
Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

New uses in Symmetric Cryptography:
From Cryptanalysis to Designing

Clémence Bouvier 1,2

including joint works with Augustin Bariant2, Pierre Briaud1,2, Anne Canteaut2, Pyrros Chaidos3,
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Some motivations

A Cryptanalysis Challenge for ZK-friendly Hash Functions!
In November 2021, by the Ethereum Fundation.

(a) Feistel-MiMC (b) Rescue Prime (c) Poseidon

+ Bariant, Bouvier, Leurent, Perrin
Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

Total Bounty Budget: $200 000

More and more primitives that need to be better understood!
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Background

Symmetric cryptography: we assume that a key is already shared.

? Stream cipher

? Block cipher

? input: n-bit block x

? parameter: k-bit key κ

? output: n-bit block y = Eκ(x)

? symmetry: E and E−1 use the same κ

κ E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation
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A need of new primitives

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

? Multiparty Computation (MPC)

? Homomorphic Encryption (FHE)

? Systems of Zero-Knowledge (ZK) proofs

Example: SNARKs, STARKs, Bulletproofs

Primitives designed to minimize the number of multiplications in finite fields.

⇒ What differs from the “usual” case?
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Comparison with “usual” case

A new environment

“Usual” case

? Field size:
F2n , with n ' 4, 8 (AES: n = 8).

? Operations:
logical gates/CPU instructions

Arithmetization-friendly

? Field size:
Fq, with q ∈ {2n, p}, p ' 2n, n ≥ 64 .

? Operations:
large finite-field arithmetic

New properties

“Usual” case

? Operations:

? Efficiency:
implementation in software/hardware

Arithmetization-friendly

? Operations:

? Efficiency:
integration within advanced protocols
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The block cipher MiMC

? Minimize the number of multiplications in F2n .

? Construction of MiMC3 [Albrecht et al., EC16]:

? n-bit blocks (n odd ≈ 129)
? n-bit key k
? decryption : replacing x3 by x s where

s = (2n+1 − 1)/3

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y

+ Bouvier, Canteaut, Perrin
On the Algebraic Degree of Iterated Power Functions
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Algebraic degree

Let f : Fn
2 → F2, there is a unique multivariate polynomial in F2[x1, . . . xn]/

(
(x2

i + xi )1≤i≤n
)
:

f (x1, ..., xn) =
∑
u∈Fn

2

aux
u, where au ∈ F2, x

u =
n∏

i=1

xuii .

This is the Algebraic Normal Form (ANF) of f .

Definition

Algebraic Degree of f : Fn
2 → F2:

dega(f ) = max
{
wt(u) : u ∈ Fn

2, au 6= 0
}
,

If F : Fn
2 → Fm

2 , then
dega(F ) = max{dega(fi ), 1 ≤ i ≤ m} .

where F (x) = (f1(x), . . . fm(x)).
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Algebraic degree

Let F : Fn
2 → Fn

2. Then using the isomorphism Fn
2 ' F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑
i=0

bix
i ; bi ∈ F2n

Definition

Algebraic degree of F : F2n → F2n :

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi 6= 0}

Example: degu(x 7→ x3) = 3 dega(x 7→ x3) = 2

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1

11 / 37 Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

Preliminaries
Exact degree
Integral attacks

Algebraic degree

Let F : Fn
2 → Fn

2. Then using the isomorphism Fn
2 ' F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑
i=0

bix
i ; bi ∈ F2n

Definition

Algebraic degree of F : F2n → F2n :

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi 6= 0}

Example: degu(x 7→ x3) = 3 dega(x 7→ x3) = 2

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1

11 / 37 Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

Preliminaries
Exact degree
Integral attacks

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace V ⊂ Fn
2 with dimV ≥ dega(F ) + 1, we have a 0-sum distinguisher:⊕

x∈V
F (x) = 0.

Random permutation: degree = n − 1

κ E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation
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First Plateau

Round i of MiMC3: x 7→ (x + ci−1)3.

For r rounds:
? Upper bound [Eichlseder et al., AC20]: dr log2 3e .

? Aim: determine B r
3 := maxc deg

aMIMC3,c [r ] .

? Round 1:

P1(x) = x3, (c0 = 0)

3 = [11]2

? Round 2:

P2(x) = x9 + c1x
6 + c2

1x
3 + c3

1

9 = [1001]2 6 = [110]2 3 = [11]2

Definition

There is a plateau whenever B r
3 = B r−1

3 .

