Algebraic properties of the MiMC block cipher

Clémence Bouvier^{1,2} Anne Canteaut² and Léo Perrin²

¹Sorbonne Université

²Inria Paris, team COSMIQ

Seminar COSMIQ, december 16th, 2020

Content

Algebraic properties of the MiMC block cipher

- Emerging uses in symmetric cryptography
- Definition of algebraic degree
- Specification of MiMC

Study of MiMC and MiMC⁻¹

- Algebraic degree of MiMC
- Algebraic degree of MiMC⁻¹

3 Algebraic attack

- Secret-key 0-sum distinguisher
- Key-recovery
- Known-key 0-sum distinguisher

Emerging uses in symmetric cryptogra Definition of algebraic degree Specification of MiMC

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree
- Specification of MiMC

2 Study of MiMC and MiMC $^{-1}$

- Algebraic degree of MiMC
- Algebraic degree of MiMC⁻¹

3 Algebraic attack

- Secret-key 0-sum distinguisher
- Key-recovery
- Known-key 0-sum distinguisher

Emerging uses in symmetric cryptography

Block ciphers : indistinguishable from a random permutation

Problem : Analyzing the security of new symmetric primitives

Protocols requiring new primitives :

- multiparty computation (MPC)
- homomorphic encryption (FHE)
- systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Deployment of the Blockchain

Primitives designed to minimize the number of multiplications in a finite field. \Rightarrow using nonlinear functions on a large finite field \mathbb{F}_q (such as \mathbb{F}_{2^n} where $n \sim 128$, or prime fields)

Emerging uses in symmetric cryptography Definition of algebraic degree Specification of MiMC

Algebraic degree

Let $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, there is one and only one univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$:

$$\deg(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

Proposition [BC13]¹

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg(F^{-1}) = n - 1 \iff \deg(F) = n - 1$$

¹Boura, Canteaut (IEEE 2013)

On the Influence of the Algebraic Degree of F^{-1} on the Algebraic Degree of $G \circ F$

Emerging uses in symmetric cryptography Definition of algebraic degree Specification of MiMC

The block cipher MiMC

Construction of MiMC [AGR+16]² :

- *n*-bit blocks ($n \approx 127$)
- *n*-bit key *k*
- decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Figure: The MiMC encryption with r rounds

Security analysis of the encryption : Cryptanalysis

 \Rightarrow Study of the **algebraic degree**

²Albrecht et al. (Eurocrypt 2016) MiMC : Efficient Encryption and Cryptographic with Minimal Multiplicative Complexity

Security analysis

A first plateau :

• Round 1 : deg = 2

$$\mathcal{P}_1(x) = (x+k)^3 = x^3 + kx^2 + k^2x + k^3$$

- $1 = [1]_2 \ 2 = [10]_2 \ \textbf{3} = [\textbf{11}]_2$
- Round 2 : deg = 2

$$\mathcal{P}_{2}(x) = ((x+k)^{3} + k_{1})^{3}$$

= $x^{9} + kx^{8} + k_{1}x^{6} + k^{2}k_{1}x^{4} + k_{1}^{2}x^{3} + (k^{4}k_{1} + kk_{1}^{2})x^{2}$
+ $(k^{8} + k^{2}k_{1}^{2})x + (k^{3} + k_{1})^{3}$ where $k_{1} = k + c_{1}$

 $1 = [1]_2 \ 2 = [10]_2 \ 3 = [11]_2 \ 4 = [100]_2 \ 6 = [110]_2 \ 8 = [1000]_2 \ 9 = [1001]_2$

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree
- Specification of MiMC

Study of MiMC and MiMC⁻¹

- Algebraic degree of MiMC
- Algebraic degree of MiMC⁻¹

3 Algebraic attack

- Secret-key 0-sum distinguisher
- Key-recovery
- Known-key 0-sum distinguisher

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Algebraic degree of MiMC

Figure: Algebraic degree of MiMC encryption

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Algebraic degree of MiMC

Proposition

List of exponents that might appear in the polynomial :

$$\mathcal{M}_r = \{3j \mod (2^n - 1) \text{ where } j \preceq i, i \in \mathcal{M}_{r-1}\}$$

