New uses in Symmetric Cryptography: An equation between Practical needs and Mathematical concepts

Clémence Bouvier 1,2

including joint works with Augustin Bariant², Pierre Briaud^{1,2}, Anne Canteaut², Pyrros Chaidos³, Gaëtan Leurent², Léo Perrin² and Vesselin Velichkov^{4,5}

 $^1 Sorbonne \ Universit\'e, \ ^2 Inria \ Paris,$ $^3 National \& \ Kapodistrian \ University \ of \ Athens, \ ^4 University \ of \ Edinburgh, \ ^5 Clearmatics, \ London$

June 23rd, 2022

Some definitions

Definition

Cryptology: science of secret messages.

Eth. from the Greek kryptós (hidden) and lógos (word).

Cryptology = Cryptography + Cryptanalysis

Definition

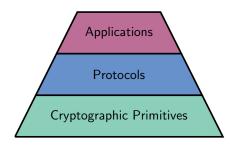
Cryptography: methods used to transform a plaintext in an unintelligible one.

Definition

Cryptanalysis: methods used to recover the plaintext from the ciphertext.

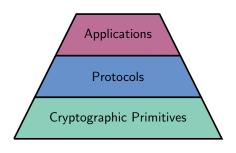
Cryptographic primitives

A primitive is the building block of security



Cryptographic primitives

A primitive is the building block of security



Applications in everyday life!

Example:

- \star Encrypting email communications: PGP
- ⋆ Securing a website: HTTPS
- ★ Internet of Things (IoT)
- ***** ...

Lifecycle of a primitive

Conception

- \star Specification of the algorithm
- * Justification of design choices
- ★ First security analysis

Publication

Analysis

★ Trying to break algorithms

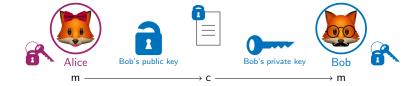
Standardization

Deployment

★ Implementation of algorithms

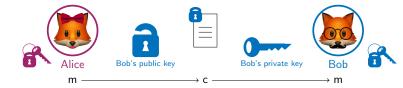
Asymmetric VS Symmetric

* Asymmetric: RSA, Diffie-Hellman, ...



Asymmetric VS Symmetric

* Asymmetric: RSA, Diffie-Hellman, . . .



* Symmetric: AES, DES, Triple-DES, ...

Symmetric cryptography

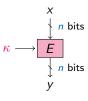
We assume that a key is already shared.

- * Stream cipher
- ⋆ Block cipher

Symmetric cryptography

We assume that a key is already shared.

- * Stream cipher
- * Block cipher
- ⋆ input: n-bit block x
- \star parameter: k-bit key κ
- \star output: *n*-bit block $y = E_{\kappa}(x)$
- \star symmetry: E and E^{-1} use the same κ



Block cipher

Symmetric cryptography

We assume that a key is already shared.

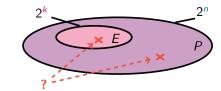
- * Stream cipher
- * Block cipher

⋆ input: n-bit block x

 \star parameter: k-bit key κ

 \star output: *n*-bit block $y = E_{\kappa}(x)$

 \star symmetry: E and E^{-1} use the same κ



Block cipher

Random permutation

 \Rightarrow Block cipher: family of 2^k permutations of n bits.

Content

New uses in Symmetric Cryptography: An equation between Practical needs and Mathematical concepts.

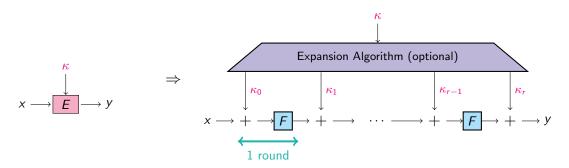
- Emerging uses in symmetric cryptography
 - A need of new primitives
 - Comparison with "usual" case
- 2 On the algebraic degree of MiMC₃
 - Preliminaries
 - Exact degree
 - Integral attacks
- Practical Attacks
 - Some SPN schemes
 - Ethereum Challenges
- Anemoi
 - CCZ-equivalence
 - New Mode

- Emerging uses in symmetric cryptography
 - A need of new primitives
 - Comparison with "usual" case
- 2 On the algebraic degree of MiMC₃
 - Preliminaries
 - Exact degree
 - Integral attacks
- Practical Attacks
 - Some SPN schemes
 - Ethereum Challenges
- Anemoi
 - CCZ-equivalence
 - New Mode

Iterated constructions

⇒ How to build a block cipher?

By iterating a round function.



<u>Performance constraints!</u> The primitive must be fast.

A need of new primitives

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

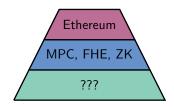
- ★ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

A need of new primitives

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- ⋆ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs



⇒ What differs from the "usual" case?

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4.8$ (AES: n = 8).
- ★ Operations: logical gates/CPU instructions

Arithmetization-friendly

- ★ Field size:
 - \mathbb{F}_q , with $q\in\{2^n,p\}, p\simeq 2^n$, $n\geq 64$.
- ★ Operations: large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

$$\mathbb{F}_{2^n}$$
, with $n \simeq 4.8$ (AES: $n = 8$).