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Degree

Rounds

Algebraic degree observed for n = 31.
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An upper bound

Proposition

Set of exponents that might appear in the polynomial:

Er = {3j mod (2n − 1) where j�i , i ∈ Er−1}

Example:

P1(x) = x3 ⇒ E1 = {3} .

3 = [11]2
�−→


[00]2 = 0

×3−→ 0

[01]2 = 1
×3−→ 3

[10]2 = 2
×3−→ 6

[11]2 = 3
×3−→ 9

E2 = {0, 3, 6, 9} ,

P2(x) = x9 + c1x
6 + c2

1x
3 + c3

1 .
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An upper bound

Proposition

Set of exponents that might appear in the polynomial:

Er = {3j mod (2n − 1) where j�i , i ∈ Er−1}

No exponent ≡ 5, 7 mod 8 ⇒ No exponent 22k − 1

Er ⊆ { 0 3 6 9 12 ��ZZ15 18 ��ZZ21
24 27 30 33 36 ��ZZ39 42 ��ZZ45
48 51 54 57 60 ��ZZ63 66 ��ZZ69

. . . 3r}

Example: 63 = 22×3 − 1 6∈ E4 = {0, 3, . . . , 81} ⇒ B4
3 < 6 = wt(63)

∀e ∈ E4\{63},wt(e) ≤ 4 ⇒ B4
3 ≤ 4
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Integral attacks

Exact degree

Maximum-weight exponents:

Let kr = br log2 3c.

∀r ∈ {4, . . . , 16265}\F with F = {465, 571, . . .}:

? if kr is odd,

ωr = 2kr − 5 ∈ Er ,

? if kr is even,

ωr = 2kr − 7 ∈ Er .

Example:

123 = 27 − 5 = 2k5 − 5 ∈ E5,

4089 = 212 − 7 = 2k8 − 7 ∈ E8.

Constructing exponents.

∃ ` s.t. ωr−` ∈ Er−` ⇒ ωr ∈ Er
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Covered rounds

Idea of the proof:

? inductive proof: existence of “good” `

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718571 718 771 824 16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: rounds covered by the inductive procedure rounds not covered
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Covered rounds

Idea of the proof:

? inductive proof: existence of “good” `

? MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

0 465

466 571 718 771 824 16225 16265

53 53

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: rounds covered by the inductive procedure or MILP rounds not covered
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Plateau

⇒ plateau when kr = br log2 3c is odd and kr+1 = b(r + 1) log2 3c is even
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Algebraic degree observed for n = 31.

If we have a plateau
B r

3 = B r+1
3 ,

Then the next one is
B r+4

3 = B r+5
3 or B r+5

3 = B r+6
3 .
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Music in MIMC3

� Patterns in sequence (kr )r>0:

⇒ denominators of semiconvergents of log2(3) ' 1.5849625

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2(3) ' a

b
⇔ 2a ' 3b

� Music theory:

� perfect octave 2:1
� perfect fifth 3:2

219 ' 312 ⇔ 27 '
(

3

2

)12

⇔ 7 octaves ∼ 12 fifths
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Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace V ⊂ Fn
2 with dimV ≥ dega(F ) + 1, we have a 0-sum distinguisher:⊕

x∈V
F (x) = 0.

Random permutation: degree = n − 1

κ E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation
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Comparison to previous work

First Bound: dr log2 3e ⇒ Exact degree: 2× dbr log2 3c/2− 1e .
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 bound from [EGL+20]

 exact degree (our result)

For n = 129, MIMC3 = 82 rounds

Rounds Time Data Source

80/82 2128xor 2128 [EGL+20]

81/82 2128xor 2128 New

80/82 2125xor 2125 New

Secret-key distinguishers (n = 129)
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MiMC in a Hash Function

Sponge construction:
? rate r > 0
? capacity c > 0
? permutation of Fr

q × Fc
q

⊕

m0

Fc
q

Fr
q

F

⊕

m1

F

⊕

m2

F

. . .

. . .

z0

F

. . .

. . .

z1

F

z255

Absorption Squeezing

Hash function in sponge framework.

⊕

m0

Fc
q

Fr
q

MiMC

;
⊕

m1

MiMC

⊕

m2

MiMC

. . .

