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A fast moving domain

Many primitives have already been proposed

⋆ MiMC / Feistel–MiMC [AGR+16]

⋆ Rescue / Rescue–Prime [AAB+20, SAD20]

⋆ Poseidon [GKR+21]

⋆ Reinforced Concrete [GKL+21]

⋆ Neptune [GOP+21]

⋆ Griffin [GHR+22]
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Degree of MiMC

+ On the Algebraic Degree of Iterated Power Functions,
Bouvier, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of F : F2n → F2n :

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi ̸= 0}

MiMC3 [AGR+16]:
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Concepts that are apparently quite simple have actually complex behaviours...
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Algebraic attacks

+ Algebraic Attacks against some Arithmetization-oriented Primitives,
Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

Cryptanalysis Challenge for ZK-friendly Hash Functions!
In November 2021, by the Ethereum Foundation.

Definition

Constrained Input Constrained Output (CICO)
problem:
Find X ,Y ∈ Ft−u

q s.t. P(X , 0u) = (Y , 0u).

Results on Feistel-MiMC, Poseidon and Rescue–Prime

⋆ build univariate systems

⋆ a trick for SPN
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A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

⋆ Multiparty Computation (MPC)

⋆ Homomorphic Encryption (FHE)

⋆ Systems of Zero-Knowledge (ZK) proofs

Example: SNARKs, STARKs, Bulletproofs
???

MPC, FHE, ZK

Ethereum

⇒ What differs from the “usual” case?
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Emerging uses in symmetric cryptography
CCZ-equivalence

Comparison with “usual” case

A new environment

“Usual” case

⋆ Field size:
F2n , with n ≃ 4, 8 (AES: n = 8).

⋆ Operations:
logical gates/CPU instructions

Arithmetization-friendly

⋆ Field size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64 .

⋆ Operations:
large finite-field arithmetic

New properties

“Usual” case

⋆ Operations:

⋆ Efficiency:
implementation in software/hardware

Arithmetization-friendly

⋆ Operations:

⋆ Efficiency:
integration within advanced protocols
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Emerging uses in symmetric cryptography
CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

⇒ vulnerability to some attacks...

New approach:
CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified
efficiently.
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Emerging uses in symmetric cryptography
CCZ-equivalence

Affine-equivalence

Definition

F : Fq → Fq and G : Fq → Fq are affine equivalent if

F (x) = (B ∘ G ∘ A)(x) ,

where A,B are affine permutations.

Definition

F : Fq → Fq and G : Fq → Fq are extended affine equivalent if

F (x) = (B ∘ G ∘ A)(x) + C (x) ,

where A,B,C are affine functions with A,B permutations s.t.

ΓF =
{︀
(x ,F (x)) | x ∈ Fq

}︀
=

(︂
A−1 0
CA−1 B

)︂{︀
(x ,G (x)) | x ∈ Fq

}︀
,
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Definition [Carlet, Charpin, Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF =
{︀
(x ,F (x)) | x ∈ Fq

}︀
= 𝒜(ΓG ) =

{︀
𝒜 (x ,G (x)) | x ∈ Fq

}︀
,

where 𝒜 is an affine permutation, 𝒜(x) = ℒ(x) + c .

⋆ EA-equivalence and CCZ-equivalence preserve differential and linear properties,

𝛿G (a, b) = 𝛿F (ℒ−1(a, b)) and 𝒲G (𝛼, 𝛽) = (−1)c·(𝛼,𝛽)𝒲F (ℒT (𝛼, 𝛽))

⋆ EA-equivalence preserves the degree BUT CCZ-equivalence does not!

⇒ Can we get CCZ-equivalence from EA-equivalence?
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Twist

Using isomorphisms Fn
2 ≃ Ft

2 × Fn−t
2 and Fm

2 ≃ Ft
2 × Fm−t

2 :

Definition

F : Ft
2 × Fn−t

2 → Ft
2 × Fm−t

2 and G : Ft
2 × Fn−t

2 → Ft
2 × Fm−t

2 are t-twist-equivalent if Ty is a
permutation for all y and

G (u, y) = (T−1
y (u),UT−1

y (u)(y)) .

x y

u v

T U

t bits n − t bits

t bits m − t bits

ΓF =
{︀
(x ,F (x)) | x ∈ Fn

2

}︀

t-twist
⇐⇒

swap matrix Mt

⇐⇒

u y

x v

T−1

U

t bits n − t bits

t bits m − t bits

ΓG =
{︀
(x ,G (x)) | x ∈ Fn

2

}︀
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Emerging uses in symmetric cryptography
CCZ-equivalence

CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 be two CCZ-equivalent functions. We can obtain G from F
or F from G by composing:

EA transformation + t-twist + EA transformation .

