ . Then using the isomorphism  $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$ ,

there is a unique univariate polynomial representation on  $\mathbb{F}_{2^n}$  of degree at most  $2^n - 1$ :

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in {\mathbb F}_{2^n}$$

#### Definition

Algebraic degree of  $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ :

$$\deg^{\mathfrak{a}}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

Example:  $\deg^u(x \mapsto x^3) = 3$   $\deg^a(x \mapsto x^3) = 2$ 

If  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$  is a permutation, then

 $\deg^a(F) \le n-1$ 

Preliminaries Exact degree Integral attacks

### Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace  $\mathcal{V} \subset \mathbb{F}_2^n$  with dim  $\mathcal{V} \geq \deg^a(F) + 1$ , we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Preliminaries Exact degree Integral attacks

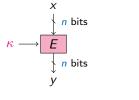
### Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace  $\mathcal{V} \subset \mathbb{F}_2^n$  with dim  $\mathcal{V} \geq \deg^a(F) + 1$ , we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1



Block cipher



Random permutation

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For *r* rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star$  Aim: determine  $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$ .
- \* <u>Round 1:</u>  $B_3^1 = 2$  $\mathcal{P}_1(x) = x^3$ ,  $(c_0 = 0)$  $3 = [11]_2$

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For *r* rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star$  Aim: determine  $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$ .

```
* <u>Round 1</u>: B_3^1 = 2

\mathcal{P}_1(x) = x^3, (c_0 = 0)

3 = [11]_2

* <u>Round 2</u>: B_3^2 = 2

\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3

9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2
```

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For *r* rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star$  Aim: determine  $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$ .

\* Round 1:  $B_{3}^{1} = 2$   $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* Round 2:  $B_{3}^{2} = 2$   $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$   $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* Round 1:  $B_{3}^{1} = 2$   $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* Round 2:  $B_{3}^{2} = 2$   $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$   $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .

Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

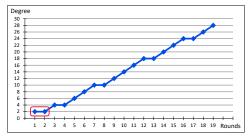
For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

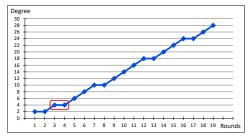
For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

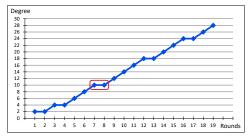
For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

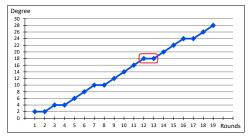
For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

# First Plateau

Round *i* of MiMC<sub>3</sub>:  $x \mapsto (x + c_{i-1})^3$ .

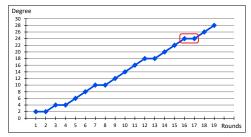
For r rounds:

- \* Upper bound [Eichlseder et al., AC20]:  $\lceil r \log_2 3 \rceil$ .
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

\* <u>Round 1:</u>  $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$   $3 = [11]_{2}$ \* <u>Round 2:</u>  $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$  $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$ 

#### Definition

There is a **plateau** whenever  $B_3^r = B_3^{r-1}$ .



Preliminaries Exact degree Integral attacks

## An upper bound

### Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

Preliminaries Exact degree Integral attacks

## An upper bound

### Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1} \}$$

### Example:

$$\mathcal{P}_{1}(x) = x^{3} \implies \mathcal{E}_{1} = \{3\}.$$

$$3 = [11]_{2} \xrightarrow{\succeq} \begin{cases} [00]_{2} = 0 & \stackrel{\times 3}{\longrightarrow} & 0\\ [01]_{2} = 1 & \stackrel{\times 3}{\longrightarrow} & 3\\ [10]_{2} = 2 & \stackrel{\times 3}{\longrightarrow} & 6\\ [11]_{2} = 3 & \stackrel{\times 3}{\longrightarrow} & 9 \end{cases}$$

$$\mathcal{E}_{2} = \{0, 3, 6, 9\},$$

$$\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}.$$

Preliminaries Exact degree Integral attacks

# An upper bound

### Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ 3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1} \}$$

No exponent  $\equiv 5,7 \mod 8 \Rightarrow$  No exponent  $2^{2k} - 1$ 

$$\begin{array}{ll} \hline \text{Example:} & 63 = 2^{2 \times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\} \\ & \forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \leq 4 \end{array} \qquad \Rightarrow B_3^4 \leq 4 \end{array}$$

Preliminaries Exact degree Integral attacks

# Bounding the degree

#### Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \le 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$ 

Preliminaries Exact degree Integral attacks

## Bounding the degree

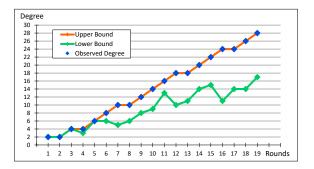
### Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$ 

And a lower bound if  $3^r < 2^n - 1$ :