. . .

z0

MiMC

. . .

. . .

z1

MiMC

z255

Absorption Squeezing

Hash function in sponge framework.
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MiMC in a Hash Function

MiMC-Hash: MIMC3 used as a permutation in a hash function (≈ 90 rounds)

x x3

c1

⊕ x3 . . .

cr−1

⊕ x3 y

⊕

m0

Fc
q

Fr
q

MiMC

;
⊕

m1

MiMC
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MiMC

. . .

. . .

z0

MiMC

. . .

. . .

z1
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Some values of p

Parameter p given by Elliptic Curves.

Example:

? Curve BLS12-381 log2 p = 381

p = 4002409555221667393417789825735904156556882819939007885332

058136124031650490837864442687629129015664037894272559787

? Curve BLS12-377 log2 p = 377

p = 258664426012969094010652733694893533536393512754914660539

884262666720468348340822774968888139573360124440321458177

24 / 37 Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

Rescue

? S-Box layer

? Linear layer

? Constants addition

S

S

S

MDS AddC

S−1

S−1

S−1

MDS AddC

The 2 steps of round i of Rescue.
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Rescue

? S-Box layer

? Linear layer

? Constants addition

S : x 7→ xα, and S−1 : x 7→ x1/α (α = 3)

R ≈ 10

Curve BLS12-381:

p = 4002409555221667393417789825735904156556882819939007885332

058136124031650490837864442687629129015664037894272559787

α = 5

α−1= 3201927644177333914734231860588723325245506255951206308265

646508899225320392670291554150103303212531230315418047829
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Poseidon

? S-Box layer

? Linear layer

? Constants addition

...

AddC

S

S

S

MDS . . .

Rf rounds

...

AddC

S

MDS . . .

RP rounds

...

AddC

S

S

S

MDS

Rf rounds

Overview of Poseidon.
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Poseidon

? S-Box layer

? Linear layer

? Constants addition

S : x 7→ xα, (α = 3)

R = RF + RP ≈ 50

...

AddC

S

S

S

MDS . . .

Rf rounds

...

AddC

S

MDS . . .

RP rounds

...

AddC

S

S

S

MDS

Rf rounds

Overview of Poseidon.
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CICO Problem

+ Bariant, Bouvier, Leurent, Perrin
Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

Definition

Constrained Input Constrained Output (CICO) problem:
Find X ,Y ∈ Ft−u

q s.t. P(X , 0u) = (Y , 0u).

x0 x1 0

y0 y1 0

P

CICO problem when t = 3, u = 1.
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Trick for SPN

? Solving Univariate systems:

Find the roots of a polynomial P ∈ Fp[X ].

? Solving Multivariate systems:

From polynomial equations on variables Xi ∈ Fp:


P1(X1, . . .Xn) = 0

P2(X1, . . .Xn) = 0

...

Pn(X1, . . .Xn) = 0,

compute a Gröbner basis...

⇒ build univariate systems when possible!

x0 x1 0

XV + G

y0 y1 0

P0

P1

P
ol

yn
om

ia
l

sy
st

em
P
r

=
1

A 2-staged trick.
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compute a Gröbner basis...

⇒ build univariate systems when possible!

x0 x1 0

XV + G

y0 y1 0

P0

P1

P
ol

yn
om

ia
l

sy
st

em
P
r

=
1

A 2-staged trick.

28 / 37 Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

Trick for SPN

? Solving Univariate systems:

Find the roots of a polynomial P ∈ Fp[X ].

? Solving Multivariate systems:

From polynomial equations on variables Xi ∈ Fp:


P1(X1, . . .Xn) = 0

P2(X1, . . .Xn) = 0

...

Pn(X1, . . .Xn) = 0,

compute a Gröbner basis...
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Preliminaries
Exact degree
Integral attacks

3 Practical Attacks

4 Anemoi

CCZ-equivalence
New Mode
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Goals and Principles

Anemoi
Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between
arithmetization-friendliness and CCZ-equivalence.

Design goals:

? Compatibility with Various Proof Systems.

? Different Algorithms for Different Purposes.

? Design Consistency.

→ not as Reinforced Concrete!

→ hash function 6= compression function

→ same structure for all uses
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CCZ-equivalence

Definition

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent

ΓF =
{

(x ,F (x)) | x ∈ Fq

}
= A(ΓG ) =

{
A (x ,F (x)) | x ∈ Fq

}
,

where A is an affine permutation.