 \star Operations:

logical gates/CPU instructions

Arithmetization-friendly

★ Field size:

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.

★ Operations: large finite-field arithmetic

New properties

"Usual" case

* Operations:

$$y \leftarrow E(x)$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

* Operations:

$$y == E(x)$$

* Efficiency: integration within advanced protocols

Comparison with "usual" case

A new environment

"Usual" case

★ Field size:

$$\mathbb{F}_{2^n}$$
, with $n \simeq 4.8$ (AES: $n = 8$).

* Operations:

logical gates/CPU instructions

Arithmetization-friendly

★ Field size:

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.

★ Operations: large finite-field arithmetic

New properties

"Usual" case

⋆ Operations:

$$y \leftarrow E(x)$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

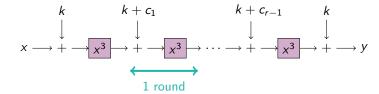
* Operations:

$$y == E(x)$$

* Efficiency: integration within advanced protocols

- Emerging uses in symmetric cryptography
 - A need of new primitives
 - Comparison with "usual" case
- 2 On the algebraic degree of MiMC₃
 - Preliminaries
 - Exact degree
 - Integral attacks
- Practical Attacks
 - Some SPN schemes
 - Ethereum Challenges
- 4 Anemoi
 - CCZ-equivalence
 - New Mode

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - \star *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$



- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: k ∈ \mathbb{F}_{2^n}
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

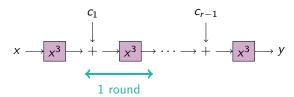


- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - \star *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: k ∈ \mathbb{F}_{2^n}
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil .$$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

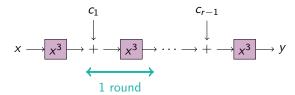


- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - \star *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil .$$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.



Bouvier, Canteaut, Perrin
On the Algebraic Degree of Iterated Power Functions

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}.$$

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic Degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(u) : u \in \mathbb{F}_2^n, a_u \neq 0 \right\} ,$$

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic Degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(u) : u \in \mathbb{F}_2^n, a_u \neq 0 \right\} ,$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where $F(x) = (f_1(x), \dots f_m(x)).$

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_{i} x^{i}; b_{i} \in \mathbb{F}_{2^{n}}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^{n}, \ \text{and} \ b_{i} \ne 0\}$$

Example:
$$\deg^u(x \mapsto x^3) = 3$$
 $\deg^a(x \mapsto x^3) = 2$

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_{i} x^{i}; b_{i} \in \mathbb{F}_{2^{n}}$$

Definition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^{n}, \ \text{and} \ b_{i} \ne 0\}$$

$$\deg^u(x\mapsto x^3)=3$$

$$\deg^u(x\mapsto x^3)=3\qquad \qquad \deg^a(x\mapsto x^3)=2$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \le n-1$$

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

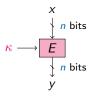
Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

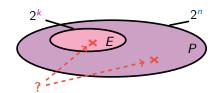


Block cipher

y h bits

Random permutation

n bits



Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.

 \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x)=x^3,\quad (c_0=0)$$

$$3 = [11]_2$$

* Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

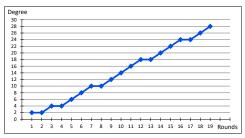
Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

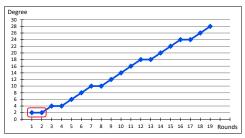
- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



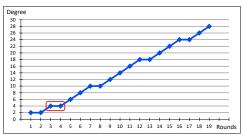
Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition



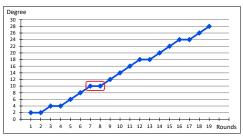
Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition



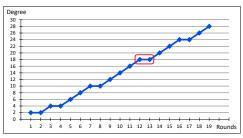
Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- \star Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition



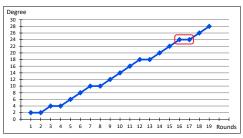
Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \ \mathsf{Aim} \colon \mathsf{determine} \qquad \qquad B_3^r := \mathsf{max}_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$
- * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition



Algebraic degree observed for n = 31.

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

Example:

$$\mathcal{P}_{1}(x) = x^{3} \quad \Rightarrow \quad \mathcal{E}_{1} = \{3\} \ .$$

$$3 = [11]_{2} \quad \stackrel{\succeq}{\longrightarrow} \quad \begin{cases} [00]_{2} = 0 & \xrightarrow{\times 3} & 0 \\ [01]_{2} = 1 & \xrightarrow{\times 3} & 3 \\ [10]_{2} = 2 & \xrightarrow{\times 3} & 6 \\ [11]_{2} = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

$$\mathcal{E}_{2} = \{0, 3, 6, 9\} \ ,$$

$$\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3} \ .$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow \text{No exponent } 2^{2k} - 1$