ΓF = 𝒜(ΓG ) ,

with 𝒜 affine permutation.

⇓

ΓF = (A ·Mt · B)(ΓG ) ,

with Mt swap matrix
and A,B EA-mappings.

CCZ

F

G

EA F’

F

EAG’

G

t-twist
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CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 be two CCZ-equivalent functions. We can obtain G from F
or F from G by composing:

EA transformation + t-twist + EA transformation .

ΓF = 𝒜(ΓG ) ,

with 𝒜 affine permutation.

⇓
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Example: Inverse

Let F : F2n → F2n ,

ΓF =
{︀
(x ,F (x)) | x ∈ F2n

}︀
and ΓF−1 =

{︀ (︀
y ,F−1(y)

)︀
| y ∈ F2n

}︀
=

{︀
(F (x), x) | x ∈ F2n

}︀
.

(︂
x

F (x)

)︂
=

(︂
0 In
In 0

)︂(︂
F (x)
x

)︂
⇒ swap matrix Mn =

(︂
0 In
In 0

)︂
.

x

u

T

n bits

n bits

F

n-twist
⇐⇒

(n = t)

u

x

T−1

n bits

n bits

F−1

⇒ F and F−1 are CCZ-equivalent and the degree is indeed not preserved.
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Example: Butterfly [PUB16]

x y

⊕

⊕

⊕

u v

𝛽x3

x1/3

𝛽x3

F

→

x y

⊕

⊕

⊕

⊕

u v

𝛽x3

x1/3

x3

𝛽x3

ℋ

y v

⊕

⊕ ⊕

x u

𝛽x3
x3 𝛽x3

𝒱

T−1

T

x y

⊕

⊕

⊕

⊕

u v

𝛽x3

x1/3

x3

𝛽x3

ℋ

n/2-twist
⇐⇒

T T

y v

⊕

⊕ ⊕

x u

𝛽x3
x3 𝛽x3

𝒱
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⊕

⊕
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Sum up on CCZ-equivalence

Important things to remember!

Let F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 s.t. ΓG = 𝒜(ΓF ), with 𝒜(x) = ℒ(x) + c .

⋆ F and G have the same differential properties

𝛿G (a, b) = 𝛿F (ℒ−1(a, b)) .

⋆ F and G have the same linear properties

𝒲G (𝛼, 𝛽) = (−1)c·(𝛼,𝛽)𝒲F (ℒT (𝛼, 𝛽)) .

⋆

⋆ The degree is not preserved.
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Goals and Principles

⋆ Design goals:

⋆ Compatibility with Various Proof Systems.

⋆ Limited Reliance on Randomness.

⋆ Different Algorithms for Different Purposes.

⋆ Design Consistency.

→ R1CS, Plonk, AIR, . . .

→ fixed MDS matrices

→ hash function ̸= compression function

→ same structure for all uses

⋆ Our contributions:

⋆ Link between AO and CCZ-equivalence

⋆ Flystel: a new S-box

⋆ Jive: a new mode
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⋆ Auld
Alliance between France and Scotland

⋆

⋆ Anemoi
Greek gods of winds
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The Flystel

Butterfly + Feistel ⇒ Flystel

A 3-round Feistel-network with
Q : Fq → Fq and Q ′ : Fq → Fq two quadratic functions, and E : Fq → Fq a permutation

High-degree
permutation

x y

�

�

�

u v

Q

E−1

Q ′

Open Flystel ℋ.

Low-degree
function

y v

�

� �

x u

Q E Q ′

Closed Flystel 𝒱.
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The Flystel

Γℋ =
{︀
( (x , y), ℋ((x , y)) ) | (x , y) ∈ F2

q

}︀
= 𝒜

(︀{︀
( (v , y), 𝒱((v , y)) ) | (v , y) ∈ F2

q

}︀)︀
= 𝒜(Γ𝒱)

High-degree
permutation

x y

�

�

�

u v

Q

E−1

Q ′
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y v

�

� �

x u
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.

