Backstages of Anemoi:
 A new approach to ZK-friendliness.

Clémence Bouvier ${ }^{1,2}$

joint work with Pierre Briaud ${ }^{1,2}$, Pyrros Chaidos ${ }^{3}$, Léo Perrin ${ }^{2}$ and Vesselin Velichkov ${ }^{4,5}$

Motivation

Motivation

Primitives need to be analysed.

Motivation

Primitives need to be analysed.

A fast moving domain

Many primitives have already been proposed

$$
\begin{aligned}
& \star \text { MiMC / Feistel-MiMC [AGR+16] } \\
& \star \text { Rescue / Rescue-Prime [AAB+20, SAD20] } \\
& \star \text { Poseidon [GKR+21] } \\
& \star \text { Reinforced Concrete [GKL+21] } \\
& \star \text { Neptune [GOP }+21] \\
& \quad \star \text { Griffin }[G H R+22]
\end{aligned}
$$

Degree of MiMC

On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}_{a}(F)=\max \left\{w t(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

$\mathrm{MiMC}_{3}[A G R+16]:$

Degree of MiMC

On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

$$
\begin{aligned}
& F: \mathbb{F}_{2^{11}} \rightarrow \mathbb{F}_{2^{11}}, x \mapsto x^{3} \\
& F: \mathbb{F}_{2}^{11} \rightarrow \mathbb{F}_{2}^{11},\left(x_{0}, \ldots, x_{10}\right) \mapsto \\
& \left(x_{0} x_{10}+x_{0}+x_{1} x_{5}+x_{1} x_{9}+x_{2} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{4}+x_{3} x_{5}+x_{4} x_{8}+x_{4} x_{9}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{10}+x_{7} x_{8}+x_{9} x_{10}\right. \\
& x_{0} x_{1}+x_{0} x_{6}+x_{2} x_{5}+x_{2} x_{8}+x_{3} x_{6}+x_{3} x_{9}+x_{3} x_{10}+x_{4}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7}+x_{10} \text {, } \\
& x_{0} x_{1}+x_{0} x_{2}+x_{0} x_{10}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{9}+x_{2} x_{7}+x_{3} x_{4}+x_{3} x_{7}+x_{4} x_{5}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6} x_{9}+x_{7} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{0} x_{7}+x_{1}+x_{2} x_{5}+x_{2} x_{6}+x_{2} x_{8}+x_{2} x_{10}+x_{3} x_{6}+x_{3} x_{8}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{6}+x_{4}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{9}+x_{7} x_{9}+x_{7}+x_{8} x_{9}+x_{10}, \\
& x_{0} x_{2}+x_{0} x_{4}+x_{1} x_{2}+x_{1} x_{6}+x_{1} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{5}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{7}+x_{4} x_{9}+x_{5}+x_{6} x_{8}+x_{7} x_{8}+x_{8} x_{9}+x_{8} x_{10}, \\
& x_{0} x_{5}+x_{0} x_{7}+x_{0} x_{8}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{6}+x_{2} x_{7}+x_{2} x_{10}+x_{3} x_{8}+x_{4} x_{5}+x_{4} x_{8}+x_{5} x_{6}+x_{5} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7} x_{10}+x_{9}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{1} x_{4}+x_{1} x_{7}+x_{1} x_{8}+x_{2}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{7}+x_{4} x_{9}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{7}+x_{5}+x_{6} x_{9}+x_{7} x_{10}+x_{8} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{7}+x_{0} x_{8}+x_{0} x_{9}+x_{1} x_{3}+x_{1} x_{5}+x_{2} x_{3}+x_{2} x_{7}+x_{2} x_{8}+x_{3} x_{10}+x_{4} x_{6}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{8}+x_{5} x_{10}+x_{6}+x_{7} x_{9}+x_{8} x_{9}+x_{9} x_{10}, \\
& x_{0} x_{4}+x_{0} x_{8}+x_{1} x_{6}+x_{1} x_{8}+x_{1} x_{9}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{7}+x_{3} x_{8}+x_{4} x_{9}+x_{5} x_{6}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{10}+x_{8} x_{9}+x_{8} x_{10}+x_{10} \text {, } \\
& x_{0} x_{10}+x_{1} x_{4}+x_{1} x_{7}+x_{2} x_{5}+x_{2} x_{8}+x_{2} x_{9}+x_{3}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6}+x_{7} x_{10}+x_{9}, \\
& \left.x_{0} x_{5}+x_{0} x_{10}+x_{1} x_{8}+x_{1} x_{9}+x_{1} x_{10}+x_{2} x_{4}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{8}+x_{3} x_{9}+x_{5} x_{7}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{9}+x_{7}+x_{8} x_{10}+x_{9} x_{10}\right)
\end{aligned}
$$