...
$$3^r$$

Example:
$$63 = 2^{2 \times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\}$$
 $\Rightarrow B_3^4 < 6 = wt(63)$ $\forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \le 4$ $\Rightarrow B_3^4 \le 4$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

Bounding the degree

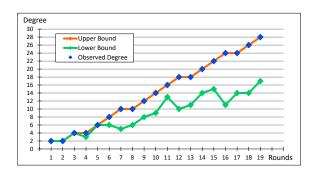
Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

And a lower bound if $3^r < 2^n - 1$:

$$B_3^r \geq wt(3^r)$$



Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \star if $k_r = 1 \mod 2$,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5$$

$$\in \mathcal{E}_5$$
,

$$4089 = 2^{12} - 7 = 2^{k_8} - 7$$

$$\in \mathcal{E}_8$$
.

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \star if $k_r = 1 \mod 2$,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

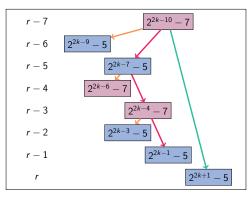
 \star if $k_r = 0 \mod 2$.

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \star if $k_r = 1 \mod 2$,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

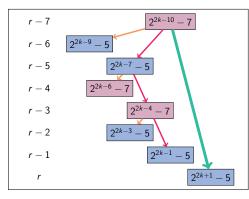
 \star if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \star if $k_r = 1 \mod 2$,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

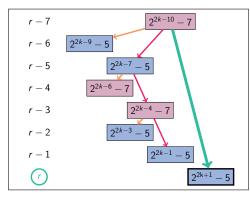
 \star if $k_r = 0 \mod 2$.

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \star if $k_r = 1 \mod 2$,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

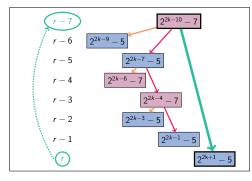
 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

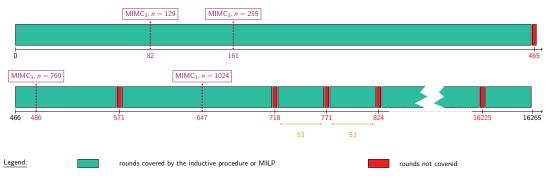


Covered rounds

Idea of the proof:

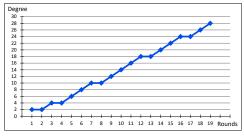
- ★ inductive proof: existence of "good" ℓ
- ★ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.



Plateau

$$\Rightarrow$$
 plateau when $k_r = \lfloor \log_2 3^r \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor \log_2 3^{r+1} \rfloor = 0 \mod 2$



Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

$$B_3^{r+4} = B_3^{r+5}$$
 or $B_3^{r+5} = B_3^{r+6}$.

Music in MIMC₃

▶ Patterns in sequence $(k_r)_{r>0}$:

 \Rightarrow denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$

$$\mathfrak{D} = \{ 1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots \},$$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

- Music theory:
 - ▶ perfect octave 2:1
 - ▶ perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad \text{7 octaves} \ \sim 12 \text{ fifths}$$

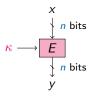
Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

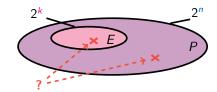
$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1



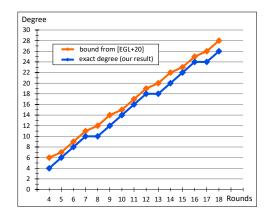
n bits

Block cipher Random permutation



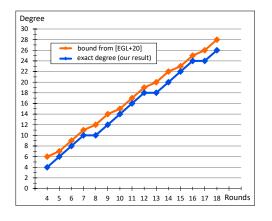
Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree}: 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree}: 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128} \mathrm{XOR}$	2 ¹²⁸	[EGL+20]
81/82	2 ¹²⁸ XOR	2 ¹²⁸	New
80/82	2 ¹²⁵ XOR	2 ¹²⁵	New

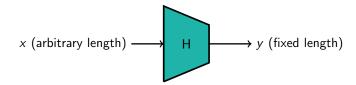
Secret-key distinguishers (n = 129)

- Emerging uses in symmetric cryptography
 - A need of new primitives
 - Comparison with "usual" case
- 2 On the algebraic degree of MiMC₃
 - Preliminaries
 - Exact degree
 - Integral attacks
- Practical Attacks
 - Some SPN schemes
 - Ethereum Challenges
- 4 Anemoi
 - CCZ-equivalence
 - New Mode

Hash Functions

Definition

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.



 \star Preimage resistance: Given y it must be infeasible to find x s.t.

$$H(x) = y$$
.

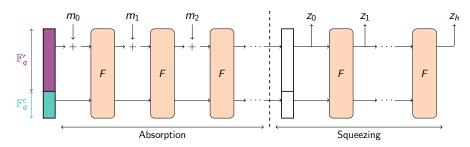
* Collision resistance: It must be *infeasible* to find $x \neq x'$ s.t.

$$H(x) = H(x')$$
.