⋆ Low Cost Verification.

(u, v) == ℋ(x , y)⇔ (x , u) == 𝒱(y , v)

High-degree
permutation

x y

�

�

�

u v

Q

E−1

Q ′
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�
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Flystel in F2n

ℋ :

⎧⎪⎪⎨⎪⎪⎩
F2n × F2n → F2n × F2n

(x , y) ↦→
(︁
x + 𝛽y3 + 𝛾 + 𝛽

(︀
y + (x + 𝛽y3 + 𝛾)1/3

)︀3
+ 𝛿 ,

y + (x + 𝛽y3 − 𝛾)1/3
)︁
.

x y

⊕

⊕

⊕

u v

𝛾 + 𝛽x3

x1/3

𝛿 + 𝛽x3

Open Flystel2.

𝒱 :

⎧⎪⎨⎪⎩
F2n × F2n → F2n × F2n

(x , y) ↦→
(︀
(y + v)3 + 𝛽y3 + 𝛾 ,

(y + v)3 + 𝛽v3 + 𝛿
)︀
,

y v

⊕

⊕ ⊕

x u

𝛾 + 𝛽x3
x3 𝛿 + 𝛽x3

Closed Flystel2.
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Properties of Flystel in F2n

x y

⊕

⊕

⊕

⊕

u v

𝛾 + 𝛽x3

x1/3

x3

𝛿 + 𝛽x3

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that
if 𝛽 ̸= 0:

⋆ Differential properties

⋆ Flystel2: 𝛿ℋ = 𝛿𝒱 = 4

⋆ Linear properties

⋆ Flystel2: 𝒲ℋ =𝒲𝒱 = 22n−1 − 2n

⋆ Algebraic degree

⋆ Open Flystel2: degℋ = n
⋆ Closed Flystel2: deg𝒱 = 2
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Flystel in Fp

ℋ :

⎧⎪⎪⎨⎪⎪⎩
Fp × Fp → Fp × Fp

(x , y) ↦→
(︁
x − 𝛽y2 − 𝛾 + 𝛽

(︀
y − (x − 𝛽y2 − 𝛾)1/𝛼

)︀2
+ 𝛿 ,

y − (x − 𝛽y2 − 𝛾)1/𝛼
)︁
.

x y

�

�

�

u v

𝛾 + 𝛽x2

x1/𝛼

𝛿 + 𝛽x2

Open Flystelp.

usually
𝛼 = 3 or 5.

𝒱 :

⎧⎪⎨⎪⎩
Fp × Fp → Fp × Fp

(y , v) ↦→
(︀
(y − v)𝛼 + 𝛽y2 + 𝛾 ,

(v − y)𝛼 + 𝛽v2 + 𝛿
)︀
.

y v

�

� �

x u

𝛾 + 𝛽x2 x𝛼 𝛿 + 𝛽x2

Closed Flystelp.
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Properties of Flystel in Fp

⋆ Differential properties
Flystelp has a differential uniformity equals to 𝛼− 1.

(a) when p = 11 and 𝛼 = 3. (b) when p = 13 and 𝛼 = 5. (c) when p = 17 and 𝛼 = 3.

DDT of Flystelp.
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Properties of Flystel in Fp

⋆ Linear properties
𝒲 ≤ p log p ?

Conjecture for the linearity.

(a) when p = 11 and 𝛼 = 3. (b) when p = 13 and 𝛼 = 5. (c) when p = 17 and 𝛼 = 3.

LAT of Flystelp.
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The SPN Structure

The internal state of Anemoi and its basic operations.

x0 x1 ... xℓ−1

y0 y1 ... yℓ−1

X

Y

(a) Internal state

ℳx

ℳy

(b) The diffusion layer ℳ.

ℋ ℋ ... ℋ

(c) The S-box layer 𝒮.

X i

Y i

C i

D i
+=

(d) The constant addition 𝒜.
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The SPN Structure

yrℓ−1

yrℓ−2

.

.

.

yr2

yr1

yr0

drℓ−1drℓ−2
. . .dr2dr1dr0

�

�

�

�

� yr+1
ℓ−1

yr+1
ℓ−2

.

.