Degree of MiMC

On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}_{a}(F)=\max \left\{w t(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

$\mathrm{MiMC}_{3}[A G R+16]:$

Degree of MiMC

On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}_{a}(F)=\max \left\{w t(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

$\mathrm{MiMC}_{3}[A G R+16]:$

Degree of MiMC

On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}_{a}(F)=\max \left\{w t(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

$\mathrm{MiMC}_{3}[\mathrm{AGR}+16]:$

Take Away
Concepts that are apparently quite simple have actually complex behaviours...

Algebraic attacks

Algebraic Attacks against some Arithmetization-oriented Primitives, Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Foundation.

Definition

Constrained Input Constrained Output (CICO)

 problem:Find $X, Y \in \mathbb{F}_{q}^{t-u}$ s.t. $P\left(X, 0^{u}\right)=\left(Y, 0^{u}\right)$.

Results on Feistel-MiMC, Poseidon and Rescue-Prime

* build univariate systems
* a trick for SPN

Algebraic attacks

Algebraic Attacks against some Arithmetization-oriented Primitives,
Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Foundation.

Definition

Constrained Input Constrained Output (CICO)

 problem:Find $X, Y \in \mathbb{F}_{q}^{t-u}$ s.t. $P\left(X, 0^{u}\right)=\left(Y, 0^{u}\right)$.

Results on Feistel-MiMC, Poseidon and Rescue-Prime

* build univariate systems
* a trick for SPN

Take Away

It might be better to avoid low degree functions...

Content

Backstages of Anemoi: A new approach to ZK-friendliness.

(1) Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence
(2) Anemoi
- New S-box: Flystel
- New Mode: Jive
- Comparison to previous work
(3) Conclusions and Future work
(1) Preliminaries
- Emerging uses in symmetric cryptography
- CCZ-equivalence
- New S-box: Flystel
- New Mode: Jive
- Comparison to previous work

3) Conclusions and Future work

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

* Multiparty Computation (MPC)
* Homomorphic Encryption (FHE)
* Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

* Multiparty Computation (MPC)
* Homomorphic Encryption (FHE)
* Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

\Rightarrow What differs from the "usual" case?

Comparison with "usual" case

A new environment

```
"Usual" case
    * Field size:
        F}\mp@subsup{2}{\mp@subsup{2}{}{n}}{}\mathrm{ , with }n\simeq4,8 (AES: n=8)
    \star Operations:
        logical gates/CPU instructions
```


Arithmetization-friendly

* Field size: \mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$.
\star Operations: large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

$$
\mathbb{F}_{2^{n}}, \text { with } n \simeq 4,8 \quad(\operatorname{AES}: n=8)
$$

* Operations:
logical gates/CPU instructions

New properties

"Usual" case

* Operations:

$$
y \leftarrow E(x)
$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

* Field size:

$$
\overline{\mathbb{F}_{q}, \text { with } q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64 . . . ~}
$$

\star Operations: large finite-field arithmetic

Arithmetization-friendly

\star Operations:

$$
y=E(x)
$$

* Efficiency: integration within advanced protocols

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8$ (AES: $n=8$).
* Operations:
logical gates/CPU instructions

New properties

"Usual" case

* Operations:

$$
y \leftarrow E(x)
$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

* Field size:

$$
\overline{\mathbb{F}_{q}, \text { with }} q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64 \text {. }
$$

* Operations:
large finite-field arithmetic

Arithmetization-friendly

\star Operations:

$$
y==E(x)
$$

* Efficiency: integration within advanced protocols

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.
\Rightarrow vulnerability to some attacks...

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.
\Rightarrow vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision
A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified efficiently.

Affine-equivalence

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are affine equivalent if

$$
F(x)=(B \circ G \circ A)(x),
$$

where A, B are affine permutations.