If $3^r < 2^n - 1$: upper bound = $2 \times \lfloor \log_2(3^r)/2 \rfloor$ lower bound = $wt(3^r)$

Figure: Comparison of the observed degree with bounds (for n = 25)

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Algebraic degree of MiMC

Theorem

After r rounds of MiMC, the algebraic degree is

 $d \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

Study of the missing monomials in the polynomial:

• no exponent
$$\equiv 5,7 \mod 8$$
 so no exponent $2^{2k} - 1$
Example $63 = 2^{2 \times 3} - 1 \notin \mathcal{M}_4 = \{0,3,\ldots,81\}$
 $\Rightarrow deg < 6 = wt(63)$

• if
$$k = \lfloor \log_2(3^r) \rfloor$$
, for all $r > 4$, $2^{k+1} - 5 > 3^r$
Example $\lfloor \log_2(3^8) \rfloor = 12$ and $3^8 = 6561 < 8187 = 2^{13} - 5$
 $\Rightarrow deg < 12 = wt(8187)$

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Algebraic degree of MiMC

Conjecture : After *r* rounds of MiMC, the algebraic degree is :

 $d = 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

Study of maximum weight exponent monomials, present in polynomial:

•
$$2^{2k-1} - 5$$
 and $2^{2k} - 7$ if $\lfloor \log_2(3^r) \rfloor = 2k$
Example $27 = 2^{2 \times 3-1} - 5, 57 = 2^{2 \times 3} - 7 \in \mathcal{M}_4 = \{0, 3, \dots, 81\}$
 $\Rightarrow deg = 4 = wt(27) = wt(57)$

•
$$2^{2k+1} - 5$$
 if $\lfloor \log_2(3^r) \rfloor = 2k + 1$
Example $123 = 2^{2 \times 3+1} - 5 \in \mathcal{M}_5 = \{0, 3, \dots, 243\}$
 $\Rightarrow deg = 6 = wt(123)$

 \Rightarrow plateau when $\lfloor \log_2(3^r)
floor = 2k - 1$ and $\lfloor \log_2(3^{r+1})
floor = 2k$

Algebraic degree of MiMC

Form of coefficients

Figure: Comparison of algebraic degree for rounds r of MiMC with x^9 and for rounds 2r of MiMC with x^3 (n = 23)

Exemple: coefficients of maximum weight exponent monomials at round 4

 $27: c_1^{18} + c_3^2 = 30: c_1^{17} = 51: c_1^{10} = 54: c_1^9 + c_3 = 57: c_1^8 = 75: c_1^2 = 78: c_1$

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Study of MiMC⁻¹

Figure: Algebraic degree of MiMC decryption

Inverse function : $F : x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$

Some ideas studied

plateau between round 1 and 2

- Round 1 : deg = wt(s) = (n+1)/2
- Round 2 : $deg = \max\{wt(js), \text{ for } j \leq s\} = (n+1)/2$

Proposition

```
for j \leq s such that wt(j) \geq 2:
```

$$wt(js) \in \begin{cases} [wt(j) - 1, (n-1)/2] & \text{if } wt(j) \equiv 2 \mod 3 \\ [wt(j), (n+1)/2] & \text{else} \end{cases}$$

Some ideas studied

plateau between round 1 and 2

- Round 1 : deg = wt(s) = (n+1)/2
- Round 2 : $deg = \max\{wt(js), \text{ for } j \leq s\} = (n+1)/2$

Proposition

for $j \leq s$ such that $wt(j) \geq 2$:

$$wt(js) \in \begin{cases} [wt(j) - 1, (n-1)/2] & \text{if } wt(j) \equiv 2 \mod 3 \\ [wt(j), (n+1)/2] & \text{else} \end{cases}$$