.

yr+1
2

yr+1
1

yr+1
0

ℳy

xrℓ−1

xrℓ−2

.

.

.

xr2

xr1

xr0

crℓ−1crℓ−2
. . .cr2cr1cr0

�

�

�

�

� xr+1
ℓ−1

xr+1
ℓ−2

.

.

.

xr+1
2

xr+1
1

xr+1
0

ℳx

ℋ

ℋ

ℋ

ℋ

ℋ

.

.

.

Overview of Anemoi.
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New Mode

⋆ Hash function:

⋆ input: arbitrary length
⋆ ouput: fixed length

�

m0

Fc
q

Fr
q

Anemoi

�

m1

Anemoi

�

m2

Anemoi

. . .

. . .

z0

Anemoi

. . .

. . .

z1

Anemoi

zh

Absorption Squeezing

Dedicated mode ⇒ 2 words in 1

(x , y) ↦→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v
�

�
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New Mode

⋆ Hash function:

⋆ input: arbitrary length
⋆ ouput: fixed length

⋆ Compression function:

⋆ input: fixed length
⋆ output: length 1

Dedicated mode ⇒ 2 words in 1

(x , y) ↦→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v
�

�
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Comparison for R1CS

SNARK performances using R1CS representation:

∼ number of multiplications

m Rescue′ Poseidon Griffin Anemoi

4 224 232 112 96

6 216 264 - 120

8 256 296 176 160

(a) when 𝛼 = 3.

m Rescue′ Poseidon Griffin Anemoi

4 264 264 110 120

6 288 315 - 150

8 384 363 162 200

(b) when 𝛼 = 5.

R1CS constraints for Rescue–Prime, Poseidon, Griffin and Anemoi,
s = 128, and prime field of 256 bits.
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Comparison for Plonk

SNARK performances using Plonk representation:

∼ multiplications gates + addition gates

m Rescue′ Poseidon Griffin Anemoi

4 560 1336 334 216

6 756 3024 - 330

8 1152 5448 969 520

(a) when 𝛼 = 3.

m Rescue′ Poseidon Griffin Anemoi

4 528 1032 287 240

6 768 2265 - 360

8 1280 4003 821 560

(b) when 𝛼 = 5.

Plonk constraints for Rescue–Prime, Poseidon, Griffin and Anemoi,
s = 128, and prime field of 256 bits.
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New S-box: Flystel
New Mode: Jive
Comparison to previous work

Comparison for Plonk (with optimizations)

m Constraints

Poseidon
2 88

3 110

Reinforced Concrete
2 236

3 378

AnemoiJive 2 79

(a) With 3 wires.

m Constraints

Poseidon
2 82

3 98

Reinforced Concrete
2 174

3 267

AnemoiJive 2 60

(b) With 4 wires.

Constraints comparison with 𝛼 = 5, s = 128, and prime field sizes of 256, 384.
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Comparison for AIR

STARK performances using AIR representation:

w · T · dmax

Here w = m, dmax = 𝛼, and T = R (or RF + ⌈RP/m⌉).

m Rescue′ Poseidon Griffin Anemoi

4 168 348 168 144

6 162 396 - 180

8 192 480 264 240

(a) with 𝛼 = 3.

m Rescue′ Poseidon Griffin Anemoi

4 220 440 220 240

6 240 540 - 300

8 320 640 360 400

(b) with 𝛼 = 5.

AIR constraints for Rescue–Prime, Poseidon, Griffin and Anemoi,
s = 128, and prime field of 256 bits.
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Conclusions

⋆ A new family of ZK-friendly hash functions:

⇒ Anemoi efficient accross proof system

⋆ New observations of fundamental interest:

⋆ Standalone components:

⋆ New S-box: Flystel
⋆ New mode: Jive

⋆ Identify a link between AO and CCZ-equivalence

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!
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Future work

⋆ On Anemoi:

⋆ pushing further the cryptanalysis.

⋆ explaining linear properties of the Flystel.

⋆ constructing a Flystel with more branches?
⇒ see [BCLP22]

⋆ Extending the study of the algebraic degree of MiMC to

⋆ other permutations xd for any d .

⋆ SPN constructions.
⇒ see [LAW+22]: can we extend the coefficient grouping strategy to other primitives
than Chaghri?

Thanks for your attention!
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