 $B_3^r \geq wt(3^r)$ 



Preliminaries Exact degree Integral attacks

## Exact degree

### Maximum-weight exponents:

Let  $k_r = \lfloor r \log_2 3 \rfloor$ .  $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$   $\star \text{ if } k_r \text{ is odd,}$  $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ 

 $\star$  if  $k_r$  is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$
  
$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$

Preliminaries Exact degree Integral attacks

## Exact degree

### Maximum-weight exponents:

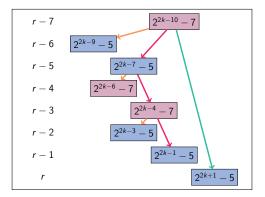
Let  $k_r = \lfloor r \log_2 3 \rfloor$ .  $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F}$  with  $\mathcal{F} = \{465, 571, \dots\}$ :  $\star$  if  $k_r$  is odd,  $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$ ,

 $\star$  if  $k_r$  is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

#### Example:

$$\begin{split} &123=2^7-5=2^{k_5}-5\qquad \in \mathcal{E}_5,\\ &4089=2^{12}-7=2^{k_8}-7\qquad \in \mathcal{E}_8. \end{split}$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Preliminaries Exact degree Integral attacks

## Exact degree

### Maximum-weight exponents:

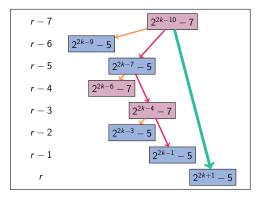
Let  $k_r = \lfloor r \log_2 3 \rfloor$ .  $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F}$  with  $\mathcal{F} = \{465, 571, \dots\}$ :  $\star$  if  $k_r$  is odd,  $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$ ,

 $\star$  if  $k_r$  is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

#### Example:

$$\begin{split} &123=2^7-5=2^{k_5}-5\qquad \in \mathcal{E}_5,\\ &4089=2^{12}-7=2^{k_8}-7\qquad \in \mathcal{E}_8. \end{split}$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Preliminaries Exact degree Integral attacks

## Exact degree

### Maximum-weight exponents:

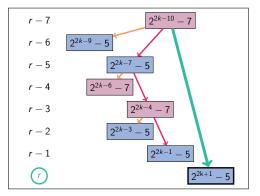
Let  $k_r = \lfloor r \log_2 3 \rfloor$ .  $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$   $\star \text{ if } k_r \text{ is odd,}$  $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ 

 $\star$  if  $k_r$  is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

#### Example:

$$\begin{split} &123=2^7-5=2^{k_5}-5\qquad \in \mathcal{E}_5,\\ &4089=2^{12}-7=2^{k_8}-7\qquad \in \mathcal{E}_8. \end{split}$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

### Exact degree

#### Maximum-weight exponents:

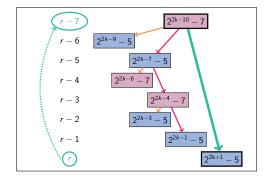
Let  $k_r = \lfloor r \log_2 3 \rfloor$ .  $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$   $\star \text{ if } k_r \text{ is odd,}$  $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ 

 $\star$  if  $k_r$  is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

#### Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$



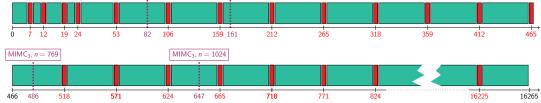
$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

# Covered rounds

Idea of the proof:

 $\star$  inductive proof: existence of "good"  $\ell$ 





Legend:

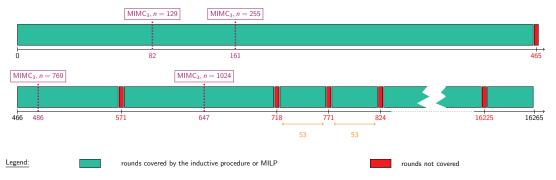
rounds not covered

# Covered rounds

Idea of the proof:

- $\star$  inductive proof: existence of "good"  $\ell$
- ★ MILP solver (PySCIPOpt)

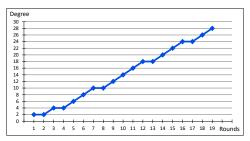




Preliminaries Exact degree Integral attacks

## Plateau

 $\Rightarrow$  plateau when  $k_r = \lfloor r \log_2 3 \rfloor$  is odd and  $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor$  is even



Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r=B_3^{r+1},$$

$$B_3^{r+4} = B_3^{r+5}$$
 or  $B_3^{r+5} = B_3^{r+6}$ .