High-degree
permutation

x y

�

�

�

u v

Qi

E−1

Qf

Open Flystel H.

Low-degree
function

y v

�

� �

x u

Qi E Qf

Closed Flystel V.
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ΓH = A(ΓV)

{(x , y), (u, v)} = A ({(y , v), (x , u)})

High-degree
permutation

x y
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Flystel in F2n

x y

�

�

�

u v

βx3

x1/3

βx3

Open Flystel2.

y v

�

� �

x u

βx3 x3 βx3

Closed Flystel2.
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Flystel in Fp

x y

�

�

�

u v

γ + βx2

x1/α

δ + βx2

Open Flystelp.

y v

�

� �

x u

γ + βx2 xα δ + βx2

Closed Flystelp.
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Advantage of CCZ-equivalence

? High Degree Evaluation.
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Advantage of CCZ-equivalence

? High Degree Evaluation.

? Low Cost Verification.

(u, v) == H(x , y)⇔ (x , u) == V(y , v)

High-degree
permutation
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The SPN Structure

The internal state of Anemoi and its basic operations.

x0 x1 ... x`−1

y0 y1 ... y`−1

X

Y

(a) Internal state

Mx

My

(b) The diffusion layer M.

H H ... H

(c) The S-box layer S.

X i

Y i

C i

D i
+=

(d) The constant addition A.
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New Mode

? Random oracle replacement: AnemoiRO

? Collision resistant compression function for Merkle-trees: AnemoiMC

Dedicated mode ⇒ 2 words in 1

(x , y) 7→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v

�

�
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Conclusions

? Algebraic degree of MIMC3

? a tight upper bound, up to 16265 rounds:

2× dblog2(3r )c/2− 1e .

? minimal complexity for higher-order differential attack

+ More details on eprint.iacr.org/2022/366

? Practical attacks against arithmetization-oriented hash functions

+ More details on https://hal.inria.fr/hal-03518757

? Anemoi
? a new family of ZK-friendly hash functions
? contributions of fundamental interest

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention
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Sporadic Cases

Bound on `

Observation

∀1 ≤ t ≤ 21, ∀x ∈ Z/3tZ, ∃ε2, . . . , ε2t+2 ∈ {0, 1}, s.t. x =
2t+2∑
j=2

εj4
j mod 3t .

Let: kr = br log2 3c, br = kr mod 2 and

Lr = {`, 1 ≤ ` < r , s.t. kr−` = kr − k`} .

Proposition

Let r ≥ 4, and ` ∈ Lr s.t.:

� ` = 1, 2,

� 2 < ` ≤ 22 s.t. kr ≥ k` + 3`+ br + 1, and ` is even, or ` is odd, with br−` = br ;

� 2 < ` ≤ 22 is odd s.t. kr ≥ k` + 3`+ br + 5

Then ωr−` ∈ Er−` implies that ωr ∈ Er .

Clémence Bouvier New uses in Symmetric Cryptography
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Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718 665λ+ 53µ,
1 ≤ λ ≤ 24, 0 ≤ µ ≤ 6

359 + 665λ+ 53µ,
0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5

16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: Rounds for which we are able to construct an exponent.

semiconvergents of log2(3): MILP

”good” `

no ”good” `: MILP

no ”good” ` (` ≥ 53): MILP

Rounds likely to be covered by solving the conjecture.

no ”good” `: no result with MILP
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Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.

0 465

466 571 718 665λ+ 53µ,
1 ≤ λ ≤ 24, 0 ≤ µ ≤ 6

359 + 665λ+ 53µ,
0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5

16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: rounds covered by the inductive procedure or MILP rounds not covered
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MILP Solver

Let

Mult3 :

{
NN → NN

{j0, ..., j`−1} 7→ {(3j0) mod (2n − 1), ..., (3j`−1) mod (2n − 1)} ,

and

Cover :

{
NN → NN

{j0, ..., j`−1} 7→ {k � ji , i ∈ {0, ..., `− 1}} .

So that:
Er = Mult3

(
Cover(Er−1)

)
.