Next rounds : another plateau at n - 2 ?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-5}{4} \right\rceil + 3 \right) \right\rceil$$

Study of MiMC⁻¹

Upper bound

Proposition

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is deg(F) < (n-1)/i, then the algebraic degree of decryption is deg(F⁻¹) < n-i

Lower Bound

- Round 3: $d \ge (n+1)/2 + \lfloor (n+1)/6 \rfloor$
- Round $r \ge 4$: $d \ge (n+1)/2 + \lfloor n/4 \rfloor$.

Figure: Bounds on algebraic degree of MiMC decryption (for n = 23)

Algebraic degree of MiMC Algebraic degree of MiMC⁻¹

Other permutations

Other permutations with a plateau between rounds 1 and 2 :

Proposition Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n, x \mapsto x^d$ where $d = 2^k - 1$. If $d^2 < 2^n - 1$, then : $deg((x^d + c)^d) = deg(x^d)$ where c is a constant

BUT no plateau between rounds 1 and 2 for decryption !

Example (with $\mathbb{F}_{2^{11}}$)

- encryption : $15 = 2^4 1 \Rightarrow plateau$
- decryption : $15^{-1} = 273$ so
 - algebraic degree at round 1 : 3 = wt(273)
 - algebraic degree at round 2 : $5 = wt(273 \times 273 \mod 2^{11} 1)$

1 Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree
- Specification of MiMC

2 Study of MiMC and MiMC $^{-1}$

- Algebraic degree of MiMC
- Algebraic degree of MiMC⁻¹

3 Algebraic attack

- Secret-key 0-sum distinguisher
- Key-recovery
- Known-key 0-sum distinguisher

Secret-key 0-sum distinguisher Key-recovery Known-key 0-sum distinguisher

Higher-order differential attacks

Higher-order differentials :

Exploiting a low algebraic degree If deg(f) = d, then for a vector space V such that dim $V \ge d + 1$

$$\bigoplus_{x\in\mathcal{V}}f(x)=0.$$

 \Rightarrow set up a 0-sum distinguisher

Random permutation : maximal degree = n - 1

Secret-key 0-sum distinguisher Key-recovery Known-key 0-sum distinguisher

Secret-key 0-sum distinguisher

Proposition

The number of rounds of $MiMC_k$ (or $MiMC_k^{-1}$) necessary for the algebraic degree to reach its maximum is : $r \ge \lceil \log_3 2^n \rceil$.

Full MiMC_k : $R = \lceil \log_3 2^n \rceil$

Corollary

Let \mathcal{V} be a (n-1)-dimensional subspace of \mathbb{F}_{2^n} . We can set up a 0-sum distinguisher for R-1 rounds of MiMC_k (or MiMC_k^{-1}). $\Rightarrow 1$ round of security margin.

Let $f^{r}(x, k)$ be the function corresponding to r rounds of MiMC_k

$$\bigoplus_{x\in\mathcal{V}}f^{R-1}(x,k)=0=\bigoplus_{x\in\mathcal{V}}f^{-(R-1)}(x,k).$$

Secret-key 0-sum distinguisher Key-recovery Known-key 0-sum distinguisher

Secret-key 0-sum distinguisher

Proposition

 $\forall r \leq R-1$, the algebraic degree of MiMC satisfies : $d \leq n-3$.

Corollary

Let \mathcal{V} be a (n-2)-dimensional subspace of \mathbb{F}_{2^n} . We can set up a 0-sum distinguisher for R-1 rounds of MiMC_k

Secret-key 0-sum distinguisher Key-recovery Known-key 0-sum distinguisher

Secret-key 0-sum distinguisher

Proposition

 $\forall r \leq R-1$, the algebraic degree of MiMC satisfies : $d \leq n-3$.