Preliminaries Exact degree Integral attacks

# Music in MIMC<sub>3</sub>

→ Patterns in sequence  $(k_r)_{r>0}$ :

 $\Rightarrow$  denominators of semiconvergents of log<sub>2</sub>(3)  $\simeq$  1.5849625

 $\mathfrak{D} = \{1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots\},\$ 

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

### Music theory:

- perfect octave 2:1
- perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Preliminaries Exact degree Integral attacks

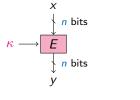
## Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace  $\mathcal{V} \subset \mathbb{F}_2^n$  with dim  $\mathcal{V} \geq \deg^a(F) + 1$ , we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1





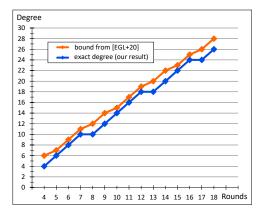


Random permutation

Preliminaries Exact degree Integral attacks

## Comparison to previous work

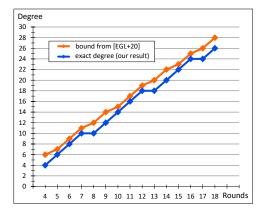
<u>First Bound</u>:  $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$ .



Preliminaries Exact degree Integral attacks

## Comparison to previous work

<u>First Bound</u>:  $\lceil r \log_2 3 \rceil \Rightarrow$  Exact degree:  $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$ .



For n = 129, MIMC<sub>3</sub> = 82 rounds

| Rounds              | Time                  | Data             | Source   |
|---------------------|-----------------------|------------------|----------|
| 80/82               | $2^{128}\mathrm{XOR}$ | 2 <sup>128</sup> | [EGL+20] |
| <mark>81</mark> /82 | $2^{128}$ XOR         | 2 <sup>128</sup> | New      |
| 80/82               | 2 <sup>125</sup> XOR  | 2 <sup>125</sup> | New      |

Secret-key distinguishers (n = 129)

### Emerging uses in symmetric cryptography

- A need of new primitives
- Comparison with "usual" case

### On the algebraic degree of MiMC<sub>3</sub>

- Preliminaries
- Exact degree
- Integral attacks

### Practical Attacks

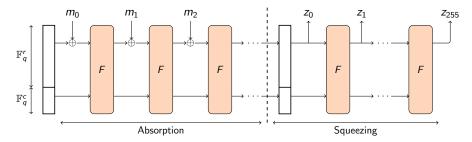
### 4) Anemoi

- CCZ-equivalence
- New Mode

## MiMC in a Hash Function

### Sponge construction:

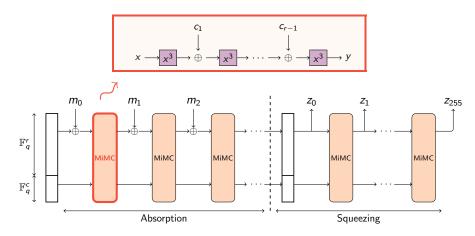
- \* rate r > 0
- \* capacity c > 0
- $\star$  permutation of  $\mathbb{F}_q^r \times \mathbb{F}_q^c$



Hash function in sponge framework.

## MiMC in a Hash Function

**MiMC-Hash**: MIMC<sub>3</sub> used as a permutation in a hash function ( $\approx$  90 rounds)



Hash function in sponge framework.

## Some values of *p*

Parameter p given by Elliptic Curves.

Example:

\* <u>Curve BLS12-381</u>  $\log_2 p = 381$ 

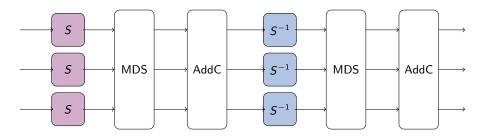
p = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787

\* <u>Curve BLS12-377</u>  $\log_2 p = 377$ 

$$\label{eq:p} \begin{split} \rho &= 258664426012969094010652733694893533536393512754914660539\\ & 884262666720468348340822774968888139573360124440321458177 \end{split}$$

### Rescue

- $\star$  S-Box layer
- ★ Linear layer
- $\star$  Constants addition



The 2 steps of round i of Rescue.

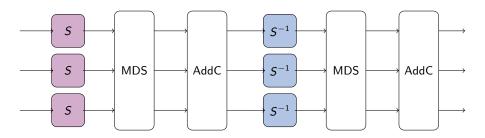
### Rescue

 $\star$  S-Box layer

$$S: x \mapsto x^{lpha}$$
, and  $S^{-1}: x \mapsto x^{1/lpha}$  ( $lpha = 3$ )

★ Linear layer

★ Constants addition



 $R \approx 10$ 

The 2 steps of round i of Rescue.