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are extended affine equivalent if

$$
F(x)=(B \circ G \circ A)(x)+C(x),
$$

where A, B, C are affine functions with A, B permutations s.t.

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\left(\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right)\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

CCZ-equivalence

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are extended affine equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\left(\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right)\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

CCZ-equivalence

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are extended affine equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\left(\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right)\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

CCZ-equivalence

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are extended affine equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\left(\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right)\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) \quad \text { and } \quad \mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right)
$$

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!

CCZ-equivalence

Definition

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are extended affine equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\left(\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right)\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) \quad \text { and } \quad \mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right)
$$

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!
\Rightarrow Can we get CCZ-equivalence from EA-equivalence?

Twist

Using isomorphisms $\mathbb{F}_{2}^{n} \simeq \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t}$ and $\mathbb{F}_{2}^{m} \simeq \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$:

Definition

$F: \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t} \rightarrow \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$ and $G: \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t} \rightarrow \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$ are t-twist-equivalent if T_{y} is a permutation for all y and

$$
G(u, y)=\left(T_{y}^{-1}(u), U_{T_{y}^{-1}(u)}(y)\right) .
$$

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{2}^{n}\right\}
$$

swap matrix M_{t}
\Longleftrightarrow

$$
\Gamma_{G}=\left\{(x, G(x)) \mid x \in \mathbb{F}_{2}^{n}\right\}
$$

$C C Z=E A+$ twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation $+t$-twist + EA transformation

$$
\Gamma_{F}=\mathcal{A}\left(\Gamma_{G}\right)
$$

with \mathcal{A} affine permutation.

$$
\Gamma_{F}=\left(A \cdot M_{t} \cdot B\right)\left(\Gamma_{G}\right),
$$

with M_{t} swap matrix and A, B EA-mappings.

$C C Z=E A+$ twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation $+t$-twist + EA transformation

$$
\Gamma_{F}=\mathcal{A}\left(\Gamma_{G}\right),
$$

with \mathcal{A} affine permutation.
$\Gamma_{F}=\left(A \cdot M_{t} \cdot B\right)\left(\Gamma_{G}\right)$,
with M_{t} swap matrix and A, B EA-mappings.

$C C Z=E A+$ twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation $+t$-twist + EA transformation

$$
\Gamma_{F}=\mathcal{A}\left(\Gamma_{G}\right),
$$

with \mathcal{A} affine permutation. \Downarrow

$$
\Gamma_{F}=\left(A \cdot M_{t} \cdot B\right)\left(\Gamma_{G}\right),
$$

with M_{t} swap matrix and A, B EA-mappings.

$C C Z=E A+$ twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation $+t$-twist + EA transformation

$$
\Gamma_{F}=\mathcal{A}\left(\Gamma_{G}\right),
$$

with \mathcal{A} affine permutation.
$\Gamma_{F}=\left(A \cdot M_{t} \cdot B\right)\left(\Gamma_{G}\right)$,
with M_{t} swap matrix and A, B EA-mappings.

Example: Inverse

Let $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$,

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{2^{n}}\right\} \quad \text { and } \quad \Gamma_{F^{-1}}=\left\{\left(y, F^{-1}(y)\right) \mid y \in \mathbb{F}_{2^{n}}\right\}=\left\{(F(x), x) \mid x \in \mathbb{F}_{2^{n}}\right\} .
$$

$$
\binom{x}{F(x)}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right)\binom{F(x)}{x} \Rightarrow \text { swap matrix } M_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right) .
$$

F

$$
F^{-1}
$$

$\Rightarrow F$ and F^{-1} are CCZ-equivalent and the degree is indeed not preserved.

Example: Butterfly [PUB16]

\mathcal{H}

\mathcal{V}

Example: Butterfly [PUB16]

Sum up on CCZ-equivalence

Important things to remember!
Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ s.t. $\Gamma_{G}=\mathcal{A}\left(\Gamma_{F}\right)$, with $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) .
$$

Sum up on CCZ-equivalence

Important things to remember!

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ s.t. $\Gamma_{G}=\mathcal{A}\left(\Gamma_{F}\right)$, with $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) .
$$

* F and G have the same linear properties

$$
\mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right) .
$$

Sum up on CCZ-equivalence

Important things to remember!