⇒ MILP problem solved using PySCIPOpt

existence of a solution ⇔ ωr ∈ (Mult3 ◦ Cover)`({3r−`})

With ` = 1:
3r−1 ∈ Er−1 Cover Mult3 2kr − αbr ∈ Er

Clémence Bouvier New uses in Symmetric Cryptography
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MILP Solver (2 rounds)

3r−2 ∈ Er−2 Cover

Mult3 Cover ...

Mult3 Cover ...

... Mult3 2kr − αbr ∈ Er

r − 2 r − 1 r
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MILP Solver (i rounds)

3r−i ∈ Er−i Cover

Mult3 Cover ...

Mult3 Cover ...

...

Mult3

Mult3

Mult3
Cover. . . ...

Mult3

Cover. . . ...

... Mult3 2kr − αbr ∈ Er

r − i r − i + 1 r − i + 2 r
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Cover. . . ...

... Mult3 2kr − αbr ∈ Er

r − i r − i + 1 r − i + 2 r

Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

CCZ-equivalence
New Mode

MILP Solver (i rounds)

3r−i ∈ Er−i Cover

Mult3 Cover ...

Mult3 Cover ...

...

Mult3
. . .

Mult3

Mult3
Cover. . . ...

Mult3

Cover. . . ...

... Mult3 2kr − αbr ∈ Er

r − i r − i + 1 r − i + 2 r

Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

CCZ-equivalence
New Mode

MILP Solver (i rounds)

3r−i ∈ Er−i Cover

Mult3 Cover ...

Mult3 Cover ...

...

Mult3

Mult3

Mult3
Cover. . . ...

Mult3

Cover. . . ...

... Mult3 2kr − αbr ∈ Er

r − i r − i + 1 r − i + 2 r

Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

CCZ-equivalence
New Mode

MiMC9 and form of coefficients

� MIMC3[2r ]

x x3

0

⊕ x3

c2

⊕ x3

0

⊕ x3

c4

⊕ x3

0

⊕ x3 . . . y

� MIMC9[r ]

x x9

c2

⊕ x9

c4

⊕ x9 . . . y

Example: coefficients of maximum weight
exponent monomials at round 4

27 : c18
1 + c2

3 57 : c8
1

30 : c17
1 75 : c2

1

51 : c10
1 78 : c1

54 : c9
1 + c3
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Rounds
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Other Quadratic functions

Proposition

Let Er be the set of exponents in the univariate form of MIMC9[r ]. Then:

∀ i ∈ Er , i mod 8 ∈ {0, 1} .

Gold Functions: x3, x9, . . .

x xd

c1

⊕ xd . . .

cr−1

⊕ xd y

Proposition

Let Er be the set of exponents in the univariate form of MIMCd [r ], where d = 2j + 1. Then:

∀ i ∈ Er , i mod 2j ∈ {0, 1} .

Clémence Bouvier New uses in Symmetric Cryptography



Emerging uses in symmetric cryptography
On the algebraic degree of MiMC3

Practical Attacks
Anemoi

CCZ-equivalence
New Mode

Other Quadratic functions

Proposition

Let Er be the set of exponents in the univariate form of MIMC9[r ]. Then:

∀ i ∈ Er , i mod 8 ∈ {0, 1} .

Gold Functions: x3, x9, . . .

x xd

c1

⊕ xd . . .

cr−1

⊕ xd y

Proposition

Let Er be the set of exponents in the univariate form of MIMCd [r ], where d = 2j + 1. Then:

∀ i ∈ Er , i mod 2j ∈ {0, 1} .
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Algebraic degree of MiMC−1
3

Inverse: F : x 7→ x s , s = (2n+1 − 1)/3 = [101..01]2

x x s

cr−1

⊕ x s . . .

c1

⊕ x s y
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Some ideas studied

Plateau between rounds 1 and 2, for s = (2n+1 − 1)/3 = [101..01]2:

� Round 1: B1
s = wt(s) = (n + 1)/2

� Round 2: B2
s = max{wt(is), for i � s} = (n + 1)/2

Proposition

For i � s such that wt(i) ≥ 2:

wt(is) ∈


[wt(i)− 1, (n − 1)/2] if wt(i) ≡ 2 mod 3

[wt(i), (n − 1)/2] if wt(i) ≡ 0 mod 3

[wt(i), (n + 1)/2] if wt(i) ≡ 1 mod 3

Next rounds: another plateau at n − 2?

rn−2 ≥
⌈

1
log2 3

(
2
⌈
n−1

4

⌉
+ 1
)⌉
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