### Rescue

- \* S-Box layer
- ⋆ Linear layer
- ★ Constants addition

 $S: x \mapsto x^{lpha}$ , and  $S^{-1}: x \mapsto x^{1/lpha}$  (lpha = 3)

 $R \approx 10$ 

Curve BLS12-381:

$$\label{eq:p} \begin{split} \rho = 4002409555221667393417789825735904156556882819939007885332 \\ 058136124031650490837864442687629129015664037894272559787 \end{split}$$

 $\alpha = 5$ 

 $\alpha^{-1} = 3201927644177333914734231860588723325245506255951206308265 \\ 646508899225320392670291554150103303212531230315418047829$ 

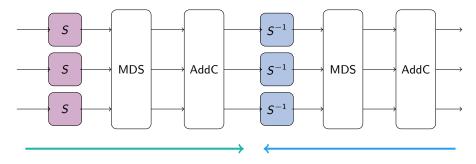
### Rescue

- $\star$  S-Box layer
- ★ Linear layer

 $S: x \mapsto x^{\alpha}$ , and  $S^{-1}: x \mapsto x^{1/\alpha}$  ( $\alpha = 3$ )

 $R \approx 10$ 

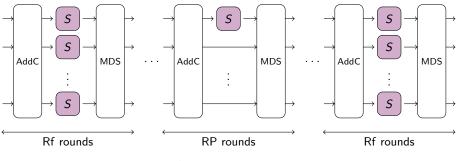
★ Constants addition



The 2 steps of round i of Rescue.

# Poseidon

- ★ S-Box layer
- ★ Linear layer
- \* Constants addition



Overview of Poseidon.

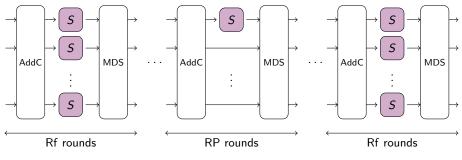
# Poseidon

- $\star$  S-Box layer
- ★ Linear layer

- *R* =
- $\star$  Constants addition



 $R = \mathrm{RF} + \mathrm{RP} \approx 50$ 



Overview of Poseidon.

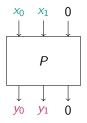
# **CICO** Problem

🖙 Bariant, <u>Bouvier</u>, Leurent, Perrin

Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

### Definition

**Constrained Input Constrained Output (CICO)** problem: Find  $X, Y \in \mathbb{F}_q^{t-u}$  s.t.  $P(X, 0^u) = (Y, 0^u)$ .



CICO problem when t = 3, u = 1.

 $\star\,$  Solving Univariate systems:

Find the roots of a polynomial  $P \in \mathbb{F}_p[X]$ .

★ Solving Univariate systems:

Find the roots of a polynomial  $P \in \mathbb{F}_p[X]$ .

★ Solving Multivariate systems:

From polynomial equations on variables  $X_i \in \mathbb{F}_p$ :

$$\begin{cases} P_1(X_1,\ldots,X_n)=0\\ P_2(X_1,\ldots,X_n)=0\\ \vdots\\ P_n(X_1,\ldots,X_n)=0, \end{cases}$$

compute a Gröbner basis...

★ Solving Univariate systems:

Find the roots of a polynomial  $P \in \mathbb{F}_{\rho}[X]$ .

★ Solving Multivariate systems:

From polynomial equations on variables  $X_i \in \mathbb{F}_p$ :

$$\begin{cases}
P_1(X_1,...,X_n) = 0 \\
P_2(X_1,...,X_n) = 0 \\
\vdots \\
P_n(X_1,...,X_n) = 0,
\end{cases}$$

compute a Gröbner basis...

 $\Rightarrow$  build univariate systems when possible!

★ Solving Univariate systems:

Find the roots of a polynomial  $P \in \mathbb{F}_p[X]$ .

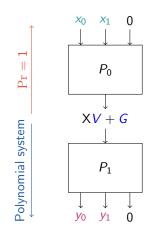
★ Solving Multivariate systems:

From polynomial equations on variables  $X_i \in \mathbb{F}_p$ :

$$\begin{cases} P_1(X_1, \dots, X_n) = 0 \\ P_2(X_1, \dots, X_n) = 0 \\ \vdots \\ P_n(X_1, \dots, X_n) = 0, \end{cases}$$

compute a Gröbner basis...

 $\Rightarrow$  build univariate systems when possible!





### Emerging uses in symmetric cryptography

- A need of new primitives
- Comparison with "usual" case

### On the algebraic degree of MiMC<sub>3</sub>

- Preliminaries
- Exact degree
- Integral attacks

### Practical Attacks

### Anemoi

- CCZ-equivalence
- New Mode

CCZ-equivalence New Mode

## **Goals and Principles**

### Anemoi Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

CCZ-equivalence New Mode

## Goals and Principles

### Anemoi Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Design goals:

- \* Compatibility with Various Proof Systems.
- \* Different Algorithms for Different Purposes.
- ★ Design Consistency.

CCZ-equivalence New Mode

## **Goals and Principles**

### Anemoi Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Design goals:

- ★ Compatibility with Various Proof Systems.
- \* Different Algorithms for Different Purposes.
- ★ Design Consistency.

 $\rightarrow\,$  not as Reinforced Concrete!

CCZ-equivalence New Mode

### **Goals and Principles**

### Anemoi Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Design goals:

- \* Compatibility with Various Proof Systems.
- ★ Different Algorithms for Different Purposes.
- ★ Design Consistency.