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ s.t. $\Gamma_{G}=\mathcal{A}\left(\Gamma_{F}\right)$, with $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) .
$$

$\star F$ and G have the same linear properties

$$
\mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right) .
$$

\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

Sum up on CCZ-equivalence

Important things to remember!

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ s.t. $\Gamma_{G}=\mathcal{A}\left(\Gamma_{F}\right)$, with $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) .
$$

$\star F$ and G have the same linear properties

$$
\mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right) .
$$

\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

* The degree is not preserved.

Sum up on CCZ-equivalence

Important things to remember!

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ s.t. $\Gamma_{G}=\mathcal{A}\left(\Gamma_{F}\right)$, with $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties

$$
\delta_{G}(a, b)=\delta_{F}\left(\mathcal{L}^{-1}(a, b)\right) .
$$

* F and G have the same linear properties

$$
\mathcal{W}_{G}(\alpha, \beta)=(-1)^{c \cdot(\alpha, \beta)} \mathcal{W}_{F}\left(\mathcal{L}^{T}(\alpha, \beta)\right) .
$$

\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

\star The degree is not preserved.
(1) Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalenceAnemoi
- New S-box: Flystel
- New Mode: Jive
- Comparison to previous work

3 Conclusions and Future work

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems.
* Limited Reliance on Randomness.
* Different Algorithms for Different Purposes.
* Design Consistency.

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \ldots
* Limited Reliance on Randomness.
* Different Algorithms for Different Purposes.
\star Design Consistency.

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \ldots
* Limited Reliance on Randomness. \rightarrow fixed MDS matrices
* Different Algorithms for Different Purposes.
\star Design Consistency.

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \ldots
* Limited Reliance on Randomness. \rightarrow fixed MDS matrices
\star Different Algorithms for Different Purposes. \rightarrow hash function \neq compression function
\star Design Consistency.

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \ldots
* Limited Reliance on Randomness. \rightarrow fixed MDS matrices
\star Different Algorithms for Different Purposes. \rightarrow hash function \neq compression function
\star Design Consistency.
\rightarrow same structure for all uses

Goals and Principles

* Design goals:
* Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \ldots
* Limited Reliance on Randomness. \rightarrow fixed MDS matrices
\star Different Algorithms for Different Purposes. \rightarrow hash function \neq compression function
\star Design Consistency. $\quad \rightarrow$ same structure for all uses
* Our contributions:
* Link between AO and CCZ-equivalence
* Flystel: a new S-box
* Jive: a new mode

Why Anemoi?

* Auld

Alliance between France and Scotland

Why Anemoi?

* Auld

Alliance between France and Scotland

* Athena

Greek goddess, protector of Athens

Why Anemoi?

* Auld

Alliance between France and Scotland

* Athena

Greek goddess, protector of Athens

* Anemoi

Greek gods of winds

The Flystel

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with
$Q: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $Q^{\prime}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ two quadratic functions, and $E: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ a permutation

High-degree permutation

Open Flystel \mathcal{H}.

Low-degree function

Closed Flystel \mathcal{V}.

The Flystel

$$
\begin{aligned}
\Gamma_{\mathcal{H}} & =\left\{((x, y), \mathcal{H}((x, y))) \mid(x, y) \in \mathbb{F}_{q}^{2}\right\} \\
& =\mathcal{A}\left(\left\{((v, y), \mathcal{V}((v, y))) \mid(v, y) \in \mathbb{F}_{q}^{2}\right\}\right) \\
& =\mathcal{A}\left(\Gamma_{\mathcal{V}}\right)
\end{aligned}
$$

High-degree permutation

Open Flystel \mathcal{H}.

Closed Flystel \mathcal{V}.

Advantage of CCZ-equivalence

* High Degree Evaluation.

High-degree permutation

Open Flystel \mathcal{H}.

Low-degree function

Closed Flystel \mathcal{V}.

Advantage of CCZ-equivalence

\star High Degree Evaluation.

$$
(u, v)==\mathcal{H}(x, y) \Leftrightarrow(x, u)==\mathcal{V}(y, v)
$$

* Low Cost Verification.

High-degree permutation

Open Flystel \mathcal{H}.

Closed Flystel \mathcal{V}.