Corollary

Let \mathcal{V} be a (n-2)-dimensional subspace of \mathbb{F}_{2^n} . We can set up a 0-sum distinguisher for R-1 rounds of MiMC_k

Example

r	78	79	80	81	82
d	122	124	124	126	128

Table: Degree in the last rounds for n = 129

Algebraic degree of MiMC at r = R - 2: $d \le n - 3$ or $d \le n - 5$. \Rightarrow 0-sum distinguisher for R - 2 rounds of MiMC_k, for a (n - 2) or (n - 4)-dimensional subspace of \mathbb{F}_{2^n} . Background Secret-key 0-sum distinguisher Study of MiMC and MiMC⁻¹ Algebraic attack Known-key 0-sum distinguisher

Key-recovery

Let \mathcal{V} be a (n-1)-dimensional subspace of \mathbb{F}_{2^n} . \Rightarrow 0-sum distinguisher for R-1 rounds of $\operatorname{MiMC}_k^{-1}$. So

$$F(k) = \bigoplus_{x \in \operatorname{MiMC}_k^{-1}(\mathcal{V}+\nu)} f(x,k) = 0$$
.

1 round of $MiMC_k$ is described by :

$$(x \oplus k)^3 = k^3 \oplus k^2 \cdot x \oplus k \cdot x^2 \oplus x^3$$

Let $\mathcal{W} = \operatorname{MiMC}_{k}^{-1}(\mathcal{V} + \mathbf{v})$:

$$F(k) = \bigoplus_{x \in \mathcal{W}} (k^3 \oplus k^2 \cdot x \oplus k \cdot x^2 \oplus x^3)$$
$$= \left(k^2 \cdot \bigoplus_{x \in \mathcal{W}} x\right) \oplus \left(k \cdot \bigoplus_{x \in \mathcal{W}} x^2\right) \oplus \left(\bigoplus_{x \in \mathcal{W}} x^3\right)$$

Secret-key 0-sum distinguisher Key-recovery Known-key 0-sum distinguisher

Known-key 0-sum distinguisher

0-sum distinguisher for R - 1 rounds of MiMC_k and MiMC_k⁻¹. So with a known-key : 0-sum distinguisher for 2R - 2 rounds

Impact on hash functions ?

Figure: Sponge hash function

Known-key 0-sum distinguisher

MiMC with n = 1025 (647 rounds).

- rate : 512 bits
- capacity : 513 bits
- plateau on rounds R 4 and R 3 (equals to n 7) for MiMC encryption
- $r_{n-2} \ge 324$, so the degree at round $r < r_{n-2}$ satisfies : $d \le n-3$.

$$x \xleftarrow{f^{-(R-1)}(y,0)} \xleftarrow{y} \xrightarrow{f^{R-1}(y,0)} z \qquad dim(\mathcal{V}) = n-1 \quad 2R-2 \text{ rounds}$$

$$d \leq n-2 \qquad d \leq n-3$$

$$x \leftarrow \underbrace{f^{-323}(y,0)}_{d \le n-3} \leftarrow y \longrightarrow \underbrace{f^{R-1}(y,0)}_{d \le n-3} \rightarrow z \qquad dim(\mathcal{V}) = n-2 \sim \frac{3}{2}R \text{ rounds}$$

$$x \leftarrow \underbrace{f^{-216}(y,0)}_{d \le n-4} \leftarrow y \longrightarrow \underbrace{f^{R-2}(y,0)}_{d \le n-5} \rightarrow z \qquad dim(\mathcal{V}) = n-3$$

 $\sim \frac{4}{3}R$ rounds

Known-key 0-sum distinguisher

- MiMC with n = 769 (486 rounds).
 - rate : 512 bits
 - capacity : 257 bits
 - plateau on rounds R 2 and R 1 (equals to n 3) for MiMC encryption
 - $r_{n-2} \ge 243$, so the degree at round $r < r_{n-2}$ satisfies : $d \le n-3$.