- $\rightarrow\,$  not as Reinforced Concrete!
- $\rightarrow\,$  hash function  $\neq$  compression function

CCZ-equivalence New Mode

### **Goals and Principles**

### Anemoi Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Design goals:

- \* Compatibility with Various Proof Systems.
- ★ Different Algorithms for Different Purposes.
- ★ Design Consistency.

- $\rightarrow\,$  not as Reinforced Concrete!
- $\rightarrow$  hash function  $\neq$  compression function
- $\rightarrow\,$  same structure for all uses

CCZ-equivalence New Mode

## CCZ-equivalence

#### Definition

 $F : \mathbb{F}_q \to \mathbb{F}_q$  and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent** 

$$\Gamma_{F} = \left\{ \left( x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left( x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where  $\mathcal{A}$  is an affine permutation.

#### CCZ-equivalence New Mode

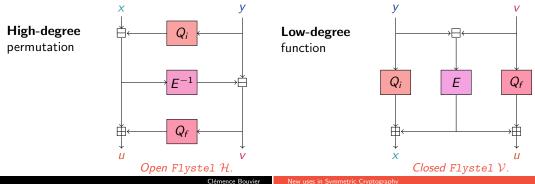
### CCZ-equivalence

#### Definition

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**

$$\Gamma_{F} = \left\{ \left( x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left( x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

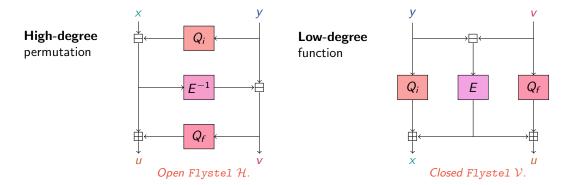
where  $\mathcal{A}$  is an affine permutation.



CCZ-equivalence New Mode

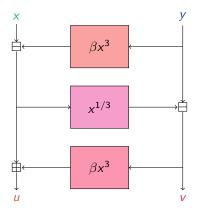
### CCZ-equivalence

$$\Gamma_{\mathcal{H}} = \mathcal{A}(\Gamma_{\mathcal{V}})$$
$$\{(x, y), (u, v)\} = \mathcal{A}(\{(y, v), (x, u)\})$$

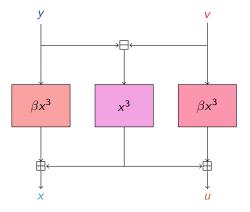


CCZ-equivalence New Mode

### Flystel in $\mathbb{F}_{2^n}$



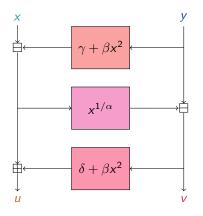
Open Flystel<sub>2</sub>.



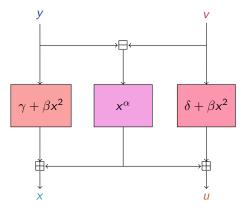
Closed Flystel<sub>2</sub>.

CCZ-equivalence New Mode

# Flystel in $\mathbb{F}_p$



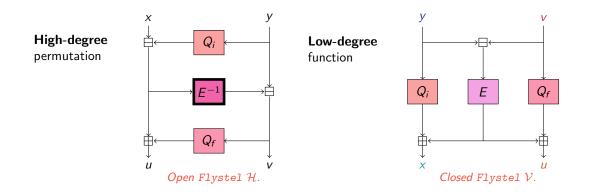
Open Flystel<sub>p</sub>.



Closed Flystel<sub>p</sub>.

### Advantage of CCZ-equivalence

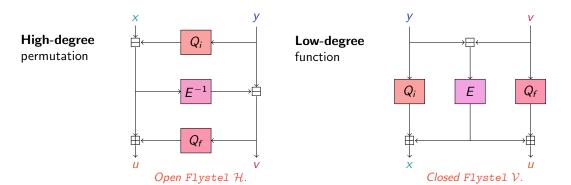
 $\star\,$  High Degree Evaluation.



### Advantage of CCZ-equivalence

- $\star\,$  High Degree Evaluation.
- \* Low Cost Verification.

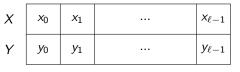
$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$



CCZ-equivalence New Mode

### The SPN Structure

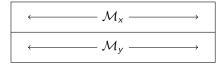
The internal state of Anemoi and its basic operations.



(a) Internal state



(c) The S-box layer S.



(b) The diffusion layer  $\mathcal{M}$ .



(d) The constant addition  $\mathcal{A}$ .

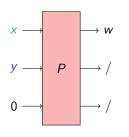
CCZ-equivalence New Mode

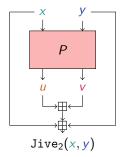
### New Mode

- \* Random oracle replacement: AnemoiRO
- \* Collision resistant compression function for Merkle-trees: AnemoiMC

Dedicated mode  $\Rightarrow$  2 words in 1

 $(x, y) \mapsto x + y + u + v$ .