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of $\mathbb{F}_q^r \times \mathbb{F}_q^c$



Hash function in sponge framework.

Some values of p

Parameter p given by Standardized Elliptic Curves.

Example:

* Curve BLS12-381
$$\log_2 p = 381$$

$$p = 4002409555221667393417789825735904156556882819939007885332$$

 $058136124031650490837864442687629129015664037894272559787$

* Curve BLS12-377
$$\log_2 p = 377$$

$$p = 258664426012969094010652733694893533536393512754914660539$$

 $884262666720468348340822774968888139573360124440321458177$

Substitution-Permutation Network (SPN)

* S-Box layer \rightarrow Confusion

Example: $(x_0 \ x_1 \ \dots \ x_{m-1}) \mapsto (x_0^d \ x_1^d \ \dots \ x_{m-1}^d)$.

★ Linear layer
$$\rightarrow$$
 Diffusion
Example: $(x_0 \ x_1 \ \dots \ x_{m-1}) \mapsto (x_0 \ x_1 \ \dots \ x_{m-1}) \times M$.

 \star Constants addition

Example:

$$(x_0 \quad x_1 \quad \ldots \quad x_{m-1}) \mapsto (x_0 \quad x_1 \quad \ldots \quad x_{m-1}) + (c_0 \quad c_1 \quad \ldots \quad c_{m-1}).$$

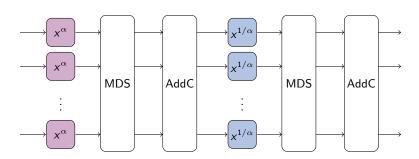
Rescue

[Aly et al., ToSC20]

- * S-Box layer
- ★ Linear layer: MDS
- * Round constants addition: AddC

$$S: x \mapsto x^{\alpha}$$
, and $S^{-1}: x \mapsto x^{1/\alpha}$ $(\alpha = 3)$

 $R \approx 10$



The 2 steps of round i of Rescue.

Rescue

[Aly et al., ToSC20]

⋆ Linear layer: MDS

* Round constants addition: AddC

$$S: x \mapsto x^{\alpha}$$
, and $S^{-1}: x \mapsto x^{1/\alpha}$ ($\alpha = 3$)

 $R \approx 10$

Curve BLS12-381:

p = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787

$$\alpha = 5$$

 $\alpha^{-1} = 3201927644177333914734231860588723325245506255951206308265$ 646508899225320392670291554150103303212531230315418047829

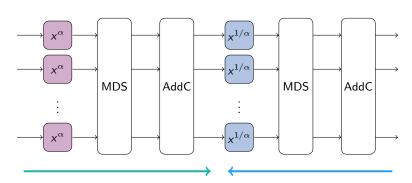
Rescue

[Aly et al., ToSC20]

- * S-Box layer
- ★ Linear layer: MDS
- * Round constants addition: AddC

$$S: x \mapsto x^{\alpha}$$
, and $S^{-1}: x \mapsto x^{1/\alpha}$ ($\alpha = 3$)

 $R \approx 10$



The 2 steps of round i of Rescue.

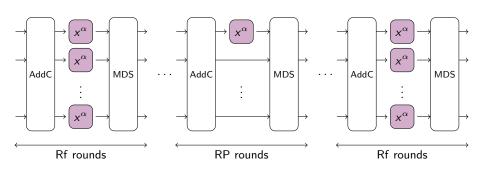
Poseidon

[Grassi et al., USENIX21]

- * S-Box layer
- ★ Linear layer: MDS
- * Round constants addition: AddC

$$S: x \mapsto x^{\alpha}, (\alpha = 3)$$

$$R = RF + RP \approx 50$$



Overview of Poseidon.

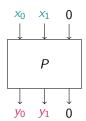
Ethereum Challenges

A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Foundation.

Definition

Constrained Input Constrained Output (CICO) problem:

Find
$$X, \mathbf{Y} \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (\mathbf{Y}, 0^u)$.



CICO problem when t = 3, u = 1.

⋆ Solving Univariate systems:

Find the roots of a polynomial $P \in \mathbb{F}_p[X]$.

* Solving Univariate systems:

Find the roots of a polynomial $P \in \mathbb{F}_p[X]$.

* Solving Multivariate systems:

From polynomial equations on variables $X_i \in \mathbb{F}_p$:

$$\begin{cases} P_1(X_1, \dots X_n) = 0 \\ P_2(X_1, \dots X_n) = 0 \\ \vdots \\ P_n(X_1, \dots X_n) = 0, \end{cases}$$

compute a Gröbner basis...

⋆ Solving Univariate systems:

Find the roots of a polynomial $P \in \mathbb{F}_p[X]$.

* Solving Multivariate systems:

From polynomial equations on variables $X_i \in \mathbb{F}_p$:

$$\begin{cases} P_1(X_1, \dots X_n) = 0 \\ P_2(X_1, \dots X_n) = 0 \\ \vdots \\ P_n(X_1, \dots X_n) = 0, \end{cases}$$

compute a Gröbner basis...