Flystel in $\mathbb{F}_{2^{n}}$

$$
\mathcal{H}:\left\{\begin{array}{cc}
\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} & \rightarrow \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \\
(x, y) \mapsto & \left(x+\beta y^{3}+\gamma+\beta\left(y+\left(x+\beta y^{3}+\gamma\right)^{1 / 3}\right)^{3}+\delta,\right. \\
\left.y+\left(x+\beta y^{3}-\gamma\right)^{1 / 3}\right) .
\end{array} \quad \mathcal{V}: \begin{cases}\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} & \rightarrow \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \\
(x, y) & \mapsto(y+v)^{3}+\beta y^{3}+\gamma, \\
& \left.(y+v)^{3}+\beta v^{3}+\delta\right),\end{cases}\right.
$$

Open Flystel ${ }_{2}$.

Closed Flystel ${ }_{2}$.

Properties of Flystel in $\mathbb{F}_{2^{n}}$

First introduced by [Perrin et al. 2016].
Well-studied butterfly.
Theorems in [Li et al. 2018] state that
if $\beta \neq 0$:

* Differential properties
* Flystel $_{2}: \delta_{\mathcal{H}}=\delta_{\mathcal{V}}=4$
* Linear properties
\star Flystel $_{2}: \mathcal{W}_{\mathcal{H}}=\mathcal{W}_{\mathcal{V}}=2^{2 n-1}-2^{n}$
* Algebraic degree
* Open Flystel ${ }_{2}: \operatorname{deg}_{\mathcal{H}}=n$
\star Closed Flystel ${ }_{2}: \operatorname{deg}_{\mathcal{V}}=2$
Degenerated Butterfly.

Flystel in \mathbb{F}_{p}

$$
\mathcal{H}:\left\{\begin{array} { r l }
{ \mathbb { F } _ { p } \times \mathbb { F } _ { p } \rightarrow } & { \rightarrow \mathbb { F } _ { p } \times \mathbb { F } _ { p } } \\
{ (x , y) } & { \mapsto } \\
{ } & { (x - \beta y ^ { 2 } - \gamma + \beta (y - (x - \beta y ^ { 2 } - \gamma) ^ { 1 / \alpha }) ^ { 2 } + \delta , \quad \mathcal { V } : } \\
{ } & { y - (x - \beta y ^ { 2 } - \gamma) ^ { 1 / \alpha }) . }
\end{array} \quad \left\{\begin{array}{rl}
\mathbb{F}_{p} \times \mathbb{F}_{p} & \rightarrow \mathbb{F}_{p} \times \mathbb{F}_{p} \\
(y, v) & \mapsto(y-v)^{\alpha}+\beta y^{2}+\gamma, \\
& \left.(v-y)^{\alpha}+\beta v^{2}+\delta\right) .
\end{array}\right.\right.
$$

usually $\alpha=3$ or 5 .

Closed Flystel ${ }_{p}$.

Properties of Flystel in \mathbb{F}_{p}

* Differential properties

Flystel $_{\mathrm{p}}$ has a differential uniformity equals to $\alpha-1$.

Properties of Flystel in \mathbb{F}_{p}

* Differential properties

Flystel $_{\mathrm{p}}$ has a differential uniformity equals to $\alpha-1$.

(a) when $p=11$ and $\alpha=3$.

(b) when $p=13$ and $\alpha=5$.

(c) when $p=17$ and $\alpha=3$.

$$
D D T \text { of } F 1 y s t e l_{p} .
$$

Properties of Flystel in \mathbb{F}_{p}

* Linear properties

$$
\mathcal{W} \leq p \log p ?
$$

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_{p}

* Linear properties

$$
\mathcal{W} \leq p \log p ?
$$

(a) when $p=11$ and $\alpha=3$.

(b) when $p=13$ and $\alpha=5$.

(c) when $p=17$ and $\alpha=3$.

LAT of Flystel ${ }_{p}$.

The SPN Structure

The internal state of Anemoi and its basic operations.

	x_{0}	x_{1}	\ldots	$x_{\ell-1}$
	y_{0}	y_{1}	\ldots	$y_{\ell-1}$

(a) Internal state

\uparrow	\uparrow		\uparrow
\mathcal{H}	\mathcal{H}	\ldots	\mathcal{H}
\downarrow	\downarrow		\downarrow

(c) The S-box layer \mathcal{S}.