CCZ-equivalence New Mode

### Conclusions

- ★ Algebraic degree of MIMC<sub>3</sub>
  - $\star\,$  a tight upper bound, up to 16265 rounds:

 $2\times \lceil \lfloor \log_2(3') \rfloor/2 - 1 \rceil$  .

- $\star\,$  minimal complexity for higher-order differential attack
- INST More details on eprint.iacr.org/2022/366

### Conclusions

- ★ Algebraic degree of MIMC<sub>3</sub>
  - $\star\,$  a tight upper bound, up to 16265 rounds:

 $2 \times \lceil \lfloor \log_2(3') \rfloor / 2 - 1 \rceil$  .

- $\star$  minimal complexity for higher-order differential attack
- More details on eprint.iacr.org/2022/366
- $\star$  Practical attacks against arithmetization-oriented hash functions

More details on https://hal.inria.fr/hal-03518757

### Conclusions

- ★ Algebraic degree of MIMC<sub>3</sub>
  - $\star\,$  a tight upper bound, up to 16265 rounds:

 $2\times \lceil \lfloor \log_2(3') \rfloor/2 - 1 \rceil \; .$ 

- $\star$  minimal complexity for higher-order differential attack
- More details on eprint.iacr.org/2022/366
- $\star$  Practical attacks against arithmetization-oriented hash functions

More details on https://hal.inria.fr/hal-03518757

- \star Anemoi
  - $\star$  a new family of ZK-friendly hash functions
  - \* contributions of fundamental interest

### Conclusions

- ★ Algebraic degree of MIMC<sub>3</sub>
  - $\star\,$  a tight upper bound, up to 16265 rounds:

 $2 \times \lceil \lfloor \log_2(3') \rfloor / 2 - 1 \rceil$  .

- $\star$  minimal complexity for higher-order differential attack
- INST More details on eprint.iacr.org/2022/366
- \* Practical attacks against arithmetization-oriented hash functions

More details on https://hal.inria.fr/hal-03518757

- \star Anemoi
  - $\star$  a new family of ZK-friendly hash functions
  - $\star$  contributions of fundamental interest

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

### Conclusions

- ★ Algebraic degree of MIMC<sub>3</sub>
  - $\star\,$  a tight upper bound, up to 16265 rounds:

 $2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$  .

- $\star$  minimal complexity for higher-order differential attack
- More details on eprint.iacr.org/2022/366
- $\star$  Practical attacks against arithmetization-oriented hash functions

More details on https://hal.inria.fr/hal-03518757

- \star Anemoi
  - $\star$  a new family of ZK-friendly hash functions
  - \* contributions of fundamental interest

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention

CCZ-equivalence New Mode

### Sporadic Cases

#### Bound on $\ell$

#### Observation

$$\forall 1 \leq t \leq 21, \; \forall x \in \mathbb{Z}/3^t\mathbb{Z}, \; \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \; \text{s.t.} \; x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \; \text{mod} \; 3^t \; .$$

Let:  $k_r = \lfloor r \log_2 3 \rfloor$ ,  $b_r = k_r \mod 2$  and

$$\mathcal{L}_r = \{\ell, \ 1 \leq \ell < r, \ \text{s.t.} \ k_{r-\ell} = k_r - k_\ell \} \;.$$

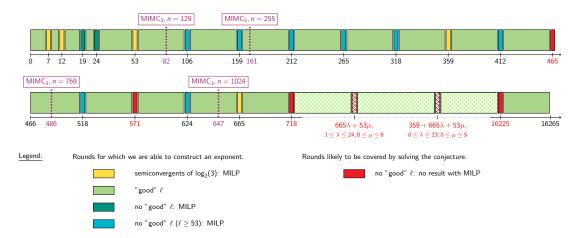
#### Proposition

Let  $r \ge 4$ , and  $\ell \in \mathcal{L}_r$  s.t.:  $\ell = 1, 2,$   $2 < \ell \le 22$  s.t.  $k_r \ge k_\ell + 3\ell + b_r + 1$ , and  $\ell$  is even, or  $\ell$  is odd, with  $b_{r-\ell} = \overline{b_r}$ ;  $2 < \ell \le 22$  is odd s.t.  $k_r \ge k_\ell + 3\ell + \overline{b_r} + 5$ Then  $\omega_{r-\ell} \in \mathcal{E}_{r-\ell}$  implies that  $\omega_r \in \mathcal{E}_r$ .

CCZ-equivalence New Mode

### **Covered Rounds**

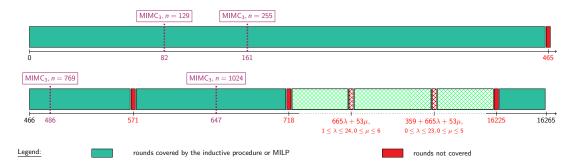
#### Rounds for which we are able to exhibit a maximum-weight exponent.