⇒ build univariate systems when possible!

* Solving Univariate systems:

Find the roots of a polynomial $P \in \mathbb{F}_p[X]$.

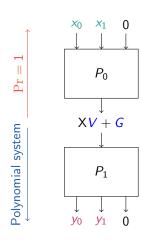
★ Solving Multivariate systems:

From polynomial equations on variables $X_i \in \mathbb{F}_p$:

$$\begin{cases} P_1(X_1, \dots X_n) = 0 \\ P_2(X_1, \dots X_n) = 0 \\ \vdots \\ P_n(X_1, \dots X_n) = 0, \end{cases}$$

compute a Gröbner basis...

⇒ build univariate systems when possible!



A 2-staged trick.

Consequence for the Challenge

Category	Parameters	Security Level (bits)	Bounty
Easy-	r=6-	9-	\$2,000
Easy	r=10	15-	\$4,000
Medium	r=14	-22-	\$6,000
Hard-	r-18	28-	\$12,000
Hard-	T=22	34	\$26,000

(a) Feistel-MiMC

Category	Parameters	Security Level (bits)	Bounty
Easy	N=4, m=3	25	\$2,000
Easy	N=6, m=2	25	\$4,000
Medium	N=7, m=2	29	\$6,000
Hard	N=5, m=3	30	\$12,000
Hard	N=8, m=2	33	\$26,000

Category	Parameters	Security Level (bits)	Bounty
Easy	RP=3	8	\$2,000
Easy	RP=8	16	\$4,000
Medium	RP=13	24	\$6,000
Hard	RP=19	32	\$12,000
Hard	RP=24	40	\$26,000

(b) Rescue

(c) Poseidon

🖙 Bariant, <u>Bouvier</u>, Leurent, Perrin

Practical Algebraic Attacks against some Arithmetization-oriented Hash Functions

- Emerging uses in symmetric cryptography
 - A need of new primitives
 - Comparison with "usual" case
- 2 On the algebraic degree of MiMC₃
 - Preliminaries
 - Exact degree
 - Integral attacks
- Practical Attacks
 - Some SPN schemes
 - Ethereum Challenges
- 4 Anemoi
 - CCZ-equivalence
 - New Mode

Goals and Principles

Anemoi

Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Goals and Principles

Anemoi

Bouvier, Briaud, Chaidos, Perrin, Velichkov

A family of hash functions exploiting the link between arithmetization-friendliness and CCZ-equivalence.

Design goals:

- ★ Compatibility with Various Proof Systems.
- ⋆ Low number of multiplications
- * Fast and secure

CCZ-equivalence

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent

$$\Gamma_F = \{ (x, F(x)) \mid x \in \mathbb{F}_q \} = \mathcal{A}(\Gamma_G) = \{ \mathcal{A}(x, F(x)) \mid x \in \mathbb{F}_q \},$$

where A is an affine permutation.

CCZ-equivalence

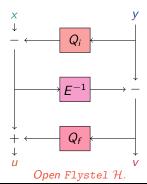
Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent

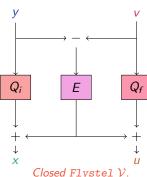
$$\Gamma_F = \{ (x, F(x)) \mid x \in \mathbb{F}_q \} = A(\Gamma_G) = \{ A(x, F(x)) \mid x \in \mathbb{F}_q \},$$

where \mathcal{A} is an affine permutation.

High-degree permutation



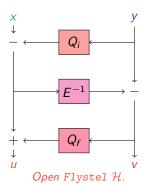
Low-degree function



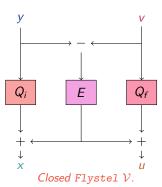
CCZ-equivalence

$$\Gamma_{\mathcal{H}} = \mathcal{A}(\Gamma_{\mathcal{V}})$$
$$\{(x, y), (u, v)\} = \mathcal{A}(\{(y, v), (x, u)\})$$

High-degree permutation



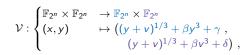
Low-degree function

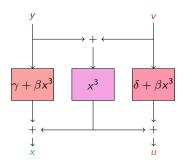


Flystel in \mathbb{F}_{2^n}

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \qquad \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) & \mapsto \left((y + v)^{1/3} + \beta y^3 + \gamma \right., \\ (y + v)^{1/3} + \beta v^3 + \delta\right) , \end{cases}$$

Open Flystel₂.

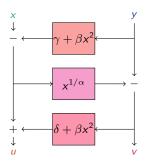




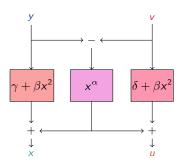
Closed Flystel₂.

Flystel in \mathbb{F}_p

$$\mathcal{H}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta \right., & \mathcal{V}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (y,v) & \mapsto \left((y - v)^{1/\alpha} + \beta y^{2} + \gamma \right., \\ (v - y)^{1/\alpha} + \beta v^{2} + \delta\right). \end{cases}$$



Open Flystel,

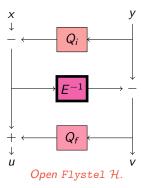


Closed Flystelp.