(b) The diffusion layer \mathcal{M}.

(d) The constant addition \mathcal{A}.

The SPN Structure

Overview of Anemoi.

New Mode

* Hash function:
* input: arbitrary length
* ouput: fixed length

New Mode

* Hash function:
* input: arbitrary length
* ouput: fixed length
* Compression function:
* input: fixed length
* output: length 1

Dedicated mode $\Rightarrow 2$ words in 1

$$
(x, y) \mapsto x+y+u+v
$$

Preliminarie

Comparison for R1CS

SNARK performances using R1CS representation:
\sim number of multiplications

m	Rescue' $^{\prime}$	Poseidon	Griffin	Anemoi
4	224	232	112	96
6	216	264	-	120
8	256	296	176	160

(a) when $\alpha=3$.

m	Rescue $^{\prime}$	Poseidon	Griffin	Anemoi
4	264	264	$\mathbf{1 1 0}$	120
6	288	315	-	150
8	384	363	$\mathbf{1 6 2}$	200

(b) when $\alpha=5$.

R1CS constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, $s=128$, and prime field of 256 bits.

Preliminaries

New S-box: Flystel

Comparison for Plonk

SNARK performances using Plonk representation:
\sim multiplications gates + addition gates

m	Rescue' $^{\prime}$	Poseidon	Griffin	Anemoi
4	560	1336	334	216
6	756	3024	-	330
8	1152	5448	969	520

(a) when $\alpha=3$.

m	Rescue $^{\prime}$	Poseidon	Griffin	Anemoi
4	528	1032	287	240
6	768	2265	-	360
8	1280	4003	821	560

(b) when $\alpha=5$.

Plonk constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, $s=128$, and prime field of 256 bits.

Preliminarie

New S-box: Flystel
New Mode: Jive
Comparison to previous work

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	2	88
	3	110
Reinforced Concrete	2	236
	3	378
AnemoiJive	2	79

	m	
Poseidon	2	82
	3	98
Reinforced Concrete	2	174
	3	267
AnemoiJive	2	60

(b) With 4 wires.

Constraints comparison with $\alpha=5, s=128$, and prime field sizes of 256,384 .

Comparison for AIR

STARK performances using AIR representation:

Here $w=m, d_{\max }=\alpha$, and $T=R($ or $R F+\lceil R P / m\rceil)$.									
m	Rescue ${ }^{\prime}$	Poseidon	Griffin	Anemoi	m	Rescue ${ }^{\prime}$	Poseidon	Griffin	Anemoi
4	168	348	168	144	4	220	440	220	240
6	162	396	-	180	6	240	540	-	300
8	192	480	264	240	8	320	640	360	400
(a) with $\alpha=3$.					(b) with $\alpha=5$.				

AIR constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, $s=128$, and prime field of 256 bits.

Conclusions

* A new family of ZK-friendly hash functions:
\Rightarrow Anemoi efficient accross proof system
* New observations of fundamental interest:
* Standalone components:
* New S-box: Flystel
* New mode: Jive
* Identify a link between AO and CCZ-equivalence

Conclusions

* A new family of ZK-friendly hash functions:
\Rightarrow Anemoi efficient accross proof system
* New observations of fundamental interest:
* Standalone components:
* New S-box: Flystel
* New mode: Jive
* Identify a link between AO and CCZ-equivalence

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Future work

* On Anemoi:
* pushing further the cryptanalysis.
\star explaining linear properties of the Flystel.
\star constructing a Flystel with more branches? \Rightarrow see [BCLP22]
* Extending the study of the algebraic degree of MiMC to
\star other permutations x^{d} for any d.
* SPN constructions.
\Rightarrow see [LAW+22]: can we extend the coefficient grouping strategy to other primitives than Chaghri?

Future work

* On Anemoi:
* pushing further the cryptanalysis.
* explaining linear properties of the Flystel.
* constructing a Flystel with more branches? \Rightarrow see [BCLP22]
* Extending the study of the algebraic degree of MiMC to
\star other permutations x^{d} for any d.
* SPN constructions.
\Rightarrow see $[L A W+22]$: can we extend the coefficient grouping strategy to other primitives than Chaghri?

Thanks for your attention!