CCZ-equivalence New Mode

### **Covered Rounds**

#### Rounds for which we are able to exhibit a maximum-weight exponent.



CCZ-equivalence New Mode

# **MILP** Solver

Let 
$$\mathsf{Mult}_3: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{(3j_0) \bmod (2^n - 1), ..., (3j_{\ell-1}) \bmod (2^n - 1)\} \end{cases}$$

and

$$\mathsf{Cover}: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{k \leq j_i, i \in \{0, ..., \ell-1\}\} \end{cases}.$$

So that:

$$\mathcal{E}_r = \mathsf{Mult}_3(\mathsf{Cover}(\mathcal{E}_{r-1}))$$
.

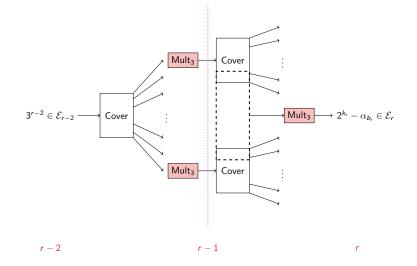
 $\Rightarrow$  MILP problem solved using PySCIPOpt

existence of a solution  $\Leftrightarrow \omega_r \in (\mathsf{Mult}_3 \circ \mathsf{Cover})^{\ell}(\{3^{r-\ell}\})$ 

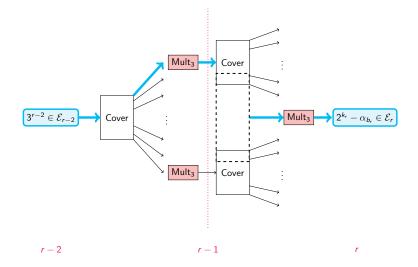
<u>With  $\ell = 1$ </u>:

$$3^{r-1} \in \mathcal{E}_{r-1} \longrightarrow \text{Cover} \longrightarrow \text{Mult}_3 \longrightarrow 2^{k_r} - \alpha_{b_r} \in \mathcal{E}_r$$