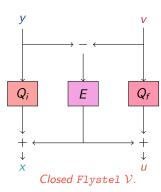
Advantage of CCZ-equivalence

* High Degree Evaluation.

High-degree permutation



Low-degree function

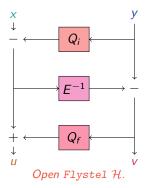


Advantage of CCZ-equivalence

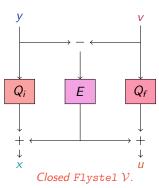
- \star High Degree Evaluation.
- * Low Cost Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$

High-degree permutation



Low-degree function



The SPN Structure

Let

$$X=\left(\begin{array}{cccc} x_0 & x_1 & \dots & x_{\ell-1} \end{array}\right)$$
 and $Y=\left(\begin{array}{cccc} y_0 & y_1 & \dots & y_{\ell-1} \end{array}\right)$ with $x_i,y_i\in\mathbb{F}_q$.

The internal state of Anemoi can be represented as:

$$\begin{pmatrix} X \\ Y \end{pmatrix}$$
.

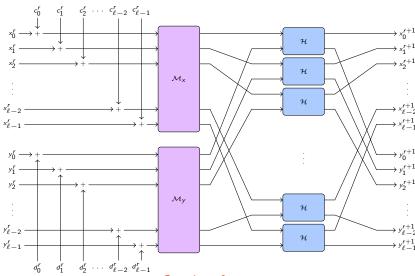
Addition of constants and the linear layer as:

$$\left(\begin{array}{c}X\\Y\end{array}\right)\mapsto \left(\begin{array}{c}X\\Y\end{array}\right) \ + \ \left(\begin{array}{c}C\\D\end{array}\right), \qquad \left(\begin{array}{c}X\\Y\end{array}\right)\mapsto \left(\begin{array}{c}X\mathcal{M}_x\\Y\mathcal{M}_y\end{array}\right)\ .$$

And the S-Box layer as:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \mapsto \begin{pmatrix} {}^{t}\mathcal{H}(x_0, y_0) & {}^{t}\mathcal{H}(x_1, y_1) & \dots & {}^{t}\mathcal{H}(x_{\ell-1}, y_{\ell-1}) \end{pmatrix}.$$

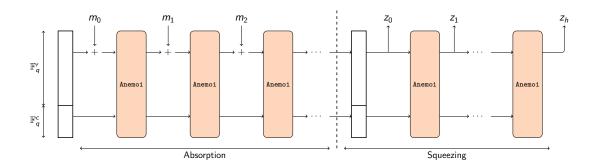
The SPN Structure



New Mode

★ Hash function:

* input: arbitrary length* ouput: fixed length



New Mode

★ Hash function:

⋆ input: arbitrary length

⋆ ouput: fixed length

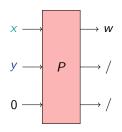
★ Compression function:

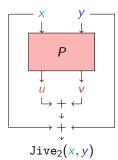
⋆ input: fixed length

★ output: length 1

Dedicated mode \Rightarrow 2 words in 1

$$(x, y) \mapsto x + y + \mathbf{u} + \mathbf{v}$$
.





Comparison to previous work

5	$\log_2 q$	m	Rescue	Poseidon	Anemoi
128	192	8	384	363	200
	256	6	288	315	150
	384	4	216	264	120
256	192	8	432	450	280
	256	6	432	495	225
	384	4	432	444	200

s	$\log_2 q$	m	Rescue	Poseidon	Anemoi
128	192	8	1280	4003	560
	256	6	768	2265	360
	384	4	432	1032	240
	192	8	1440	5714	784
256	256	6	1152	4245	540
	384	4	864	1932	784

(a) for R1CS.

(b) for Plonk.

Number of constraints for Rescue, Poseidon and Anemoi when $\alpha = 5$.

Conclusions

- ⋆ Algebraic degree of MIMC₃
 - * a tight upper bound, up to 16265 rounds: $2 \times \lceil |\log_2(3^r)|/2 1 \rceil$.
 - * minimal complexity for higher-order differential attack
 - More details on eprint.iacr.org/2022/366 and to appear in *Designs, Codes and Cryptography*

Conclusions

- ⋆ Algebraic degree of MIMC₃
 - * a tight upper bound, up to 16265 rounds: $2 \times \lceil \lfloor \log_2(3') \rfloor / 2 1 \rceil$.
 - * minimal complexity for higher-order differential attack
 - More details on eprint.iacr.org/2022/366 and to appear in *Designs, Codes and Cryptography*
- * Practical attacks against arithmetization-oriented hash functions
 - More details on https://hal.inria.fr/hal-03518757

Conclusions

- ⋆ Algebraic degree of MIMC₃
 - \star a tight upper bound, up to 16265 rounds: $2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 1 \rceil$.
 - * minimal complexity for higher-order differential attack
 - More details on eprint.iacr.org/2022/366
 and to appear in Designs, Codes and Cryptography
- * Practical attacks against arithmetization-oriented hash functions
 - More details on https://hal.inria.fr/hal-03518757
- * Anemoi
 - * a new family of ZK-friendly hash functions
 - * new observations of fundamental interest

Open Problem

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

And the opinion of mathematicians would be of great help to us!