$$x \xleftarrow{f^{-(R-1)}(y,0)} \xleftarrow{y} \xrightarrow{f^{R-1}(y,0)} z \qquad dim(\mathcal{V}) = n-1 \quad 2R-2 \text{ rounds}$$

$$d \leq n-2 \qquad d \leq n-3$$

$$x \leftarrow \underbrace{f^{-242}(y,0)}_{d \le n-3} \leftarrow y \longrightarrow \underbrace{f^{R-1}(y,0)}_{d \le n-3} \rightarrow z \qquad dim(\mathcal{V}) = n-2 \sim \frac{3}{2}R \text{ rounds}$$

$$x \leftarrow \underbrace{f^{-162}(y,0)}_{d \le n-4} \leftarrow y \longrightarrow \underbrace{f^{R-3}(y,0)}_{d \le n-5} \rightarrow z \qquad dim(\mathcal{V}) = n-3 \quad \sim \frac{4}{3}R \text{ rounds}$$

Background Study of MiMC and MiMC⁻¹ Algebraic attack Key-recovery Known-key 0-sum distinguis

Comparison to previous work

Туре	п	Rounds	Time	Data	Source
SK ³	129	80	2 ¹²⁸ XOR	2 ¹²⁸	[EGL+20] ⁴
SK	n	$\lceil \log_3(2^{n-1}-1) \rceil - 1$	2^{n-1} XOR	2^{n-1}	[EGL+20]
SK	129	81	2 ¹²⁸ XOR	2 ¹²⁸	Slide 20
SK	п	$\lceil \log_3 2^n \rceil - 1$	2^{n-1} XOR	2^{n-1}	Slide 20
SK	129	81 (MiMC)	2 ¹²⁷ XOR	2 ¹²⁷	Slide 21
SK	п	$\lceil \log_3 2^n \rceil - 1 \text{ (MiMC)}$	2^{n-2} XOR	2^{n-2}	Slide 21
SK	129	80 (MiMC)	2 ¹²⁵ XOR	2 ¹²⁵	Slide 21
SK	п	$\lceil \log_3 2^n \rceil - 2 $ (MiMC)	2^{n-2} ou 2^{n-4} XOR	2 ^{<i>n</i>-2} ou 2 ^{<i>n</i>-4}	Slide 21
KK	129	160	-	2 ¹²⁸	[EGL+20]
KK	п	$2 \cdot \lceil \log_3(2^{n-1}-1) \rceil - 2$	-	2^{n-1}	[EGL+20]
KK	129	162	-	2 ¹²⁸	Slide 23
KK	n	$2 \cdot \lceil \log_3 2^n \rceil - 2$	-	2^{n-1}	Slide 23
KR	129	82	2 ^{122.64}	2 ¹²⁸	[EGL+20]
KR	п	$\lceil n \cdot \log_3 2 \rceil$	$2^{n-1-(\log_2 \lceil n \log_3 2 \rceil)}$ ou $2^{n-(\log_2 \lceil n \log_3 2 \rceil)}$	2^{n-1}	[EGL+20]
KR	129	82	2 ^{121.64}	2 ¹²⁸	Slide 22
KR	п	$\lceil n \cdot \log_3 2 \rceil$	$2^{n-1-(\log_2 \lceil n \log_3 2 \rceil)}$	2^{n-1}	Slide 22

Table: Attack complexity on MiMC

³SK : Secret-key distinguisher, KK : Known-key distinguisher, KR : Key-recovery ⁴Eichlseder et al. (Asiacrypt 2020)

An Algebraic Attack on Ciphers with Low-Degree Round Functions

Conclusion

MiMC study :

• steps in the evolution of the degree of the MiMC encryption function

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

- inverse transformation
 - plateau between rounds 1 and 2
 - next rounds ?
 plateau at n 2 in the last rounds ?

Attacks

- O-sum distinguishers
- key-recovery
- \Rightarrow limited by the high degree of the inverse in the last rounds

Other types of attacks ?

Thanks for your attention