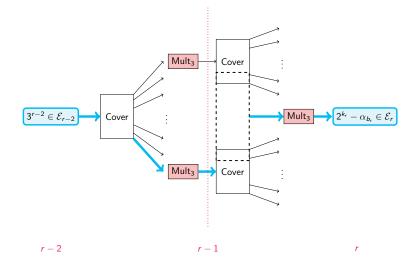
CCZ-equivalence New Mode



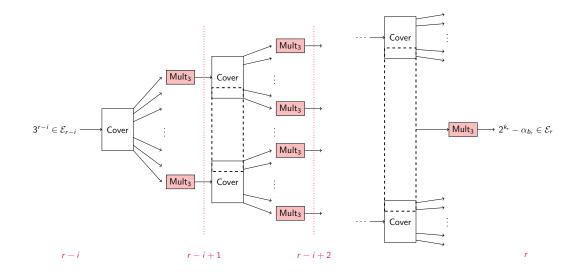
CCZ-equivalence New Mode



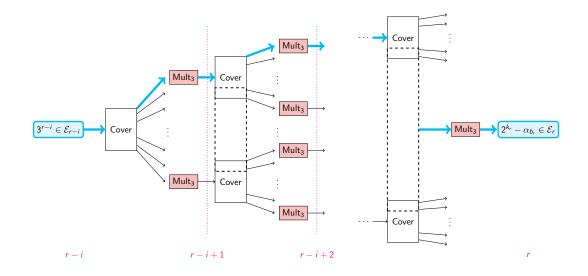
CCZ-equivalence New Mode



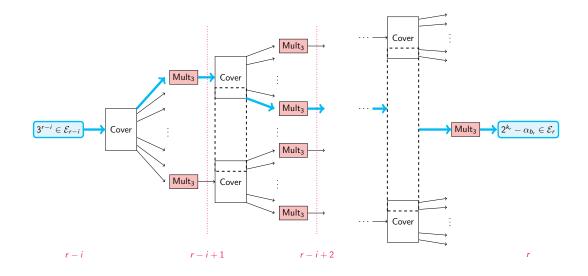
CCZ-equivalence New Mode



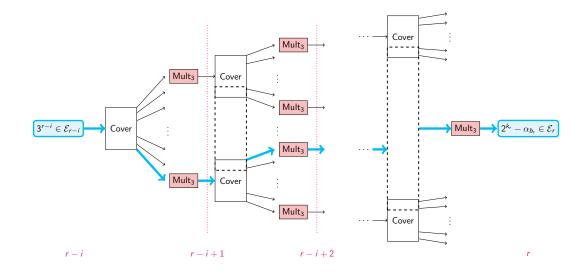
CCZ-equivalence New Mode



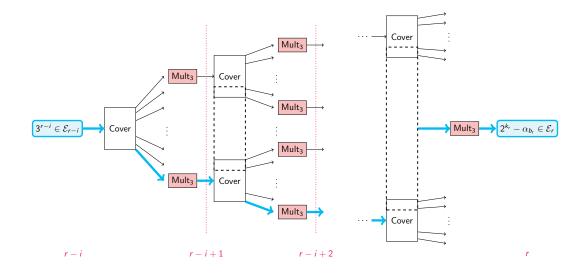
CCZ-equivalence New Mode



CCZ-equivalence New Mode

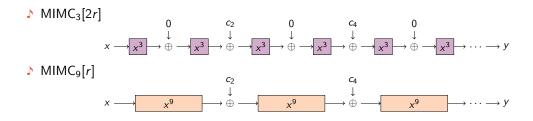


CCZ-equivalence New Mode



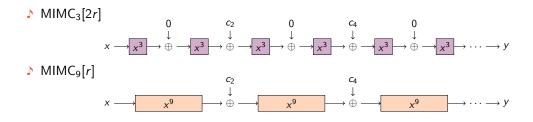
CCZ-equivalence New Mode

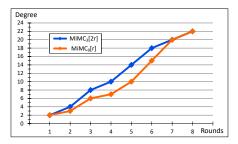
### MiMC<sub>9</sub> and form of coefficients



CCZ-equivalence New Mode

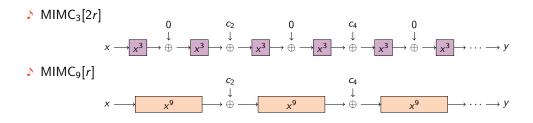
### MiMC<sub>9</sub> and form of coefficients

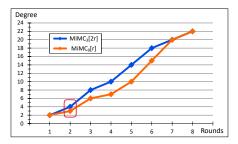




CCZ-equivalence New Mode

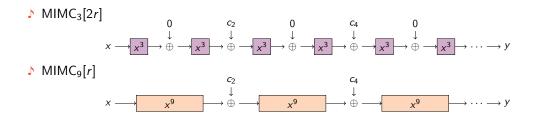
### MiMC<sub>9</sub> and form of coefficients

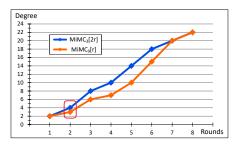




CCZ-equivalence New Mode

### MiMC<sub>9</sub> and form of coefficients





Example: coefficients of maximum weight exponent monomials at round 4

| $27:c_1^{18}+c_3^2$ | 57 : c <sub>1</sub> <sup>8</sup> |
|---------------------|----------------------------------|
| $30:c_1^{17}$       | $75:c_1^2$                       |
| $51:c_1^{10}$       | 78 : <i>c</i> <sub>1</sub>       |
| $54: c_1^9 + c_3$   |                                  |

CCZ-equivalence New Mode

### Other Quadratic functions

#### Proposition

Let  $\mathcal{E}_r$  be the set of exponents in the univariate form of MIMC<sub>9</sub>[r]. Then:

 $\forall i \in \mathcal{E}_r, i \bmod 8 \in \{0,1\}.$ 

CCZ-equivalence New Mode

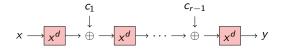
### Other Quadratic functions

#### Proposition

Let  $\mathcal{E}_r$  be the set of exponents in the univariate form of MIMC<sub>9</sub>[r]. Then:

 $\forall i \in \mathcal{E}_r, \ i \bmod 8 \in \{0, 1\} \ .$ 

Gold Functions:  $x^3$ ,  $x^9$ , ...



#### Proposition

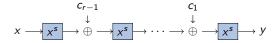
Let  $\mathcal{E}_r$  be the set of exponents in the univariate form of  $\text{MIMC}_d[r]$ , where  $d = 2^j + 1$ . Then:

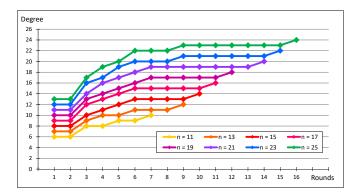
 $\forall i \in \mathcal{E}_r, i \mod 2^j \in \{0,1\}$ .

CCZ-equivalence New Mode

## Algebraic degree of $MiMC_3^{-1}$

**Inverse**:  $F : x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$ 





CCZ-equivalence New Mode

### Some ideas studied

Plateau between rounds 1 and 2, for  $s = (2^{n+1} - 1)/3 = [101..01]_2$ :

- → Round 1:  $B_s^1 = wt(s) = (n+1)/2$
- ▷ Round 2:  $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

#### Proposition

For  $i \leq s$  such that  $wt(i) \geq 2$ :

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

CCZ-equivalence New Mode

### Some ideas studied

Plateau between rounds 1 and 2, for  $s = (2^{n+1} - 1)/3 = [101..01]_2$ :

- → Round 1:  $B_s^1 = wt(s) = (n+1)/2$
- ▷ Round 2:  $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

#### Proposition

For  $i \leq s$  such that  $wt(i) \geq 2$ :

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Next rounds: another plateau at n - 2?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left( 2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$