Open Problem

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

And the opinion of mathematicians would be of great help to us!

Observation

$$\forall \ 1 \leq t \leq 21, \ \forall \ x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \ \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{i=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Is this true for any t? Should we consider more ε_i for larger t?

Open Problem

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

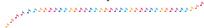
And the opinion of mathematicians would be of great help to us!

Observation

$$\forall \ 1 \leq t \leq 21, \ \forall \ x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \ \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Is this true for any t? Should we consider more ε_i for larger t?

Thanks for your attention



Sporadic Cases

Bound on ℓ

Observation

$$\forall 1 \leq t \leq 21, \ \forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Let: $k_r = |r \log_2 3|, b_r = k_r \mod 2$ and

$$\mathcal{L}_r = \{\ell, \ 1 \le \ell < r, \ \text{s.t.} \ k_{r-\ell} = k_r - k_\ell \}$$
.

Proposition

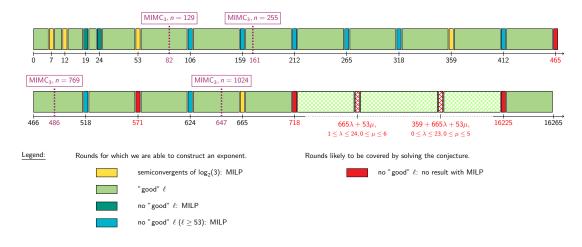
Let $r \geq 4$, and $\ell \in \mathcal{L}_r$ s.t.:

- $\star \ell = 1, 2,$
- \star 2 < $\ell \leq$ 22 s.t. $k_r \geq k_\ell + 3\ell + b_r + 1$, and ℓ is even, or ℓ is odd, with $b_{r-\ell} = \overline{b_r}$;
- \star 2 < $\ell \le$ 22 is odd s.t. $k_r \ge k_\ell + 3\ell + \overline{b_r} + 5$

Then $\omega_{r-\ell} \in \mathcal{E}_{r-\ell}$ implies that $\omega_r \in \mathcal{E}_r$.

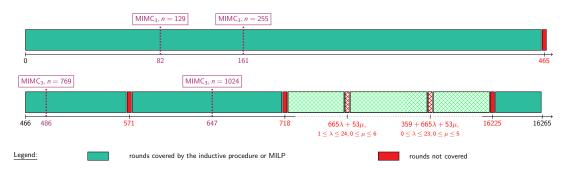
Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.



Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.



MILP Solver

Let

$$\mathsf{Mult}_3: egin{cases} \mathbb{N}^{\mathbb{N}} & o \mathbb{N}^{\mathbb{N}} \ \{j_0,...,j_{\ell-1}\} & \mapsto \{(3j_0) \ \mathsf{mod} \ (2^n-1),...,(3j_{\ell-1}) \ \mathsf{mod} \ (2^n-1)\} \end{cases} \; ,$$

and

$$\mathsf{Cover}: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0,...,j_{\ell-1}\} & \mapsto \{k \preceq j_i, i \in \{0,...,\ell-1\}\} \end{cases} \; .$$

So that:

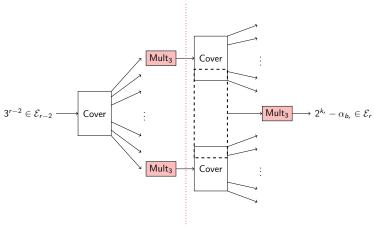
$$\mathcal{E}_r = \mathsf{Mult}_3(\mathsf{Cover}(\mathcal{E}_{r-1}))$$
.

⇒ MILP problem solved using PySCIPOpt

existence of a solution
$$\Leftrightarrow \omega_r \in (\mathsf{Mult}_3 \circ \mathsf{Cover})^{\ell}(\{3^{r-\ell}\})$$

With $\ell = 1$:

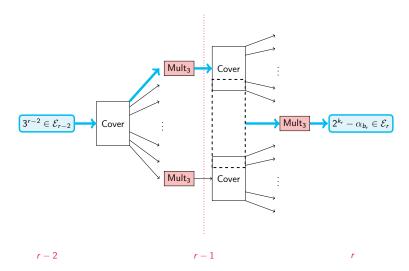
$$3^{r-1} \in \mathcal{E}_{r-1} \longrightarrow \text{Cover} \longrightarrow \text{Mult}_3 \longrightarrow 2^{k_r} - \alpha_{b_r} \in \mathcal{E}_r$$

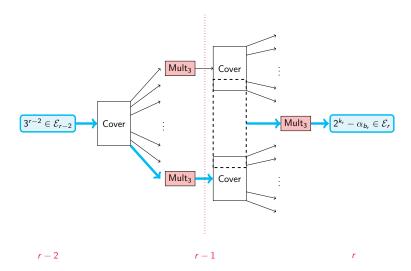


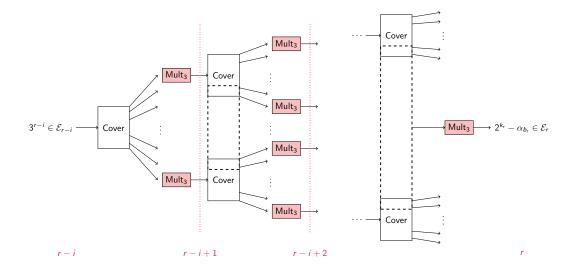
r-2

r-1

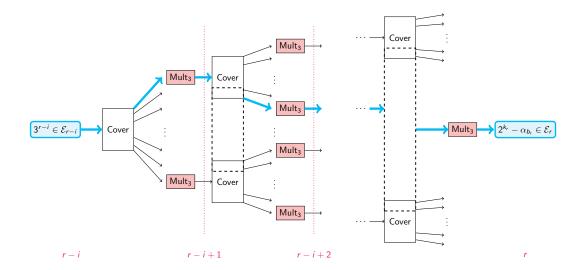
r

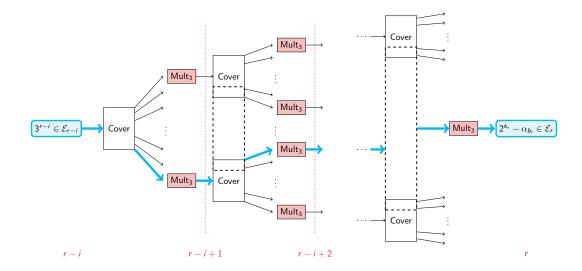


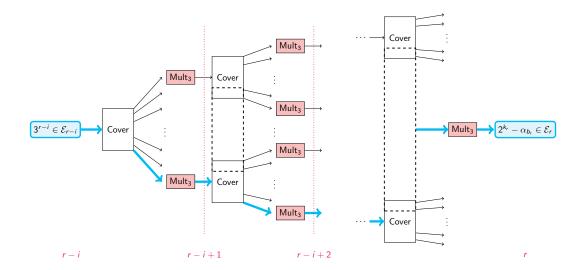


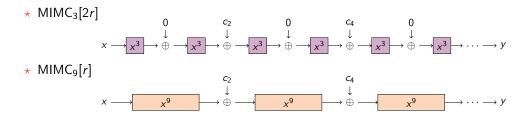


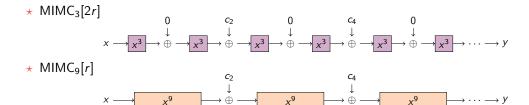


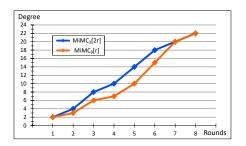


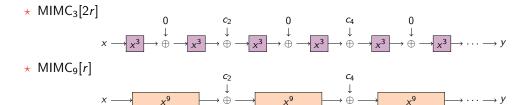


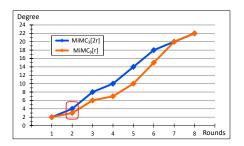


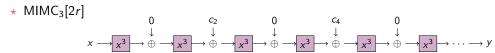


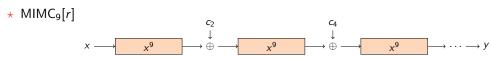


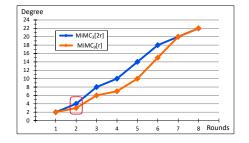












Example: coefficients of maximum weight exponent monomials at round 4

$$27: c_1^{18} + c_3^2$$

57 :
$$c_1^8$$

$$30:c_1^{17}$$

75 :
$$c_1^2$$

$$51:c_1^{10}$$

78 :
$$c_1$$

$$54: c_1^9 + c_3$$

Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

$$\forall i \in \mathcal{E}_r, i \mod 8 \in \{0,1\}$$
.

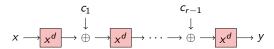
Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

$$\forall i \in \mathcal{E}_r, i \mod 8 \in \{0,1\}$$
.

Gold Functions: x^3 , x^9 , ...



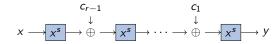
Proposition

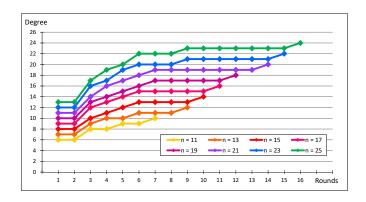
Let \mathcal{E}_r be the set of exponents in the univariate form of $\mathsf{MIMC}_d[r]$, where $d=2^j+1$. Then:

$$\forall i \in \mathcal{E}_r, i \mod 2^j \in \{0,1\}$$
.

Algebraic degree of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$





Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- * Round 1: $B_s^1 = wt(s) = (n+1)/2$
- * Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- * Round 1: $B_s^1 = wt(s) = (n+1)/2$
- * Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Next rounds: another plateau at n-2?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$